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Abstract—Machine Learning (ML) models in Robotic Assembly
Sequence Planning (RASP) need to be introspective on the
predicted solutions, i.e. whether they are feasible or not, to
circumvent potential efficiency degradation. Previous works need
both feasible and infeasible examples during training. However,
the infeasible ones are hard to collect sufficiently when re-training
is required for swift adaptation to new product variants. In this
work, we propose a density-based feasibility learning method
that requires only feasible examples. Concretely, we formulate
the feasibility learning problem as Out-of-Distribution (OOD)
detection with Normalizing Flows (NF), which are powerful gen-
erative models for estimating complex probability distributions.
Empirically, the proposed method is demonstrated on robotic
assembly use cases and outperforms other single-class baselines
in detecting infeasible assemblies. We further investigate the
internal working mechanism of our method and show that a
large memory saving can be obtained based on an advanced
variant of NF.

I. INTRODUCTION

To embrace the trend of shorter product life cycles and
greater customization, RASP empowered with ML models for
productivity enhancement has received more attention over the
past years [2, 12, 10, 22]. However, data-driven models are
reported to behave unreliably with inputs differing from the
training distribution, e.g., assemblies with distinct customiza-
tion [15]. In other words, the assembly robot is unaware of
the predicted solution’s feasibility, which requires an intrinsic
understanding of the geometry of assemblies and the capability
of the robotic system [11]. This lack of introspection can lead
to prolonged planning time induced from re-planning after
failed execution of an infeasible plan. To address this issue,
feasibility learning has been studied [18, 6, 19, 20, 2] based
on a setting with infeasible assemblies included. We argue
that this setting is undesirable in practice because of the risk
of incomplete coverage of all possible infeasible cases and
high time costs for generating sufficient infeasible training
cases. These aggravate the situation when flexible and efficient
adaptation across different product variants is required.

To establish introspection for assembly robots with only
feasible assemblies in mind, we seek to model the feasibility of
an assembly with NF, which are a powerful class of generative
models excelling at density estimation [5]. Concretely, we train
the NF model with Maximum Likelihood Estimation (MLE)
based on feasible assemblies alone to estimate the density
of In-Distribution (ID) data, i.e. feasible assemblies. Hence,
infeasible assemblies can be detected via a lower predicted
likelihood as Out-of-Distribution (OOD).
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Fig. 1: Overview of the proposed method on an assem-
bly scenario with a dual-armed robotic system (used in our
setting). The distribution of feasible assemblies is modeled
during training with NF. In test time, infeasible assemblies
are identified by their low-likelihood.

We examine the proposed idea in a robotic assembly use
case, in which different types of aluminum profiles are assem-
bled with a dual-armed robot to create target structures (see
Fig. 1). We collected assembly data in simulation and trained
the NF on features of only feasible assemblies extracted from
the Graph Assembly Processing Networks (GRACE) proposed
in [2]. The NF model is then used to predict the likelihood of
test data which includes both feasible and infeasible assem-
blies. As we learn the feasibility by estimating the density of
feasible cases, the predicted outputs from NF represent how
likely the given assemblies are feasible. Based on a threshold
selected on a validation set, we can then detect infeasible
assemblies. Empirically, we demonstrate better results with the
proposed method against other baselines on detecting infeasi-
ble assemblies in terms of Area Under the Receiver Operating
Characteristic Curve (AUROC) in the setting where only
feasible assemblies are available. We further investigate the
major contributing factors of NF and significantly decrease the
memory costs (i.e., number of network layers) by employing
a more elaborate base distribution [16].

II. RELATED WORK

A. Feasibility Learning

The major body of work on feasibility learning is concen-
trated on plan or action feasibility learning in TAMP, while



our goal is to learn the feasibility of assemblies directly by
distilling the knowledge of assembly geometry and capability
of the robot system. Wells et al. [18] trained a feature-based
SVM model to directly predict the feasibility of an action
sequence based on experience, which is hard to scale to
scenarios with different numbers and types of objects. Driess
et al. [6] and a recent follow-up [19] predict if a mixed-integer
program can find a feasible motion for a required action based
on visual input. Besides, Yang et al. [20] predict a plan’s
feasibility with a transformer-based architecture using multi-
model input embeddings. Different from us, these methods
work in a two-class setting, requiring failing action sequences
to be included in the training set and then use binary feasibility
classifiers.

