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Abstract

Brain encoders have demonstrated promising capabilities
in extracting semantic features from brain activity. How-
ever, the internal computations of these models remain
largely opaque, which limits their adoption in critical brain
research and applications. To address this challenge, we
propose the Brain Activation Region (BAR) framework to
investigate human-interpretable concepts learned by brain
encoders and input features contributing to this learning.
Specifically, we train kernel-based probes in the latent
spaces of MindEye and UMBRAE, two state-of-the-art mod-
els that interpret viewed images from fMRI signals. We fur-
ther apply a feature attribution approach to concept density
functions, evaluating specific brain voxels and regions sen-
sitive to visual semantics. Our trained classifiers demon-
strate high accuracy across diverse visual and semantic
concepts, effectively explaining the predictions made by
brain encoders. Additionally, the feature attribution reveals
two regions of interest (ROIs) associated with visual con-
cept processing in human brains, aligning with findings in
recent neuroscience research.

1. Introduction

Recent neuroscience studies have introduced effective brain
encoders to interpret thoughts and perceptions from brain
activity [8, 11, 12, 16, 17]. Based on fMRI signals collected
when subjects viewed colour natural scenes, brain encoders
extract conceptual and spatial features aligned with CLIP
encoders [8, 11], variational autoencoders (VAE) [11, 12,
16], or multimodal large language model (MLLM) [15], en-
abling brain-to-image retrieval, reconstruction, captioning,
and grounding. While these models demonstrate promising
potential in brain-computer interfaces (BCI) and cognitive
state analysis, their internal computations remain opaque
and poorly understood. Without clear interpretability of
brain encoders, it might not be safe to apply them in crit-
ical neuroscience applications.

To address this challenge, concept-based explanations
could reveal how brain encoders extract features through

the lens of user-specified concepts. One such approach is
the Concept Activation Regions (CAR) [2], which trains
a kernel-based probe in the model’s representation space.
By separating samples where a concept is present (concept
positive) or absent (concept negative), this classifier could
explain how specific concepts are represented by brain en-
coders. The CAR approach could be further combined
with feature attribution methods, such as Integrated Gra-
dient [13] and Gradient Shap [7], to identify input features
that contribute to the model’s concept learning.

In this work, we propose Brain Activation Region
(BAR), a unified concept-based explanation framework
applicable to any brain encoder. Specifically, we ap-
ply CAR explanation to two state-of-the-art brain en-
coders—MindEye [1 1] and UMBRAE [15]—to investigate
the concepts learned by these models and to identify brain
voxels that contribute to specific concept learning. Our re-
sults show high classification accuracy across many visual
and semantic concepts derived from the images presented
to subjects, effectively explaining the predictions made by
brain encoders. Furthermore, we identify regions of inter-
est (ROIs) in human brains that are sensitive to certain vi-
sual concepts. By introducing concept-based explanations
into brain encoding models, we provide a novel approach
for researchers to explore the relationship between visual
semantics and brain function.

2. BAR: Brain Activation Region

We propose the Brain Activation Region (BAR) framework
to interpret both representative encoders through concept-
based explanations. Two distinct pretrained brain encoders
MindEye [11] and UMBRAE [15] are selected for our ex-
periments based on their popularity and representativeness.
They are trained on the Natural Scene Dataset (NSD) [1],
which includes fMRI recordings in response to visual stim-
uli from COCO [6], using different objectives. MindEye
produces embeddings trained with contrastive loss, while
UMBRAE learns to reconstruct CLIP intermediate features
using an element-wise reconstruction loss. The overview
of BAR is illustrated in Fig. 1. First, we generate concept-
positive and concept-negative voxel samples and input them
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Figure 1. Overview of Brain Activation Region (BAR). BAR interprets pretrained brain encoders through concept-based explanations.
BAR includes three steps: (a) Concept Generation (Sec. 2.1), (b) CAR Classifier Training (Sec. 2.2), (c) Voxel Visualisation (Sec. 2.3).

into brain encoders to obtain the corresponding embeddings
(Sec. 2.1). Next, we train a CAR classifier to distinguish
these embeddings and determine concepts learned by Mind-
Eye and UMBRAE models (Sec. 2.2). Last, we apply Inte-
grated Gradient to evaluate voxel contributions to specific
concept learning. The attributions and potential brain ROIs
sensitive to visual semantics are visualised using a 3D med-
ical imaging software ITK-SNAP [18] (Sec. 2.3).

