
Under review as submission to TMLR

Generative Evolutionary Meta-Solver (GEMS): Scalable
Surrogate-Free Multi-Agent Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Scalable multi-agent reinforcement learning (MARL) remains a central challenge for AI.
Existing population-based methods, like Policy-Space Response Oracles, Psro, require
storing explicit policy populations and constructing full payoff matrices, incurring quadratic
computation and linear memory costs. We present Generative Evolutionary Meta-Solver
(Gems), a surrogate-free framework that replaces explicit populations with a compact set
of latent anchors and a single amortized generator. Instead of exhaustively constructing
the payoff matrix, Gems relies on unbiased Monte Carlo rollouts, multiplicative-weights
meta-dynamics, and a model-free empirical-Bernstein UCB oracle to adaptively expand
the policy set. Best responses are trained within the generator using an advantage-based
trust-region objective, eliminating the need to store and train separate actors. We evaluated
Gems in a variety of Two-player and Multi-Player games such as the Deceptive Messages
Game, Kuhn Poker and Multi-Particle environment. We find that Gems is up to 6× faster,
has 1.3× less memory usage than Psro, while also reaps higher rewards simultaneously.
These results demonstrate that Gems retains the game theoretic guarantees of Psro, while
overcoming its fundamental inefficiencies, hence enabling scalable multi-agent learning in
multiple domains.

1 Introduction

Figure 1: Tournament analogy for policy
populations. (Left) Psro: explicit k × k payoff
matrix with all pairwise matchups. (Right) Gems:
compact anchor set of latent policies, with a single
generator producing diverse strategies on demand.

Imagine organizing a round-robin tennis tournament with
hundreds of players (Fig. 1). Scheduling every match gives
a complete ranking but is clearly inefficient: the number of
matches grows quadratically, and the results table quickly
becomes unwieldy.

Training AI agents in two-player zero-sum Markov games
faces a similar challenge. Population-based methods such
as Policy-Space Response Oracles (Psro) (Lanctot et al.
(2017)) maintain a growing set of k policies and explic-
itly construct a k × k payoff matrix, where each entry
records the expected outcome of a policy against another.
A meta-solver then updates the distribution over poli-
cies, analogous to computing player rankings from the
tournament table.

While conceptually straightforward, classical Psro suffers
from three critical bottlenecks: ❶ Memory overhead: stor-
ing a new policy for each player leads to linear growth in
storage; ❷ Computation overhead: filling in the full k × k
payoff matrix quickly becomes infeasible; ❸ Scalability of
new entries: adding a new policy requires training and
storing another separate actor. Prior work has mitigated some of these costs through selective best-response

1

Under review as submission to TMLR

training (Smith et al. (2021)), Double Oracle methods (McAleer et al. (2021); Huang et al. (2022)), meta-game
improvements (McAleer et al. (2022b),McAleer et al. (2022a)), and knowledge transfer for new agents (Smith
et al. (2023); Lian et al. (2024)). However, these approaches retain the core paradigm of explicit policy sets,
leaving scalability fundamentally limited.

Gems overcomes these limitations while preserving the game-theoretic guarantees of Psro. Analogously
to running a large tournament without scheduling every match, ❶ Gems maintains a compact anchor
set of latent codes that represent active “players”. ❷ Gems treats the payoff matrix as conceptual and
queries it through Monte Carlo rollouts, which are unbiased in nature. ❸ Meta-strategy is updated using
multiplicative-weights discretization of replicator dynamics, which are akin to adjusting ranking based on
samples. ❹ Empiricial-Bernstein Upper Confidence Bound (UCB) (Maurer & Pontil, 2009) selects
promising new “players” from a candidate pool, thus expanding the population. ❺ Finally, Gems incorporates
an amortized generator with an Advantage-based Best-Response objective and Trust-region Regularization
(ABR-TR) that eliminates the need for separate policies. We evaluated Gems in a variety of Two-player and
Multi-Player games such as the Deceptive Messages Game, Kuhn Poker (Kuhn, 2016) and Multi-Particle
environments (Terry et al., 2021). We find that Gems is up to 6× faster, has 1.3× less memory usage than
Psro, while also reaps higher rewards simultaneously.

Contributions. Relative to classical Psro, Gems achieves ❶ memory efficiency: Gems replaces O(k)
stored players with a single versatile generator. ❷ Computation efficiency: Gems avoids Psro’s quadratic
payoff tables using Monte Carlo estimates, scaling per iteration with the number of sampled matches and the
candidate pool size. ❸ Scalable new entries: EB-UCB identifies strong candidates, and ABR-TR integrates
them into the generator without adding new actors. ❹ Theoretical guarantees: unbiased MC meta-gradients,
instance-dependent regret bounds for EB-UCB, external regret bounds for multiplicative-weights dynamics,
and finite-population exploitability accounting for approximate best responses. Together, these advances
transform the exhaustive “tournament book-keeping” of Psro into a leaner, scalable framework, closer to
how real tournaments operate, where only select matches determine rankings and strategies adapt efficiently
from sparse outcomes.

2 Related Work

Psro and its Variants. The seminal work of Lanctot et al. (2017) introduced Psro as a general framework
for multi-agent reinforcement learning. Psro iteratively expands a population of policies by training a new
best-response policy against a meta-game mixture of the existing population. A core challenge of Psro is its
reliance on a full k× k payoff matrix, where k is the number of policies in the population. This leads to O(k2)
computation overhead per iteration and O(k) memory overhead to store individual policies, both of which
become bottlenecks in large-scale settings (Shao et al., 2024; Zhou et al., 2022). This has motivated a line
of work on more efficient variants. For instance, Efficient Psro (E-psro) (Zhou et al., 2022) minimizes
evaluation costs by formulating the solver as an unrestricted-restricted game. Similarly, Smith et al. (2021)
propose training a best-response against a single opponent, reducing computation but potentially limiting
diversity. The double oracle (DO) family of algorithms, including Xdo (McAleer et al., 2021) and Edo
(Huang et al., 2022), focus on finding equilibria more efficiently, often by guaranteeing linear convergence
or monotonic exploitability reduction (McAleer et al., 2022b). However, these methods can still suffer from
issues like performance oscillations or slow convergence due to the need for a full set of strategies (Huang
et al., 2022). In contrast, Gems avoids these issues entirely by replacing the explicit payoff matrix with
unbiased Monte Carlo rollouts and the discrete set of policies with a single, amortized generator.

Other work has addressed the computational cost of training new policies from scratch at each iteration,
which is a significant bottleneck (Li et al., 2023). Notably, Pipeline Psro (P2SRO) (McAleer et al., 2020)
mitigates this by parallelizing the training of best responses. To further address this, Fusion-Psro (Lian
et al., 2024) uses policy fusion to initialize new best responses, while Strategic Knowledge Transfer
(Smith et al., 2023) explores transferring knowledge across changing opponent strategies. Our work tackles
this problem differently by using a single amortized generator, which removes the need to store and train
separate models for each policy.

2

Under review as submission to TMLR

Finally, some papers have focused on improving the meta-game solution or policy diversity. Alpha-Psro
(Muller et al., 2019) replaces the Nash meta-solver with α-Rank to scale Psro to general-sum, many-player
settings. A-Psro (Hu et al., 2023) introduces an advantage-based evaluation for strategy selection, providing
a unified objective across zero-sum and general-sum games. Anytime Psro (McAleer et al., 2022b) and Self-
Play Psro (SP-Psro) (McAleer et al., 2022a) aim to improve convergence by adding high-quality policies
to the population. Other works introduce new metrics for policy diversity to ensure better approximation of
the Nash Equilibrium (Tang et al., 2025; Yao et al., 2023). While these works aim to improve Psro, they
do not fundamentally change its core structure, which still relies on an explicit population of policies and a
payoff matrix.

Table 1: Theoretical comparison of GEMS and PSRO-style methods. Let Nt denote the cumulative
number of policies found by iteration t. Ceval is the cost of one payoff evaluation (e.g., one episode), and k
is the number of sampled opponents per iteration. Memory Scaling refers to the storage required for the
meta-game state (payoff matrix / sampled entries). Eval. Cost refers to the complexity of evaluating a new
policy update. While standard PSRO variants scale quadratically in meta-game memory as the population
grows (Nt ∝ t), GEMS maintains constant meta-game scaling (O(1)) via its generative parameterization.

Method Payoff Matrix Memory Eval. Cost
(Meta-Game) (per iter.)

PSRO Required (Full) O(N2
t) O(Nt Ceval)

Alpha-PSRO Required O(N2
t) O(Nt Ceval)

APSRO Sampled O(Nt)–O(N2
t) O(k Ceval)

EPSRO Sampled O(Nt)–O(N2
t) O(k Ceval)

P2SRO Sampled / local O(Nt)–O(N2
t) O(k Ceval)

NeuPL Sampled / online O(Nt)–O(N2
t) O(k Ceval)

GEMS (Ours) Not Required O(1) O(k Ceval)

Note: GEMS utilizes a fixed-size latent anchor set |Z| = K (where K ≪ t is a constant hyperparameter) to represent
the population. Therefore, its meta-game memory complexity remains O(1) relative to training iterations t, whereas
PSRO-based methods typically accumulate a growing population history (Nt ∝ t). All methods additionally store
policy parameters; the Memory Scaling column isolates meta-game (payoff/state) storage rather than network weights.

Neural Population Learning. Recent work has aggressively explored unifying policy populations into
single conditional networks to enable positive transfer and minimize storage. Neural Population Learning
(NeuPL) (Liu et al., 2022b) represents an entire population of best-response policies using a single neural
network that is explicitly conditioned on which strategy is being executed. Formally, this network defines a
conditional policy π(a | s, σ) that outputs a distribution over actions a given the current state (or observation)
s, where σ is a learnable discrete strategy index identifying a particular population member. Addressing the
limitations of discrete indexing, Simplex-NeuPL (Liu et al., 2022a) introduces a geometric formulation in
which the policy conditions on continuous simplex vectors, enabling direct representation of mixed strategies
within a single forward pass. Furthermore, NeuPL-JPSRO (Liu et al., 2024) extends this paradigm to general-
sum games by combining conditional policies with Joint-PSRO objectives, effectively learning correlated joint
policies that approximate coarser equilibrium concepts such as CCE. However, despite amortizing memory
costs, these methods often retain the computational bottlenecks of empirical game theory, specifically the O(k2)
cost of estimating pairwise payoffs to update the strategy distribution (Liu et al., 2022b). Distinct from the
conditional architectures of the NeuPL family, Gems introduces a fully generative meta-solver that maps a
latent geometry directly to policy parameters via a hypernetwork. This formulation allows Gems to bypass
explicit population management entirely, utilizing unbiased Monte Carlo rollouts and latent-space evolutionary
optimization (OMWU) to solve the game without constructing a full payoff matrix.

Game-Theoretic Methods for Multi-Agent Learning. Beyond the Psro paradigm, other game-
theoretic approaches exist for multi-agent learning. Counterfactual Regret Minimization (Cfr)
(Zinkevich et al., 2007) is a well-known method for extensive-form games, but it typically requires explicit
state enumeration, making it challenging to scale to large or continuous domains. Some work has explored
bridging the gap between Psro and Cfr, as seen in the unified perspective proposed by Wang et al. (2022).

3

Under review as submission to TMLR

Other approaches include methods based on fictitious play, such as Fictitious Cross-Play (Fxp) (Xu
et al., 2023), which combines self-play and Psro to find global Nash equilibria. However, many self-play
methods lack theoretical guarantees for general-sum games and can struggle with convergence in mixed
cooperative-competitive settings (Xu et al., 2023).

Our work contributes to this broader landscape by offering a surrogate-free, amortized framework that is both
memory and computationally efficient. While many variants of Psro have been proposed, they have largely
retained the core structure of maintaining an explicit policy population and a large payoff matrix. Gems breaks
from this paradigm by using an amortized generator and unbiased Monte Carlo rollouts, thereby sidestepping
the fundamental scalability issues inherent to classical Psro. As summarized in Table 1, this design removes
the need to store an explicit meta-game payoff matrix and prevents meta-game state from growing with the
population, while retaining a per-iteration evaluation profile comparable to sampled Psro variants.

3 Proposed Method: Gems

Gems circumvents Psro’s limitations by being surrogate-free.1 Instead of storing k explicit actor models
and computing their full payoff matrix, it maintains a single generative model Gθ that maps low-dimensional
latent codes to policies. Consequently, the method scales to massive conceptual populations while storing
only the generator and a set of latent “anchor” codes.

Gems unfolds in an iterative loop: It first solves for the equilibrium of the current meta-game using noisy
estimates, then expands the game by finding an approximate best response via a bandit-like oracle. The full
procedure is detailed below.

While the core exposition focuses on two–player zero-sum games for clarity, Gems framework extends
naturally to more general settings. This extensibility is demonstrated by benchmarking Gems on two-player
general-sum and, more broadly, n-player general-sum games. For the multi-player environments, the
implementation leverages the PettingZoo library (Terry et al., 2021). The necessary modifications to the
meta-game estimators, per-player oracles, and convergence guarantees are provided in Appendix II.

Figure 2 provides a high-level overview of the Gems algorithmic loop. Rather than explicitly maintaining a
growing population of policies and their full payoff matrix, Gems operates on a compact latent representation:
a fixed-size generator coupled with an evolving set of latent anchors. At each iteration, Monte Carlo rollouts
estimate the meta-game values under the current mixture, which are then used by an optimistic meta-solver
to update the population distribution. An EB-UCB oracle selects a new latent anchor corresponding to an
approximate best response, which is incorporated via trust-region amortized generator training. The anchor
set is expanded, the generator induces updated policies, and the process advances to the next iteration.
This closed-loop structure captures how Gems alternates between equilibrium refinement and controlled
population expansion while avoiding explicit policy enumeration.

3.1 Formal Setup and Generative Representation

Consider a two-player zero-sum Markov game. Let r(πi, πj) ∈ [0, 1] denote the expected return for Player 1
when policy πi faces πj . For a finite policy set A = {π1, . . . , πk}, this induces a payoff matrix M ∈ [−1, 1]k×k

where Mij = E[r(πi, πj)]. Crucially, Gems never explicitly constructs or stores this matrix M .

At each iteration t, Gems maintains three core components:

1. An anchor set of latent codes Zt = {z1, . . . , zkt} ⊂ Rd, where d is the dimension of the latent space,
representing policies in a low-dimensional space.

2. A single generator network Gθ
2 that maps a latent code z to policy parameters φ = Gθ(z),

thereby defining a policy πφ.
1In this context, “surrogate-free” signifies that GEMS does not maintain an explicit, discrete set of policies to approximate

the game.
2Gθ denotes the generator network parameterized by θ, which represents its learnable weights.

4

Under review as submission to TMLR

Amortized Generator
z 7→φ=Gθ(z)

Induces policy πφ

Anchor Set (Zt)
Initialize: Z0←ϕ

Update: Zt+1←Zt ∪ {z⋆
t }

Advance iteration
t← t + 1

Monte Carlo Rollout Evaluation
Estimated under fixed

meta-strategy (σt)
Start iteration t

Estimated Meta Values
Vector: v̂t (policy→mixture)
Scalar: ˆ̄rt (mixture self-play)

Meta-Solver (OMWU)
mt = 2v̂t − v̂t−1

σt+1←OMWU(σt,mt,ˆ̄rt)

Oracle (EB-UCB)
z∗

t = arg maxz∈ΛtUCBEB
t (z)

Generator Training (ABR-TR)
Trust region (KL to Gθ−)

+ smoothness

1 2

3

45

6 7

Policies πφ

σt+1

New Anchor
z∗Expand Zt

Update θ

Figure 2: At each iteration t, Monte Carlo rollouts evaluate the current policy mixture under a fixed
meta–strategy σt, producing estimated meta–values v̂t (policy-to-mixture) and ˆ̄rt (mixture self-play). An
optimistic meta-solver updates the mixture via OMWU using the hint mt = 2v̂t − v̂t−1. An EB-UCB oracle
then selects a new latent anchor z∗

t from the candidate set, which is incorporated through amortized generator
training with a trust-region objective (ABR-TR). The anchor set Zt is expanded accordingly, the generator
induces updated policies πφ, and the iteration advances to t + 1. Green ellipses denote temporal iteration
boundaries rather than algorithmic operations.

3. A meta-strategy σt ∈ ∆kt−1, which is a probability distribution over the current anchor set Zt,
representing the Nash equilibrium of the restricted game At = {πGθ(z) : z ∈ Zt}, where ∆kt−1 is the
(kt − 1)-dimensional probability simplex 3.

These components define the key quantities for analyzing the meta-game. The vector of expected payoffs for
each anchor policy against the meta-strategy σt is vt = Mσt, and the expected value of the game at iteration
t is r̄t = σ⊤

t Mσt. A primary objective is to minimize exploitability, the incentive for any player to deviate
from σt:

Exploit(σt) = max
i≤kt

e⊤
i Mσt − σ⊤

t Mσt, (1)

where ei is the i-th standard basis vector. Gems iteratively refines σt and expands Zt to drive this exploitability
toward zero.

3.2 Estimating the Meta-Game without the Matrix

Because Gems does not access the true payoff matrix M , it estimates the values of vt and r̄t through
simulation. Adopting a two-time-scale assumption in which the meta-strategy σt is held fixed
during estimation, Gems employs Monte Carlo rollouts to obtain statistically sound estimates.

3The simplex ∆n = x ∈ Rn+1 : xi ≥ 0,
∑

i
xi = 1 denotes the space of probability distributions over (n + 1) elements.

5

Under review as submission to TMLR

For each anchor policy i ∈ [kt], the algorithm samples ni opponents js ∼ σt and executes m game episodes
per pair, yielding returns Yi,s,ℓ ∈ [0, 1]4 . This process yields a simple yet powerful estimator for per-policy
performance. To estimate the overall game value, the procedure additionally samples B independent policy
pairs (ib, jb) ∼ σt × σt and averages their outcomes across m episodes each. The resulting estimators are

v̂t,i = 1
nim

ni∑
s=1

m∑
ℓ=1

Yi,s,ℓ, ˆ̄rt = 1
Bm

B∑
b=1

m∑
ℓ=1

Yib,jb,ℓ, (ib, jb) ∼ σt × σt, (2)

and constitute the empirical backbone of Gems.
Lemma 3.1 (Unbiasedness and Empirical-Bernstein Concentration). With rewards in [0, 1], the estimators
are unbiased: E[v̂t,i] = (Mσt)i and E[ˆ̄rt] = σ⊤

t Mσt. Moreover, for any δ ∈ (0, 1), with probability at least
1− δ, ∣∣v̂t,i − (Mσt)i

∣∣ ≤
√

2 V̂art,i ln(2/δ)
nim

+ 3 ln(2/δ)
nim− 1 ,

∣∣ˆ̄rt − σ⊤
t Mσt

∣∣ = O
(√

ln(1/δ)
Bm

)
, (3)

where V̂art,i is the empirical variance of {Yi,s,ℓ}.

Proof sketch. Unbiasedness follows from the law of total expectation over the sampling of opponents, and the
concentration bounds apply the empirical-Bernstein inequality for bounded random variables.

3.3 Solving the Meta-Game via Optimistic Replicator Dynamics

Given the estimated payoffs v̂t and game value r̂t, Gems updates the meta-strategy from σt to σt+1. Gems
adopts the Optimistic Multiplicative Weights Update (OMWU) algorithm (Daskalakis & Panageas
(2018)), an adaptive discretization of replicator dynamics. Rather than relying solely on the current payoff
estimate v̂t, OMWU incorporates a predictive “hint” about the next payoff. Specifically, it forms the optimistic
estimate mt = 2v̂t − v̂t−1, with v̂0 = 0. The meta-strategy then updates according to

σt+1(i) ∝ σt(i) exp
(
ηt[2v̂t,i − v̂t−1,i − r̂t]

)
, ηt > 0, (4)

followed by normalization to ensure σt+1 ∈ ∆kt−1.5 This optimistic step yields stronger theoretical guarantees:
regret now scales with the cumulative variation of the payoff vectors rather than the iteration horizon T .
Proposition 3.2 (External Regret of OMWU under Unbiased Noise). Assume payoffs in [0, 1]. For any
sequence of payoff estimates v̂t satisfying E[v̂t | σt] = Mσt and a constant step size η, the average external
regret obeys

1
T

T∑
t=1

(
max

i
e⊤

i Mσt − σ⊤
t Mσt

)
≤ O

(1
T

√√√√ln kT

T∑
t=1
∥vt − vt−1∥2

∞

)
+ 1

T

T∑
t=1

E
[
∥ v̂t −Mσt∥∞

]
, (5)

where vt = Mσt are the true expected payoffs. The first term, driven by the variation of the meta-game, leads
to faster convergence in slowly changing environments such as those induced by Gems.

3.4 Finding New Strategies with a Bandit Oracle

Solving the restricted meta-game alone is insufficient; progress requires introducing new, challenging policies
into the population. Gems casts this search as a multi-armed bandit problem (Robbins (1952)). The
“arms” comprise a finite pool of candidate latent codes Λt, and pulling an arm corresponds to evaluating the
policy Gθ(z) against the current meta-strategy σt.

4i indexes anchor policies in the current population, s indexes sampled opponents drawn from the meta-strategy σt, and ℓ
indexes independent Monte Carlo rollouts (episodes) used to estimate their expected returns.

5In the context of the Optimistic Multiplicative Weights Update (OMWU) algorithm, ηt is the step size, often referred to as
the learning rate or gain parameter.

6

Under review as submission to TMLR

For a latent code z ∈ Λt, define
ft(z) = Ej∼σt

[
r
(
πGθ(z), πj

)]
. (6)

Gems estimates this value, µ̂t(z), together with its empirical variance V̂art(z) via Monte Carlo rollouts. To
balance exploration and exploitation efficiently, it employs an empirical-Bernstein Upper Confidence
Bound (EB-UCB) (Maurer & Pontil (2009)), which leverages variance information for tighter bounds. A
Jacobian penalty encourages smoothness in the generator’s latent space, aiding optimization, where JGθ(z)
denotes the Jacobian matrix of the generator with respect to its input z. The score assigned to candidate z is

UCBEB
t (z) = µ̂t(z) +

√
2 V̂art(z) ln(3/δt)

nzm
+ 3 ln(3/δt)

nzm− 1 − λJ∥JGθ(z)∥2
F , (7)

where δt = t−2 is a decaying confidence parameter and λt ≥ 0 is a penalty coefficient. Gems selects:

z⋆
t = arg max

z∈Λt

UCBEB
t (z), (8)

and augments the anchor set:
Zt+1 ← Zt ∪ {z⋆

t }. (9)
Theorem 3.3 (Instance-Dependent Oracle Regret). Assume rewards lie in [0, 1] and the bandit problem
admits a unique best arm z⋆ with sub-optimality gaps ∆z > 0. Under the two-time-scale assumption (fixed σt

during selection), the cumulative regret of the oracle satisfies

T∑
t=1

E
[
ft(z⋆)− ft(z⋆

t)
]

= O
(∑

z ̸=z⋆

ln T
∆z

)
+ λJ

T∑
t=1

E
[
∥JGθ(z⋆

t)∥2
F

]
. (10)

If the Jacobian norm is uniformly bounded, the second term can be controlled by annealing λJ .

Proof sketch. Standard bandit-analysis arguments apply. With high probability, the EB-UCB provides valid
confidence bounds; comparing the chosen arm z⋆

t with the optimal arm z⋆ and summing over time yields the
stated instance-dependent regret bound.

3.5 Training the Generator with Amortized Best Response

Once a promising latent code z⋆
t has been identified, Gems must ensure that the generator Gθ can realize the

associated high-performing policy while retaining its ability to produce previously effective policies. This is
achieved via an Amortized Best-Response with a Trust Region (ABR-TR) objective, inspired by
trust-region methods in deep reinforcement learning such as TRPO and PPO (Schulman et al. (2015; 2017)).

Rather than training a new network from scratch, Gems fine-tunes the existing generator Gθ to maximize the
performance of a curated set of promising latent codes, drawn from a distribution qt, against the opponent
mixture σt+1. A KL-divergence penalty against a frozen, older generator θ− serves as a trust region, mitigating
catastrophic forgetting:

LABR−TR(θ) = Ez∼qt, j∼σt+1

[
ÂπGθ(z) − β KL

(
πGθ(z) ∥ πGθ− (z)

)
− λJ∥JGθ(z)∥2

F

]
, (11)

where Â denotes a suitable advantage estimator, β > 0 is a hyperparameter controlling trust-region strength
and JGθ(z) denotes the Jacobian matrix of the generator with respect to its input z. Taking a few gradient-
ascent steps on LABR−TR each iteration amortizes best-response computation while preserving a stable, single
generator.

3.6 Overall Exploitability Bound

The preceding components now combine to yield a convergence guarantee for the entire Gems algorithm. To
make this composition explicit, we first state a decomposition result that separates the average exploitability
into four interpretable sources of error:

7

Under review as submission to TMLR

❶ inherent regret of the OMWU meta-strategy solver (under time-varying payoffs),

❷ noise from Monte Carlo payoff estimation,

❸ sub-optimality from bandit-based oracle (anchor) selection,

❹ approximation error induced by amortized generator training.

Amortized best-response gap. Let πBR(πj) be the true best response to an opponent policy πj . We
define the amortized best-response error as the worst-case expected gap (over iterations) between a true best
response and the policy produced by the generator at the selected latent code z⋆

t :

εBR = sup
t

Ej∼σt

[
r
(
πBR(j), πj

)
− r

(
πGθ(z⋆

t), πj

)]
≥ 0. (12)

Exploitability decomposition. Let M denote the (implicit) meta-game payoff operator and define the
true payoff vector vt := Mσt at iteration t. Let v̂t be the Monte-Carlo estimator of vt computed from nm
rollouts per queried matchup (as in Section 3.2). Let z⋆

t be the (possibly approximate) anchor selected by the
EB-UCB oracle at iteration t, and let ∆z denote the suboptimality gap for anchor z.
Proposition 3.4 (Exploitability decomposition). Assume rewards lie in [0, 1]. At each iteration t, the
instantaneous exploitability satisfies

Exploit(σt) ≤
〈
vt − vt−1, σt − σ⋆

t

〉︸ ︷︷ ︸
OMWU meta-dynamics term

+ 2∥v̂t − vt∥∞︸ ︷︷ ︸
MC estimation error

+ εBR︸︷︷︸
amortized BR error

+
(

max
z

vt(z)− vt(z⋆
t)
)

︸ ︷︷ ︸
oracle suboptimality

.

(13)
Here σ⋆

t denotes the best fixed meta-strategy in hindsight for the (time-varying) payoff sequence.

Proof sketch. Starting from the definition of exploitability as a best-response gap against σt, we add and
subtract (i) Monte-Carlo payoffs v̂t, (ii) the best-anchor payoff maxz vt(z), and (iii) the generator-induced
best response at z⋆

t . Triangle inequalities yield the MC term and the amortized BR term, while the oracle
term captures the loss from selecting z⋆

t instead of arg maxz vt(z). The remaining meta-dynamics term is
controlled by the OMWU guarantee for time-varying payoffs.

Overall finite-population bound. We now upper bound each term in Proposition 3.4 using the corre-
sponding component guarantees.
Theorem 3.5 (Finite-Population Exploitability Bound). Assume rewards lie in [0, 1] and that oracle selection
operates on a two-time-scale schedule. With OMWU step size η = Θ

(√
ln kT /T

)
and Monte-Carlo budget

satisfying E[∥v̂t − vt∥∞] = O
(
(nm)−1/2) for each t, the average exploitability obeys

1
T

T∑
t=1

Exploit(σt) ≤ O
(

1
T

√√√√ln kT

T∑
t=1
∥vt − vt−1∥2

∞

)
︸ ︷︷ ︸

OMWU regret

+ O
(
(nm)−1/2)︸ ︷︷ ︸

MC estimation error

+ εBR︸︷︷︸
amortized BR error

+ O
(

1
T

∑
z ̸=z⋆

ln(T/δ)
∆z

)
︸ ︷︷ ︸

oracle regret

.

(14)

Proof (one line). Apply Proposition 3.4, then substitute the bounds from the OMWU time-varying regret
guarantee, the Monte-Carlo concentration bound for ∥v̂t − vt∥∞, and the EB-UCB oracle regret bound, and
average over t = 1, . . . , T .