B. Normalizing Flows for Out-of-Distribution Detection

NF [4] are a family of deep generative models with ex-
pressive modeling capability for complex data distributions
where both sampling and density evaluation can be efficient
and exact. Among a diverse set of flow architectures, Affine
Coupling Flows [5] have gained huge popularity for their
scalability to big data with high dimensionality and efficiency
for both forward and inverse evaluation. These merits make
NF more practically advantageous for OOD detection [8] when
compared with other more principled but run-time inefficient
uncertainty estimation methods [9]. In the context of task-
relevant OOD detection, the practice of PostNet [3] of op-
erating on feature embeddings, provides a more reasonable
modeling ability. The potentials of NF for OOD detection have
been demonstrated in other domains [13, 21], inspiring us to
use them for feasibility learning.

III. METHOD

A. Problem Setting

Our goal is to predict the feasibility of assemblies relying
only on feasible ones by formulating the problem as an OOD
detection. Given a data-set D of N feature embeddings of
feasible assemblies {ai}Ni=1, where ai ∈ Rh is drawn from an
unknown distribution Pfeasible with Probability Density Func-
tion (PDF) pf , a density estimator, denoted by qθ : Rh → R,
approximates the true pf with MLE for its parameters θ based
on D. During inference, given a threshold δ ∈ R, the feature
of a test assembly âi is classified as OOD, i.e. infeasible, if
qθ(âi) < δ, otherwise as ID, i.e. feasible.

B. Density-based Learning with NF

In this work, NF are used to estimate the density of feasible
assemblies. NF, denoted by fθ : Rh → Rh, are defined
by a chain of diffeomorphisms (invertible and differentiable
mappings) that transform a base distribution p(z), z ∈ Rh

(e.g. an isotropic Gaussian) to the data distribution qθ (in
our case pf ). Based on the Change-of-Variables formula, the
likelihood of an embedding of an assembly is obtained by

qθ(a) = p(f−1
θ (a))

∣∣∣∣det(∂f−1
θ (a)
∂a

)∣∣∣∣ (1)

θ is optimized with MLE based on feasible data only, where
the log likelihood is defined as:

log qθ(a) = log p(f−1
θ (a)) + log

∣∣∣∣det(∂f−1
θ (a)
∂a

)∣∣∣∣ (2)

To this end, the inverse flow f−1 and the log determinant of
the Jacobian need to be tractable and efficient. We employ
the Real-NVP [5] that is composed of multiple layers of
affine coupling flows. As the input to the NF, a data-set of
feature embeddings for feasible assemblies D is extracted from
a pre-trained GRACE [2], which represents each assembly
structure as a graph of its parts and their respective surfaces.
To create a single feature embedding per assembly, a channel-
wise mean pooling is applied on the graph’s part nodes.
Different to previous works, the dimension of this embedding
is independent of the number of assembly parts.

During inference, given a test assembly embedding, the
trained NF qθ predicts a log-likelihood score and determines
its feasibility based on a pre-defined threshold δ, which we
selected with a validation set.

IV. EXPERIMENTS

A. Data-set

We applied an in-house simulation software to randomly
generate synthetic assemblies, each with 5 or 6 aluminum
parts. The software was tasked with putting together these
structures with brute-force search while considering geometry
restrictions and those imposed by the capabilities of the dual-
armed robotic system KUKA LBR Med (seen in Fig. 1). We
label structures that were successfully assembled as feasible
and ones for which the software failed as infeasible. The
resulting data-set consists of 6036 5-parts and 2865 6-parts
assemblies. For the training set, we used feasible-labeled as-
semblies alone. The validation and testing sets were balanced
with both feasible and infeasible assemblies1.

B. Implementation Details

We pre-trained GRACE [2] with its default parameters
to retrieve a 94-dimensions embedding per assembly. We
implemented the NF model using [17] and experimented with
Gaussian and Resampling [16] base distributions. For training
the NF, we chose a batch size of 32 and a learning rate of
1e − 5 with Adam optimizer. The number of coupling flows
was chosen with hyper-parameter search on a validation set.
Each affine coupling flow contained 4 layers with 94 hidden
channels per layer.

We measure the separation between the feasibility classes
with the binary classification metrics False Positive Rate (FPR)
and True Positive Rate (TPR) to derive an AUROC score. In
this setting, a positive instance is a feasible assembly and a
negative an infeasible one.