2.1. Concepts and Embeddings Generation

To explain the conceptual information learned by brain en-
coders, we want to find ground truth concepts that capture
the semantic content of individual fMRI inputs. Therefore,
a natural and effective choice is to use the COCO image
categories [0] of corresponding visual stimuli. These cate-
gories are manually annotated to describe the main objects
in each image and have been widely adopted in object de-
tection research. To obtain image category labels, we map
each voxel-image pair in the NSD [1] back to its original
COCO index, retrieving the annotation using the provided
COCO API [6].

Using this concept definition, we construct probe
datasets for CAR classifiers. For each concept and subject,
we randomly select k positive samples containing the con-
cept label and k negative samples without it. These voxel in-
puts are then passed through the brain encoders to obtain the
corresponding embeddings. For the MindEye encoder [11],
we load subject-specific pre-trained weights to account for
individual differences in brain responses. For the UM-
BRAE encoder [15], we use a shared pre-trained model due
to its cross-subject training strategy and subject-specific to-
kenizers. Finally, we assign the label 1 to concept-positive
embeddings and O to concept-negative embeddings to for-
mulate the binary classification task.

2.2. CAR C(lassifier Training

Following the procedure outlined in the CAR paper [2], we
optimise a kernel-based Support Vector Classifier (SVC)
to distinguish between concept positive and negative em-
beddings for each image category and subject. CAR as-
sumes concept smoothness in the latent space H, where
concept positive and negative examples are scattered across
distinct clusters. Under this assumption, we train an SVC
s§ : H — {0,1} to partition H into concept activation
regions H¢ where concept c is mostly present and regions
H ¢ where concept c is mostly absent. In our case, if con-
cept smoothness holds and the SVC captures a clear bound-
ary between positive and negative clusters, this indicates
that the brain encoder has learned the concept and made
embeddings separable. To assess how well each concept is
learned, we measure the classification accuracy of trained
SVCs on their corresponding test sets.

2.3. Voxel Attribution and Visualisation

We further evaluate the relevance of individual voxels in
identifying specific concepts. Specifically, we apply the In-
tegrated Gradient approach to the concept density function
defined in the CAR paper [2], computing the correspond-
ing feature importance. Since our input voxels belong to
nsdgeneral, a subset of voxels responsive to the NSD
experiment in the posterior aspect of cortex, we map voxel
contributions back to full-brain coordinates using the pro-
vided mask. This mapping enables us to localise the most
sensitive voxels for various concepts. Finally, we visualise
and qualitatively assess these contributions using the 3D
medical imaging software ITK-SNAP, identifying potential
brain ROISs associated with visual semantics.

3. Experiment

Applying our BAR framework to the MindEye and UM-
BRAE encoders, we design and organise our experiments



Table 1. Concept Classification. Mean accuracies are reported
for the pretrained MindEye [11] and UMBRAE [15] encoders.

Concept Category MindEye UMBRAE
Creatures 88.8 87.9
Household Items 85.9 88.8
Transportation 85.8 89.7
Food 90.9 93.4
Everyday Objects 86.7 88.1

to answer two key questions about these models: (1) What
semantic concepts do the two brain encoders learn for pre-
dictions, and how do they compare? (2) Which subset of
voxels contribute to certain concept learning, and how do
these voxels relate to specific ROIs or brain functions?

3.1. Concept Accuracies

Based on COCO image categories, we define 47 con-
cepts to describe the semantic information from the input.
With £ = 200, we generate concept-positive and concept-
negative embeddings to train each CAR classifier. To eval-
uate the effectiveness of concept learning, we group these
concepts into five broad semantic categories and present the
mean classification accuracies averaged over concepts and
subjects, as shown in Tab. 1.

The results show that our trained CAR classifiers achieve
high accuracy across most visual and semantic concepts,
with an overall average performance of (86.7 + 6.3)% for
MindEye embeddings and (88.9 + 6.1)% for UMBRAE
embeddings. This classification performance suggests that
both MindEye and UMBRAE encoders inherently capture
these concepts from voxel input during their own train-
ing processes. We believe that this concept learning ex-
plains predictions from brain encoders and supports brain-
to-image tasks such as captioning, grounding, retrieval, and
reconstruction.