This bound corroborates the intuition behind Gems. As the simulation budget grows (nm → ∞) and
generator training improves (εBR → 0), exploitability is ultimately driven by the no-regret property of the
OMWU solver, achieving convergence guarantees competitive with traditional methods while avoiding explicit
quadratic meta-game storage.

8

Under review as submission to TMLR

3.7 Generalization to n-Player and General-Sum Games

Although the Gems framework is introduced in the two-player zero-sum (2P-ZS) setting for clarity, the same
principles extend naturally to the n-player general-sum (NP-GS) case. The amortized generator, Monte Carlo
rollouts, and bandit oracle remain intact; only the meta-game formulation generalizes.

In an n-player game, each player p ∈ {1, . . . , n} maintains a meta-strategy σ
(p)
t . To evaluate player p’s i-th

policy against the joint strategy of all other players, Σ−p
t , Gems reuses a single batch of shared game rollouts

and computes an importance-weighted estimate:

v̂
(p)
t,i = 1

Bm

B∑
b=1

m∑
l=1

1{i(p)
b = i}

σ
(p)
t (i)

Y
(p)

b,l , (15)

where i(b) =
(
i
(1)
b , . . . , i

(n)
b

)
is a joint policy profile drawn from the full meta-strategy Σt =

⊗n
q=1 σ

(q)
t , and

Y
(p)

b,l denotes the return for player p.

Each player then updates independently: applying Multiplicative Weights (or OMWU) to v̂
(p)
t and invoking a

separate EB-UCB oracle to discover new strategies. This decentralized process no longer targets exploitability
(a 2P-ZS notion) but instead drives the time-averaged joint strategy toward an ϵ-Coarse-Correlated
Equilibrium (ϵ-CCE), the standard solution concept for general-sum games.

Full derivations, algorithmic details, and convergence proofs for the n-player extension appear in Appendix II.

3.8 Step-Size (ETA) Scheduler for the OMWU Meta-Update

The OMWU update in §3 requires a step size ηt > 0. In Gems, a simple, explicit schedule {ηt}t≥1 is used,
chosen from three options that trade off adaptivity and stability:

ηt =


η0, const,

η0√
t
, sqrt,

η0

1 + αt
, α > 0, harmonic,

with default η0 = 0.08, α = 0.5. (16)

These schedules instantiate the optimistic MWU update

σt+1(i) ∝ σt(i) exp
(

ηt

[
2v̂t,i − v̂t−1,i − r̂t

])
, (17)

followed by normalization to ensure σt+1 ∈ ∆kt−1.

Rationale. ❶ const keeps a fixed step size and adapts quickly to changes in the restricted game, but can
overreact to noisy payoff estimates. ❷ sqrt decays gently (ηt ∝ t−1/2), a standard choice in online learning
that balances responsiveness and variance. ❸ harmonic decays as ηt ∝ t−1, yielding more conservative
late-stage updates and improved noise suppression.

Interaction with other knobs. The global slowdown factor s > 1 scales η0 7→ η0/s (and independently
shrinks the ABR learning rate while enlarging the KL trust-region coefficient). The temperature τ ≥ 1 used
in the generator’s logits is orthogonal to the meta step size and only affects policy softness.

Variation-aware regret with scheduled (ηt). Let vt = Mσt denote the true expected payoff vector at
iteration t and assume rewards lie in [0, 1]. Under unbiased meta-game estimates (§3), optimistic mirror descent
with the entropic mirror map (OMWU) and a nonincreasing step sequence {ηt} satisfies the variation-aware
bound

1
T

T∑
t=1

(
max

i
e⊤

i Mσt − σ⊤
t Mσt

)
≤ ln kT

T ηT︸ ︷︷ ︸
stability term

+ 1
T

T∑
t=1

ηt

2 ∥vt − vt−1∥2
∞︸ ︷︷ ︸

variation term

+ 1
T

T∑
t=1

E [∥v̂t − vt∥∞]︸ ︷︷ ︸
MC noise

, (18)

9

Under review as submission to TMLR

Algorithm 1: Generative Evolutionary Meta-Solver (Gems)
Require : Initial anchor set Z0 = {z1, . . . , zk0}, Generator Gθ, Initial meta-strategy σ0 (uniform),

Horizon T , Sample budgets NMC , B, M , Training steps KABR, Step sizes η, α, Coefficients
β, λJ .

Output : Trained Generator Gθ, Final Meta-strategy σT , Anchor set ZT .
1 for t = 1, . . . , T do

Phase 1: Meta-Game Estimation (Monte Carlo)
2 Sample opponent batch {js}NMC

s=1 ∼ σt−1;
3 Compute empirical payoff vector v̂t ∈ R|Zt−1| via Eq. (2):

v̂t,i ← 1
NMCm

∑NMC

s=1
∑m

l=1R(πGθ(zi), πGθ(zjs));
4 Estimate mean game value r̂t via B joint samples (i, j) ∼ σt−1 × σt−1;

Phase 2: Meta-Strategy Update (Optimistic MWU)
5 Compute optimistic gradient estimate (with v̂0 = 0): gt ← 2v̂t − v̂t−1 − r̂t1;
6 Update meta-strategy probabilities for all i ∈ {1, . . . , |Zt−1|}: σt(i) ∝ σt−1(i) · exp (η · gt(i));

Phase 3: Population Expansion (EB-UCB Oracle)
7 Generate candidate pool Λt via stochastic mutation of top-performing anchors;
8 for each candidate z ∈ Λt do
9 Estimate mean return µ̂t(z) and empirical variance V̂art(z) against σt;

10 Calculate acquisition score UCB(z) via Eq. (7):

UCB(z)← µ̂t(z) +
√

2V̂art(z) ln(3/δ)
M − λJ∥JGθ(z)∥2

F ;
11 Select optimal candidate: z∗

t ← arg maxz∈Λt
UCB(z);

12 Update anchor set: Zt ← Zt−1 ∪ {z∗
t };

Phase 4: Amortized Best-Response (ABR-TR)
13 Store current generator state: θold ← θ;
14 for k = 1, . . . , KABR do
15 Sample batch of anchors z ∼ Zt and opponents j ∼ σt;
16 Compute Advantages ÂπGθ(z) via GAE;
17 Update θ by ascending on the regularized objective (Eq. 11):

θ ← θ + α∇θE
[
Â− βDKL(πGθ

||πGθold
)− λJ∥JGθ(z)∥2

F

]
;

18 return Gθ, σT ,ZT

where kT is the (growing) number of anchors at time T . Equation 18 formalizes the tradeoff encoded
by equation 16: larger ηt reduces the stability term but amplifies sensitivity to payoff variation and sampling
noise, while smaller ηt does the reverse. In practice, sqrt performs well when the meta-game evolves
moderately (frequent oracle additions), whereas harmonic is preferred in low-noise, late-phase training.

Corollary (Recovering Prop. 3.2 from scheduled-step bound). Let V 2
T =

∑T
t=1 ∥vt − vt−1∥2

∞. If the
step size is constant, ηt ≡ η, then equation 18 becomes

1
T

T∑
t=1

(
max

i
e⊤

i Mσt − σ⊤
t Mσt

)
≤ ln kT

T η
+ η

2T
V 2

T + 1
T

T∑
t=1

E
[
∥v̂t − vt∥∞

]
. (19)

Choosing η⋆ =
√

2 ln kT /V 2
T yields

1
T

T∑
t=1

(
max

i
e⊤

i Mσt − σ⊤
t Mσt

)
≤
√

2
T

√
ln kT V 2

T + 1
T

T∑
t=1

E
[
∥v̂t − vt∥∞

]
, (20)

which matches Proposition 3.2 up to constants.

10

Under review as submission to TMLR

3.9 Algorithm

Algorithm 1 provides the full procedural realization of the method described in §3. Each iteration consists
of four phases that mirror the preceding subsections: (i) Monte Carlo estimation of the meta-game values
(Eq. equation 2), (ii) an OMWU meta-update using the optimistic hint (Eq. equation 17), (iii) population
expansion via EB-UCB anchor selection (Eq. (7) and Eq. equation 13), and (iv) amortized generator training
with a KL trust region (Eq. equation 11). The only persistent state is the generator parameters θ, the
anchor set Zt, and the meta-strategy σt, enabling Gems to refine equilibria while avoiding explicit policy
enumeration or payoff-matrix storage.

4 Experimental Results

4.1 Equilibrium Finding in a Deceptive Messages Game

Setup and Objective. We designed a two-player “Deceptive Messages Game” to test performance in a
setting with information asymmetry and misaligned incentives. The game features a Sender and a Receiver.
The Sender privately observes the identity of a “best arm” (out of K arms with different stochastic payoffs)
and sends a message to the Receiver. The Receiver uses this message to choose an arm. Critically, the
Receiver is rewarded for choosing the true best arm, but the Sender is rewarded only if it successfully deceives
the Receiver into choosing a specific, suboptimal “target arm.” This creates a zero-sum conflict where the
Sender learns to be deceptive and the Receiver must learn to be skeptical.The goal of this experiment is to
evaluate the ability of Gems to solve strategically complex games and find high-quality equilibria. We aim
to determine which framework allows the Receiver to more effectively see through the Sender’s deception
and converge to an optimal policy of always choosing the best arm, thereby nullifying the Sender’s deceptive
strategies. We compare Gems against a suite of strong baselines: Psro, Double Oracle, Alpha-Psro and
A-Psro for 6 iterations. The runs are the averaged over 5 seeds.

Results and Analysis. The results in Fig. 3 show a stark difference in the learned equilibria. The average
reward for the Gems Sender rapidly converges to zero, indicating a complete failure to deceive its
opponent. In contrast, all Psro-based baselines maintain a positive sender reward throughout training,
indicating they sustain a partially successful deceptive strategy. Conversely, the Gems Receiver’s average
reward quickly converges to approximately 0.8, the maximum possible value in the game. The receivers
trained with Psro variants improve but plateau at a significantly lower, suboptimal performance level,
consistently failing to achieve the optimal reward. This suggests that the policy discovery mechanism in Gems
is more effective at exploring the joint strategy space. The combination of the EB-UCB oracle exploring
a diverse latent space and the single amortized generator representing a continuum of strategies
may prevent the system from getting stuck in the poor local equilibria that can trap methods which expand
their discrete policy sets more conservatively. Furthermore, Gems is upto 35× faster as compared to the
PSRO variants. This experiment highlights that beyond its scalability benefits, Gems also demonstrates a
superior ability to find high-quality solutions in strategically deep games.

4.2 Equilibrium Finding in Kuhn Poker

Setup and Objective. We benchmark Gems in Kuhn Poker (Kuhn, 2016), a classic imperfect infor-
mation game where agents must learn mixed strategies involving bluffing. We evaluate performance using
exploitability, which measures how close a policy is to the Nash Equilibrium (lower is better). Gems is
compared against a suite of strong Psro variants over 40 training iterations for 5 seeds. This experiment
is designed to assess Gems’s ability to find near-optimal policies in an extensive-form game with imperfect
information. The hypothesis is that Gems’s architectural approach, which is exploring a continuous latent
space with a single generator, will allow it to find low-exploitability strategies more efficiently and in fewer
iterations than methods based on expanding a discrete set of policies.

Results and Analysis. The results in Fig. 4 show the convergence of exploitability for each algorithm.
Gems demonstrates the fastest and most direct convergence to a low-exploitability policy. By iteration 40,

11

Under review as submission to TMLR

1 2 3 4 5 6
Training Iterations

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Se
nd

er
 R

ew
ar

d

1 2 3 4 5 6
Training Iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Re
ce

iv
er

 R
ew

ar
d

1 2 3 4 5 6
Training Iterations

534.8

535.0

535.2

535.4

535.6

535.8

536.0

M
em

or
y

(M
B)

1 2 3 4 5 6
Training Iterations

0

50

100

150

200

250

300

350

Cu
m

ul
at

iv
e

Ti
m

e
(s

)

Alpha-PSRO A-PSRO Double Oracle GEMS PSRO

Figure 3: Performance in the Deceptive Messages Game. Top Left: Gems Sender’s ability to
deceive converges to zero. Top Right: Gems Receiver’s performance converges to the optimal reward of 0.8,
outperforming all Psro-based baselines.

0 5 10 15 20 25 30 35 40
Training Iterations

0.2

0.4

0.6

0.8

1.0

1.2

Ex
pl

oi
ta

bi
lit

y

0 5 10 15 20 25 30 35 40
Training Iterations

0

200

400

600

800

Cu
m

ul
at

iv
e

Ti
m

e
(s

)

0 5 10 15 20 25 30 35 40
Training Iterations

200

400

600

800

1000

1200

M
em

or
y

(M
B)

Alpha-PSRO APSRO E-PSRO NeuPL P2PSRO GEMS PSRO

Figure 4: Equilibrium Finding in Kuhn Poker over 5 seeds [0–4]. Gems rapidly converges to a
significantly lower exploitability than strong Psro baselines and NeuPL (Left), while demonstrating efficiency
in cumulative training time (Right).

Gems achieves an exploitability of approximately 0.18, significantly outperforming the next-best baseline, E-
psro, which only reached an exploitability of 0.44. The other Psro variants, while also showing improvement,
converged at a considerably slower rate and achieved higher final exploitability within the 40-iteration budget.
The superior performance in Kuhn Poker highlights Gems’s strength in solving games that require nuanced,
mixed strategies. The core of Kuhn Poker involves probabilistic actions like bluffing, which are difficult to
represent as a simple combination of a few deterministic policies. We argue that Gems’s single amortized
generator, operating over a continuous latent space, is naturally suited to representing these complex mixed
strategies. In contrast, methods that expand a discrete set of policies, like the Psro family, must approximate
a mixed strategy through a convex combination of many individual policies, which can require far more
iterations to converge. The EB-UCB oracle effectively guides the search through the generator’s latent

12

Under review as submission to TMLR

space to find strategically potent policies quickly. This experiment demonstrates that Gems’s advantages
extend beyond pure scalability to superior sample efficiency in solving canonical game-theoretic benchmarks.

4.3 Performance and Scalability on Multi-Agent Tag

Setup and Objective. We conduct our analysis in the Simple Tag environment from PettingZoo (Terry
et al., 2021), where three cooperative pursuers must learn coordinated strategies, such as flanking, to capture
a faster evader. This benchmark is designed to reward sophisticated coordination while punishing naive
“herding” policies. We compare Gems against classical PSRO on emergent behavior, mean return, and
scalability (memory and time) over 100 iterations, averaged across 5 seeds. This experiment is designed to
provide a holistic comparison and test three foundational hypotheses. First, that Gems overcomes the critical
scalability bottlenecks of Psro. Second, that this efficiency does not come at a performance cost. Third,
that Gems learns policies of a higher strategic quality, both quantitatively (as measured by mean return)
and qualitatively (as observed in emergent agent coordination).

Results and Analysis. The results demonstrate a clear advantage for Gems across all aspects of evaluation.
A qualitative analysis of agent trajectories (Fig. 5) reveals significant differences in strategy. The Gems-
trained adversaries exhibit coordinated flanking and cornering behaviors to trap the evader. In
contrast, the Psro-trained adversaries often display a simpler “herding” behavior, pursuing the
target in a less coordinated clump. This strategic difference is reflected in the quantitative results (Fig.
6). Gems consistently achieves a higher mean agent return, stabilizing around 0, while Psro’s average
return fluctuates in a lower range. Concurrently, Gems is ~6x faster and its memory usage remains flat at
~1250 MB, while Psro’s memory grows to over 2350 MB and its cumulative time scales quadratically. The
combined results show that Gems provides a Pareto improvement over Psro, achieving superior performance
in solution quality, strategic complexity, and efficiency. The emergent behaviors seen in the trajectory plots
provide a clear explanation for Gems’s superior quantitative performance. The discovery of sophisticated,
coordinated strategies like flanking directly translates to higher average returns. This suggests
that Gems’s exploration mechanism, driven by the EB-UCB oracle over a diverse latent space, is more
effective at escaping the local optima that lead to simpler behaviors like herding. The scalability results
reconfirm that the single amortized generator and Monte Carlo sampling resolve the foundational
bottlenecks of Psro. Ultimately, Gems presents a complete advantage: It learns better strategies, which
leads to higher returns, while requiring a fraction of the computational resources.

5 Conclusion

Policy-Space Response Oracles (Psro) and its many variants have driven much of the progress in population-
based multi-agent reinforcement learning, but their reliance on explicit policy populations and dense payoff
matrices imposes fundamental barriers to scalability. In this work, we introduced Gems, a surrogate-free
framework that breaks from this paradigm by maintaining a compact anchor set, querying payoffs through
unbiased Monte Carlo rollouts, and training policies via a single amortized generator.

Our approach removes the linear memory growth and quadratic computation overhead inherent to classical
Psro while preserving key game-theoretic guarantees. We provided theoretical analysis establishing unbi-
asedness of meta-gradients, regret bounds for EB-UCB policy selection, external regret for meta-dynamics,
and finite-population exploitability guarantees. Empirically, Gems demonstrates faster convergence, lower
memory footprint, and improved scalability across challenging multi-agent benchmarks.

Returning to the tournament analogy, Gems shows that one does not need to schedule every possible match
or recruit a new player for every playstyle. Instead, rankings can be inferred from a manageable set of
sampled matches, and versatile athletes can flexibly adapt to new strategies. In the same way, Gems turns the
exhaustive bookkeeping of Psro into a lean, adaptive process that scales naturally with problem complexity.

13

Under review as submission to TMLR

GEMS

PSRO

Figure 5: Emergent agent trajectories in the multi-agent tag environment. Top row: Gems. Bottom
row: Psro. Columns show uniformly sampled frames from a single rollout (frames 0, 10, 20, 30, 40, 50 of the
50-frame GIF). This figure qualitatively compares the strategies learned by GEMS and classical PSRO. The
top row shows that adversaries (red circles) trained with GEMS learn sophisticated, coordinated strategies
like flanking and cornering to effectively trap the evader (green dot). In contrast, the bottom row shows that
PSRO-trained agents adopt a less effective "herding" behavior, pursuing the target in a single, uncoordinated
group. This clear difference in strategic complexity is consistent with the superior performance and higher
returns achieved by GEMS, as reflected in the quantitative results.

0 20 40 60 80 100
Training Iterations

80

60

40

20

0

20

Cu
m

ul
at

iv
e

M
ea

n
Re

tu
rn

GEMS
PSRO

0 20 40 60 80 100
Training Iterations

1400

1600

1800

2000

2200

2400

M
em

or
y

(M
B)

GEMS
PSRO

0 20 40 60 80 100
Training Iterations

0

2500

5000

7500

10000

12500

15000

17500

Cu
m

ul
at

iv
e

Ti
m

e
(s

)

GEMS
PSRO

Figure 6: Performance and Scalability of Gems vs. Psro in Multi-Agent Tag. Compared to classical
Psro, Gems achieves a higher and more stable mean return (Left), while maintaining a constant memory
footprint (Middle) and near-linear cumulative training time (Right). The results show Gems overcomes the
core memory and computational bottlenecks of Gems while learning more effective policies

6 Limitations

While Gems presents a significant step toward scalable, surrogate-free multi-agent learning, we acknowledge
the limitations that define the scope of this work and offer avenues for future research.

• Benchmark Scope and Baselines: Our empirical evaluation focuses on demonstrating the
fundamental scalability and game-solving advantages of Gems over the Psro paradigm. Consequently,
some of our experiments (e.g., Multi-Agent Tag and Simple Spread) use classical PSRO as the primary
baseline. This choice is deliberate, as classical Psro perfectly embodies the core O(k2) computational
and O(k) memory bottlenecks that Gems is designed to solve. To validate GEMS’s strategic

14

Under review as submission to TMLR

performance, we also benchmarked it against a suite of modern, stronger Psro variants on complex
games like Kuhn Poker and the Deceptive Messages Game. However, we did not conduct experiments
on large-scale benchmarks such as the StarCraft Multi-Agent Challenge (SMAC). The prohibitive
computational cost of training even a single baseline Psro agent on such complex maps made a
direct comparison infeasible with our available resources.

• Hyperparameter Sensitivity: Gems introduces a new set of hyperparameters related to the
amortized generator, the ABR-TR objective (e.g., β, LABR-TR learning rate), and the EB-UCB
oracle (e.g., candidate pool size |Λt|). While we provide ablation studies in the Appendix to analyze
the sensitivity of key parameters in environments like Kuhn Poker and the Public Goods Game, a
comprehensive, large-scale analysis of the interplay between all hyperparameters across diverse game
types is beyond the scope of this initial work.

• Generator Capacity: The efficacy of Gems relies on the capacity of the single amortized generator
Gθ to represent a rich, continuous space of diverse and effective policies. This work utilized standard
MLP architectures for the generator. The performance of Gems in much more complex domains
(e.g., with high-dimensional observation/action spaces) may depend heavily on the choice of more
advanced generator architectures (e.g., Transformers, diffusion models). Exploring the architectural
limits of the generator is a key direction for future work.

• Candidate Pool Generation: The EB-UCB oracle’s ability to find effective new strategies is
dependent on the quality of the candidate pool Λt it searches over. Our current implementation relies
on simple heuristics for generating this pool (e.g., mutation and random sampling, as detailed in
the Appendix ablations). The performance of Gems could potentially be improved by incorporating
more sophisticated or guided methods for generating candidate latent codes.

References
Constantinos Daskalakis and Ioannis Panageas. Last-iterate convergence: Zero-sum games and constrained

min-max optimization. arXiv preprint arXiv:1807.04252, 2018.

Elad Hazan. Introduction to online convex optimization, 2023. URL https://arxiv.org/abs/1909.05207.

Yudong Hu, Haoran Li, Congying Han, Tiande Guo, Mingqiang Li, and Bonan Li. A-psro: A unified strategy
learning method with advantage function for normal-form games. arXiv preprint arXiv:2308.12520, 2023.

Yihong Huang, Liansheng Zhuang, Cheng Zhao, and Haonan Liu. Efficient double oracle for extensive-form
two-player zero-sum games. In International Conference on Neural Information Processing, pp. 414–424.
Springer, 2022.

Harold W Kuhn. A simplified two-person poker. Contributions to the Theory of Games, 1:97–103, 2016.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat, David
Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement learning.
Advances in neural information processing systems, 30, 2017.

Shuxin Li, Xinrun Wang, Youzhi Zhang, Wanqi Xue, Jakub Černỳ, and Bo An. Solving large-scale pursuit-
evasion games using pre-trained strategies. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 11586–11594, 2023.

Jiesong Lian, Yucong Huang, Chengdong Ma, Mingzhi Wang, Ying Wen, Long Hu, and Yixue Hao. Fusion-psro:
Nash policy fusion for policy space response oracles. arXiv preprint arXiv:2405.21027, 2024.

Siqi Liu, Marc Lanctot, Luke Marris, and Nicolas Manfred Otto Heess. Simplex neural population learning:
Any-mixture bayes-optimality in symmetric zero-sum games. In International Conference on Machine
Learning, 2022a. URL https://api.semanticscholar.org/CorpusID:249209731.

15

https://arxiv.org/abs/1909.05207
https://api.semanticscholar.org/CorpusID:249209731

Under review as submission to TMLR

Siqi Liu, Luke Marris, Daniel Hennes, Josh Merel, Nicolas Heess, and Thore Graepel. NeuPL: Neural
population learning. In International Conference on Learning Representations, 2022b. URL https:
//openreview.net/forum?id=MIX3fJkl_1.

Siqi Liu, Luke Marris, Marc Lanctot, Georgios Piliouras, Joel Z. Leibo, and Nicolas Heess. Neural population
learning beyond symmetric zero-sum games. In Proceedings of the 23rd International Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’24, pp. 1247–1255, Richland, SC, 2024. International
Foundation for Autonomous Agents and Multiagent Systems.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance penalization,
2009. URL https://arxiv.org/abs/0907.3740.

Stephen McAleer, John B Lanier, Roy Fox, and Pierre Baldi. Pipeline psro: A scalable approach for
finding approximate nash equilibria in large games. Advances in neural information processing systems, 33:
20238–20248, 2020.

Stephen McAleer, John B Lanier, Kevin A Wang, Pierre Baldi, and Roy Fox. Xdo: A double oracle algorithm
for extensive-form games. Advances in Neural Information Processing Systems, 34:23128–23139, 2021.

Stephen McAleer, John Banister Lanier, Kevin Wang, Pierre Baldi, Roy Fox, and Tuomas Sandholm. Self-play
psro: Toward optimal populations in two-player zero-sum games. arXiv preprint arXiv:2207.06541, 2022a.

Stephen McAleer, Kevin Wang, John Lanier, Marc Lanctot, Pierre Baldi, Tuomas Sandholm, and Roy Fox.
Anytime psro for two-player zero-sum games. arXiv preprint arXiv:2201.07700, 2022b.

Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Perolat, Siqi Liu, Daniel Hennes, Luke
Marris, Marc Lanctot, Edward Hughes, et al. A generalized training approach for multiagent learning.
arXiv preprint arXiv:1909.12823, 2019.

Herbert E. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58:527–535, 1952.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pp. 1889–1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhengdao Shao, Liansheng Zhuang, Yihong Huang, Houqiang Li, and Shafei Wang. Purified policy space
response oracles for symmetric zero-sum games. IEEE Transactions on Neural Networks and Learning
Systems, 2024.

Max Olan Smith, Thomas Anthony, and Michael P Wellman. Iterative empirical game solving via single
policy best response. arXiv preprint arXiv:2106.01901, 2021.

Max Olan Smith, Thomas Anthony, and Michael P Wellman. Strategic knowledge transfer. Journal of
Machine Learning Research, 24(233):1–96, 2023.

Hongsong Tang, Liuyu Xiang, and Zhaofeng He. Policy similarity measure for two-player zero-sum games.
Applied Sciences, 15(5):2815, 2025.

Jordan Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym for multi-
agent reinforcement learning. Advances in Neural Information Processing Systems, 34:15032–15043, 2021.

Xinrun Wang, Jakub Cerny, Shuxin Li, Chang Yang, Zhuyun Yin, Hau Chan, and Bo An. A unified
perspective on deep equilibrium finding. arXiv preprint arXiv:2204.04930, 2022.

Zelai Xu, Yancheng Liang, Chao Yu, Yu Wang, and Yi Wu. Fictitious cross-play: Learning global nash
equilibrium in mixed cooperative-competitive games. arXiv preprint arXiv:2310.03354, 2023.

16

https://openreview.net/forum?id=MIX3fJkl_1
https://openreview.net/forum?id=MIX3fJkl_1
https://arxiv.org/abs/0907.3740

Under review as submission to TMLR

Jian Yao, Weiming Liu, Haobo Fu, Yaodong Yang, Stephen McAleer, Qiang Fu, and Wei Yang. Policy space
diversity for non-transitive games. Advances in Neural Information Processing Systems, 36:67771–67793,
2023.

Ming Zhou, Jingxiao Chen, Ying Wen, Weinan Zhang, Yaodong Yang, Yong Yu, and Jun Wang. Efficient
policy space response oracles. arXiv preprint arXiv:2202.00633, 2022.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization in games
with incomplete information. Advances in neural information processing systems, 20, 2007.

17

Under review as submission to TMLR

Appendix – Table of Contents

I. Mathematical Derivations and Proofs 19

A. Formal Preliminariess 19

B. Proofs for Meta-Game Estimation 20

C. Proofs for Meta-Game Solving 21

D. Proofs for the Bandit Oracle 23

E. Proof of Overall Exploitability 24

II. Extensions to Two-Player General-Sum and N-Player General-Sum Games 27

F. Extension to Two-Player General-Sum Games 27

G. Proofs for Two-Player General-Sum 28

H. Extension to N-Player General-Sum Games 30

I. Proofs for Part III (N-Player General-Sum Games) 32

III. Ablation and Analysis of experiments 34

J. Run on Connect–4 36

K. Run on Hanabi 39

L. Coordination on Simple Spread 42

M. Coordination on Simple Tag 46

N. Run on Chess 49

O. Run on Go 62

P. Ablation on Kuhn Poker 64

Q. Ablation on Public Goods Game 67

R. Ablation on Deceptive Message 70

S. Ablation on Oracle Selection 74

IV. Frequently Asked Questions 76

18

Under review as submission to TMLR

Part I

Mathematical Derivations and Proofs
This appendix provides the detailed mathematical analysis supporting the claims made in §3. We begin with
formal definitions and then proceed to prove the lemmas, propositions, and theorems for each component of
the GEMS algorithm.