1This is still a single-class training setting since the validation set is only
used for model selection.



Classifier AUROC (↑)
5-parts 6-parts

GRACE + NF, Gaussian dist., 749 layers (ours) 0.85 0.83
GRACE + NF, Resampling dist., 109 layers (ours) 0.83 -
OC-SVM [14] 0.74 0.59
GRACE [2] 0.61 0.57

TABLE I: Feasibility classifiers AUROC score on balanced
test sets of 5- and 6-part assemblies.

NF Log-likelihood Base Probability Log Determinant

Fig. 2: NF log-likelihoods for feasible and infeasible as-
semblies with 5-parts (left), is a sum of the base probability
(middle) and the transformation matrices log determinant
(right). Best viewed in color.

C. Results

In Table I, we compare our method to baselines on pre-
dicting the feasibility of 5- and 6-part assemblies. The NF
model with Gaussian base distribution achieves the highest
score with a deep 749-layered network, outperforming the
One-class SVM (OC-SVM) [14] and the naive GRACE [2].
In this setting, GRACE predicts an assembly sequence for a
test instance and infer the assembly’s feasibility based on the
success of its sequencing process. More practically relevant,
the NF variant with the more expressive Resampling base dis-
tribution [16] can reach comparably good results with a much
smaller network (109 vs. 749 layers). This benefit of memory
efficiency is highly relevant for robotic systems with only
restricted computation resources (e.g., mobile manipulators).

D. Discussion

For an insight into how NF works on feasibility learning,
we study the impacts of the flow transformations from the
perspectives of two quantities: 1. likelihoods; 2. sample co-
ordinates. While the former represents the density estimation
ability of NF, the latter provides us a hint on how NF shifts
the samples from the flow input space into its latent space.

a) Likelihoods Ablation: The NF log-likelihood estima-
tion in Eq. 2 is a sum of two terms: the density of the base
distribution and the log-determinant of the Jacobian of the
flow transformation. To understand the contribution of each of
these to the model’s estimation, we plot their values separately
for the model with Gaussian base distribution in Fig. 2. As
expected, the determinants are the main contributing factor
to the final scores, whereas the values produced by the base
distribution act as a normalization term.

b) Samples Visualization: We visualize the coordinates
of the embeddings in the input space (as created by the
GRACE feature extractor) and in the NF latent space with

Flow Input Space Flow Latent Space

Fig. 3: Samples visualization in NF input (left) and latent
(right) spaces. At the top, t-SNE shows that samples mapped
by NF are ”normalized”, pulled together to a compact cluster.
At the bottom, Cosine Similarities between feasible and in-
feasible assemblies are more distinct after the transformation,
verifying the ”normalization”. Best viewed in color.

t-distributed Stochastic Neighbor Embedding (t-SNE) and sim-
ilarity matrices (Fig. 3). As shown in the t-SNE visualization,
the samples of feasible assemblies are pulled together and
hence clustered more compactly when compared to those
in the input space before the flow transformation. This is
verified again in the similarity matrices at the bottom, where
the distances between feasible samples are smaller than those
of infeasible ones after. These results show us that the flow
transformation indeed ”normalizes” the inputs in terms of
both likelihood computation and geometrical coordinates. This
observation also confirms the finding of better OOD detection
performance in the flow latent space [7], which is worth
exploring for more effective feasibility learning algorithms,
which we leave for future work. Besides, a further improve-
ment could be archived by encouraging the feature extractor
GRACE to grasp semantics that are more closely related to
the feasibility task, as suggested by [8].

V. CONCLUSION

In this work, we seek to address feasibility prediction for
data-driven methods in RASP with NF relying only on feasible
examples. With the formulation of density-based OOD detec-
tion, we develop an effective feasibility prediction algorithm
based on feature embeddings from a pre-trained processing
network. The empirical experiments on detecting infeasible
assemblies in simulation present promising results, which out-
perform the baselines. We further dug into the internal working
mechanism of NF for this use case and found insightful
observations, which can provide more understanding to inspire
other researchers for further improvements in this direction.
For future research, we suggest introducing explainability into
this setting with a gradient map in respect to the input, which



can guide the user in altering the structure and enable its
assembly, i.e., counter-factual explanation [1].
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