Despite relatively consistent performance across broad
semantic categories, we observe notable accuracy variations
between individual concepts for both encoders. For ex-
ample, the accuracies for “sink”, “skis”, “toilet”, “tennis
racket”, and “giraffe” exceed 95%, while the accuracies for
“backpack”, “bird”, and “bicycle” are around 80%. We hy-
pothesise two potential reasons for this pattern. First, high-
accuracy concepts like “sink” and “giraffe” tend to have dis-
tinct shapes and colours in the visual stimuli, which may
be clearly reflected in brain responses and learned by both
encoders. In contrast, low-accuracy concepts like “back-
pack” and “bird” may exhibit greater variability in appear-
ance, which are more challenging for brain encoders to cap-
ture. Second, the observed accuracy pattern aligns with the
salience of individual concepts. It is known that certain
stimuli are prioritised for attention and processing in the
salience network of the human brain [3, 5, 9, 14]. Based

Figure 2. Concept Attribution. Feature attribution for the “per-
son” concept in sub01 (top) and sub07 (bottom).

on the BrainHub [15], our high-accuracy concepts “sink”,
“toilet”, and “giraffe” fall into the “Salient” category, which
may be strongly represented in the voxel input and con-
tribute to higher CAR accuracy.

Comparing classification performance between CARs
trained on MindEye and UMBRAE embeddings, we no-
tice that UMBRAE yields slightly better results, particularly
for concepts such as “bicycle”, “couch”, “potted plant”,
“spoon”, and “book”. This suggests that the UMBRAE en-
coder learns these semantic concepts more effectively than
the MindEye encoder. We attribute this difference to the
distinct training objectives of the two models. MindEye
maps fMRI brain activity to CLIP image space through con-
trastive learning, which prioritises broad content associa-
tions. As a result, it may struggle to capture fine-grained
details within complex scenes, such as “potted plant” or
“spoon”. In contrast, UMBRAE maps fMRI representations
to image features via element-wise reconstruction, enabling
more precise semantic and spatial alignments and capturing
relevant concepts.

3.2. Feature Attribution

To localise brain voxels involved in concept learning, we
apply the Integrated Gradient approach [13] to compute
feature attributions and visualise the results using ITK-
SNAP [18]. Based on empirical analysis, we identify two
potential ROIs sensitive to specific visual semantics.

3.2.1. Right Fusiform Gyrus - “Person” Concept

Recognising the concept of “person” is one of the most fun-
damental cognitive functions in human perception and so-
cial interaction. To find specific brain regions sensitive to
this concept, we analysed the corresponding voxel contri-
butions, as shown in Fig. 2.

From the results, we discover a highlighted area
(bounded by the red box) across all subjects, located in
the right temporal and occipital lobes. With further re-
search, we believe this brain region might belong to the



Figure 3. Concept Attribution. Feature attribution for the “gi-
raffe” concept in sub01 (top) and sub05 (bottom).

right fusiform gyrus, which is known for face and body
recognition. According to the dynamic visual stimulation
experiment conducted by Jiang et al. [4], face categorisa-
tion may begin in the right fusiform face area (FFA). No-
tably, the individually localised right FFA identified in this
study appears to correspond to the highlighted area we ob-
served. Therefore, this region might be activated when sub-
jects view human faces in the NSD experiment, which is
subsequently leveraged by brain encoders to learn the “per-
son” concept. In addition to the right FFA, we also observe
some smaller highlighted regions in the voxel attributions,
which may reflect other perceptual features relevant to the
“person” concept. We leave the investigation of these addi-
tional areas to future neuroscience research.

3.2.2. Visual Area V4 - “Giraffe”” Concept

In Sec. 3.1, we hypothesised that the “giraffe” concept may
correspond to distinct shape and colour features in the visual
stimuli. To explore potential brain regions involved in shape
and colour processing, we examine the feature attributions
for the “giraffe” concept, as illustrated in Fig. 3.

We find two highlighted spots (bounded by the red box)
across all subjects, located in the left and right occipital
lobes respectively. Based on our analysis, we speculate that
these spots may correspond to the V4 area in visual cor-
tex. Prior neuroscience studies have associated this brain re-
gion with colour processing and object recognition [10, 19],
which may be specifically activated to process the distinct
visual characteristics of “giraffe”.

However, our voxel attribution results remain somewhat
noisy, making it challenging to localise a well-defined brain
region solely responsible for the “giraffe” concept. This
could imply that multiple brain regions cooperate to process
complex semantic information. Additionally, the NSD ex-
periment was conducted on a general image dataset with di-
verse backgrounds, objects, and lighting conditions, which
may have introduced confounding signals. More controlled
experimental settings would be beneficial to precisely iden-

tify relevant brain regions.

4. Discussion

Our BAR framework has demonstrated effective capability
to explain brain encoders and discover potential brain func-
tions. Leveraging the CAR classifier, we achieve high con-
cept accuracy by capturing the nonlinear concept distribu-
tion in the latent spaces. This approach provides accurate
and fine-grained explanations for brain encoders, enhanc-
ing their transparency and reliability for future applications.
Additionally, our framework could automatically identify
ROIs in human brains by applying feature attribution on rel-
evant concept density functions, offering novel perspectives
for neuroscience research.