A Formal Preliminaries

A.1 Two-Player Zero-Sum Markov Games

A two-player, zero-sum, finite-horizon discounted Markov Game is defined by a tuple M =
(S, {A1,A2}, P, R, γ, ρ0).

• S is the state space.

• Ap is the action space for player p ∈ {1, 2}.

• P : S ×A1 ×A2 → ∆(S) is the state transition function.

• R : S ×A1 ×A2 → R is the reward function. Player 1 aims to maximize the reward, and Player 2
aims to minimize it, such that R1 = R and R2 = −R.

• γ ∈ [0, 1) is the discount factor.

• ρ0 ∈ ∆(S) is the initial state distribution.

A policy for player p, denoted πp, is a mapping from states to a distribution over actions, πp : S → ∆(Ap).
The expected return for Player 1 playing policy πi against policy πj is:

r(πi, πj) = Es0∼ρ0,a1,t∼πi(·|st),a2,t∼πj(·|st),st+1∼P (·|st,a1,t,a2,t)

[∞∑
t=0

γtR(st, a1,t, a2,t)
]

(21)

For a finite set of k policies A = {π1, . . . , πk}, the associated payoff matrix is M ∈ Rk×k, where Mij = r(πi, πj).
By convention, we assume rewards are normalized to [0, 1].

A.2 Nash Equilibrium and Exploitability

A mixed strategy (or meta-strategy) σ is a probability distribution over the set of policies A, i.e., σ ∈ ∆k−1.
A Nash Equilibrium (NE) σ∗ is a meta-strategy from which no player has an incentive to unilaterally deviate.
In a two-player zero-sum game, this is equivalent to the minimax solution:

σ∗ = arg min
σ1∈∆k−1

max
σ2∈∆k−1

σ⊤
1 Mσ2

= arg max
σ1∈∆k−1

min
σ2∈∆k−1

σ⊤
1 Mσ2.

(22)

The exploitability of a meta-strategy σ measures the incentive for an opponent to play a best response. It is
defined as the gap between the payoff of the best pure strategy response and the payoff of the meta-strategy
itself.

Exploit(σ) = max
i∈[k]

(M⊤ei)⊤σ − (−σ⊤Mσ)

= max
i∈[k]

e⊤
i Mσ − σ⊤Mσ.

(23)

19

Under review as submission to TMLR

Note: The term −σ⊤Mσ is the value of the game from Player 2’s perspective. For a symmetric game where
players draw from the same population (M = −M⊤), this simplifies to the expression in Eq. (1).

B Proofs for Meta-Game Estimation

B.1 Supporting Definitions: Empirical-Bernstein Inequality

Before proving Lemma 2.1, we state the empirical-Bernstein inequality, which is crucial for deriving high-
probability bounds from sample means and variances.
Theorem B.1 (Empirical-Bernstein Inequality). Let X1, . . . , XN be i.i.d. random variables with mean
µ and variance σ2. Assume they are bounded, Xi ∈ [a, b]. Let X̄ = 1

N

∑N
i=1 Xi be the sample mean and

σ̂2 = 1
N−1

∑N
i=1(Xi − X̄)2 be the sample variance. Then for any δ ∈ (0, 1), with probability at least 1− δ:

|X̄ − µ| ≤
√

2σ̂2 ln(3/δ)
N

+ 3(b− a) ln(3/δ)
N − 1 . (24)

B.2 Proof of Lemma 2.1 (Unbiasedness and Concentration)

Lemma B.2 (Unbiasedness and Empirical-Bernstein Concentration). With rewards in [0, 1], the estimators
are unbiased: E[v̂t,i] = (Mσt)i and E[ˆ̄rt] = σ⊤

t Mσt. Moreover, for any δ ∈ (0, 1), with probability at least
1− δ, the estimators concentrate around their true means:

∣∣v̂t,i − (Mσt)i

∣∣ ≤
√

2V̂art,i ln(2/δ)
nim

+ 3 ln(2/δ)
nim− 1 , (25)

∣∣ˆ̄rt − σ⊤
t Mσt

∣∣ = O

(√
ln(1/δ)

Bm

)
, (26)

where V̂art,i is the empirical variance of {Yi,s,ℓ}.

Part 1: Unbiasedness of v̂t,i

The estimator is v̂t,i = 1
nim

∑ni

s=1
∑m

ℓ=1 Yi,s,ℓ, where opponent js is sampled as js ∼ σt. We use the law of
total expectation.

E[v̂t,i] = E

[
1

nim

ni∑
s=1

m∑
ℓ=1

Yi,s,ℓ

]

= 1
nim

ni∑
s=1

m∑
ℓ=1

E[Yi,s,ℓ] (Linearity of Expectation)

= 1
nim

ni∑
s=1

m∑
ℓ=1

Ejs∼σt [E[Yi,s,ℓ | js]] (Law of Total Expectation)

(27)

Given a fixed opponent js, the expectation of a single rollout Yi,s,ℓ is the true expected return r(πi, πjs
) = Mijs

.

E[v̂t,i] = 1
nim

ni∑
s=1

m∑
ℓ=1

Ejs∼σt
[Mijs

]

= 1
nim

ni∑
s=1

m∑
ℓ=1

kt∑
j=1

σt(j)Mij (Definition of Expectation)

= nim

nim

kt∑
j=1

σt(j)Mij

= (Mσt)i.

(28)

20

Under review as submission to TMLR

The proof for E[ˆ̄rt] = σ⊤
t Mσt follows an identical argument, where pairs (ib, jb) are sampled from σt × σt.

Part 2: Concentration of v̂t,i

The estimator v̂t,i is the sample mean of N = nim random variables {Yi,s,ℓ}. Each Y is a game return
bounded in [0, 1]. These samples are i.i.d. drawn from the compound distribution defined by sampling
an opponent j ∼ σt and then sampling a return from the matchup (πi, πj). We can directly apply the
Empirical-Bernstein Inequality (Theorem B.1) with N = nim, a = 0, b = 1. Replacing the generic confidence
parameter 3/δ with 2/δ (a minor variation common in literature) gives:

∣∣v̂t,i − (Mσt)i

∣∣ ≤
√

2V̂art,i ln(2/δ)
nim

+ 3 ln(2/δ)
nim− 1 , (29)

with probability at least 1− δ.

Part 3: Concentration of ˆ̄rt

The bound for ˆ̄rt is a standard application of Hoeffding’s inequality (or Bernstein’s if variance is considered).
Since returns are in [0, 1], Hoeffding’s inequality for the mean of Bm i.i.d. variables states that for any ϵ > 0:

P
(∣∣ˆ̄rt − σ⊤

t Mσt

∣∣ ≥ ϵ
)
≤ 2 exp(−2(Bm)ϵ2). (30)

Setting this probability to δ, we get δ = 2 exp(−2Bmϵ2). Solving for ϵ:

ln(δ/2) = −2Bmϵ2 =⇒ ϵ =
√

ln(2/δ)
2Bm

= O

(√
ln(1/δ)

Bm

)
. (31)

This confirms the simplified O(·) bound.

C Proofs for Meta-Game Solving

C.1 Proof of Proposition 3.2 (External Regret of OMWU with Unbiased Noise)

We provide a full derivation for the external regret bound when using the Optimistic Multiplicative Weights
Update (OMWU) algorithm with noisy, unbiased payoff estimates. The proof proceeds in two parts. First, we
establish a regret bound with respect to the sequence of estimated payoffs v̂t. Second, we translate this bound
to the regret against the true expected payoffs vt = Mσt by accounting for the Monte Carlo estimation error.

Let the estimated loss for policy i at time t be l̂t,i = 1− v̂t,i. The OMWU algorithm uses an optimistic loss
estimate mt = l̂t + (l̂t − l̂t−1), with l̂0 = 0. The weight update rule is wt+1(i) = wt(i) exp(−ηmt,i).

Part 1: Regret Against Estimated Losses

Let Wt =
∑kt

i=1 wt(i) be the potential function. We analyze its evolution.

Wt+1 =
∑

i

wt+1(i) =
∑

i

wt(i) exp(−ηmt,i)

= Wt

∑
i

σt(i) exp(−ηmt,i)
(32)

Taking the natural logarithm, we have:

ln(Wt+1)− ln(Wt) = ln
(∑

i

σt(i) exp(−ηmt,i)
)

(33)

21

Under review as submission to TMLR

Using the inequality ln(E[eX]) ≤ E[X] + 1
2E[X2] for a random variable X (Hoeffding’s lemma for bounded

variables), where the expectation is over i ∼ σt and X = −ηmt,i:

ln(Wt+1)− ln(Wt) ≤
∑

i

σt(i)(−ηmt,i) + η2

2
∑

i

σt(i)m2
t,i

= −η⟨σt, mt⟩+ η2

2 ⟨σt, m2
t ⟩

(34)

Substituting mt = l̂t + (l̂t − l̂t−1):

⟨σt, mt⟩ = ⟨σt, l̂t⟩+ ⟨σt, l̂t − l̂t−1⟩ (35)

A key step in the OMWU analysis is to relate the second term to the loss of a fixed expert i. For any vector
x, we have the inequality ⟨σt, x⟩ − xi ≤ 1

2η (ln⟨σt, e2ηx⟩ − ln⟨σt, e−2ηx⟩). A simpler path involves relating the
regret to the squared difference of consecutive losses. Rearranging the potential function bound:

⟨σt, l̂t⟩ ≤
ln(Wt)− ln(Wt+1)

η
− ⟨σt, l̂t − l̂t−1⟩+ η

2 ⟨σt, m2
t ⟩ (36)

For any fixed expert i∗, we also have a lower bound on the potential: ln(WT +1) ≥ ln(wT +1(i∗)) = ln(w1(i∗))−
η
∑T

t=1 mt,i∗ . Assuming w1(i) = 1/k1, we get ln(WT +1) ≥ − ln(k1)− η
∑T

t=1 mt,i∗ .

The standard OMWU analysis (e.g., in Hazan, "Introduction to Online Convex Optimization" (Hazan (2023)))
shows that these steps lead to a bound on the regret against the estimated losses:

T∑
t=1
⟨σt, l̂t⟩ −

T∑
t=1

l̂t,i∗ ≤ ln kT

η
+ η

T∑
t=1
||l̂t − l̂t−1||2∞ (37)

Choosing an optimal learning rate η =
√

ln kT∑
||l̂t−l̂t−1||2

∞
yields:

T∑
t=1

(
⟨σt, l̂t⟩ −min

i

T∑
t=1

l̂t,i

)
≤ 2

√√√√ln kT

T∑
t=1
||l̂t − l̂t−1||2∞ (38)

Part 2: Translating to True Regret

Now we translate this result to the true losses lt = 1− vt. The true external regret is Rtrue
T =

∑T
t=1(⟨σt, lt⟩ −

lt,i∗). Let the estimation error be ∆t = l̂t − lt = vt − v̂t.

Rtrue
T =

T∑
t=1

(⟨σt, l̂t −∆t⟩ − (l̂t,i∗ −∆t,i∗))

=
T∑

t=1
(⟨σt, l̂t⟩ − l̂t,i∗)︸ ︷︷ ︸

Regret on Estimates

−
T∑

t=1
(⟨σt, ∆t⟩ −∆t,i∗)︸ ︷︷ ︸

Cumulative Error Term

(39)

The first term is bounded as derived in Part 1. We now bound the variation term using the triangle inequality:

||l̂t − l̂t−1||∞ = ||(l̂t − lt) + (lt − lt−1) + (lt−1 − l̂t−1)||∞ ≤ ||∆t||∞ + ||lt − lt−1||∞ + ||∆t−1||∞ (40)

Substituting this into the bound from Part 1 introduces terms related to the estimation error. Taking the
expectation over the sampling noise in our estimators v̂t (and thus l̂t), and noting that E[∆t] = 0 due to
unbiasedness, we can bound the expected true regret. The error terms accumulate, leading to the final bound.

22

Under review as submission to TMLR

Dividing by T and converting losses back to payoffs (−
∑

lt =
∑

vt − T) yields the proposition:

1
T

T∑
t=1

(max
i

vt,i − ⟨σt, vt⟩) ≤ O

 1
T

√√√√ln kT

T∑
t=1
||vt − vt−1||2∞

+ 1
T

T∑
t=1

E[||v̂t − vt||∞] (41)

This completes the proof.

Scope. Throughout this appendix we analyze OMWU with a constant step size η as in Prop. 3.2; the
scheduled–η bound stated in §3.8 follows from the same potential-based argument and reduces to Prop. 3.2
by setting ηt≡η and optimizing η.

D Proofs for the Bandit Oracle

D.1 Proof of Theorem 3.3 (Instance-Dependent Oracle Regret)

Theorem D.1 (Instance-Dependent Oracle Regret). Assume rewards in [0, 1] and that the bandit problem has
a unique best arm z⋆ with suboptimality gaps ∆z = ft(z⋆)− ft(z) > 0. Under the two-time-scale assumption
(fixed σt during selection), the cumulative regret of our oracle is bounded:

T∑
t=1

E[ft(z⋆)− ft(z⋆
t)] = O

∑
z ̸=z⋆

ln T

∆z

+ λJ

T∑
t=1

E
[
∥JGθ(z⋆

t)∥2
F

]
. (42)

Let’s fix a single bandit problem at a meta-iteration (we drop the subscript t for f(z) and ∆z for clarity).
Let z⋆

t be the arm chosen at time t. The regret at this step is ∆z⋆
t

(ignoring the Jacobian term for now). The
total regret over T steps of the oracle is RT =

∑T
t=1 ∆z⋆

t
. Let Nz(T) be the number of times arm z is pulled

in T steps. Then RT =
∑

z ̸=z⋆ Nz(T)∆z. Our goal is to bound E[Nz(T)] for any suboptimal arm z ̸= z⋆.

An arm z is chosen at time t if UCBt(z) ≥ UCBt(z′) for all z′ ∈ Λ. For a suboptimal arm z ̸= z⋆ to be
chosen, it must be that UCBt(z) ≥ UCBt(z⋆). Let µ̂t(z) be the empirical mean for arm z after it has been
pulled nz times. The UCB is:

UCB(z) = µ̂(z) + C(nz, δ), where C(nz, δ) =

√
2 V̂ar(z) ln(3/δ)

nzm
+ 3 ln(3/δ)

nzm− 1 . (43)

The concentration bounds from Lemma 2.1 (applied here to a single policy against the mix σt) imply that
with probability at least 1− δ:

µ̂(z)− C(nz, δ) ≤ f(z) ≤ µ̂(z) + C(nz, δ). (44)

Let’s call the event that these bounds hold for all arms and all steps a "good event" G. By setting δt = t−2

and taking a union bound, the probability of G is high. We condition the rest of the proof on G.

If a suboptimal arm z is chosen at time t, then UCBt(z) ≥ UCBt(z⋆). Using the bounds:

f(z⋆) ≤ µ̂t(z⋆) + C(nz⋆ , δt) ≤ UCBt(z⋆) (LCB for optimal arm)
≤ UCBt(z) = µ̂t(z) + C(nz, δt) (Suboptimal arm was chosen)
≤ f(z) + 2C(nz, δt) (UCB for suboptimal arm)

(45)

This implies f(z⋆)− f(z) ≤ 2C(nz, δt), or ∆z ≤ 2C(nz, δt). The confidence term C(nz, δt) decreases roughly
as 1/

√
nz. So, for the inequality ∆z ≤ 2C(nz, δt) to hold, nz cannot be too large.

∆z ≤ 2

√2 V̂ar(z) ln(3/δt)
nzm

+ 3 ln(3/δt)
nzm− 1

 (46)

23

Under review as submission to TMLR

Assuming rewards in [0, 1], variance is at most 1/4. Simplifying, we require nz to be roughly:

√
nz ≤ O

(√
ln(1/δt)

∆z

)
=⇒ nz ≤ O

(
ln(1/δt)

∆2
z

)
= O

(
ln(t)
∆2

z

)
(47)

This means that a suboptimal arm z will be pulled at most O(ln T/∆2
z) times. (Note: A tighter analysis

for UCB variants gives O(ln T/∆z)). Let’s follow the standard argument for UCB1 which leads to the
tighter bound. A suboptimal arm is played at most ‘c‘ times for some constant, and then only if µ̂t−1(z∗) ≤
µ̂t−1(z) +

√
2 ln t

Nt−1(z) −
√

2 ln t
Nt−1(z∗) . Summing the number of pulls leads to the logarithmic dependency. For

EB-UCB, the analysis is similar but replaces the fixed variance proxy with the empirical variance, leading
to the same asymptotic form. The expected number of pulls for a suboptimal arm z over T oracle steps is
therefore E[Nz(T)] = O(ln T/∆z).

The total expected regret is:

E[RT] =
∑

z ̸=z⋆

E[Nz(T)]∆z =
∑

z ̸=z⋆

O

(
ln T

∆z

)
∆z = O

∑
z ̸=z⋆

ln T

∆z

 . (48)

Now, we re-introduce the Jacobian penalty. The algorithm maximizes UCBEB(z) − λJ∥JGθ(z)∥2
F . The

regret is defined with respect to the true arm values f(z). The penalty term is an additive component in
the objective, which translates to an additive component in the regret. The total regret is the sum of the
standard bandit regret and the expected penalty of the chosen arm.

T∑
t=1

E [ft(z⋆)− ft(z⋆
t)] ≤ O

∑
z ̸=z⋆

ln T

∆z

+ λJ

T∑
t=1

E
[
∥JGθ(z⋆

t)∥2
F − ∥JGθ(z⋆)∥2

F

]
. (49)

Since the norm is non-negative, we can bound the second part by simply summing the penalty of the chosen
arm, which gives the stated result.

E Proof of Overall Exploitability

E.1 Proof of Theorem 3.5 (Finite-Population Exploitability Bound)

Theorem E.1 (Finite-Population Exploitability Bound). Assume rewards in [0, 1] and the two-time-scale
oracle selection. With an optimistic meta-solver (OMWU) and sufficient Monte Carlo samples such that
E[∥v̂t −Mσt∥∞] = O((nm)−1/2), the average exploitability is bounded:

1
T

T∑
t=1

Exploit(σt) ≤O

 1
T

√√√√ln kT

T∑
t=1
||vt − vt−1||2∞


︸ ︷︷ ︸

OMWU Regret

+ O

(
1
T

T∑
t=1

(nm)−1/2

)
︸ ︷︷ ︸

MC Estimation Error

+ 1
T

T∑
t=1

εBR,t︸ ︷︷ ︸
Amortized BR Error

+ O

 1
T

∑
z ̸=z⋆

ln T

∆z


︸ ︷︷ ︸

Oracle Regret

.

(50)

The proof connects the exploitability of the meta-strategy σt to the various regret and error terms of the
algorithm’s components. We start by decomposing the exploitability at iteration t. Let At = {π1, . . . , πkt

}
be the set of policies in the anchor set.

Exploit(σt) = max
π

Ej∼σt
[r(π, πj)]− Ei∼σt,j∼σt

[r(πi, πj)] (51)

24

Under review as submission to TMLR

Let πBR,t = arg maxπ Ej∼σt
[r(π, πj)] be the true best response to σt. Let πz⋆

t
= πGθ(z⋆

t) be the policy added
by our oracle. Let πi∗ = arg maxi∈[kt] e⊤

i Mσt be the best pure strategy within the current anchor set.

We can decompose the exploitability as follows:

Exploit(σt) = Ej∼σt
[r(πBR,t, πj)]− σ⊤

t Mσt

=
(

max
i∈[kt]

e⊤
i Mσt − σ⊤

t Mσt

)
︸ ︷︷ ︸
Term I: Internal Exploitability

+
(
Ej∼σt

[r(πBR,t, πj)]− max
i∈[kt]

e⊤
i Mσt

)
︸ ︷︷ ︸

Term II: Population Gap

(52)

Bounding Term I: This is the external regret of Player 1 in the restricted game on At. From Proposition
3.2, the average regret of the OMWU algorithm using noisy estimates is bounded by the variation of the true
payoff vectors:

1
T

T∑
t=1

(
max
i∈[kt]

e⊤
i Mσt − σ⊤

t Mσt

)
≤ O

 1
T

√√√√ln kT

T∑
t=1
||vt − vt−1||2∞

+ 1
T

T∑
t=1

E[∥v̂t −Mσt∥∞]. (53)

The first part is the OMWU regret, reflecting a faster convergence rate in our smoothly evolving meta-game,
and the second is the MC estimation error.

Bounding Term II: This term captures how much better a true best response is compared to the best
policy already in our population. We can decompose this further:

Term II =
(
Ej∼σt

[r(πBR,t, πj)]− Ej∼σt
[r(πz⋆

t
, πj)]

)
(a) BR Approx. Error

+
(
Ej∼σt

[r(πz⋆
t
, πj)]−max

z∈Λt

Ej∼σt
[r(πGθ(z), πj)]

)
(b) Oracle Instant. Regret

+
(

max
z∈Λt

Ej∼σt
[r(πGθ(z), πj)]− max

i∈[kt]
e⊤

i Mσt

)
(c) Progress Term

(54)

• Part (a) is exactly the amortized best-response error, εBR,t from Eq. (10), assuming πBR,t can be
represented by some latent code.

• Part (b) is the instantaneous regret of our bandit oracle. Its expected value is what we bounded in
Theorem 3.3.

• Part (c) is non-positive. Since the anchor set Zt is a subset of the candidate pool Λt, the maximum
over Λt must be greater than or equal to the maximum over Zt. So we can drop this term from the
upper bound.

Summing everything and averaging over T :

1
T

T∑
t=1

Exploit(σt) ≤
1
T

T∑
t=1

(Term It + Term IIt)

≤ O

 1
T

√√√√ln kT

T∑
t=1
||vt − vt−1||2∞

+ 1
T

T∑
t=1

E[∥v̂t −Mσt∥∞]

︸ ︷︷ ︸
Term I

+ 1
T

T∑
t=1

εBR,t + 1
T

T∑
t=1

(
max
z∈Λt

ft(z)− ft(z⋆
t)
)

︸ ︷︷ ︸
Term II

(55)

25

Under review as submission to TMLR

The last term is the average instantaneous oracle regret. The cumulative regret bound from Theorem 3.3 states∑
t E[maxz ft(z)− ft(z⋆

t)] = O(
∑

z ̸=z⋆
ln T
∆z

). Therefore, the average regret is O(1
T

∑
z ̸=z⋆

ln T
∆z

). Substituting
this and the rate for MC error gives the final composite bound:

1
T

T∑
t=1

Exploit(σt) ≤O

 1
T

√√√√ln kT

T∑
t=1
||vt − vt−1||2∞


︸ ︷︷ ︸

OMWU Regret

+ O

(
1
T

T∑
t=1

(nm)−1/2

)
︸ ︷︷ ︸

MC Estimation Error

+ 1
T

T∑
t=1

εBR,t︸ ︷︷ ︸
Amortized BR Error

+ O

 1
T

∑
z ̸=z⋆

ln T

∆z


︸ ︷︷ ︸

Oracle Regret

.

(56)

This completes the proof. Each term corresponds to a component of the algorithm, showing how errors from
different sources contribute to the overall performance. As T →∞, if the sample counts (n, m) increase and
the generator training improves (εBR → 0), the average exploitability converges to zero, with the rate of
convergence for the meta-game being accelerated by the optimistic updates.

26

Under review as submission to TMLR

Part II

Extensions to Two-Player General-Sum and
N-Player General-Sum Games

F Extension to Two-Player General-Sum Games

We extend the surrogate-free Gems framework to two-player general-sum Markov games. Let rewards for
each player be bounded in [0, 1]. For a player p ∈ {1, 2}, we denote the other player by −p. The conceptual
expected payoff matrices are M (1) ∈ [0, 1]k1×k2 and M (2) ∈ [0, 1]k2×k1 , where M

(1)
ij = E[r(1)(π(1)

i , π
(2)
j)] and

M
(2)
ji = E[r(2)(π(1)

i , π
(2)
j)]. At iteration t, each player p has a population of policies induced by an anchor set

Z
(p)
t with a corresponding mixture strategy σ

(p)
t ∈ ∆kp(t)−1, where kp(t) = |Z(p)

t |.

The value vector for player 1 against player 2’s mixture is v
(1)
t = M (1)σ

(2)
t ∈ Rk1(t). Similarly, for player 2

against player 1’s mixture, it is v
(2)
t = (M (2))⊤σ

(1)
t ∈ Rk2(t). The expected value for each player p under the

joint mixture is r
(p)
t = σ

(1)
t

⊤
M (p)σ

(2)
t .

F.1 Monte Carlo Meta-Game Estimators (Both Players)

At a fixed iteration t, to estimate the value vector v
(p)
t for player p, we sample opponents js ∼ σ

(−p)
t and run

m episodes for each pair to obtain returns. The estimators are:

v̂
(1)
t,i = 1

nim

ni∑
s=1

m∑
l=1

Y
(1)

(i,js),l, js ∼ σ
(2)
t

v̂
(2)
t,j = 1

ñjm

ñj∑
s=1

m∑
l=1

Y
(2)

(is,j),l, is ∼ σ
(1)
t

(57)

The mixture value for each player is estimated via joint sampling (ib, jb) ∼ σ
(1)
t × σ

(2)
t :

r̂
(p)
t = 1

Bm

B∑
b=1

m∑
l=1

Y
(p)

(ib,jb),l (58)

Lemma F.1 (Unbiasedness and Concentration, General-Sum). With rewards in [0, 1], the estimators are
unbiased: E[v̂(1)

t,i] = (M (1)σ
(2)
t)i, E[v̂(2)

t,j] = ((M (2))⊤σ
(1)
t)j, and E[r̂(p)

t] = r
(p)
t . For any δ ∈ (0, 1), with

probability at least 1− δ, we have concentration bounds based on the empirical-Bernstein inequality.

F.2 Optimistic Replicator Dynamics for Both Players

Each player p ∈ {1, 2} independently performs an Optimistic Multiplicative-Weights Update (OMWU)
step based on their noisy payoff estimates. This allows each player to adapt more quickly to the opponent’s
evolving strategy by using the previous payoff vector as a hint. The optimistic estimate for player p is
m

(p)
t = 2v̂

(p)
t − v̂

(p)
t−1, with v̂

(p)
0 = 0. The update rule is:

σ
(p)
t+1(i) ∝ σ

(p)
t (i) exp

(
η

(p)
t [2v̂

(p)
t,i − v̂

(p)
t−1,i − r̂

(p)
t]
)

, η
(p)
t > 0 (59)

27

Under review as submission to TMLR

Proposition F.2 (Per-Player External Regret with OMWU and Noisy Payoffs). Let payoffs lie in [0, 1]. The
average external regret for each player p using OMWU is bounded by the variation of their true payoff vectors:

1
T

T∑
t=1

(
max

i
(v(p)

t)i − σ
(p)
t

⊤
v

(p)
t

)
≤O

 1
T

√√√√ln kp,T

T∑
t=1
||v(p)

t − v
(p)
t−1||2∞


+ 1

T

T∑
t=1

E
[
||v̂(p)

t − v
(p)
t ||∞

] (60)

where v
(p)
t is the true payoff vector for player p (i.e., v

(1)
t = M (1)σ

(2)
t and v

(2)
t = (M (2))⊤σ

(1)
t).

F.3 Model-Free EB-UCB Oracles (Double-Oracle Style)

For each player p, a finite candidate pool of latent codes Λ(p)
t ⊂ Z is formed. The value of an "arm" z ∈ Λ(p)

t

is its expected payoff against the opponent’s current mixture:

f
(p)
t (z) = E

j∼σ
(−p)
t

[r(p)(πGθp (z), π
(−p)
j)] (61)

We estimate the mean µ̂
(p)
t (z) and variance V̂ar(p)

t (z) via rollouts and score each candidate using an empirical-
Bernstein UCB formula. A new anchor z

∗,(p)
t is selected and added to the player’s anchor set.

Theorem F.3 (Per-Player Instance-Dependent Oracle Regret). Under a two-time-scale assumption, the
cumulative regret of the EB-UCB oracle for player p is bounded as stated in Theorem 3.3.

F.4 Overall Guarantee: ϵ-Coarse-Correlated Equilibrium

The time-averaged joint play of the players, µ̄T (i, j) := 1
T

∑T
t=1 σ

(1)
t (i)σ(2)

t (j), converges to an ϵ-coarse-
correlated equilibrium (ϵ-CCE).
Theorem F.4 (ϵ-CCE of Time-Average Joint Play). Assume rewards in [0, 1] and the two-time-scale
assumption. With per-player OMWU meta-solvers, the empirical distribution µ̄T is an ϵ-CCE, with ϵ bounded
by the sum of per-player errors:

ϵ ≤
∑

p∈{1,2}

[
O

 1
T

√√√√ln kp,T

T∑
t=1
||v(p)

t − v
(p)
t−1||2∞


︸ ︷︷ ︸

OMWU Regret

+ O

(
1
T

T∑
t=1

(npm)−1/2

)
︸ ︷︷ ︸

MC Estimation Error

+ 1
T

T∑
t=1

ε
(p)
BR,t︸ ︷︷ ︸

Amortized BR Error

+ O

 1
T

∑
z ̸=z⋆,(p)

ln T

∆(p)
z


︸ ︷︷ ︸

Oracle Regret

] (62)

where ε
(p)
BR is the average best-response approximation error for player p. As T →∞ and simulation/training

budgets increase, ϵ→ 0.

G Proofs for Two-Player General-Sum

G.1 Proof of Lemma 2 (Unbiasedness and Concentration, General-Sum)

Proof. (This proof remains unchanged as it concerns the estimators, not the update rule.)

28

Under review as submission to TMLR

G.2 Proof of Proposition 2 (Per-Player External Regret with OMWU)

Proof. The proof adapts the standard analysis for Optimistic MWU to our setting with noisy, unbiased
feedback for an arbitrary player p. The proof proceeds in two parts.

Part 1: Regret Against Estimated Losses. Let the estimated loss for player p be l̂
(p)
t,i = 1− v̂

(p)
t,i . The

OMWU algorithm uses an optimistic loss estimate m
(p)
t = l̂

(p)
t + (l̂(p)

t − l̂
(p)
t−1), with l̂

(p)
0 = 0. The weight

update for player p is w
(p)
t+1(i) = w

(p)
t (i) exp(−η(p)m

(p)
t,i).

Let W
(p)
t =

∑kp(t)
i=1 w

(p)
t (i) be the potential function for player p. Following a standard potential function

analysis (as detailed in Appendix C.1), the regret of OMWU with respect to the observed sequence of losses
is bounded by its variation:

T∑
t=1
⟨σ(p)

t , l̂
(p)
t ⟩ −min

i

T∑
t=1

l̂
(p)
t,i ≤ O


√√√√ln kp,T

T∑
t=1
||l̂(p)

t − l̂
(p)
t−1||2∞

 (63)

Part 2: Translating to True Regret. We now relate this bound to the regret against the true payoffs
v

(p)
t . Let the true loss be l

(p)
t = 1 − v

(p)
t and the estimation error be ∆(p)

t = l̂
(p)
t − l

(p)
t = v

(p)
t − v̂

(p)
t . The

cumulative true regret for player p, R
(p)
T , is:

R
(p)
T =

T∑
t=1

(
max

i
v

(p)
t,i − ⟨σ

(p)
t , v

(p)
t ⟩
)

=
T∑

t=1

(
⟨σ(p)

t , l
(p)
t ⟩ −min

i
l
(p)
t,i

)
=

T∑
t=1

(
⟨σ(p)

t , l̂
(p)
t −∆(p)

t ⟩ − (l̂(p)
t,i∗ −∆(p)

t,i∗)
)

=
T∑

t=1
(⟨σ(p)

t , l̂
(p)
t ⟩ − l̂

(p)
t,i∗)︸ ︷︷ ︸

Regret on Estimates

−
T∑

t=1
(⟨σ(p)

t , ∆(p)
t ⟩ −∆(p)

t,i∗)︸ ︷︷ ︸
Cumulative Error Term

(64)

The first term is bounded as derived in Part 1. For the variation term in that bound, we use the triangle
inequality:

||l̂(p)
t − l̂

(p)
t−1||∞ ≤ ||l̂

(p)
t − l

(p)
t ||∞ + ||l(p)

t − l
(p)
t−1||∞ + ||l(p)

t−1 − l̂
(p)
t−1||∞ (65)

=⇒ ||v̂(p)
t − v̂

(p)
t−1||∞ ≤ ||∆

(p)
t ||∞ + ||v(p)

t − v
(p)
t−1||∞ + ||∆(p)

t−1||∞ (66)

Taking the expectation over the sampling noise in our estimators, and noting that E[∆(p)
t] = 0 due to

unbiasedness, we can bound the expected true regret. The error terms accumulate, leading to the final result.
Dividing by T gives the statement in Proposition 60.

G.3 Proof of Theorem 3 (Per-Player Oracle Regret)

Proof. (This proof remains unchanged as it concerns the bandit oracle, which is decoupled from the meta-game
solver by the two-time-scale assumption.)

G.4 Proof of Theorem 4 (ϵ-CCE)

Proof. A time-averaged joint strategy µ̄T is an ϵ-CCE if for each player p and any deviating strategy π′, the
gain from deviating is small:∑

i,j

µ̄T (i, j)r(p)(π(1)
i , π

(2)
j) ≥

∑
i,j

µ̄T (i, j)r(p)(π′, π
(−p)
j)− ϵp (67)

29

Under review as submission to TMLR

where ϵ =
∑

p ϵp. The maximum gain for player p from deviating is bounded by their average external regret
against the sequence of opponent strategies {σ(−p)

t }T
t=1.

ϵp ≤
1
T

T∑
t=1

(
max

π′
E

j∼σ
(−p)
t

[r(p)(π′, π
(−p)
j)]− E

i∼σ
(p)
t ,j∼σ

(−p)
t

[r(p)(π(p)
i , π

(−p)
j)]

)
(68)

This is the definition of player p’s average exploitability of the sequence of joint strategies. We decompose
this term for each player p, analogous to the decomposition in the proof of Theorem 3.4. The exploitability
for player p at iteration t is:

Exploit(p)
t =

(
max

i∈[kp(t)]
(v(p)

t)i − ⟨σ(p)
t , v

(p)
t ⟩
)

︸ ︷︷ ︸
Internal Exploitability(p)

+
(

max
π′

E
j∼σ

(−p)
t

[r(p)(π′, π
(−p)
j)]− max

i∈[kp(t)]
(v(p)

t)i

)
︸ ︷︷ ︸

Population Gap(p)

(69)

Averaging over T and summing over players gives the total bound on ϵ.

1. Internal Exploitability: For each player p, this is their external regret within the restricted game.
From Proposition 60, its average is bounded by the sum of the OMWU Regret and the MC Estimation
Error.

2. Population Gap: For each player p, this term is decomposed further into their Amortized BR Error
and Oracle Regret, following the same logic as in the proof of Theorem 3.4.

Summing these four distinct error sources for each player p ∈ {1, 2} provides the composite bound for ϵ as
stated in Theorem 62.

H Extension to N-Player General-Sum Games

We now generalize the framework to n ≥ 2 players. Let P = {1, ..., n} be the set of players, and for any player
p ∈ P, let −p := P \ {p} denote the set of all other players. At each iteration t, every player p maintains an
anchor set Z

(p)
t , a generator Gθp

, and a meta-strategy σ
(p)
t ∈ ∆kp(t)−1. The joint mixture over all players is

Σt =
⊗

q∈P σ
(q)
t .

For each player p, the conceptual payoff is represented by a hypermatrix M (p) with entries corresponding to
the expected reward for player p given a joint profile of pure strategies. The expected payoff for player p’s
i-th policy against the joint mixture of all other players is:

v
(p)
t (i) = E

i−p∼⊗q∈−pσ
(q)
t

[
r(p)(π(p)

i , {π(q)
iq
}q∈−p)

]
=
∑
i−p

M
(p)
i,i−p

∏
q∈−p

σ
(q)
t (iq) (70)

and player p’s expected value under the full joint mixture is r
(p)
t =

∑
i σ

(p)
t (i)v(p)

t (i).

H.1 Monte Carlo Meta-Game with Importance Weighting

To avoid forming the computationally intractable payoff hypermatrices, we use importance-weighted estimators
derived from a single set of shared game rollouts. We draw B joint strategy profiles i(b) = (i(1)

b , ..., i
(n)
b) ∼ Σt,

run m episodes for each profile, and obtain returns Y
(p)

b,l for every player p. The estimators for the per-policy
value vector and the mixture value are:

v̂
(p)
t,i = 1

Bm

B∑
b=1

m∑
l=1

1{i(p)
b = i}

σ
(p)
t (i)

Y
(p)

b,l

r̂
(p)
t = 1

Bm

B∑
b=1

m∑
l=1

Y
(p)

b,l

(71)

30

Under review as submission to TMLR

Lemma H.1 (Unbiasedness and Concentration for n Players). For rewards in [0, 1], the estimators are
unbiased: E[v̂(p)

t,i] = v
(p)
t (i) and E[r̂(p)

t] = r
(p)
t for all p, i. For any δ ∈ (0, 1), with probability at least 1− δ, we

have concentration bounds. However, the variance of the importance-weighted estimator v̂
(p)
t,i can be high if

any policy’s probability σ
(p)
t (i) is small.

H.2 Per-Player Optimistic Replicator and Oracle

Each player p runs an independent learning process to update their meta-strategy and expand their policy
set.

• OMWU Update: Each player uses the Optimistic MWU rule to update their meta-strategy based
on their individual payoff estimates. The optimistic estimate for player p is m

(p)
t = 2v̂

(p)
t − v̂

(p)
t−1, with

v̂
(p)
0 = 0.

σ
(p)
t+1(i) ∝ σ

(p)
t (i) exp

(
η

(p)
t [2v̂

(p)
t,i − v̂

(p)
t−1,i − r̂

(p)
t]
)

(72)

• EB-UCB Oracle: Each player p solves a separate multi-armed bandit problem to find a promising
new anchor z

∗,(p)
t . The value of an arm z is its expected reward against the joint mixture of all other

players:
f

(p)
t (z) = E

i−p∼⊗q∈−pσ
(q)
t

[
r(p)(π(p)

Gθp (z), {π
(q)
iq
}q∈−p)

]
(73)

Proposition H.2 (Per-Player External Regret with OMWU in n-Player Games). For any player p, assume
payoffs lie in [0, 1]. The average external regret for player p using OMWU against the sequence of opponents’
joint strategies is bounded by:

1
T

T∑
t=1

(
max

i
(v(p)

t)i − σ
(p)
t

⊤
v

(p)
t

)
≤O

 1
T

√√√√ln kp,T

T∑
t=1
||v(p)

t − v
(p)
t−1||2∞


+ 1

T

T∑
t=1

E
[
||v̂(p)

t − v
(p)
t ||∞

] (74)

Theorem H.3 (Per-Player Instance-Dependent Oracle Regret). Under a two-time-scale assumption for
n-players, where opponents’ mixtures {σ(q)

t }q∈−p are considered fixed during player p’s oracle step, the
cumulative oracle regret for each player is bounded:

T∑
t=1

E[f (p)
t (z∗,(p))− f

(p)
t (z∗,(p)

t)] = O

 ∑
z ̸=z∗,(p)

ln T

∆(p)
z

+ λJ,p

T∑
t=1

E
[
||JGθp

(z∗,(p)
t)||2F

]
(75)

H.3 Overall Guarantee: ϵ-CCE for n Players

The time-averaged joint play, defined as µ̄T (i1, ..., in) := 1
T

∑T
t=1
∏n

p=1 σ
(p)
t (ip), converges to an ϵ-Coarse-

Correlated Equilibrium (ϵ-CCE).
Theorem H.4 (ϵ-CCE of Time-Average Joint Play for n Players). Assume rewards in [0, 1] and the n-player
two-time-scale assumption. With per-player OMWU meta-solvers, the time-averaged distribution µ̄T is an

31

Under review as submission to TMLR

ϵ-CCE, where the total deviation incentive ϵ is bounded by the sum of regrets and errors across all players:

ϵ ≤
n∑

p=1

[
O

 1
T

√√√√ln kp,T

T∑
t=1
||v(p)

t − v
(p)
t−1||2∞


︸ ︷︷ ︸

OMWU Regret

+ 1
T

T∑
t=1

E[||v̂(p)
t − v

(p)
t ||∞]︸ ︷︷ ︸

MC Estimation Error

+ 1
T

T∑
t=1

ε
(p)
BR,t︸ ︷︷ ︸

Amortized BR Error

+ O

 1
T

∑
z ̸=z⋆,(p)

ln T

∆(p)
z


︸ ︷︷ ︸

Oracle Regret

] (76)

If simulation and training budgets grow such that the error terms for each player go to zero, then ϵ→ 0 as
T →∞.

I Proofs for N-Player General-Sum

I.1 Proof of Lemma 3 (Unbiasedness and Concentration, n-Players)

Proof. (This proof remains unchanged as it concerns the estimators, not the update rule.)

I.2 Proof of Proposition 3 (Per-Player External Regret with OMWU)

Proof. The proof is structurally identical to the proof of Proposition 2 for the two-player case. We present it
here explicitly for the n-player setting for completeness. The analysis is performed for an arbitrary player
p ∈ {1, ..., n}.

Part 1: Regret Against Estimated Losses. Let the estimated loss for player p be l̂
(p)
t,i = 1− v̂

(p)
t,i . The

OMWU algorithm uses an optimistic loss estimate m
(p)
t = l̂

(p)
t + (l̂(p)

t − l̂
(p)
t−1), with l̂

(p)
0 = 0. The weight

update for player p is w
(p)
t+1(i) = w

(p)
t (i) exp(−η(p)m

(p)
t,i).

The regret of OMWU with respect to this observed sequence of losses is bounded by its variation, following a
standard potential function analysis:

T∑
t=1
⟨σ(p)

t , l̂
(p)
t ⟩ −min

i

T∑
t=1

l̂
(p)
t,i ≤ O


√√√√ln kp,T

T∑
t=1
||l̂(p)

t − l̂
(p)
t−1||2∞

 (77)

The "environment" from player p’s perspective is the sequence of payoff vectors it receives. The regret bound
does not depend on how this sequence is generated by the other n− 1 players, only on its properties (i.e., its
variation).

Part 2: Translating to True Regret. We relate this bound to the regret against the true payoffs v
(p)
t . Let

the true loss be l
(p)
t = 1− v

(p)
t and the estimation error be ∆(p)

t = l̂
(p)
t − l

(p)
t = v

(p)
t − v̂

(p)
t . The cumulative

true regret for player p, R
(p)
T , is:

R
(p)
T =

T∑
t=1

(
max

i
v

(p)
t,i − ⟨σ

(p)
t , v

(p)
t ⟩
)

=
T∑

t=1

(
⟨σ(p)

t , l
(p)
t ⟩ −min

i
l
(p)
t,i

)
=

T∑
t=1

(⟨σ(p)
t , l̂

(p)
t ⟩ −min

i
l̂
(p)
t,i)︸ ︷︷ ︸

Regret on Estimates

−
T∑

t=1
(⟨σ(p)

t , ∆(p)
t ⟩ −∆(p)

t,i∗)︸ ︷︷ ︸
Cumulative Error Term

(78)

The first term is bounded as derived in Part 1. The variation term in that bound is handled with the
triangle inequality: ||v̂(p)

t − v̂
(p)
t−1||∞ ≤ ||∆

(p)
t ||∞ + ||v(p)

t − v
(p)
t−1||∞ + ||∆(p)

t−1||∞. Taking the expectation over
the sampling noise and dividing by T yields the final bound stated in the proposition.

32

Under review as submission to TMLR

I.3 Proof of Theorem 5 (Per-Player Oracle Regret)

Proof. The proof is a standard bandit analysis, applied to the independent learning problem faced by each
player p. Under the two-time-scale assumption, the joint mixture of all other players, Σ(−p)

t = ⊗q∈−pσ
(q)
t , is

considered fixed during player p’s oracle selection phase at meta-iteration t.

For player p, the learning problem is a stochastic multi-armed bandit task where:

• The set of arms is the candidate pool of latent codes, Λ(p)
t .

• The reward for pulling an arm z ∈ Λ(p)
t is a random variable (the outcome of a game rollout) whose

expectation is the true arm value, f
(p)
t (z), as defined in Equation 73.

This is a standard bandit setting. The EB-UCB algorithm guarantees that the number of times a suboptimal
arm z is pulled, Nz(T), is bounded logarithmically with respect to the total number of oracle steps T , i.e.,
E[Nz(T)] = O(ln T/∆(p)

z), where ∆(p)
z is the suboptimality gap. The total regret is the sum of the expected

regrets from pulling each suboptimal arm. The Jacobian penalty adds a simple additive term to this regret,
leading to the final bound stated in the main text.

I.4 Proof of Theorem 6 (ϵ-CCE for n Players)

Proof. The proof generalizes the argument from the two-player case. A time-averaged joint distribution µ̄T is
an ϵ-CCE if for every player p ∈ {1, ..., n} and for every possible unilateral deviation to a pure strategy π′

p,
the incentive to deviate is bounded:

Ei∼µ̄T
[r(p)(π(p)

ip
, π

(−p)
i−p

)] ≥ E
i−p∼µ̄

(−p)
T

[r(p)(π′
p, π

(−p)
i−p

)]− ϵp (79)

where ϵ =
∑n

p=1 ϵp. The maximum gain for player p from deviating is bounded by their average external
regret over the T iterations. Let’s bound this gain, ϵp:

ϵp ≤
1
T

T∑
t=1

(
max

π′
E

i−p∼Σ(−p)
t

[r(p)(π′, π
(−p)
i−p

)]− Ei∼Σt
[r(p)(πi)]

)
(80)

This is precisely player p’s average exploitability over the sequence of play. We decompose this term for each
player p into four components, following the structure of the proof of Theorem 3.4. For each player p, their
average exploitability is bounded by the sum of:

1. Average Internal Exploitability: The regret of OMWU within the restricted game on Z
(p)
t , which

is bounded by Proposition 3. This gives the OMWU Regret and the MC Estimation Error
terms.

2. Average Population Gap: The gap between a true best response and the best response within
Z

(p)
t . This is further decomposed into the Amortized BR Error (by definition) and the Oracle

Regret (from Theorem 5).

Thus, for each player p, their maximum deviation incentive ϵp is bounded by the sum of their four error
terms:

ϵp ≤ O

 1
T

√√√√ln kp,T

T∑
t=1
||v(p)

t − v
(p)
t−1||2∞

+ 1
T

T∑
t=1

E[||v̂(p)
t − v

(p)
t ||∞] + ε̄

(p)
BR + R̄(p)

T (81)

where ε̄
(p)
BR and R̄(p)

T are the average BR error and oracle regret, respectively. The total error ϵ is the sum of
these deviation incentives, ϵ =

∑n
p=1 ϵp. Summing the bounds for each player provides the composite bound

for ϵ as stated in Theorem 76.

33

Under review as submission to TMLR

Part III

Ablation and Analysis of experiments
All empirical evaluations presented in this paper were conducted on computing systems equipped with Intel
i9 processors, utilizing either NVIDIA RTX A2000 GPU cluster (12GB VRAM) or an NVIDIA RTX 6000
Ada Generation cluster (48GB VRAM).

Table 2: Comprehensive Summary of Gems Experiments. This table aggregates all environments
evaluated in the paper, categorized by scale and type. It confirms that Gems scales robustly to high-
dimensional latent spaces (dz = 16) and large populations across competitive, cooperative, and game-theoretic
ablation settings.

Environment Type Action Space Latent Dim (dz) Iterations (T) Policies (|ZT |)
Complex Scale
Chess (v6) Competitive ≈ 4, 672 8 1,000 2,002
Go (9x9) Competitive ≈ 82 8 200 402
Hanabi Cooperative ≈ 20 8 200 402
Connect 4 Competitive 7 8 200 402
Continuous Control (Multi-particle)
Simple Spread (MPE) Cooperative Continuous (5) 8 100 202
Simple Tag (MPE) Competitive Continuous (5) 8 100 202
Game-Theoretic and Ablations
Kuhn Poker Imperfect Info 2 2, 4, 8 40 82
Public Goods Game N-Player Continuous 8, 16 10 60
Deceptive Mean Zero-Sum Continuous 8, 16 6 14

Note: "Policies (|ZT |)" is calculated as |Z0| + Nplayers × T .

Initialization of the anchor set. Algorithm 1 takes the initial anchor set Z0 = {z1, . . . , zk0} as an input.
We intentionally leave the choice of this initialization to the implementer: anchors can be sampled from a prior
over the latent space, warm-started from pretrained policies, or constructed via domain-specific heuristics. In
our experiments, we use a simple and standard choice and initialize anchors independently from a standard
normal distribution, i.e., zi ∼ N (0, I), with the initial meta-strategy σ0 set to be uniform over Z0.

Initialization of the meta-strategy. The initial meta-strategy σ0 is defined as a probability distribution
over the initial anchor set Z0. In our experiments, we initialize σ0 to be uniform over Z0, assigning equal
probability mass to each initial anchor. This choice reflects the absence of prior preference among anchors
at initialization and provides a neutral starting point for subsequent meta-strategy updates via optimistic
multiplicative weights. Alternative initializations, such as biased or warm-started distributions, can be
incorporated without modifying the core algorithm.

Policy optimization in the amortized best-response. In Phase 4 of Algorithm 1, agents are trained
via policy-gradient methods using advantage-based objectives. Concretely, the generator parameters θ are
updated by ascending a regularized policy objective that depends on estimated advantages, allowing any
standard policy-based reinforcement learning algorithm to be used in this step. In our implementation, we
instantiate this update using Proximal Policy Optimization (PPO) with generalized advantage estimation
(GAE), and train agents in PettingZoo environments accordingly. We emphasize that this choice is not
intrinsic to Gems, and alternative policy-gradient or trust-region methods could be substituted without
altering the overall framework.

34

Under review as submission to TMLR

Default hyperparameters for Kuhn Poker. For reproducibility, Table 3 reports the exact default
hyperparameters used in our Kuhn Poker runs of Gems (Algorithm 1). Unless otherwise stated, all Kuhn
experiments in this paper use these settings: an outer-loop budget of T=40 with k0=1 initial anchor per role
(implying |ZT |=2(k0+T)=82 anchors for the two-player case), latent dimension dz=8, and fixed Monte Carlo
/ oracle budgets for meta-game estimation and EB-UCB expansion. Meta-strategy updates use OMWU with
η=0.03 and a constant schedule, while Phase 4 applies ABR-TR training for KABR=30 gradient steps per
outer iteration with learning rate 2× 10−4 and KL regularization weight βKL=0.05 (Table 3).

Table 3: Default hyperparameters for GEMS (Algorithm 1) on Kuhn poker. Defaults used in
the reference implementation, grouped by phases: (1) MC meta-game estimation, (2) OMWU update, (3)
EB-UCB expansion, (4) ABR-TR training.

Block Parameter Symbol Default Role

Budget / population
Iterations Outer iterations T 40 Outer-loop horizon.
Initial anchors (per role) Init. anchors k0 1 Initial anchor set size.
Max anchors (per role) Cap kmax 32 Caps population size.
Total anchors (2-player) Implied total |ZT | 2(k0 + T) = 82 |ZT | = |Z0| + 2T , |Z0| = 2k0.
Generator / latent
Latent dimension Latent size dz 8 Latent code dimension.
Temperature Temp. τ 1.0 Sampling temperature.

Phase 1: Meta-game estimation (MC)
Opponent batch size Opp. batch NMC 8 Opponents from σt−1.
Rollouts per matchup Rollouts MMC 2 Rollouts per matchup.
Bootstrap samples Bootstraps B 128 Bootstrap resamples.
EMA smoothing EMA coef. αEMA 0.0 0 disables EMA.

Phase 2: Meta-strategy update (OMWU)
OMWU step size Step size η 0.03 OMWU learning rate.
Schedule Schedule — const const/sqrt/harmonic.
Logit cap Logit clip — 50.0 Caps logits.

Phase 3: Expansion (EB-UCB)
Oracle opponent batch size Opp. batch Noracle 8 Opponents from σt.
Oracle rollouts per candidate Rollouts Moracle 2 Rollouts per candidate.
Mutated candidates Mut. pool |Λmut| 32 Mutation candidates.
Random candidates Rand. pool |Λrand| 32 Extra random candidates.
Mutation scale Mut. stddev σmut 0.2 Latent mutation radius.
UCB confidence Confidence δ0 0.5 UCB confidence.

Phase 4: ABR-TR training
Training steps Grad steps KABR 30 Updates per outer iter.
Anchors per batch Batch anchors — 16 Anchors from Zt.
Learning rate Optimizer lr — 2 × 10−4 Step size for generator.
KL penalty weight KL coef. βKL 0.05 Trust-region weight.
New-opponent fraction Mix frac. qnew 0.25 Mix new vs. old.
Gradient clipping Norm clip — 0.5 Global grad-norm clip.

. .

35

Under review as submission to TMLR

J Run on Connect–4

Additional Analysis on Connect-4 (PettingZoo). Figures 7–9 present supplementary diagnostics for
Gems on the Connect-4 environment implemented using PettingZoo (connect_four_v3), evaluated across
four seeds (0–3). Figure 7 compares memory consumption and cumulative wall-clock time over training
iterations for Gems and Psro. While Psro exhibits steadily increasing memory usage and superlinear
growth in cumulative runtime—a consequence of explicit population expansion, payoff table maintenance,
and repeated best-response computation—Gems maintains near-constant memory throughout training and
achieves substantially lower cumulative wall-clock time. This behavior is consistent with the amortized nature
of Gems, where a single generator implicitly represents and updates the evolving policy population without
requiring explicit storage or enumeration of all past strategies.

Figures 8 and 9 visualize principal component projections of learned representations across seeds, providing
insight into the relationship between behavioral convergence and representational structure. In Figure 8, the
PCA embeddings of action-distribution features reveal a continuous, non-linear manifold structure
rather than disjoint clusters. Since Connect-4 is a solved game (perfect information, zero-sum) where optimal
play dictates specific minimax trajectories, the observed strong overlap between players is theoretically
expected: it indicates that Gems has converged to the shared, symmetric geometry of optimal play. The
smooth gradients visible in the embeddings suggest that the generator Gθ does not merely memorize a single
solution point, but captures the smooth topology of valid strategies leading to the Nash equilibrium.

In contrast, Figure 9 shows that the corresponding latent-space embeddings remain more dispersed across
seeds and players. This increased dispersion indicates that, while the induced action distributions converge to
the singular optimal behavior required by the solved game mechanics, the underlying latent representations
preserve diversity. This prevents the generator from collapsing into a narrow region of the latent space,
ensuring it retains the expressivity to generate counter-strategies if the opponent were to deviate from
optimality.

Taken together, these results illustrate a key property of Gems: Behavioral convergence emerges at the level
of action distributions (reflecting the solved nature of the game), while representational diversity is retained
within the latent space. This decoupling enables Gems to scale efficiently without sacrificing expressivity,
supporting stable learning dynamics and reducing the risk of premature mode collapse. Combined with the
resource efficiency observed in Figure 7, these findings reinforce the advantage of amortized, generator-based
meta-solvers over classical Psro-style approaches in multi-agent zero-sum games.

0 25 50 75 100 125 150 175 200
Training Iterations

1500

1520

1540

1560

1580

1600

M
em

or
y

(M
B)

GEMS
PSRO

0 25 50 75 100 125 150 175 200
Training Iterations

0

1000

2000

3000

4000

5000

6000

Cu
m

ul
at

iv
e

Ti
m

e
(s

)

GEMS
PSRO

Figure 7: Connect–4: Resource Usage. Memory consumption (left) and cumulative wall-clock time (right)
over training iterations for Gems and Psro.

36

Under review as submission to TMLR

Connect–4: Action Embeddings (Seeds 0–3)

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
PCA-1

0.2

0.1

0.0

0.1

0.2

0.3

0.4

PC
A-

2

Action-distribution space embedding
player_0
player_1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ac
tio

n
en

tro
py

0.3 0.2 0.1 0.0 0.1 0.2 0.3
PCA-1

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

PC
A-

2

Action-distribution space embedding
player_0
player_1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ac
tio

n
en

tro
py

0.3 0.2 0.1 0.0 0.1 0.2 0.3
PCA-1

0.2

0.1

0.0

0.1

0.2

0.3

PC
A-

2

Action-distribution space embedding
player_0
player_1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ac
tio

n
en

tro
py

0.2 0.1 0.0 0.1 0.2 0.3
PCA-1

0.3

0.2

0.1

0.0

0.1

0.2

PC
A-

2

Action-distribution space embedding
player_0
player_1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ac
tio

n
en

tro
py

Figure 8: Connect–4: Learned Strategy Manifold. PCA visualization of state-conditional action
distributions across four random seeds (0–3). Unlike discrete population methods, the embeddings reveal
a continuous, non-linear manifold structure, indicating that the generator Gθ captures the complex
geometry of the solution space. The smooth gradients in the projection correspond to coherent variations in
strategic aggression and confidence, confirming that GEMS maintains structured diversity and avoids
mode collapse while converging to symmetric equilibrium behaviors.