However, the BAR framework inherits certain limita-
tions from concept-based explanations. It relies on ground
truth concept labels in datasets, which may not always
be available and often require significant annotation ef-
fort. While our BAR framework can reveal certain concepts
learned by brain encoders, it does not comprehensively cap-
ture all meaningful features to fully explain model predic-
tions. As a result, relying solely on BAR explanations may
overlook critical factors in brain encoders and provide an
incomplete picture.

We believe our contribution opens up multiple promis-
ing directions for future neuroscience research. Given the
flexibility and efficiency of the BAR framework, it can be
applied to a wider range of concepts and brain encoders to
explain model predictions. To comprehensively study brain
functions, future work could explore feature attributions be-
yond the posterior cortex (nsdgeneral), identifying ad-
ditional ROIs sensitive to visual and semantic concepts. The
BAR framework could also be extended to other brain sig-
nal modalities, such as electroencephalography (EEG) and
magnetoencephalography (MEG), enabling broader appli-
cations in cognitive and perceptual studies.

5. Conclusion

In this paper, we propose the Brain Activation Region
(BAR) framework to investigate concepts learned by brain
encoders and discover potential brain functions. By train-
ing CAR classifiers in latent spaces of brain encoders, we
achieve high concept accuracy across most COCO image
categories, effectively explaining semantic representations
learned by both encoders. To further explore brain voxels
associated with concept learning, we apply Integrated Gra-
dient on concept density function, identifying two potential
brain regions contributing to visual concept processing. By
introducing concept-based explanations for brain encoders,
we believe our contribution could enhance the transparency
of NeuroAl applications and advance our understanding in
cognitive neuroscience.
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Supplementary Material

S1. Experimental Setup

Dataset We conduct our experiments on the Natural
Scene Dataset (NSD) [1], which consists of high-resolution,
whole-brain 7T fMRI signals collected when human partic-
ipants view colour natural scenes. These natural scene im-
ages are selected from the Microsoft Common Objects in
Context (MS-COCO) image dataset [6].

Brain fMRI Signal To align with MindEye [ 1] and UM-
BRAE [15] encoders, we use brain responses from the
nsdgeneral regions of subjects 1, 2, 5, and 7. These
regions contain voxels located in the posterior cortex that
are particularly responsive to the NSD stimuli [1].

Brain Encoders We apply Concept Activation Regions
(CAR) [2] to interpret two representative pretrained brain
encoders: the voxel2clip_cls retrieval model from
MindEye [11] and the brainx-v1.4 model from UM-
BRAE [15]. For MindEye, we load subject-specific pre-
trained weights to obtain embeddings for concept-positive
and concept-negative samples. For UMBRAE, we utilize
cross-subject training weights, which are designed to gen-
eralize across multiple individuals. To ensure compatibility
with CAR, we average the first 256 dimensions of each em-
bedding, thus standardizing the input for further analysis.

Concept Generation For each subject, we define con-
cepts based on MS-COCO categories that have at least 200
unique image-voxel pairs. As a result, we create 47 con-
cepts to describe the semantic information from the input.
With k = 200, we generate positive and negative voxel sam-
ples for each concept and feed them into the brain encoders.

CAR Training Details Following the official CAR im-
plementation [2], we train a support vector classifier with
Gaussian RBF kernel for each concept and subject. All
models are trained using an NVIDIA RTX 4070 Ti SUPER
GPU with default hyperparameters from scikit-learn.

S2. Concept Accuracies

We group the 47 concepts into five semantic categories, as
shown in Tab. S1. The classification accuracies for individ-
ual concepts are presented in Fig. S1 for MindEye embed-
dings [11] and in Fig. S2 for UMBRAE embeddings [15].

Table S1. Concept-Category Correspondence. The categories
correspond to the 80 classes from COCO, illustrating the mapping
between extracted concepts and their respective object categories.

Category Concepts

Creatures
Household Items

bird, cat, dog, giraffe, horse, person

bed, bench, bowl, chair, clock, couch,
cup, dining table, fork, knife, oven, potted
plant, sink, spoon, toilet, tv, vase

airplane, bicycle, boat, bus, car, motorcy-
cle, traffic light, train, truck

Food cake, pizza

Everyday Objects  backpack, bottle, book, cell phone, hand-
bag, laptop, skateboard, skis, sports ball,
surfboard, tennis racket, tie, umbrella

Transportation

Concept Accuracy for Each Category

Figure S1. Concept Accuracies for MindEye Embeddings.
Zoom in for details.

Concept Accuracy for Each Category

person

Figure S2. Concept Accuracies for UMBRAE Embeddings.
Zoom in for details.
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