37

Under review as submission to TMLR

Connect–4: Latent Embeddings (Seeds 0–3)

3 2 1 0 1 2 3
PCA-1

3

2

1

0

1

2

3

PC
A-

2

Latent space embedding
player_0
player_1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ac
tio

n
en

tro
py

3 2 1 0 1 2 3 4
PCA-1

3

2

1

0

1

2

3

PC
A-

2

Latent space embedding
player_0
player_1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ac
tio

n
en

tro
py

4 3 2 1 0 1 2
PCA-1

3

2

1

0

1

2

3

4

PC
A-

2

Latent space embedding
player_0
player_1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ac
tio

n
en

tro
py

3 2 1 0 1 2 3
PCA-1

4

3

2

1

0

1

2

3

PC
A-

2

Latent space embedding
player_0
player_1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ac
tio

n
en

tro
py

Figure 9: Connect–4: Latent-Space Embeddings. PCA visualization of learned latent representations
across four seeds (0–3). Compared to action space, the latent space remains more dispersed, suggesting
preserved representational diversity despite similar cooperative behavior.

. .

38

Under review as submission to TMLR

K Run on Hanabi

Additional Analysis on Hanabi (PettingZoo). Figures 10–12 present supplementary diagnostics for
Gems on the cooperative Hanabi environment implemented using PettingZoo, evaluated across four seeds
(0–3). Figure 10 reports memory consumption and cumulative wall-clock time over training iterations
for Gems and Psro. As in the Connect-4 setting, Psro exhibits steadily increasing memory usage and
superlinear growth in cumulative runtime, reflecting the cost of explicit population expansion, policy storage,
and repeated equilibrium computation. In contrast, Gems maintains near-constant memory throughout
training and achieves substantially lower cumulative wall-clock time, despite the increased complexity of
Hanabi arising from partial observability, information asymmetry, and larger joint action spaces. These
results highlight the scalability benefits of Gems in cooperative multi-agent environments where classical
Psro-style methods incur significant computational overhead.

Figures 11 and 12 further analyze the learned representations through PCA visualizations of action-distribution
features and latent embeddings, respectively. In contrast to perfect-information games like Connect-4 where
symmetric self-play leads to overlapping embeddings, Figure 11 reveals that the action-distribution embeddings
for the two players occupy distinct, complementary regions of the manifold. This separation is geometrically
consistent across seeds and is expected: Hanabi is a game of asymmetric information, where each player
possesses private knowledge (their partner’s cards) that strictly differentiates their optimal policy from that
of their partner.

Consequently, the plots demonstrate that Gems has successfully learned a complementary coordination
protocol. The smooth, symmetric gradients visible in the plots suggest the generator has discovered a
continuous “convention” —a shared latent topology that maps distinct agent perspectives to compatible joint
actions. This confirms that Gems avoids the mode collapse often seen in generative cooperative learning,
instead maintaining the structured diversity required to solve partially observable settings where no single
static policy is optimal.

Similarly, Figure 12 shows that the corresponding latent-space embeddings exhibit a marked contrast: unlike
the separated action spaces, the latent codes for both players are densely intermingled. This indicates that
the generator utilizes a shared latent protocol (or codebook) to encode the game state, from which distinct,
complementary roles emerge in the action space. The preservation of diversity within this shared latent region
suggests that Gems maintains a rich internal representation capable of supporting asymmetric coordination
without fracturing into disjoint policies.

Taken together, these results demonstrate that Gems achieves efficient and stable learning in Hanabi by
discovering structured, complementary manifolds. The ability to learn these implicit conventions without
explicit communication channels underscores the suitability of amortized, generator-based meta-solvers for
complex cooperative multi-agent environments with partial observability.

0 25 50 75 100 125 150 175 200
Training Iterations

1500

1550

1600

1650

1700

1750

1800

M
em

or
y

(M
B)

GEMS
PSRO

0 25 50 75 100 125 150 175 200
Training Iterations

0

1000

2000

3000

4000

5000

6000

Cu
m

ul
at

iv
e

Ti
m

e
(s

)

GEMS
PSRO

Figure 10: Hanabi: Resource Usage. Memory consumption (left) and cumulative wall-clock time (right)
over training iterations for Gems and Psro.

39

Under review as submission to TMLR

Hanabi: Action Embeddings (Seeds 0–3)

0.3 0.2 0.1 0.0 0.1 0.2 0.3
PCA-1

0.2

0.1

0.0

0.1

0.2

0.3

PC
A-

2

Action-distribution space embedding
player_0
player_1

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

ac
tio

n
en

tro
py

0.6 0.4 0.2 0.0 0.2 0.4
PCA-1

0.2

0.1

0.0

0.1

0.2

PC
A-

2

Action-distribution space embedding
player_0
player_1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

ac
tio

n
en

tro
py

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
PCA-1

0.0

0.2

0.4

0.6

0.8

PC
A-

2

Action-distribution space embedding
player_0
player_1

0.0

0.5

1.0

1.5

2.0

ac
tio

n
en

tro
py

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
PCA-1

0.2

0.0

0.2

0.4

0.6

PC
A-

2

Action-distribution space embedding
player_0
player_1

0.0

0.5

1.0

1.5

2.0

2.5

ac
tio

n
en

tro
py

Figure 11: Hanabi: Cooperative Coordination Manifold. PCA visualization of action-distribution
features for both players across four random seeds. The embeddings reveal a coherent joint manifold with
smooth entropy gradients. While the separation between players reflects the asymmetric information
inherent to Hanabi, the symmetric and complementary geometry of the clusters demonstrates that the
generator Gθ captures a unified coordination protocol (or “convention”) shared by both agents, enabling
zero-shot coordination despite distinct individual perspectives.

40

Under review as submission to TMLR

Hanabi: Latent Embeddings (Seeds 0–3)

3 2 1 0 1 2 3 4
PCA-1

3

2

1

0

1

2

3

PC
A-

2

Latent space embedding
player_0
player_1

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

ac
tio

n
en

tro
py

3 2 1 0 1 2 3
PCA-1

3

2

1

0

1

2

3

PC
A-

2

Latent space embedding
player_0
player_1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

ac
tio

n
en

tro
py

3 2 1 0 1 2 3
PCA-1

3

2

1

0

1

2

PC
A-

2

Latent space embedding
player_0
player_1

0.0

0.5

1.0

1.5

2.0

ac
tio

n
en

tro
py

3 2 1 0 1 2 3
PCA-1

3

2

1

0

1

2

3

PC
A-

2

Latent space embedding
player_0
player_1

0.0

0.5

1.0

1.5

2.0

2.5

ac
tio

n
en

tro
py

Figure 12: Hanabi: Latent-Space Embeddings. PCA visualization of learned latent representations across
four seeds (0–3). Compared to action space, the latent space remains more dispersed, suggesting preserved
representational diversity despite similar cooperative behavior.

. .

41

Under review as submission to TMLR

L Coordination on Simple Spread

Setup. Our second experiment is conducted in the simple_spread environment, a classic cooperative
benchmark from PettingZoo. The task requires three agents to collaboratively “cover” three distinct target
landmarks in a 2D space. Agents are rewarded for minimizing their distance to any landmark but are
penalized for colliding with each other. A successful outcome requires the agents to learn a decentralized
“divide and conquer” strategy, assigning themselves to unique targets and navigating to them efficiently. This
environment is designed to test emergent cooperation and task division. We again compare Gems and Psro
on qualitative behavior, mean return, memory, and computation time, averaged over 5 seeds.

Objective. This experiment aims to achieve two goals. First, to confirm the significant scalability benefits
of Gems, as demonstrated in the previous experiment, but now in a purely cooperative setting. Second, to
evaluate which algorithm is more effective at discovering the complex, coordinated strategies required for
cooperative success, as measured by both quantitative rewards and qualitative analysis of agent behaviors.

0 20 40 60 80 100
Training Iterations

100

80

60

40

Cu
m

ul
at

iv
e

M
ea

n
Re

tu
rn

GEMS
PSRO

0 20 40 60 80 100
Training Iterations

1500

1600

1700

1800

1900

2000

2100

M
em

or
y

(M
B)

GEMS
PSRO

0 20 40 60 80 100
Training Iterations

0

2000

4000

6000

8000

10000

12000

14000

Cu
m

ul
at

iv
e

Ti
m

e
(s

)

GEMS
PSRO

Figure 13: Simple Spread

Figure 14: Simple Spread run on Seed 0

42

Under review as submission to TMLR

Figure 15: Simple Spread run on Seed 1

Figure 16: Simple Spread run on Seed 2

43

Under review as submission to TMLR

Figure 17: Simple Spread run on Seed 3

Figure 18: Simple Spread run on Seed 4

Results. Across simple_spread, Gems again outperforms Psro in both effectiveness and efficiency. In the
ghost-montage comparisons for seeds 0–4 (Figures 14–18; Gems on top, Psro on bottom), Gems agents
learn an efficient, coordinated strategy: they quickly partition landmarks and move directly toward
them, and when two agents collide they separate and re-plan rather than dithering—while still staying close to
the black-dot targets (agents rendered in blue). By contrast, Psro agents exhibit weaker coordination:
typically one–two agents hover near a target while another drifts away from objectives or circles indecisively,
an undesirable failure mode visible in multiple seeds (e.g., Fig. 14, 15). This qualitative advantage aligns
with the aggregate plot (Figure 13): Gems achieves a higher (less negative) mean return with lower variance
over time. In terms of scalability, results match prior sections: Gems is over 6× faster in cumulative time
(~2,000s vs. ~13,000s) and maintains a flat memory profile, while Psro ’s resource usage scales poorly.

44

Under review as submission to TMLR

Analysis. These rollouts (Figures 14–18) reinforce our central claim: Gems is better suited for cooperative
multi-agent tasks that require implicit role assignment. The EB-UCB oracle’s exploration over a
diverse latent space helps discover complementary roles (distinct landmark assignments) and preserves
them under contact—agents momentarily repel when they touch, then settle back near their respective
black-dot objectives. Simpler procedures in Psro more often collapse to near-symmetric yet suboptimal
behaviors (e.g., multiple agents chasing the same landmark while another disengages). Coupled with Gems
’ surrogate-free design—which yields lower wall-clock time and stable memory—these qualitative and
quantitative results position Gems as a robust, scalable framework for cooperative MARL.

. .

45

Under review as submission to TMLR

M Coordination on Simple Tag

Simple Tag (Appendix). Across seeds 0–4 (ghost montages: Gems on top, Psro on bottom), Gems
reliably produces coordinated pursuit: the red taggers self-organize into a roughly triangular encirclement
that narrows angles on the green runner, adjusting spacing to cut off escape lanes; the green agent, in turn,
exhibits purposeful evasion (arcing and zig-zag trajectories), and captures do occur when the enclosure closes.
Under Psro, by contrast, the taggers seldom sustain a stable formation: transient “triangle-ish” shapes
appear but collapse before containment, leaving wide gaps through which the green agent easily escapes.
While the green agent under Psro shows less consistently trained avoidance than under Gems, the taggers’
lack of persistent coordination dominates the outcome, captures are rare and evasion is commonplace. Overall,
these qualitative rollouts corroborate the main-paper claim: Gems induces higher-level cooperative tactics
(persistent enclosure and angle closing) that the Psro baseline fails to discover or maintain.

Figure 19: Simple Tag run on Seed 0

46

Under review as submission to TMLR

Figure 20: Simple Tag run on Seed 1

Figure 21: Simple Tag run on Seed 2

47

Under review as submission to TMLR

Figure 22: Simple Tag run on Seed 3

Figure 23: Simple Tag run on Seed 4

. .

48

Under review as submission to TMLR

N Run on Chess

We evaluate Gems on the chess_v6 environment from the PettingZoo library, which provides a full two-player
Chess setup following the FIDE ruleset, including castling, en passant, pawn promotion, and draw conditions.
Each agent alternately controls either the white or black pieces and receives observations corresponding to
the complete board state, enabling direct competition through turn-based play.

Across the early stages of training, most games between Gems agents resulted in draws. However, as iterations
progressed, the system began exhibiting increasingly decisive outcomes—alternating between strong white
and black victories. This trend can be observed in Table 4, where the balance of wins and losses evolves
from neutrality to a dynamic dominance-shift pattern. The accompanying performance metrics in Figure 24
further illustrate this evolution: the per-iteration time steadily decreased from approximately 25 s to 9 s
as the training stabilized, while memory usage remained nearly constant throughout 1000 iterations. The
cumulative time curve also followed an almost linear trend, confirming consistent computational scaling.

Figures 25–33 visualize selected games during training. Initially, black exhibits early dominance, leveraging
material advantages through aggressive captures. Yet, as learning progresses, white develops counter-strategies
involving positional control and endgame foresight. A particularly striking sequence shows white using a rook-
based checkmate against black, who had earlier promoted a pawn to a queen—highlighting Gems’s robustness
in resolving complex, materially imbalanced positions to decisive terminal states without succumbing to
policy collapse.

0 200 400 600 800 1000
Iteration

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ti
m

e
(s

)

Time per Iteration Step

0 200 400 600 800 1000
Iteration

0

2000

4000

6000

8000

10000

12000

14000

Cu
m

ul
at

iv
e

Ti
m

e
(s

)

Cumulative Time per Iteration Step

0 200 400 600 800 1000
Iteration

1650

1655

1660

1665

1670

1675

1680

1685

1690

M
em

or
y

(M
B)

Memory per Iteration Step

Figure 24: System metrics across training iterations. Memory usage remains stable throughout, per-step
computation time gradually decreases as the model stabilizes, and cumulative time increases linearly with
iteration count—indicating consistent computational efficiency.

49

Under review as submission to TMLR

Figure 25: Chess run for 1000 iterations. Part 1/9
Early-game states at 1000 iterations. Gems agents demonstrate a preference for central occupation (controlling
d4/e4 squares) and developing minor pieces to active squares. The divergence in pawn structures indicates
that the agents are exploring asymmetric board configurations rather than collapsing into identical opening
lines.

50

Under review as submission to TMLR

Figure 26: Chess run for 1000 iterations. Part 2/9
Transition to middlegame. The agents exhibit coordinated piece placement, with bishops and knights occupying
supported diagonals and outposts. The board states reflect a learned policy of structural preservation, avoiding
premature breakage of pawn chains while maintaining piece connectivity.

51

Under review as submission to TMLR

Figure 27: Chess run for 1000 iterations. Part 3/9
Complex middlegame configurations. Play involves tension around the center and semi-open files. The agents
demonstrate an ability to navigate trade-offs between material retention and spatial activity, resulting in
non-trivial board states that require calculation of tactical exchanges.

52

Under review as submission to TMLR

Figure 28: Chess run for 1000 iterations. Part 4/9
Late middlegame progression. Major pieces (Rooks/Queens) increasingly control key files. The policy appears
to prioritize King safety while initiating simplification sequences, transitioning the game from complex tactical
middlegames toward solvable endgame states.

53

Under review as submission to TMLR

Figure 29: Chess run for 1000 iterations. Part 5/9
Endgame transition phases. The board states show reduced material with increased King activity. The
agents demonstrate the capability to coordinate remaining pieces to restrict opponent mobility, suggesting
the emergence of basic endgame principles without explicit tablebase supervision.

54

Under review as submission to TMLR

Figure 30: Chess run for 1000 iterations. Part 6/9
Sparse board configurations. Gems converges on simplified states characterized by Rook and King maneuvering.
The agents avoid random moves that surrender material, maintaining equilibrium in drawn positions or
pressing advantages in uneven splits.

55

Under review as submission to TMLR

Figure 31: Chess run for 1000 iterations. Part 7/9
Formation of mating nets. The dominant agent utilizes coordinated checks to drive the opponent’s King to
the edge of the board. These sequences indicate that the policy successfully propagates value from terminal
states back to these pre-terminal configurations.

56

Under review as submission to TMLR

Figure 32: Chess run for 1000 iterations. Part 8/9
Pre-terminal tactical motifs. The agents execute forcing lines involving heavy pieces to convert spatial
advantages into checkmate opportunities. The consistency of these motifs across different seeds suggests
stable convergence toward valid winning strategies.

57

Under review as submission to TMLR

Figure 33: Chess run for 1000 iterations. Part 9/9
Terminal states. Gems reliably reaches definitive checkmate configurations (e.g., King + Rook mates). This
confirms that the training framework avoids the failure mode of indefinite cycles or stalemates, successfully
resolving the game loop.

58

Under review as submission to TMLR

Table 4: Training progression of Gems over 1000 iterations in Chess. Legend: “–” denotes a draw, “W”
denotes a win, and “L” denotes a loss.

Iter White Black Iter White Black Iter White Black Iter White Black Iter White Black

1 - - 2 - - 3 - - 4 - - 5 - -
6 - - 7 - - 8 - - 9 - - 10 - -

11 - - 12 - - 13 - - 14 - - 15 - -
16 - - 17 - - 18 - - 19 - - 20 - -
21 - - 22 - - 23 - - 24 - - 25 W L
26 - - 27 - - 28 L W 29 - - 30 L W
31 - - 32 - - 33 - - 34 - - 35 - -
36 - - 37 - - 38 - - 39 - - 40 - -
41 - - 42 - - 43 - - 44 - - 45 - -
46 - - 47 - - 48 W L 49 - - 50 L W
51 - - 52 - - 53 - - 54 - - 55 - -
56 - - 57 - - 58 - - 59 - - 60 - -
61 - - 62 W L 63 - - 64 - - 65 - -
66 - - 67 - - 68 - - 69 - - 70 - -
71 - - 72 - - 73 - - 74 - - 75 - -
76 - - 77 - - 78 - - 79 - - 80 W L
81 - - 82 - - 83 - - 84 - - 85 - -
86 - - 87 - - 88 L W 89 - - 90 L W
91 - - 92 - - 93 - - 94 - - 95 L W
96 - - 97 - - 98 - - 99 - - 100 - -

101 - - 102 - - 103 - - 104 - - 105 W L
106 L W 107 L W 108 - - 109 L W 110 W L
111 - - 112 - - 113 L W 114 - - 115 L W
116 - - 117 - - 118 L W 119 - - 120 - -
121 - - 122 - - 123 - - 124 L W 125 - -
126 - - 127 L W 128 - - 129 - - 130 - -
131 L W 132 - - 133 - - 134 - - 135 W L
136 - - 137 L W 138 - - 139 L W 140 - -
141 - - 142 W L 143 - - 144 - - 145 W L
146 - - 147 - - 148 - - 149 - - 150 - -
151 W L 152 W L 153 - - 154 - - 155 - -
156 W L 157 L W 158 L W 159 - - 160 - -
161 - - 162 W L 163 L W 164 - - 165 - -
166 - - 167 - - 168 - - 169 - - 170 - -
171 W L 172 - - 173 - - 174 - - 175 - -
176 - - 177 W L 178 W L 179 - - 180 - -
181 - - 182 W L 183 - - 184 - - 185 - -
186 - - 187 - - 188 W L 189 - - 190 W L
191 W L 192 W L 193 - - 194 - - 195 W L
196 W L 197 - - 198 - - 199 - - 200 W L
201 - - 202 W L 203 - - 204 W L 205 W L
206 - - 207 - - 208 - - 209 - - 210 W L
211 - - 212 W L 213 - - 214 - - 215 - -
216 - - 217 W L 218 - - 219 - - 220 - -
221 - - 222 W L 223 - - 224 - - 225 - -
226 - - 227 W L 228 - - 229 W L 230 - -
231 - - 232 - - 233 - - 234 W L 235 L W
236 W L 237 L W 238 - - 239 - - 240 W L
241 - - 242 - - 243 - - 244 - - 245 L W
246 L W 247 - - 248 - - 249 - - 250 W L
251 L W 252 - - 253 - - 254 - - 255 W L
256 - - 257 W L 258 - - 259 W L 260 - -
261 - - 262 - - 263 W L 264 - - 265 W L
266 W L 267 - - 268 W L 269 - - 270 - -
271 - - 272 W L 273 - - 274 W L 275 - -
276 - - 277 - - 278 W L 279 W L 280 W L
281 - - 282 - - 283 - - 284 - - 285 - -
286 - - 287 L W 288 - - 289 - - 290 - -
291 - - 292 - - 293 - - 294 - - 295 - -
296 - - 297 - - 298 - - 299 - - 300 - -
301 - - 302 - - 303 W L 304 - - 305 - -
306 - - 307 - - 308 - - 309 W L 310 - -
311 - - 312 W L 313 W L 314 - - 315 - -
316 - - 317 - - 318 - - 319 L W 320 - -
321 - - 322 - - 323 - - 324 W L 325 - -
326 L W 327 W L 328 - - 329 W L 330 L W
331 W L 332 L W 333 - - 334 W L 335 - -
336 L W 337 W L 338 - - 339 L W 340 W L
341 W L 342 - - 343 W L 344 W L 345 W L
346 W L 347 W L 348 - - 349 L W 350 - -
351 L W 352 W L 353 - - 354 W L 355 W L
356 - - 357 W L 358 - - 359 L W 360 - -
361 - - 362 - - 363 - - 364 W L 365 L W
366 W L 367 - - 368 - - 369 - - 370 - -

59

Under review as submission to TMLR

Iter White Black Iter White Black Iter White Black Iter White Black Iter White Black

371 L W 372 - - 373 W L 374 - - 375 W L
376 W L 377 - - 378 W L 379 - - 380 - -
381 - - 382 - - 383 L W 384 L W 385 L W
386 L W 387 - - 388 - - 389 W L 390 - -
391 W L 392 W L 393 L W 394 - - 395 W L
396 - - 397 W L 398 - - 399 - - 400 W L
401 W L 402 L W 403 W L 404 - - 405 W L
406 W L 407 - - 408 L W 409 L W 410 - -
411 L W 412 W L 413 - - 414 W L 415 - -
416 - - 417 W L 418 W L 419 - - 420 - -
421 - - 422 - - 423 - - 424 L W 425 W L
426 - - 427 - - 428 - - 429 - - 430 - -
431 W L 432 - - 433 - - 434 - - 435 - -
436 W L 437 L W 438 L W 439 L W 440 L W
441 L W 442 W L 443 W L 444 W L 445 W L
446 - - 447 W L 448 L W 449 W L 450 - -
451 - - 452 - - 453 - - 454 - - 455 W L
456 W L 457 W L 458 W L 459 W L 460 - -
461 - - 462 - - 463 - - 464 W L 465 - -
466 - - 467 L W 468 - - 469 - - 470 L W
471 - - 472 - - 473 L W 474 L W 475 L W
476 - - 477 - - 478 L W 479 W L 480 - -
481 L W 482 - - 483 - - 484 W L 485 L W
486 - - 487 - - 488 - - 489 - - 490 - -
491 - - 492 - - 493 L W 494 L W 495 L W
496 L W 497 W L 498 L W 499 L W 500 L W
501 L W 502 L W 503 - - 504 - - 505 L W
506 L W 507 L W 508 L W 509 L W 510 - -
511 - - 512 W L 513 L W 514 - - 515 W L
516 L W 517 L W 518 - - 519 L W 520 - -
521 - - 522 - - 523 L W 524 W L 525 L W
526 L W 527 L W 528 L W 529 - - 530 - -
531 - - 532 - - 533 - - 534 - - 535 W L
536 - - 537 - - 538 - - 539 - - 540 - -
541 - - 542 - - 543 L W 544 - - 545 W L
546 L W 547 L W 548 W L 549 L W 550 L W
551 L W 552 L W 553 L W 554 - - 555 L W
556 L W 557 L W 558 L W 559 - - 560 W L
561 L W 562 L W 563 W L 564 L W 565 - -
566 L W 567 W L 568 L W 569 L W 570 - -
571 L W 572 L W 573 L W 574 L W 575 L W
576 L W 577 L W 578 - - 579 - - 580 - -
581 L W 582 L W 583 W L 584 L W 585 L W
586 - - 587 L W 588 L W 589 L W 590 - -
591 L W 592 W L 593 L W 594 - - 595 L W
596 L W 597 L W 598 L W 599 L W 600 L W
601 L W 602 L W 603 - - 604 L W 605 - -
606 L W 607 L W 608 W L 609 L W 610 L W
611 L W 612 L W 613 - - 614 - - 615 L W
616 L W 617 - - 618 L W 619 L W 620 - -
621 - - 622 L W 623 L W 624 - - 625 L W
626 L W 627 L W 628 - - 629 L W 630 - -
631 L W 632 - - 633 - - 634 L W 635 L W
636 L W 637 L W 638 L W 639 L W 640 L W
641 L W 642 - - 643 - - 644 - - 645 - -
646 L W 647 L W 648 - - 649 - - 650 - -
651 W L 652 L W 653 - - 654 L W 655 - -
656 - - 657 - - 658 L W 659 L W 660 - -
661 L W 662 L W 663 L W 664 L W 665 L W
666 L W 667 L W 668 L W 669 L W 670 L W
671 L W 672 - - 673 - - 674 L W 675 W L
676 - - 677 - - 678 W L 679 W L 680 W L
681 W L 682 L W 683 - - 684 - - 685 - -
686 - - 687 L W 688 W L 689 L W 690 L W
691 - - 692 - - 693 L W 694 L W 695 W L
696 - - 697 - - 698 L W 699 W L 700 W L
701 L W 702 - - 703 - - 704 - - 705 - -
706 L W 707 - - 708 L W 709 L W 710 L W
711 L W 712 - - 713 W L 714 - - 715 L W
716 - - 717 - - 718 - - 719 - - 720 - -
721 L W 722 - - 723 - - 724 - - 725 L W
726 - - 727 L W 728 - - 729 - - 730 - -
731 - - 732 - - 733 - - 734 L W 735 L W
736 L W 737 L W 738 L W 739 L W 740 - -
741 W L 742 L W 743 - - 744 W L 745 - -
746 W L 747 L W 748 - - 749 L W 750 W L
751 - - 752 - - 753 - - 754 - - 755 L W
756 - - 757 L W 758 - - 759 - - 760 - -

60

Under review as submission to TMLR

Iter White Black Iter White Black Iter White Black Iter White Black Iter White Black

761 W L 762 - - 763 W L 764 L W 765 - -
766 L W 767 - - 768 W L 769 - - 770 - -
771 W L 772 - - 773 W L 774 - - 775 - -
776 - - 777 - - 778 L W 779 L W 780 W L
781 L W 782 - - 783 - - 784 L W 785 - -
786 L W 787 - - 788 - - 789 W L 790 L W
791 W L 792 L W 793 - - 794 L W 795 W L
796 - - 797 L W 798 L W 799 - - 800 W L
801 L W 802 - - 803 - - 804 L W 805 L W
806 L W 807 L W 808 - - 809 W L 810 - -
811 L W 812 L W 813 - - 814 - - 815 - -
816 W L 817 - - 818 L W 819 L W 820 L W
821 - - 822 - - 823 W L 824 L W 825 - -
826 - - 827 W L 828 - - 829 - - 830 - -
831 - - 832 W L 833 - - 834 L W 835 L W
836 L W 837 L W 838 L W 839 W L 840 - -
841 - - 842 L W 843 W L 844 W L 845 L W
846 L W 847 W L 848 - - 849 L W 850 L W
851 W L 852 L W 853 L W 854 W L 855 - -
856 L W 857 W L 858 L W 859 L W 860 - -
861 - - 862 L W 863 - - 864 L W 865 L W
866 W L 867 - - 868 L W 869 L W 870 W L
871 W L 872 W L 873 L W 874 W L 875 - -
876 - - 877 W L 878 - - 879 L W 880 L W
881 L W 882 - - 883 L W 884 - - 885 - -
886 W L 887 - - 888 W L 889 W L 890 W L
891 - - 892 L W 893 - - 894 L W 895 - -
896 W L 897 L W 898 L W 899 L W 900 W L
901 - - 902 W L 903 - - 904 - - 905 - -
906 - - 907 L W 908 W L 909 W L 910 L W
911 - - 912 L W 913 L W 914 - - 915 L W
916 L W 917 L W 918 L W 919 - - 920 W L
921 - - 922 - - 923 L W 924 W L 925 W L
926 L W 927 W L 928 L W 929 L W 930 W L
931 - - 932 - - 933 - - 934 L W 935 L W
936 L W 937 W L 938 W L 939 - - 940 W L
941 - - 942 - - 943 L W 944 L W 945 W L
946 L W 947 L W 948 L W 949 W L 950 L W
951 L W 952 W L 953 L W 954 L W 955 L W
956 - - 957 - - 958 W L 959 L W 960 W L
961 W L 962 W L 963 W L 964 - - 965 L W
966 L W 967 W L 968 W L 969 - - 970 W L
971 W L 972 W L 973 - - 974 L W 975 L W
976 W L 977 - - 978 L W 979 L W 980 L W
981 L W 982 L W 983 L W 984 - - 985 - -
986 L W 987 W L 988 - - 989 W L 990 - -
991 L W 992 L W 993 L W 994 W L 995 L W
996 L W 997 - - 998 L W 999 - - 1000 - -

. .

61

Under review as submission to TMLR

O Run on Go

Figures 34–36 present supplementary analysis of Gems on the Go environment implemented using PettingZoo.
We evaluate training dynamics over 200 iterations (matching the run used to generate the figures below),
using the same logging and evaluation protocol as in our Chess analysis.

Figure 34 reports system-level metrics over training iterations: per-iteration runtime, cumulative wall-clock
time, and memory usage. The per-iteration runtime exhibits bounded variability without a persistent
upward drift, yielding an approximately linear increase in cumulative wall-clock time. Memory usage
remains essentially stable with only minor incremental changes, indicating that Gems maintains consistent
computational and memory overhead over training. This stability is particularly notable in Go, where large
board states and long-horizon rollouts typically amplify the overhead of population-based game-solving
pipelines.

Figure 35 illustrates emergent spatial structure in Go rollouts after training. Shown are board states sampled
from a single rollout of trained agents after 200 training iterations, with successive frames corresponding to
progressively later timesteps within the rollout. The evolution from sparse, locally uncoordinated placements
to coherent territorial regions highlights the emergence of non-trivial spatial coordination induced by the
learned policies. Importantly, this structure arises without hand-crafted Go priors, explicit territory heuristics,
or domain-specific shaping, suggesting that Gems enables agents to discover meaningful spatial organization
purely through self-play and amortized policy generation.

Figure 36 analyzes the learned representations via PCA projections of two embedding spaces for both agents.
In action-distribution space (left), the embeddings clearly separate into two disjoint clusters with essentially
no overlap, indicating that the learned policies concentrate into two qualitatively distinct behavioral modes
rather than collapsing to a single averaged style. Within each cluster, the action entropy varies smoothly
(color gradient), suggesting structured but still stochastic action selection inside each mode.

In contrast, the latent-code embeddings (right) remain broadly dispersed without collapsing to a small region,
reflecting substantial representational diversity. This separation—multi-modal structure in behavior
together with non-collapsed latent representations—is particularly desirable in Go, where there are many
strategically distinct yet viable ways to play. Overall, the plot is consistent with Gems maintaining multiple
distinct strategic hypotheses (no representational mode collapse) while preserving coherent, structured
behavior.

Taken together, these results suggest that Gems scales robustly to high-dimensional spatial games such as
Go, maintaining stable system-level performance while preserving structured, diverse latent representations
over training.

0 25 50 75 100 125 150 175 200
Training Iterations

0

2

4

6

8

10

12

Ti
m

e
(s

)

GEMS

0 25 50 75 100 125 150 175 200
Training Iterations

1350

1400

1450

1500

1550

M
em

or
y

(M
B)

0 25 50 75 100 125 150 175 200
Training Iterations

0

250

500

750

1000

1250

1500

1750

2000

Cu
m

ul
at

iv
e

Ti
m

e
(s

)

Figure 34: System-level metrics over training iterations. Per-iteration runtime exhibits bounded variability
without long-term drift, leading to a near-linear growth in cumulative wall-clock time. Memory usage remains
stable with only minor incremental increases, indicating that Gems maintains consistent computational and
memory overhead throughout training.

62

Under review as submission to TMLR

Figure 35: Emergent spatial structure in Go rollouts using Gems. Shown are board states sampled
from a single rollout of agents trained via the Gems MARL framework after 1000 training iterations. Frames
are uniformly sampled across the trajectory (frames 1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, and
113), arranged left-to-right and top-to-bottom in temporal order. The evolution from sparse placements to
coherent territorial regions highlights the emergence of non-trivial spatial coordination induced by the Gems
policies, despite the absence of hand-crafted Go priors.

0.10 0.05 0.00 0.05 0.10 0.15
PCA-1

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

PC
A-

2

Action-distribution space embedding

black_0
white_0

3 2 1 0 1 2 3
PCA-1

3

2

1

0

1

2

3

PC
A-

2

Latent space embedding

black_0
white_03.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

ac
tio

n
en

tro
py

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

ac
tio

n
en

tro
py

Figure 36: Go embeddings after training: behavioral modes without latent collapse. Each point is
an embedding from one of the two agents (black/white), projected to 2D via PCA; color indicates action
entropy. Left (action-distribution space): embeddings form two clearly separated, non-overlapping clusters
with smoothly varying entropy, indicating two distinct behavioral modes. Right (latent space): embeddings
remain broadly dispersed rather than collapsing, reflecting substantial representational diversity consistent
with maintaining multiple viable strategic hypotheses.

. .

63

Under review as submission to TMLR

P Ablation on Kuhn’s Poker

Tables 5–6 enumerate the sweeps used for Figs. 37–38. Boldface rows indicate the configurations that
achieved the lowest exploitability within each panel. Across the grid, the strongest settings typically
combined a small/zero exploration scale (η ∈ {0, 0.06}) with simple schedulers (const/sqrt/harmonic),
minimal mutation/random pools, and either least_mass or worst_ev replacement (panel dependent).

EMA toggle (ablation only). Our main Kuhn Poker runs disable Estimated Moving Average (EMA)
(ema=0). For this ablation, we enabled EMA to probe stability: given meta-estimates (V p, r) and coefficient
β ∈ (0, 1), we update

V̂ p ← (1− β)V̂ p + βV p, r̂ ← (1− β)r̂ + βr. (82)

Implementationally, this follows meta_estimate_exact in our code. With EMA on (β ∈ {0.2, 0.5, 0.8}, see
the EMA column), we observed the lowest exploitability among all tested settings (boldface). A systematic
treatment of EMA choice (schedule, bias-correction, and scope) is deferred to future work.

Table 5: Configuration details corresponding to Fig. 37.

Sub-figure η η scheduler EMA Steps LR βKL Mutation Pool Random Pool Replacement

(a) 0.08 harmonic 0.2 0 1e-4 0.0 0 0 least_mass
(b) 0.12 const 0.5 0 1e-4 0.0 1 0 worst_ev
(c) 0.06 harmonic 0.5 0 1e-4 0.0 2 1 least_mass
(d) 0.04 harmonic 0.0 20 5e-4 1e-2 1 0 worst_ev
(e) 0.06 sqrt 0.8 0 1e-4 0.0 1 0 worst_ev
(f) 0.06 sqrt 0.2 0 1e-4 0.0 1 0 worst_ev
(g) 0.0 const 0.0 0 1e-4 0.0 1 0 least_mass
(h) 0.12 harmonic 0.5 10 3e-4 5e-3 1 0 worst_ev
(i) 0.0 const 0.0 0 1e-4 0.0 0 0 least_mass
(j) 0.08 harmonic 0.5 0 1e-4 0.0 0 0 least_mass
(k) 0.06 sqrt 0.2 0 1e-4 0.0 0 0 worst_ev
(l) 0.10 harmonic 0.8 0 1e-4 0.0 1 0 least_mass

(m) 0.12 const 0.0 0 1e-4 0.0 2 1 worst_ev
(n) 0.08 const 0.8 20 5e-4 1e-2 2 1 least_mass
(o) 0.06 harmonic 0.0 20 5e-4 1e-2 1 0 least_mass
(p) 0.10 harmonic 0.0 20 5e-4 1e-2 1 0 least_mass
(q) 0.12 sqrt 0.5 0 1e-4 0.0 0 0 least_mass
(r) 0.10 harmonic 0.8 20 5e-4 1e-2 2 1 worst_ev
(s) 0.06 sqrt 0.8 20 5e-4 1e-2 1 0 worst_ev
(t) 0.12 sqrt 0.8 10 3e-4 5e-3 2 1 least_mass

Table 6: Configuration details corresponding to Fig. 38.

Sub-figure η η scheduler EMA Steps LR βKL Mutation Pool Random Pool Replacement

(a) 0.0 const 0.0 0 1e-4 0.0 0 0 worst_ev
(b) 0.12 harmonic 0.0 20 5e-4 1e-2 1 0 least_mass
(c) 0.10 const 0.2 0 1e-4 0.0 2 1 worst_ev
(d) 0.06 harmonic 0.0 20 5e-4 1e-2 0 0 worst_ev
(e) 0.06 harmonic 0.5 0 1e-4 0.0 0 0 worst_ev
(f) 0.08 const 0.8 0 1e-4 0.0 0 0 worst_ev
(g) 0.06 sqrt 0.2 0 1e-4 0.0 1 0 least_mass
(h) 0.06 sqrt 0.2 0 1e-4 0.0 2 1 least_mass
(i) 0.0 const 0.0 0 1e-4 0.0 1 0 least_mass
(j) 0.04 sqrt 0.0 10 3e-4 5e-3 0 0 least_mass

64

Under review as submission to TMLR

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(a)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(b)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(c)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(d)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(e)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(f)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(g)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(h)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(i)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(j)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(k)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(l)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(m)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(n)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(o)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(p)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(q)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(r)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(s)

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

(t)
Time (S) Memory (MB) Exploitability

Figure 37: Ablation on Kuhn’s Poker part 1/2, mean of 5 seeds. Legend: ❶ Memory, at Y-axis 1 defines
1256.005 MB, 0 defines 0 MB, ❷ Time, at Y-axis 1 defines 0.01 S, 0 defines 0 S, ❸ Exploitability, Y-axis 1
defines 1, 0 defines 0, and ❹ Iterations are defined on X-axis going from 0 to 40.

65

Under review as submission to TMLR

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

(a)

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

(b)

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

(c)

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

(d)

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

(e)

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

(f)

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

(g)

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

(h)

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

(i)

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

(j)
Time (S) Memory (MB) Exploitability

Figure 38: Ablation on Kuhn’s Poker part 2/2, mean of 5 seeds. Legend: ❶ Memory, at Y-axis 1 defines
1256.005 MB, 0 defines 0 MB, ❷ Time, at Y-axis 1 defines 0.01 S, 0 defines 0 S, ❸ Exploitability, Y-axis 1
defines 1, 0 defines 0, and ❹ Iterations are defined on X-axis going from 0 to 40.

. .

66

Under review as submission to TMLR

Q Ablation on Public Goods Game

Public Goods Game Ablation: Purpose. This ablation studies which parts of FAST Gems–OMWU
matter most for outcome quality versus compute, so that our defaults are principled and robust rather than
hand-tuned. Concretely, we vary algorithmic and stability knobs—η, eta_sched (const/sqrt/harmonic),
ema, mwu_grad_cap, temperature τ ; population-growth and exploration knobs—oracle_nz, oracle_period,
pool_mut, pool_rand, latent size zdim; and ABR–TR tightness—abr_lr, abr_steps, and βKL. We sum-
marize effects with terminal and speed-sensitive metrics: welfare_last, coop_last (final social welfare
and cooperation) and their learning-curve integrals welfare_auc, coop_auc, alongside efficiency measures
time_total_sec_avg and ram_peak_mb_avg. A full factorial sweep is possible, but would require substan-
tially more compute than we currently have available, so, we run structured partial variations (one-factor and
a few targeted pairs) across multiple seeds and report mean±std from the multi-seed runner; the intent is to
characterize sensitivities and trade-offs, not to claim a single global optimum. In practice, the ablation
clarifies (i) step-size scheduling and mild smoothing (harmonic ηt with modest EMA) stabilize meta-updates
without slowing progress unduly, (ii) moderate βKL in ABR–TR improves welfare without large time/RAM
penalties, and (iii) small increases in oracle_period and balanced pool_mut/pool_rand control population
growth while preserving exploration. All runs log the exact configuration to CSV for reproducibility and
allow further probing of interactions as needed.

Public Goods Game: overview & metrics. The Public Goods Game (PGG) is an n-player social-
dilemma benchmark. Each player chooses to contribute (cooperate) or withhold (defect). Let ai ∈ 0, 1 denote
player i’s contribute decision, S =

∑
j aj the total contributions, multiplier r > 0, and per-contribution cost

ci > 0 (homogeneous case uses ci ≡ c). The one-round payoff to player i is

ui = r

n
S − ci ai, and the social welfare W =

n∑
i=1

ui = r S −
n∑

i=1
ciai. (83)

When r
n < c < r (homogeneous costs), each individual gains by defecting (free-riding) while the group gains

by coordinating on cooperation—this is the core tension PGG exposes.

In our runs, the generator outputs the probability of cooperation; we track both outcome quality and learning
speed/stability via four summary metrics:

• welfare_last: the mean social welfare W at the final training iteration (averaged over profile
samples and seeds). Higher is better; if parameters make W negative, “less negative” still indicates
improvement.

• coop_last: the final average cooperation rate 1
n

∑
i Pr[ai=1].

• welfare_auc: the (trapezoidal) area under the welfare-versus-iteration curve. This rewards methods
that reach good welfare earlier and keep it stable—a joint measure of speed and robustness.

• coop_auc: the analogous AUC for cooperation rate.

All four are reported as mean±std across seeds by the multi-seed runner, making it straightforward to compare
algorithms and hyper-parameter settings on both efficiency and cooperative outcomes. iters_in_child = 10;
seeds_in_child = 0,1,2,3,4; iters = 10; n_players = 5.

67

Under review as submission to TMLR

Table 7: Ablation (Public Goods Game)
w

el
fa

re
_

la
st

co
op

_
la

st

w
el

fa
re

_
au

c

co
op

_
au

c

ti
m

e_
to

ta
l_

se
c_

av
g

ra
m

_
p

ea
k

_
m

b
_

av
g

ab
r_

lr

ab
r_

st
ep

s

b
et

a_
k

l

co
st

_
c

d
el

ta
0

em
a

et
a

et
a_

sc
h

ed

h
et

er
o

la
m

b
d

a_
ja

c
lo

g_
u

cb
m

u
lt

_
r

m
w

u
_

gr
ad

_
ca

p

n
o_

p
lo

ts
n

u
m

_
se

ed
s

or
ac

le
_

n
z

or
ac

le
_

p
er

io
d

p
o

ol
_

m
u

t
p

o
ol

_
ra

n
d

sl
ow

sl
ow

d
ow

n
ta

u
to

p
_

se
ed

u
cb

_
n

z
zd

im

0.008177475 0.000817748 0.997798743 0.099779875 1.252423239 1240.809375 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 2 1 0 1 1.0 0 8 8
0.0481612 0.00481612 4.389817474 0.438981745 1.243599987 1240.700781 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 2 1 0 2 1.5 0 8 8

0.007937888 0.000793789 0.899287799 0.08992878 1.250558043 1240.736719 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 2 1 1 1 1.0 0 8 8
0.036606287 0.003660629 4.423422511 0.442342253 1.220253325 1240.854688 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 2 1 1 2 1.5 0 8 8
0.021302772 0.002130277 1.155576756 0.115557676 1.270089245 1241.642188 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 2 1 0 1 1.0 0 8 16
0.065991034 0.006599103 4.265299203 0.42652992 1.26079936 1240.8125 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 2 1 0 2 1.5 0 8 16
0.009342633 0.000934263 0.683710212 0.068371021 1.226696777 1240.733594 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 2 1 1 1 1.0 0 8 16
0.031212943 0.003121294 3.660477072 0.366047713 1.247665262 1240.683594 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 2 1 1 2 1.5 0 8 16
0.008177475 0.000817748 0.997798743 0.099779875 1.288738918 1240.8625 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 2 1 0 1 1.0 0 8 8

0.0481612 0.00481612 4.389817474 0.438981745 1.256717253 1240.785156 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 2 1 0 2 1.5 0 8 8
0.007937888 0.000793789 0.899287799 0.08992878 1.267520666 1240.686719 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 2 1 1 1 1.0 0 8 8
0.036606287 0.003660629 4.423422511 0.442342253 1.28211751 1240.714844 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 2 1 1 2 1.5 0 8 8
0.021302772 0.002130277 1.155576756 0.115557676 1.310556698 1240.908594 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 2 1 0 1 1.0 0 8 16
0.065991034 0.006599103 4.265299203 0.42652992 1.252139187 1240.901563 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 2 1 0 2 1.5 0 8 16
0.009342633 0.000934263 0.683710212 0.068371021 1.276571846 1240.667969 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 2 1 1 1 1.0 0 8 16
0.031212943 0.003121294 3.660477072 0.366047713 1.282459736 1240.673438 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 2 1 1 2 1.5 0 8 16
0.019388839 0.001938884 1.242629356 0.124262934 1.26205411 1240.679688 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 2 2 0 1 1.0 0 8 8
0.085384213 0.008538421 4.706878492 0.47068785 1.265106869 1240.692188 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 2 2 0 2 1.5 0 8 8
0.005458697 0.00054587 0.874286836 0.087428684 1.226155043 1240.671094 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 2 2 1 1 1.0 0 8 8
0.045789669 0.004578967 4.528651814 0.452865186 1.272323084 1240.759375 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 2 2 1 2 1.5 0 8 8
0.022797623 0.002279762 1.036746019 0.103674601 1.274035454 1240.702344 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 2 2 0 1 1.0 0 8 16
0.069790505 0.00697905 4.056669959 0.405666995 1.318738031 1240.808594 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 2 2 0 2 1.5 0 8 16
0.012179432 0.001217943 0.750434142 0.075043414 1.30443511 1240.728906 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 2 2 1 1 1.0 0 8 16
0.047578595 0.004757859 3.948711966 0.394871199 1.318915558 1240.654688 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 2 2 1 2 1.5 0 8 16
0.019388839 0.001938884 1.242629356 0.124262934 1.323859501 1240.845313 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 2 2 0 1 1.0 0 8 8
0.085384213 0.008538421 4.706878492 0.47068785 1.344771719 1240.771094 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 2 2 0 2 1.5 0 8 8
0.005458697 0.00054587 0.874286836 0.087428684 1.362584257 1240.678125 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 2 2 1 1 1.0 0 8 8
0.045789669 0.004578967 4.528651814 0.452865186 1.289640522 1240.711719 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 2 2 1 2 1.5 0 8 8
0.022797623 0.002279762 1.036746019 0.103674601 1.355440092 1240.840625 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 2 2 0 1 1.0 0 8 16
0.069790505 0.00697905 4.056669959 0.405666995 1.356069088 1240.857813 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 2 2 0 2 1.5 0 8 16
0.012179432 0.001217943 0.750434142 0.075043414 1.287806368 1240.705469 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 2 2 1 1 1.0 0 8 16
0.047578595 0.004757859 3.948711966 0.394871199 1.296716118 1240.686719 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 2 2 1 2 1.5 0 8 16
0.029370787 0.002937079 1.329133807 0.132913381 1.353565598 1240.934375 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 4 1 0 1 1.0 0 8 8
0.111277251 0.011127725 5.157341515 0.515734149 1.340657473 1240.902344 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 4 1 0 2 1.5 0 8 8
0.004473344 0.000447334 0.803012078 0.080301208 1.296801376 1240.664063 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 4 1 1 1 1.0 0 8 8
0.041325395 0.004132539 4.417075988 0.4417076 1.291794729 1240.714063 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 4 1 1 2 1.5 0 8 8
0.017441394 0.001744139 0.936132263 0.093613227 1.345355701 1240.805469 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 4 1 0 1 1.0 0 8 16
0.06414937 0.006414937 4.018342035 0.401834202 1.333889103 1240.648438 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 4 1 0 2 1.5 0 8 16

0.009716086 0.000971609 0.649623368 0.064962337 1.299304295 1240.627344 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 4 1 1 1 1.0 0 8 16
0.043877613 0.004387761 3.711383419 0.371138343 1.276826048 1240.721094 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 4 1 1 2 1.5 0 8 16
0.029370787 0.002937079 1.329133807 0.132913381 1.363368177 1240.690625 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 4 1 0 1 1.0 0 8 8
0.111277251 0.011127725 5.157341515 0.515734149 1.324744749 1240.767188 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 4 1 0 2 1.5 0 8 8
0.004473344 0.000447334 0.803012078 0.080301208 1.290382385 1240.726563 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 4 1 1 1 1.0 0 8 8
0.041325395 0.004132539 4.417075988 0.4417076 1.296269321 1240.81875 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 4 1 1 2 1.5 0 8 8
0.017441394 0.001744139 0.936132263 0.093613227 1.319015312 1240.820313 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 4 1 0 1 1.0 0 8 16
0.06414937 0.006414937 4.018342035 0.401834202 1.340740538 1240.828125 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 4 1 0 2 1.5 0 8 16

0.009716086 0.000971609 0.649623368 0.064962337 1.296413422 1240.527344 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 4 1 1 1 1.0 0 8 16
0.043877613 0.004387761 3.711383419 0.371138343 1.347365379 1240.714063 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 4 1 1 2 1.5 0 8 16
0.030784313 0.003078431 1.507336224 0.150733623 1.329183865 1240.753125 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 4 2 0 1 1.0 0 8 8
0.123046156 0.012304615 5.44876127 0.544876131 1.360421801 1240.784375 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 4 2 0 2 1.5 0 8 8
0.004515423 0.000451542 0.875367918 0.087536792 1.295195246 1240.697656 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 4 2 1 1 1.0 0 8 8
0.048693151 0.004869315 4.486799394 0.448679939 1.313542891 1240.774219 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 4 2 1 2 1.5 0 8 8
0.020697407 0.002069741 1.131707378 0.113170738 1.325917721 1240.802344 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 4 2 0 1 1.0 0 8 16
0.075014925 0.007501493 4.207443076 0.420744306 1.378143406 1240.845313 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 4 2 0 2 1.5 0 8 16
0.00895818 0.000895818 0.68846804 0.068846804 1.376670551 1240.752344 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 4 2 1 1 1.0 0 8 16
0.05003511 0.005003511 3.841033648 0.384103367 1.298640156 1240.776563 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 4 2 1 2 1.5 0 8 16

0.030784313 0.003078431 1.507336224 0.150733623 1.321631813 1240.791406 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 4 2 0 1 1.0 0 8 8
0.123046156 0.012304615 5.44876127 0.544876131 1.335440922 1240.84375 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 4 2 0 2 1.5 0 8 8
0.004515423 0.000451542 0.875367918 0.087536792 1.29258728 1240.628906 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 4 2 1 1 1.0 0 8 8
0.048693151 0.004869315 4.486799394 0.448679939 1.312389851 1240.721094 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 4 2 1 2 1.5 0 8 8
0.020697407 0.002069741 1.131707378 0.113170738 1.324503088 1240.732813 0.0005 20 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 4 2 0 1 1.0 0 8 16
0.075014925 0.007501493 4.207443076 0.420744306 1.359703779 1240.836719 0.00025 20 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 4 2 0 2 1.5 0 8 16
0.00895818 0.000895818 0.68846804 0.068846804 1.28160634 1240.70625 0.0005 20 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 4 2 1 1 1.0 0 8 16
0.05003511 0.005003511 3.841033648 0.384103367 1.299155807 1240.678125 0.00025 20 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 4 2 1 2 1.5 0 8 16

0.001822251 0.000182225 0.172409339 0.017240934 2.357672119 1240.786719 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 2 1 0 1 1.0 0 8 8
0.018233484 0.001823348 1.445250869 0.144525087 2.339102983 1240.735156 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 2 1 0 2 1.5 0 8 8
0.000245363 2.45e-05 0.084534858 0.008453485 2.37459836 1240.775 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 2 1 1 1 1.0 0 8 8
0.010252095 0.00102521 1.303504346 0.130350432 2.332586718 1240.85 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 2 1 1 2 1.5 0 8 8
0.010503508 0.001050351 0.400124063 0.040012406 2.334543324 1240.785156 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 2 1 0 1 1.0 0 8 16
0.030913027 0.003091303 1.716899273 0.171689926 2.335034132 1240.686719 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 2 1 0 2 1.5 0 8 16
0.00169102 0.000169102 0.103430388 0.010343039 2.331186533 1240.553906 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 2 1 1 1 1.0 0 8 16

0.012002162 0.001200216 1.105425272 0.110542528 2.316781712 1240.792969 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 2 1 1 2 1.5 0 8 16
0.001822251 0.000182225 0.172409339 0.017240934 2.387402058 1240.771875 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 2 1 0 1 1.0 0 8 8
0.018233484 0.001823348 1.445250869 0.144525087 2.322560787 1240.557813 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 2 1 0 2 1.5 0 8 8
0.000245363 2.45e-05 0.084534858 0.008453485 2.35093627 1240.852344 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 2 1 1 1 1.0 0 8 8
0.010252095 0.00102521 1.303504346 0.130350432 2.369064522 1240.839063 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 2 1 1 2 1.5 0 8 8
0.010503508 0.001050351 0.400124063 0.040012406 2.332673883 1240.830469 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 2 1 0 1 1.0 0 8 16
0.030913027 0.003091303 1.716899273 0.171689926 2.3455616 1240.785938 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 2 1 0 2 1.5 0 8 16
0.00169102 0.000169102 0.103430388 0.010343039 2.303474236 1240.798438 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 2 1 1 1 1.0 0 8 16

0.012002162 0.001200216 1.105425272 0.110542528 2.323050165 1240.639844 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 2 1 1 2 1.5 0 8 16
0.006682226 0.000668223 0.315112181 0.031511218 2.385132074 1241.5875 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 2 2 0 1 1.0 0 8 8
0.025486331 0.002548633 1.723243252 0.172324327 2.37188077 1240.865625 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 2 2 0 2 1.5 0 8 8
0.000513562 5.14e-05 0.091702681 0.009170268 2.325033045 1240.753125 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 2 2 1 1 1.0 0 8 8
0.008697222 0.000869722 1.276544507 0.127654448 2.342204618 1240.599219 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 2 2 1 2 1.5 0 8 8
0.012916667 0.001291667 0.387960172 0.038796017 2.324785471 1240.727344 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 2 2 0 1 1.0 0 8 16
0.031189462 0.003118946 1.559489052 0.155948906 2.366880798 1240.7125 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 2 2 0 2 1.5 0 8 16
0.002724909 0.000272491 0.117010106 0.011701011 2.305494022 1240.871875 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 2 2 1 1 1.0 0 8 16
0.019667632 0.001966763 1.234394693 0.12343947 2.265299177 1240.741406 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 2 2 1 2 1.5 0 8 16
0.006682226 0.000668223 0.315112181 0.031511218 2.417394686 1240.590625 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 2 2 0 1 1.0 0 8 8
0.025486331 0.002548633 1.723243252 0.172324327 2.331274128 1240.888281 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 2 2 0 2 1.5 0 8 8
0.000513562 5.14e-05 0.091702681 0.009170268 2.322550297 1240.583594 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 2 2 1 1 1.0 0 8 8
0.008697222 0.000869722 1.276544507 0.127654448 2.306919479 1240.950781 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 2 2 1 2 1.5 0 8 8
0.012916667 0.001291667 0.387960172 0.038796017 2.33807683 1241.0 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 2 2 0 1 1.0 0 8 16

68

Under review as submission to TMLR

w
el

fa
re

_
la

st

co
op

_
la

st

w
el

fa
re

_
au

c

co
op

_
au

c

ti
m

e_
to

ta
l_

se
c_

av
g

ra
m

_
p

ea
k

_
m

b
_

av
g

ab
r_

lr

ab
r_

st
ep

s

b
et

a_
k

l

co
st

_
c

d
el

ta
0

em
a

et
a

et
a_

sc
h

ed

h
et

er
o

la
m

b
d

a_
ja

c
lo

g_
u

cb
m

u
lt

_
r

m
w

u
_

gr
ad

_
ca

p

n
o_

p
lo

ts
n

u
m

_
se

ed
s

or
ac

le
_

n
z

or
ac

le
_

p
er

io
d

p
o

ol
_

m
u

t
p

o
ol

_
ra

n
d

sl
ow

sl
ow

d
ow

n
ta

u
to

p
_

se
ed

u
cb

_
n

z
zd

im

0.031189462 0.003118946 1.559489052 0.155948906 2.388987923 1240.896094 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 2 2 0 2 1.5 0 8 16
0.002724909 0.000272491 0.117010106 0.011701011 2.299126863 1240.898438 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 2 2 1 1 1.0 0 8 16
0.019667632 0.001966763 1.234394693 0.12343947 2.294810247 1240.71875 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 2 2 1 2 1.5 0 8 16
0.007332874 0.000733287 0.285362167 0.028536217 2.389500189 1241.516406 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 4 1 0 1 1.0 0 8 8
0.03894474 0.003894474 1.836211315 0.18362113 2.413767529 1240.792188 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 4 1 0 2 1.5 0 8 8

0.000533205 5.33e-05 0.087070911 0.008707091 2.328015566 1241.722656 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 4 1 1 1 1.0 0 8 8
0.008562821 0.000856282 1.201094464 0.120109444 2.327522945 1240.875781 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 4 1 1 2 1.5 0 8 8
0.004823769 0.000482377 0.222542943 0.022254294 2.311411142 1240.721094 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 4 1 0 1 1.0 0 8 16
0.031591403 0.00315914 1.51600726 0.151600727 2.387298203 1240.904688 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 4 1 0 2 1.5 0 8 16
0.001338041 0.000133804 0.084246678 0.008424668 2.302635479 1240.71875 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 4 1 1 1 1.0 0 8 16
0.015348874 0.001534887 1.07274501 0.107274502 2.326659441 1240.774219 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 4 1 1 2 1.5 0 8 16
0.007332874 0.000733287 0.285362167 0.028536217 2.397288656 1241.660156 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 4 1 0 1 1.0 0 8 8
0.03894474 0.003894474 1.836211315 0.18362113 2.382192755 1241.624219 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 4 1 0 2 1.5 0 8 8

0.000533205 5.33e-05 0.087070911 0.008707091 2.334634495 1240.799219 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 4 1 1 1 1.0 0 8 8
0.008562821 0.000856282 1.201094464 0.120109444 2.31390729 1241.557813 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 4 1 1 2 1.5 0 8 8
0.004823769 0.000482377 0.222542943 0.022254294 2.368333817 1240.717188 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 2 1 4 1 0 1 1.0 0 8 16
0.031591403 0.00315914 1.51600726 0.151600727 2.371254349 1240.785938 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 2 1 4 1 0 2 1.5 0 8 16
0.001338041 0.000133804 0.084246678 0.008424668 2.333894444 1240.533594 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 2 2 4 1 1 1 1.0 0 8 16
0.015348874 0.001534887 1.07274501 0.107274502 2.265339231 1240.628906 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 2 2 4 1 1 2 1.5 0 8 16
0.01089445 0.001089445 0.453577777 0.045357777 2.382671642 1240.747656 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 4 2 0 1 1.0 0 8 8

0.047034564 0.004703456 2.075872362 0.207587238 2.319334459 1240.703906 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 4 2 0 2 1.5 0 8 8
0.000278009 2.78e-05 0.088678933 0.008867893 2.290198708 1240.641406 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 4 2 1 1 1.0 0 8 8
0.00825585 0.000825585 1.284150191 0.128415016 2.280206776 1240.852344 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 4 2 1 2 1.5 0 8 8

0.008221407 0.000822141 0.366433837 0.036643384 2.366846514 1240.738281 0.0005 40 0.01 1 0.0005 0.0 0.08 const 0 0 0 3 1 5 1 1 4 2 0 1 1.0 0 8 16
0.029226536 0.002922654 1.6304086 0.16304086 2.337304449 1240.703906 0.00025 40 0.02 1 0.0005 0.0 0.04 const 0 0 0 3 1 5 1 1 4 2 0 2 1.5 0 8 16
0.002771273 0.000277127 0.116460946 0.011646095 2.293221283 1240.6875 0.0005 40 0.01 1 0.0005 0.8 0.08 harmonic 0 0 0 3 0.1 1 5 1 2 4 2 1 1 1.0 0 8 16
0.012767993 0.001276799 1.113148995 0.1113149 2.383634329 1240.6625 0.00025 40 0.02 1 0.0005 0.8 0.04 harmonic 0 0 0 3 0.05 1 5 1 2 4 2 1 2 1.5 0 8 16

. .

69

Under review as submission to TMLR

R Ablation on Deceptive Mean

We conducted an ablation study for the Deceptive Message game to analyze the sensitivity of Gems to its core
hyperparameters. Our investigation focused on key parameters governing the Amortized Best-Response (ABR)
training, including the learning rate (abr_lr), update steps (abr_steps), and KL-divergence coefficient
(beta_kl), as well as the generator’s latent dimension (zdim) and the Jacobian regularization penalty
(lambda_jac).

Table 8: Ablation (Deceptive Mean)

se
nd

er
_

la
st

re
ce

iv
er

_
la

st

se
nd

er
_

au
c

re
ce

iv
er

_
au

c

ti
m

e_
to

ta
l_

se
c_

m
u

ra
m

_
pe

ak
_

m
b_

m
u

ab
r_

lr

ab
r_

st
ep

s

ad
v_

em
a

be
ta

_
kl

in
ne

r_
ev

al

la
m

bd
a_

ja
c

m
et

a_
ev

al
_

n

zd
im

0.004882813 0.750976563 0.213747387 3.637925569 3.797561526 766.8417969 0.001 100.0 0.05 0.01 2.0 0.0 32.0 8.0
0.000976563 0.778320313 0.167490832 3.677008441 3.490059376 766.7949219 0.001 100.0 0.05 0.01 2.0 0.0 32.0 16.0
0.00390625 0.752929688 0.208329613 3.636479725 3.519120216 766.9082031 0.001 100.0 0.1 0.01 2.0 0.0 32.0 8.0

0.001953125 0.7734375 0.151025457 3.691782171 3.478062987 767.0566406 0.001 100.0 0.1 0.01 2.0 0.0 32.0 16.0
0.004882813 0.750976563 0.213747387 3.637925569 3.465744257 766.8632813 0.001 100.0 0.05 0.01 4.0 0.0 32.0 8.0
0.000976563 0.778320313 0.167490832 3.677008441 3.471985459 767.0722656 0.001 100.0 0.05 0.01 4.0 0.0 32.0 16.0
0.00390625 0.752929688 0.208329613 3.636479725 3.519359112 766.9570313 0.001 100.0 0.1 0.01 4.0 0.0 32.0 8.0

0.001953125 0.7734375 0.151025457 3.691782171 3.539175749 766.9375 0.001 100.0 0.1 0.01 4.0 0.0 32.0 16.0
0.005859375 0.76171875 0.187598763 3.494975376 4.116945505 766.8417969 0.001 100.0 0.05 0.01 2.0 0.0 64.0 8.0
0.005859375 0.766601563 0.200174231 3.545335929 4.110057473 766.9746094 0.001 100.0 0.05 0.01 2.0 0.0 64.0 16.0
0.004882813 0.765625 0.176902149 3.508334751 4.123156428 766.8632813 0.001 100.0 0.1 0.01 2.0 0.0 64.0 8.0

0.0078125 0.762695313 0.192496811 3.535875717 4.120264649 766.8925781 0.001 100.0 0.1 0.01 2.0 0.0 64.0 16.0
0.005859375 0.76171875 0.187598763 3.494975376 4.084610581 766.9765625 0.001 100.0 0.05 0.01 4.0 0.0 64.0 8.0
0.005859375 0.766601563 0.200174231 3.545335929 4.109117508 766.9492188 0.001 100.0 0.05 0.01 4.0 0.0 64.0 16.0
0.004882813 0.765625 0.176902149 3.508334751 4.129849672 766.8691406 0.001 100.0 0.1 0.01 4.0 0.0 64.0 8.0

0.0078125 0.762695313 0.192496811 3.535875717 4.136036158 766.8886719 0.001 100.0 0.1 0.01 4.0 0.0 64.0 16.0
0.030273438 0.689453125 0.398964667 3.1106754 3.488319993 766.9394531 0.0005 100.0 0.05 0.01 2.0 0.0 32.0 8.0
0.02734375 0.712890625 0.412892042 3.030212674 3.482948065 766.8671875 0.0005 100.0 0.05 0.01 2.0 0.0 32.0 16.0

0.03125 0.6875 0.397256236 3.113605088 3.475835323 766.8925781 0.0005 100.0 0.1 0.01 2.0 0.0 32.0 8.0
0.028320313 0.71875 0.391349073 3.048147321 3.475960135 767.0703125 0.0005 100.0 0.1 0.01 2.0 0.0 32.0 16.0
0.030273438 0.689453125 0.398964667 3.1106754 3.494435072 766.8066406 0.0005 100.0 0.05 0.01 4.0 0.0 32.0 8.0
0.02734375 0.712890625 0.412892042 3.030212674 3.538249969 767.0585938 0.0005 100.0 0.05 0.01 4.0 0.0 32.0 16.0

0.03125 0.6875 0.397256236 3.113605088 3.502023935 766.8378906 0.0005 100.0 0.1 0.01 4.0 0.0 32.0 8.0
0.028320313 0.71875 0.391349073 3.048147321 3.485627413 766.8632813 0.0005 100.0 0.1 0.01 4.0 0.0 32.0 16.0

0.03125 0.703125 0.41984623 3.008728387 4.091207623 766.8574219 0.0005 100.0 0.05 0.01 2.0 0.0 64.0 8.0
0.029296875 0.70703125 0.433813333 3.062614619 4.114554763 767.0214844 0.0005 100.0 0.05 0.01 2.0 0.0 64.0 16.0

0.03125 0.705078125 0.41971549 3.019714162 4.117322803 766.9511719 0.0005 100.0 0.1 0.01 2.0 0.0 64.0 8.0
0.032226563 0.704101563 0.440840818 3.053851022 4.145797491 766.9238281 0.0005 100.0 0.1 0.01 2.0 0.0 64.0 16.0

0.03125 0.703125 0.41984623 3.008728387 4.09178257 766.828125 0.0005 100.0 0.05 0.01 4.0 0.0 64.0 8.0
0.029296875 0.70703125 0.433813333 3.062614619 4.104922652 766.8183594 0.0005 100.0 0.05 0.01 4.0 0.0 64.0 16.0

0.03125 0.705078125 0.41971549 3.019714162 4.11270225 766.8984375 0.0005 100.0 0.1 0.01 4.0 0.0 64.0 8.0
0.032226563 0.704101563 0.440840818 3.053851022 4.102519035 766.8339844 0.0005 100.0 0.1 0.01 4.0 0.0 64.0 16.0
0.002929688 0.783203125 0.081438271 3.804808408 4.592607737 766.9003906 0.001 200.0 0.05 0.01 2.0 0.0 32.0 8.0
0.004882813 0.779296875 0.103168447 3.670696127 4.610334158 766.8359375 0.001 200.0 0.05 0.01 2.0 0.0 32.0 16.0
0.006835938 0.78125 0.078946951 3.813918651 4.574136138 766.8300781 0.001 200.0 0.1 0.01 2.0 0.0 32.0 8.0
0.004882813 0.778320313 0.094999513 3.680365159 4.598544359 766.796875 0.001 200.0 0.1 0.01 2.0 0.0 32.0 16.0
0.002929688 0.783203125 0.081438271 3.804808408 4.564905047 766.8046875 0.001 200.0 0.05 0.01 4.0 0.0 32.0 8.0
0.004882813 0.779296875 0.103168447 3.670696127 4.548526525 766.9375 0.001 200.0 0.05 0.01 4.0 0.0 32.0 16.0
0.006835938 0.78125 0.078946951 3.813918651 4.592769027 767.0585938 0.001 200.0 0.1 0.01 4.0 0.0 32.0 8.0
0.004882813 0.778320313 0.094999513 3.680365159 4.618440151 766.921875 0.001 200.0 0.1 0.01 4.0 0.0 32.0 16.0

0.0 0.805664063 0.02203125 3.879985872 5.202624202 767.0332031 0.001 200.0 0.05 0.01 2.0 0.0 64.0 8.0
0.002929688 0.791992188 0.075109614 3.907348489 5.187786818 766.7890625 0.001 200.0 0.05 0.01 2.0 0.0 64.0 16.0

0.0 0.8046875 0.020729167 3.888508007 5.156398416 766.8984375 0.001 200.0 0.1 0.01 2.0 0.0 64.0 8.0
0.002929688 0.791992188 0.079345725 3.900021037 5.170324206 766.9003906 0.001 200.0 0.1 0.01 2.0 0.0 64.0 16.0

0.0 0.805664063 0.02203125 3.879985872 5.196808338 766.9003906 0.001 200.0 0.05 0.01 4.0 0.0 64.0 8.0
0.002929688 0.791992188 0.075109614 3.907348489 5.195022225 766.8632813 0.001 200.0 0.05 0.01 4.0 0.0 64.0 16.0

0.0 0.8046875 0.020729167 3.888508007 5.201624393 767.0410156 0.001 200.0 0.1 0.01 4.0 0.0 64.0 8.0
0.002929688 0.791992188 0.079345725 3.900021037 5.167958856 766.84375 0.001 200.0 0.1 0.01 4.0 0.0 64.0 16.0
0.013671875 0.759765625 0.233534138 3.491052739 4.574347615 766.8769531 0.0005 200.0 0.05 0.01 2.0 0.0 32.0 8.0
0.008789063 0.760742188 0.237348755 3.381854229 4.594873428 767.046875 0.0005 200.0 0.05 0.01 2.0 0.0 32.0 16.0

0.015625 0.759765625 0.2345107 3.502512135 4.615203023 766.9511719 0.0005 200.0 0.1 0.01 2.0 0.0 32.0 8.0
0.01171875 0.755859375 0.240472116 3.358276201 4.573800206 766.9648438 0.0005 200.0 0.1 0.01 2.0 0.0 32.0 16.0

0.013671875 0.759765625 0.233534138 3.491052739 4.576252937 766.8632813 0.0005 200.0 0.05 0.01 4.0 0.0 32.0 8.0
0.008789063 0.760742188 0.237348755 3.381854229 4.60927546 767.0957031 0.0005 200.0 0.05 0.01 4.0 0.0 32.0 16.0

0.015625 0.759765625 0.2345107 3.502512135 4.562783718 766.9199219 0.0005 200.0 0.1 0.01 4.0 0.0 32.0 8.0
0.01171875 0.755859375 0.240472116 3.358276201 4.630032897 766.8847656 0.0005 200.0 0.1 0.01 4.0 0.0 32.0 16.0
0.00390625 0.797851563 0.123591093 3.614750257 5.193202019 766.8613281 0.0005 200.0 0.05 0.01 2.0 0.0 64.0 8.0

70

Under review as submission to TMLR

se
nd

er
_

la
st

re
ce

iv
er

_
la

st

se
nd

er
_

au
c

re
ce

iv
er

_
au

c

ti
m

e_
to

ta
l_

se
c_

m
u

ra
m

_
pe

ak
_

m
b_

m
u

ab
r_

lr

ab
r_

st
ep

s

ad
v_

em
a

be
ta

_
kl

in
ne

r_
ev

al

la
m

bd
a_

ja
c

m
et

a_
ev

al
_

n

zd
im

0.002929688 0.7890625 0.241208324 3.576210672 5.175317168 766.8652344 0.0005 200.0 0.05 0.01 2.0 0.0 64.0 16.0
0.00390625 0.796875 0.125327204 3.619904337 5.203407407 766.9238281 0.0005 200.0 0.1 0.01 2.0 0.0 64.0 8.0

0.002929688 0.787109375 0.252284713 3.56288221 5.175059795 766.9140625 0.0005 200.0 0.1 0.01 2.0 0.0 64.0 16.0
0.00390625 0.797851563 0.123591093 3.614750257 5.206146717 766.9824219 0.0005 200.0 0.05 0.01 4.0 0.0 64.0 8.0

0.002929688 0.7890625 0.241208324 3.576210672 5.198497653 766.8398438 0.0005 200.0 0.05 0.01 4.0 0.0 64.0 16.0
0.00390625 0.796875 0.125327204 3.619904337 5.194039464 766.8378906 0.0005 200.0 0.1 0.01 4.0 0.0 64.0 8.0

0.002929688 0.787109375 0.252284713 3.56288221 5.209975243 766.8867188 0.0005 200.0 0.1 0.01 4.0 0.0 64.0 16.0
0.004882813 0.750976563 0.209971877 3.645173301 3.484597445 766.8574219 0.001 100.0 0.05 0.005 2.0 0.0 32.0 8.0
0.001953125 0.7734375 0.171805644 3.671331845 3.481884599 766.9511719 0.001 100.0 0.05 0.005 2.0 0.0 32.0 16.0
0.00390625 0.75390625 0.200136232 3.649067637 3.479956746 766.9042969 0.001 100.0 0.1 0.005 2.0 0.0 32.0 8.0

0.001953125 0.774414063 0.15623379 3.687826008 3.488405466 766.7949219 0.001 100.0 0.1 0.005 2.0 0.0 32.0 16.0
0.004882813 0.750976563 0.209971877 3.645173301 3.495933414 766.8652344 0.001 100.0 0.05 0.005 4.0 0.0 32.0 8.0
0.001953125 0.7734375 0.171805644 3.671331845 3.493604779 766.9453125 0.001 100.0 0.05 0.005 4.0 0.0 32.0 16.0
0.00390625 0.75390625 0.200136232 3.649067637 3.50344944 766.8417969 0.001 100.0 0.1 0.005 4.0 0.0 32.0 8.0

0.001953125 0.774414063 0.15623379 3.687826008 3.479611635 766.8710938 0.001 100.0 0.1 0.005 4.0 0.0 32.0 16.0
0.005859375 0.764648438 0.185098763 3.501440219 4.079826832 766.8730469 0.001 100.0 0.05 0.005 2.0 0.0 64.0 8.0
0.004882813 0.765625 0.19841044 3.547859269 4.141643167 766.9648438 0.001 100.0 0.05 0.005 2.0 0.0 64.0 16.0
0.005859375 0.765625 0.177693718 3.505019841 4.081937313 766.8808594 0.001 100.0 0.1 0.005 2.0 0.0 64.0 8.0

0.0078125 0.760742188 0.192957412 3.55072115 4.103323817 766.8632813 0.001 100.0 0.1 0.005 2.0 0.0 64.0 16.0
0.005859375 0.764648438 0.185098763 3.501440219 4.093967438 766.8730469 0.001 100.0 0.05 0.005 4.0 0.0 64.0 8.0
0.004882813 0.765625 0.19841044 3.547859269 4.092059493 766.9082031 0.001 100.0 0.05 0.005 4.0 0.0 64.0 16.0
0.005859375 0.765625 0.177693718 3.505019841 4.076184273 766.9199219 0.001 100.0 0.1 0.005 4.0 0.0 64.0 8.0

0.0078125 0.760742188 0.192957412 3.55072115 4.161067963 767.0039063 0.001 100.0 0.1 0.005 4.0 0.0 64.0 16.0
0.029296875 0.688476563 0.393779673 3.103399988 3.47068882 766.890625 0.0005 100.0 0.05 0.005 2.0 0.0 32.0 8.0
0.02734375 0.712890625 0.411155931 3.030212674 3.492367029 766.9921875 0.0005 100.0 0.05 0.005 2.0 0.0 32.0 16.0

0.03125 0.6875 0.397716837 3.114880598 3.490564466 766.9101563 0.0005 100.0 0.1 0.005 2.0 0.0 32.0 8.0
0.028320313 0.719726563 0.391349073 3.054277964 3.492498398 766.8339844 0.0005 100.0 0.1 0.005 2.0 0.0 32.0 16.0
0.029296875 0.688476563 0.393779673 3.103399988 3.50611043 766.8066406 0.0005 100.0 0.05 0.005 4.0 0.0 32.0 8.0
0.02734375 0.712890625 0.411155931 3.030212674 3.485206127 766.7988281 0.0005 100.0 0.05 0.005 4.0 0.0 32.0 16.0

0.03125 0.6875 0.397716837 3.114880598 3.504174113 766.8613281 0.0005 100.0 0.1 0.005 4.0 0.0 32.0 8.0
0.028320313 0.719726563 0.391349073 3.054277964 3.48001945 766.8085938 0.0005 100.0 0.1 0.005 4.0 0.0 32.0 16.0

0.03125 0.704101563 0.41984623 3.010492179 4.108764052 766.9160156 0.0005 100.0 0.05 0.005 2.0 0.0 64.0 8.0
0.03125 0.705078125 0.431778274 3.064138056 4.202890396 766.9355469 0.0005 100.0 0.05 0.005 2.0 0.0 64.0 16.0
0.03125 0.706054688 0.417979379 3.022753463 4.087831497 766.8613281 0.0005 100.0 0.1 0.005 2.0 0.0 64.0 8.0
0.03125 0.704101563 0.440352537 3.052575512 4.13163209 766.9726563 0.0005 100.0 0.1 0.005 2.0 0.0 64.0 16.0
0.03125 0.704101563 0.41984623 3.010492179 4.099819779 766.9492188 0.0005 100.0 0.05 0.005 4.0 0.0 64.0 8.0
0.03125 0.705078125 0.431778274 3.064138056 4.112385631 767.0527344 0.0005 100.0 0.05 0.005 4.0 0.0 64.0 16.0
0.03125 0.706054688 0.417979379 3.022753463 4.113277912 766.9707031 0.0005 100.0 0.1 0.005 4.0 0.0 64.0 8.0
0.03125 0.704101563 0.440352537 3.052575512 4.142390847 767.0449219 0.0005 100.0 0.1 0.005 4.0 0.0 64.0 16.0

0.00390625 0.784179688 0.07845433 3.813977245 4.564417839 766.8300781 0.001 200.0 0.05 0.005 2.0 0.0 32.0 8.0
0.002929688 0.783203125 0.112201097 3.684513977 4.55967021 766.9160156 0.001 200.0 0.05 0.005 2.0 0.0 32.0 16.0
0.004882813 0.783203125 0.071694878 3.816934612 4.642746329 766.921875 0.001 200.0 0.1 0.005 2.0 0.0 32.0 8.0
0.004882813 0.779296875 0.093263402 3.684325663 4.574479938 767.0039063 0.001 200.0 0.1 0.005 2.0 0.0 32.0 16.0
0.00390625 0.784179688 0.07845433 3.813977245 4.564909458 766.8320313 0.001 200.0 0.05 0.005 4.0 0.0 32.0 8.0

0.002929688 0.783203125 0.112201097 3.684513977 4.595101476 766.9492188 0.001 200.0 0.05 0.005 4.0 0.0 32.0 16.0
0.004882813 0.783203125 0.071694878 3.816934612 4.575098038 766.9042969 0.001 200.0 0.1 0.005 4.0 0.0 32.0 8.0
0.004882813 0.779296875 0.093263402 3.684325663 4.580031991 766.9023438 0.001 200.0 0.1 0.005 4.0 0.0 32.0 16.0

0.0 0.806640625 0.020295139 3.88961531 5.265115499 766.9238281 0.001 200.0 0.05 0.005 2.0 0.0 64.0 8.0
0.0 0.793945313 0.07736926 3.900982364 5.19207108 766.8710938 0.001 200.0 0.05 0.005 2.0 0.0 64.0 16.0
0.0 0.8046875 0.016822917 3.885627126 5.201019526 766.9609375 0.001 200.0 0.1 0.005 2.0 0.0 64.0 8.0
0.0 0.793945313 0.065121528 3.921266165 5.193174481 766.8808594 0.001 200.0 0.1 0.005 2.0 0.0 64.0 16.0
0.0 0.806640625 0.020295139 3.88961531 5.191734433 766.9140625 0.001 200.0 0.05 0.005 4.0 0.0 64.0 8.0
0.0 0.793945313 0.07736926 3.900982364 5.205765486 766.9570313 0.001 200.0 0.05 0.005 4.0 0.0 64.0 16.0
0.0 0.8046875 0.016822917 3.885627126 5.192848086 766.8886719 0.001 200.0 0.1 0.005 4.0 0.0 64.0 8.0
0.0 0.793945313 0.065121528 3.921266165 5.187784672 767.0644531 0.001 200.0 0.1 0.005 4.0 0.0 64.0 16.0

0.012695313 0.762695313 0.231309745 3.499253694 4.587309361 766.8378906 0.0005 200.0 0.05 0.005 2.0 0.0 32.0 8.0
0.009765625 0.76171875 0.233089303 3.394772003 4.590754867 766.9121094 0.0005 200.0 0.05 0.005 2.0 0.0 32.0 16.0
0.012695313 0.76171875 0.234781967 3.486716801 4.591512561 766.9394531 0.0005 200.0 0.1 0.005 2.0 0.0 32.0 8.0
0.010742188 0.760742188 0.233577585 3.382513951 4.563710451 767.03125 0.0005 200.0 0.1 0.005 2.0 0.0 32.0 16.0
0.012695313 0.762695313 0.231309745 3.499253694 4.560121536 766.859375 0.0005 200.0 0.05 0.005 4.0 0.0 32.0 8.0
0.009765625 0.76171875 0.233089303 3.394772003 4.592621326 766.8652344 0.0005 200.0 0.05 0.005 4.0 0.0 32.0 16.0
0.012695313 0.76171875 0.234781967 3.486716801 4.588880777 766.8007813 0.0005 200.0 0.1 0.005 4.0 0.0 32.0 8.0
0.010742188 0.760742188 0.233577585 3.382513951 4.57550478 766.9824219 0.0005 200.0 0.1 0.005 4.0 0.0 32.0 16.0
0.00390625 0.797851563 0.121854982 3.611278035 5.235417843 766.8730469 0.0005 200.0 0.05 0.005 2.0 0.0 64.0 8.0

0.000976563 0.7890625 0.23594463 3.584682894 5.163270712 766.9960938 0.0005 200.0 0.05 0.005 2.0 0.0 64.0 16.0
0.00390625 0.797851563 0.125327204 3.622892618 5.165045619 766.859375 0.0005 200.0 0.1 0.005 2.0 0.0 64.0 8.0

0.001953125 0.788085938 0.239114672 3.573882113 5.201363683 766.8847656 0.0005 200.0 0.1 0.005 2.0 0.0 64.0 16.0
0.00390625 0.797851563 0.121854982 3.611278035 5.172132373 766.9941406 0.0005 200.0 0.05 0.005 4.0 0.0 64.0 8.0

0.000976563 0.7890625 0.23594463 3.584682894 5.199103951 766.921875 0.0005 200.0 0.05 0.005 4.0 0.0 64.0 16.0
0.00390625 0.797851563 0.125327204 3.622892618 5.173853517 766.9179688 0.0005 200.0 0.1 0.005 4.0 0.0 64.0 8.0

0.001953125 0.788085938 0.239114672 3.573882113 5.177394509 766.8203125 0.0005 200.0 0.1 0.005 4.0 0.0 64.0 16.0

71

Under review as submission to TMLR

se
nd

er
_

la
st

re
ce

iv
er

_
la

st

se
nd

er
_

au
c

re
ce

iv
er

_
au

c

ti
m

e_
to

ta
l_

se
c_

m
u

ra
m

_
pe

ak
_

m
b_

m
u

ab
r_

lr

ab
r_

st
ep

s

ad
v_

em
a

be
ta

_
kl

in
ne

r_
ev

al

la
m

bd
a_

ja
c

m
et

a_
ev

al
_

n

zd
im

0.008789063 0.73828125 0.234759823 3.582373689 3.485162735 766.953125 0.001 100.0 0.05 0.01 2.0 0.01 32.0 8.0
0.009765625 0.76171875 0.214884584 3.61147658 3.503759861 766.8085938 0.001 100.0 0.05 0.01 2.0 0.01 32.0 16.0

0.015625 0.73046875 0.244402282 3.574820543 3.476381302 766.8730469 0.001 100.0 0.1 0.01 2.0 0.01 32.0 8.0
0.002929688 0.771484375 0.165628322 3.683584449 3.504372954 766.9472656 0.001 100.0 0.1 0.01 2.0 0.01 32.0 16.0
0.008789063 0.73828125 0.234759823 3.582373689 3.492276192 766.9433594 0.001 100.0 0.05 0.01 4.0 0.01 32.0 8.0
0.009765625 0.76171875 0.214884584 3.61147658 3.477153182 766.8515625 0.001 100.0 0.05 0.01 4.0 0.01 32.0 16.0

0.015625 0.73046875 0.244402282 3.574820543 3.462974429 766.7929688 0.001 100.0 0.1 0.01 4.0 0.01 32.0 8.0
0.002929688 0.771484375 0.165628322 3.683584449 3.494990706 766.9550781 0.001 100.0 0.1 0.01 4.0 0.01 32.0 16.0
0.00390625 0.763671875 0.186622201 3.495951938 4.06504941 766.9042969 0.001 100.0 0.05 0.01 2.0 0.01 64.0 8.0

0.005859375 0.762695313 0.190373352 3.543969893 4.111203074 766.9824219 0.001 100.0 0.05 0.01 2.0 0.01 64.0 16.0
0.00390625 0.766601563 0.176413868 3.512755855 4.090454459 766.8203125 0.001 100.0 0.1 0.01 2.0 0.01 64.0 8.0
0.0078125 0.752929688 0.21913159 3.464269195 4.129907131 766.9765625 0.001 100.0 0.1 0.01 2.0 0.01 64.0 16.0

0.00390625 0.763671875 0.186622201 3.495951938 4.090277076 766.8945313 0.001 100.0 0.05 0.01 4.0 0.01 64.0 8.0
0.005859375 0.762695313 0.190373352 3.543969893 4.139833689 766.9960938 0.001 100.0 0.05 0.01 4.0 0.01 64.0 16.0
0.00390625 0.766601563 0.176413868 3.512755855 4.094886661 766.9941406 0.001 100.0 0.1 0.01 4.0 0.01 64.0 8.0
0.0078125 0.752929688 0.21913159 3.464269195 4.105113029 766.828125 0.001 100.0 0.1 0.01 4.0 0.01 64.0 16.0

0.01953125 0.711914063 0.406643105 3.163368808 3.509097457 766.8496094 0.0005 100.0 0.05 0.01 2.0 0.01 32.0 8.0
0.043945313 0.674804688 0.488205295 2.925471717 3.498527765 766.9296875 0.0005 100.0 0.05 0.01 2.0 0.01 32.0 16.0
0.020507813 0.708984375 0.409682407 3.161523083 3.485819697 766.8867188 0.0005 100.0 0.1 0.01 2.0 0.01 32.0 8.0
0.041992188 0.684570313 0.466933594 2.957788983 3.488726735 766.9667969 0.0005 100.0 0.1 0.01 2.0 0.01 32.0 16.0
0.01953125 0.711914063 0.406643105 3.163368808 3.499094486 766.8027344 0.0005 100.0 0.05 0.01 4.0 0.01 32.0 8.0

0.043945313 0.674804688 0.488205295 2.925471717 3.48725915 767.0683594 0.0005 100.0 0.05 0.01 4.0 0.01 32.0 16.0
0.020507813 0.708984375 0.409682407 3.161523083 3.473590493 767.0058594 0.0005 100.0 0.1 0.01 4.0 0.01 32.0 8.0
0.041992188 0.684570313 0.466933594 2.957788983 3.511683583 766.9941406 0.0005 100.0 0.1 0.01 4.0 0.01 32.0 16.0

0.03125 0.713867188 0.422857851 3.029866204 4.102545857 766.9316406 0.0005 100.0 0.05 0.01 2.0 0.01 64.0 8.0
0.037109375 0.69921875 0.467807097 3.024323448 4.104898214 767.0546875 0.0005 100.0 0.05 0.01 2.0 0.01 64.0 16.0
0.030273438 0.716796875 0.416727209 3.04256475 4.077229142 766.9355469 0.0005 100.0 0.1 0.01 2.0 0.01 64.0 8.0
0.040039063 0.694335938 0.483740832 3.006518521 4.094444156 766.8378906 0.0005 100.0 0.1 0.01 2.0 0.01 64.0 16.0

0.03125 0.713867188 0.422857851 3.029866204 4.107426643 766.9726563 0.0005 100.0 0.05 0.01 4.0 0.01 64.0 8.0
0.037109375 0.69921875 0.467807097 3.024323448 4.088187575 767.1386719 0.0005 100.0 0.05 0.01 4.0 0.01 64.0 16.0
0.030273438 0.716796875 0.416727209 3.04256475 4.133657098 766.84375 0.0005 100.0 0.1 0.01 4.0 0.01 64.0 8.0
0.040039063 0.694335938 0.483740832 3.006518521 4.127341628 766.84375 0.0005 100.0 0.1 0.01 4.0 0.01 64.0 16.0

0.0078125 0.779296875 0.086942319 3.802173239 4.544541717 766.9042969 0.001 200.0 0.05 0.01 2.0 0.01 32.0 8.0
0.008789063 0.772460938 0.139713054 3.637912371 4.565919995 766.9628906 0.001 200.0 0.05 0.01 2.0 0.01 32.0 16.0
0.002929688 0.783203125 0.073504243 3.863313226 4.57320559 766.9121094 0.001 200.0 0.1 0.01 2.0 0.01 32.0 8.0
0.001953125 0.784179688 0.126850641 3.663778832 4.571519375 766.9609375 0.001 200.0 0.1 0.01 2.0 0.01 32.0 16.0

0.0078125 0.779296875 0.086942319 3.802173239 4.599365115 766.90625 0.001 200.0 0.05 0.01 4.0 0.01 32.0 8.0
0.008789063 0.772460938 0.139713054 3.637912371 4.587291718 766.8632813 0.001 200.0 0.05 0.01 4.0 0.01 32.0 16.0
0.002929688 0.783203125 0.073504243 3.863313226 4.550252318 766.9023438 0.001 200.0 0.1 0.01 4.0 0.01 32.0 8.0
0.001953125 0.784179688 0.126850641 3.663778832 4.577753067 766.9160156 0.001 200.0 0.1 0.01 4.0 0.01 32.0 16.0

0.0 0.805664063 0.020295139 3.880446473 5.152788162 766.9101563 0.001 200.0 0.05 0.01 2.0 0.01 64.0 8.0
0.0 0.79296875 0.105241993 3.805329684 5.235127091 766.9160156 0.001 200.0 0.05 0.01 2.0 0.01 64.0 16.0
0.0 0.805664063 0.022465278 3.883867675 5.218698025 766.8808594 0.001 200.0 0.1 0.01 2.0 0.01 64.0 8.0

0.000976563 0.791992188 0.112056804 3.797186216 5.181479692 766.921875 0.001 200.0 0.1 0.01 2.0 0.01 64.0 16.0
0.0 0.805664063 0.020295139 3.880446473 5.169565082 766.8925781 0.001 200.0 0.05 0.01 4.0 0.01 64.0 8.0
0.0 0.79296875 0.105241993 3.805329684 5.176501393 766.953125 0.001 200.0 0.05 0.01 4.0 0.01 64.0 16.0
0.0 0.805664063 0.022465278 3.883867675 5.181358099 766.875 0.001 200.0 0.1 0.01 4.0 0.01 64.0 8.0

0.000976563 0.791992188 0.112056804 3.797186216 5.183052063 766.8671875 0.001 200.0 0.1 0.01 4.0 0.01 64.0 16.0
0.006835938 0.774414063 0.239691353 3.545346912 4.59584856 767.0449219 0.0005 200.0 0.05 0.01 2.0 0.01 32.0 8.0
0.006835938 0.767578125 0.259089737 3.39466137 4.57220912 766.8730469 0.0005 200.0 0.05 0.01 2.0 0.01 32.0 16.0
0.008789063 0.774414063 0.240667916 3.534573811 4.576325178 766.9121094 0.0005 200.0 0.1 0.01 2.0 0.01 32.0 8.0
0.006835938 0.764648438 0.259012144 3.382884026 4.618607521 766.8515625 0.0005 200.0 0.1 0.01 2.0 0.01 32.0 16.0
0.006835938 0.774414063 0.239691353 3.545346912 4.548846126 766.8652344 0.0005 200.0 0.05 0.01 4.0 0.01 32.0 8.0
0.006835938 0.767578125 0.259089737 3.39466137 4.57443428 766.9101563 0.0005 200.0 0.05 0.01 4.0 0.01 32.0 16.0
0.008789063 0.774414063 0.240667916 3.534573811 4.563651443 766.8945313 0.0005 200.0 0.1 0.01 4.0 0.01 32.0 8.0
0.006835938 0.764648438 0.259012144 3.382884026 4.570395947 766.8925781 0.0005 200.0 0.1 0.01 4.0 0.01 32.0 16.0
0.004882813 0.791992188 0.133063217 3.590356213 5.188795686 766.8652344 0.0005 200.0 0.05 0.01 2.0 0.01 64.0 8.0
0.005859375 0.774414063 0.252983542 3.493388295 5.219975233 766.90625 0.0005 200.0 0.05 0.01 2.0 0.01 64.0 16.0
0.00390625 0.793945313 0.131299426 3.608049399 5.20837307 766.8339844 0.0005 200.0 0.1 0.01 2.0 0.01 64.0 8.0

0.004882813 0.7734375 0.253770771 3.485601261 5.190756202 766.8964844 0.0005 200.0 0.1 0.01 2.0 0.01 64.0 16.0
0.004882813 0.791992188 0.133063217 3.590356213 5.159092546 766.9257813 0.0005 200.0 0.05 0.01 4.0 0.01 64.0 8.0
0.005859375 0.774414063 0.252983542 3.493388295 5.208868861 766.9707031 0.0005 200.0 0.05 0.01 4.0 0.01 64.0 16.0
0.00390625 0.793945313 0.131299426 3.608049399 5.236365676 766.9394531 0.0005 200.0 0.1 0.01 4.0 0.01 64.0 8.0

0.004882813 0.7734375 0.253770771 3.485601261 5.219882965 766.9980469 0.0005 200.0 0.1 0.01 4.0 0.01 64.0 16.0
0.005859375 0.744140625 0.224260116 3.612463241 3.47030735 766.8144531 0.001 100.0 0.05 0.005 2.0 0.01 32.0 8.0
0.010742188 0.76171875 0.215372865 3.617039222 3.490041375 766.8730469 0.001 100.0 0.05 0.005 2.0 0.01 32.0 16.0
0.017578125 0.727539063 0.245378844 3.584327921 3.494503975 766.8828125 0.001 100.0 0.1 0.005 2.0 0.01 32.0 8.0
0.00390625 0.770507813 0.166116603 3.689371678 3.497444153 766.9824219 0.001 100.0 0.1 0.005 2.0 0.01 32.0 16.0

0.005859375 0.744140625 0.224260116 3.612463241 3.486721992 766.7871094 0.001 100.0 0.05 0.005 4.0 0.01 32.0 8.0
0.010742188 0.76171875 0.215372865 3.617039222 3.518079996 766.8613281 0.001 100.0 0.05 0.005 4.0 0.01 32.0 16.0

72

Under review as submission to TMLR

0.017578125 0.727539063 0.245378844 3.584327921 3.484863997 766.8378906 0.001 100.0 0.1 0.005 4.0 0.01 32.0 8.0

. .

73

Under review as submission to TMLR

S Ablation on Oracle Selection

A key design choice in Gems is the use of an Empirical-Bernstein UCB (EB-UCB) oracle (Section 3.4, Eq. 7)
to select new policies. A natural question is why this specific, variance-aware bandit algorithm was chosen
over simpler or alternative methods, such as standard UCB1 or Thompson Sampling.

The “Shifting Meta” Experiment While the oracle in Gems solves a stationary sub-problem within
each fixed iteration (satisfying the assumptions of Theorem 3.3), the global problem across training is
non-stationary. As the meta-strategy σt evolves and the generator Gθ is fine-tuned, the expected value of
any given latent policy z ∈ Λt changes. The oracle must therefore be highly adaptive, capable of quickly
detecting when a previously suboptimal policy has become optimal and, conversely, abandoning a previously
optimal policy that is no longer effective.

To simulate this dynamic, we designed a simple “Shifting Meta” bandit game. The game consists of 3 arms.

• Phase 1 (Time Steps t < 1000): Arm 1 is the unique optimal policy with the highest expected
reward.

• Meta Shift (Time Step t = 1000): The underlying meta-game abruptly changes.

• Phase 2 (Time Steps t ≥ 1000): Arm 0 becomes the new unique optimal policy.

Critically, we designed Arm 0 to also have a higher reward variance than the other arms. This setup tests
an algorithm’s ability to abandon a “safe,” well-explored, but now-suboptimal arm in favor of a “riskier,”
high-variance arm that has become optimal.

Analysis of Results The results are shown in Figure 39.

• Cumulative Regret (Top): In Phase 1, all algorithms (except Greedy) successfully identify the
optimal arm and achieve low regret. After the meta-shift at t = 1000, the limitations of non-adaptive
oracles become clear. Greedy, being purely exploitative, never adapts and accumulates massive regret.
Standard UCB1, which is not variance-aware, also accumulates a large amount of regret as it is too
“confident” in the old optimal arm. In contrast, the variance-aware methods (EB-UCB, UCB-V) and
Thompson Sampling quickly adapt, and their cumulative regret begins to decrease as they exploit
the new, higher-value optimal arm.

• Adaptability (Bottom): This plot provides the clearest justification. After the shift, standard
UCB1 takes approximately 500 time steps (from t = 1000 to t = 1500) to reliably switch to the
new optimal arm. Thompson Sampling is also slow, taking over 250 steps. In stark contrast, both
EB-UCB and UCB-V adapt almost instantaneously. Their sensitivity to variance means they
never became over-confident in the old arm and were able to quickly recognize the value of the new,
high-variance optimal arm.

74

Under review as submission to TMLR

250

0

250

500

750

1000

1250

1500
C

um
ul

at
iv

e
R

eg
re

t

Oracle Performance on the "Shifting Meta" Game
Greedy
UCB1
UCB-V
EB-UCB
Thompson Sampling
Meta Shift

0 250 500 750 1000 1250 1500 1750 2000
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

O
pt

im
al

 C
ho

ic
e

%
 (M

A
ov

er
 5

0
st

ep
s)

Adaptability: Frequency of Selecting the Optimal Policy

UCB1
UCB-V
EB-UCB
Thompson Sampling

Figure 39: Performance of different oracle algorithms on the “Shifting Meta” game, averaged over 50 runs.
The meta-game shifts at t = 1000. (Top) Cumulative Regret. Lower is better. Note the poor performance of
Greedy and Thompson Sampling after the shift. (Bottom) Adaptability, measured as the 50-step moving
average of picking the correct optimal arm. The variance-aware oracles (EB-UCB and UCB-V) adapt almost
instantaneously, while UCB1 and Thompson Sampling are significantly slower.

Conclusion This experiment demonstrates that a simple UCB1 oracle is unsuitable for the non-stationary
problem faced in Gems, as its over-confidence would cause it to lag significantly behind the evolving meta-game.
The superior adaptivity of variance-aware oracles is critical. We chose EB-UCB as it not only demonstrates
this state-of-the-art adaptability but also aligns directly with the theoretical concentration bounds (based on
empirical Bernstein) used in our analysis (Section 3.4).

75

Under review as submission to TMLR

Part IV

Frequently Asked Questions (FAQs)

1. Q: Why did you not benchmark GEMS on the StarCraft Multi-Agent Challenge
(SMAC)?
A: Our work introduces GEMS as a direct, scalable framework to overcome the fundamental ineffi-
ciencies of the Policy-Space Response Oracles (PSRO) paradigm, namely its quadratic computation
and linear memory costs. Therefore, our primary objective was to benchmark GEMS directly against
classical PSRO and its most relevant variants (e.g., Double Oracle, Alpha-PSRO, A-PSRO) in
domains that clearly expose these bottlenecks and test game-theoretic solution quality, such as Kuhn
Poker, Deceptive Messages Game, and Multi-Agent Tag.

2. Q: Why did you choose Optimistic Multiplicative Weights Update (OMWU) over
standard Multiplicative Weights Update (MWU)?
A: We chose OMWU because it provides stronger theoretical guarantees and faster convergence
in our setting. Unlike standard MWU, OMWU incorporates a predictive "hint" about the next
payoff vector. This optimistic step results in an average external regret bound that scales with the
cumulative variation of the payoff vectors (O(

∑
||vt − vt−1||2∞)) rather than the time horizon T , as

shown in Proposition 3.2. Since GEMS is designed to induce a slowly changing meta-game, this
property leads to faster convergence.

3. Q: How can GEMS be considered "surrogate-free"?
A: We use the term "surrogate-free" to signify that GEMS does not maintain the two key surrogates
of classical PSRO: 1) an explicit, discrete population of k policies, which requires O(k) memory, and
2) the full k × k payoff matrix, which requires O(k2) computation. Instead, GEMS replaces this
entire structure with a single amortized generator (Gθ) and a compact set of latent "anchor" codes
(Zt).

4. Q: Does the single amortized generator (Gθ) suffer from catastrophic forgetting?
A: We explicitly mitigate this risk using our Amortized Best-Response with a Trust Region (ABR-
TR) objective (Section 3.5). This objective is designed to fine-tune the generator to produce new,
high-performing policies while retaining its ability to generate previously effective ones. It achieves
this by incorporating a KL-divergence penalty against a frozen, older version of the generator (θ−),
which serves as a trust region and prevents catastrophic forgetting.

5. Q: What is the main computational bottleneck of GEMS?
A: GEMS successfully replaces the O(k2) computational overhead of PSRO. The new computational
cost is dominated by the number of Monte Carlo rollouts required per iteration. This cost scales
with the number of sampled matches used to estimate the meta-game (controlled by ni, m, and B in
Section 3.2) and the size of the candidate pool (|Λt|) evaluated by the bandit oracle (Section 3.4).
This simulation-based cost is fundamentally more scalable than constructing the full payoff matrix.

6. Q: How do the theoretical guarantees of GEMS compare to classical PSRO, given its
use of approximations?
A: GEMS retains the core game-theoretic convergence guarantees of PSRO. Our overall exploitability
bound (Theorem 3.4, Section 3.6) cleanly decomposes the average exploitability into four interpretable
terms: (1) the external regret of the OMWU meta-solver, (2) the noise from Monte-Carlo estimation,
(3) the sub-optimality of the bandit oracle, and (4) the approximation error from the amortized
generator. As the simulation budget (nm) grows and the generator training improves (ϵBR → 0), the
latter three terms vanish, and the overall exploitability is driven by the no-regret property of the
meta-solver, ensuring convergence.

76

Under review as submission to TMLR

7. Q: Why use an EB-UCB bandit oracle instead of just computing a single, direct best
response (BR)?
A: The goal of population expansion is to efficiently find new, challenging policies to add to the
game (Section 3.4). Simply training a single BR can be computationally expensive. Instead, we
cast this as a multi-armed bandit problem over a pool of candidate latent codes Λt. We use the
Empirical-Bernstein UCB (EB-UCB) oracle because it efficiently balances the exploration-exploitation
trade-off by using sample variance to achieve tighter confidence bounds. This allows GEMS to select
promising new policies from the candidate pool more efficiently and effectively explore the latent
strategy space.

8. Q: What is the purpose of the Jacobian penalty (λJ)?
A: The Jacobian penalty (λJ ||JGθ(z)||2F) is a regularizer applied during both the oracle selection
(Eq. 7) and the generator training steps (Eq. 11). Its purpose is to encourage smoothness in the
generator’s latent space by penalizing large gradients of the generator’s output with respect to its
latent input z. This smoothness aids in stabilizing the optimization process.

9. Q: Why did you benchmark against PSRO variants and not other modern MARL
algorithms like MAPPO or QMIX?
A: GEMS is specifically proposed to solve the fundamental scalability bottlenecks inherent in
population-based, game-theoretic approaches, for which PSRO is the seminal framework (Section 2).
Algorithms like MAPPO or QMIX, while effective, address a different problem (e.g., decentralized
execution with centralized training for a fixed number of agents) and do not typically maintain or
solve a meta-game over an explicit population of policies. Therefore, to scientifically validate our
claims, the most relevant and direct baselines are classical PSRO and its state-of-the-art variants.

10. Q: How does GEMS extend from two-player zero-sum (2P-ZS) games to the n-player
general-sum (NP-GS) case?
A: The core components of GEMS extend naturally to the NP-GS setting, as detailed in Section
3.7 and Appendix Part II. The main generalizations are: (1) Each of the n players maintains their
own independent meta-strategy σ

(p)
t . (2) We use a single batch of shared game rollouts and an

importance-weighted estimator (Eq. 14) to efficiently compute each player’s per-policy value vector
v̂

(p)
t against the joint strategy of all other players. (3) Each player then independently runs their

own OMWU update and EB-UCB oracle. (4) This decentralized process drives the time-averaged
joint strategy toward an ϵ-Coarse-Correlated Equilibrium (ϵ-CCE), the standard solution concept for
general-sum games.

11. Q: The ablation tables for the Public Goods Game (Table 4) and Deceptive Messages
Game (Table 5) present many results across different hyperparameter settings, but the
paper doesn’t explicitly state which configuration is definitively "best." What is the
main takeaway from these ablations?
A: The primary purpose of the extensive ablation tables (Table 4 for PGG, Table 5 for Deceptive
Messages) is to ensure transparency and aid reproducibility by documenting Gems’s sensitivity
to its core hyperparameters. Identifying a single, universally optimal configuration across all games
and metrics is challenging, as a full factorial sweep is computationally infeasible. These tables
showcase the results of structured variations, illustrating the inherent trade-offs involved (e.g.,
between convergence speed, solution quality, and computational resources). We provide this detailed
data to allow readers to observe these sensitivities directly and understand the impact of different
choices. Determining the absolute optimal settings for every possible scenario remains an open area,
and these tables serve as a valuable resource for guiding future work or tuning Gems for specific
applications. Our main experiments utilize configurations found to be effective for demonstrating the
core advantages of Gems.

12. Q: What are the limitations introduced by Gems’s use of Monte Carlo estimation and
an amortized generator?

77

Under review as submission to TMLR

A: Gems introduces two main sources of approximation to enable O(1) memory scaling:
First, Estimation Noise: Payoffs are estimated via Monte Carlo sampling. In sparse-reward
domains, this can increase the variance of the meta-gradient. However, our results show that even
noisy estimates guide the population toward effective strategies significantly faster than exact methods,
as the sampling cost scales linearly (O(k)) rather than quadratically (O(k2)).
Second, Amortization Gap: The generator approximates the best-response manifold. A potential
limitation is that an under-parameterized generator could fail to capture niche counter-strategies.
We address this by explicitly conditioning the generator on a growing set of “anchors” (Zt), which
forces the network to maintain diverse modes. Empirically, our 1,000-iteration Chess experiments
demonstrate that the generator successfully maintains over 2,000 distinct policies without collapsing,
validating its expressive capacity.

13. Q: How does the theoretical analysis account for the non-stationarity of rewards as the
meta-strategy evolves?
A: We address the global non-stationarity of the learning problem by decomposing Gems into two
distinct timescales, ensuring that the assumptions for our regret bounds are locally satisfied:

• Inner Loop (Stationary Sub-problem): Within any single meta-iteration t, the opponent
meta-strategy σt is held fixed. Consequently, when the oracle selects an anchor z ∈ Λt, it
faces a mathematically stationary reward distribution defined by this frozen opponent. This
stationarity ensures that the instance-dependent regret bounds (Theorem 3.3) are valid for the
anchor selection step.

• Outer Loop (Dynamic Meta-Game): The non-stationarity arises only across iterations
as σt evolves. This global dynamic is explicitly handled by the OMWU meta-solver, which is
designed to minimize dynamic regret in time-varying games (Proposition 3.4).

Thus, while the overall landscape shifts (motivating our use of adaptive bandits like EB-UCB in the
“Shifting Meta” experiment), the specific sub-problem addressed by the oracle at each step remains
stationary and theoretically amenable to our bounds.

14. Q: When do Monte-Carlo rollouts become a computational bottleneck, and how does
Gems handle this trade-off?
A: Monte-Carlo (MC) sampling effectively trades a “hard” computational wall for a “soft” sampling
cost. We analyze this trade-off as follows:

• The Quadratic Bottleneck (PSRO): Standard population-based methods require computing
an exact payoff matrix. This operation scales quadratically, O(N2), with the number of
iterations N (as the population grows indefinitely). For complex games, this quickly becomes
computationally intractable.

• The Constant-Time Scalability (Gems): In contrast, Gems maintains a compact, fixed-size
anchor set (|Λ| ≪ N). Consequently, the computational complexity per iteration is O(1) with
respect to the total history of strategies.

• The Trade-off (Sampling Variance): While the complexity class is constant, the wall-clock
time depends on the sampling difficulty. The cost is proportional to O(k · Ceval), where k is
the number of samples and Ceval is the cost per episode. This can become a bottleneck in
environments with extreme stochasticity (requiring high k) or very long episodes (high Ceval).

• The Solution (EB-UCB): To mitigate this, Gems employs the EB-UCB oracle. It adaptively
allocates the sampling budget k, spending compute only when the estimator is uncertain (high
variance) or the strategy is promising. This ensures that even when Ceval is high, Gems avoids
wasting resources on sub-optimal strategies, preserving practical scalability where matrix-based
methods have limitations.

78

	Introduction
	Related Work
	Proposed Method: Gems
	Formal Setup and Generative Representation
	Estimating the Meta-Game without the Matrix
	Solving the Meta-Game via Optimistic Replicator Dynamics
	Finding New Strategies with a Bandit Oracle
	Training the Generator with Amortized Best Response
	Overall Exploitability Bound
	Generalization to n-Player and General-Sum Games
	Step-Size (ETA) Scheduler for the OMWU Meta-Update
	Algorithm

	Experimental Results
	Equilibrium Finding in a Deceptive Messages Game
	Equilibrium Finding in Kuhn Poker
	Performance and Scalability on Multi-Agent Tag

	Conclusion
	Limitations
	I Mathematical Derivations and Proofs
	Formal Preliminaries
	Two-Player Zero-Sum Markov Games
	Nash Equilibrium and Exploitability

	Proofs for Meta-Game Estimation
	Supporting Definitions: Empirical-Bernstein Inequality
	Proof of Lemma 2.1 (Unbiasedness and Concentration)

	Proofs for Meta-Game Solving
	Proof of Proposition 3.2 (External Regret of OMWU with Unbiased Noise)

	Proofs for the Bandit Oracle
	Proof of Theorem 3.3 (Instance-Dependent Oracle Regret)

	Proof of Overall Exploitability
	Proof of Theorem 3.5 (Finite-Population Exploitability Bound)

	II Extensions to Two-Player General-Sum and N-Player General-Sum Games
	Appendix
	Extension to Two-Player General-Sum Games
	Monte Carlo Meta-Game Estimators (Both Players)
	Optimistic Replicator Dynamics for Both Players
	Model-Free EB-UCB Oracles (Double-Oracle Style)
	Overall Guarantee: epsilon-Coarse-Correlated Equilibrium

	Proofs for Two-Player General-Sum
	Proof of Lemma 2 (Unbiasedness and Concentration, General-Sum)
	Proof of Proposition 2 (Per-Player External Regret with OMWU)
	Proof of Theorem 3 (Per-Player Oracle Regret)
	Proof of Theorem 4 (-CCE)

	Extension to N-Player General-Sum Games
	Monte Carlo Meta-Game with Importance Weighting
	Per-Player Optimistic Replicator and Oracle
	Overall Guarantee: epsilon-CCE for n Players

	Proofs for N-Player General-Sum
	Proof of Lemma 3 (Unbiasedness and Concentration, n-Players)
	Proof of Proposition 3 (Per-Player External Regret with OMWU)
	Proof of Theorem 5 (Per-Player Oracle Regret)
	Proof of Theorem 6 (-CCE for n Players)

	III Ablation and Analysis of experiments
	Run on Connect–4
	Run on Hanabi
	Coordination on Simple Spread
	Coordination on Simple Tag
	Run on Chess
	Run on Go
	Ablation on Kuhn's Poker
	Ablation on Public Goods Game
	Ablation on Deceptive Mean
	Ablation on Oracle Selection

	IV Frequently Asked Questions (FAQs)

