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ABSTRACT

Recent work demonstrates neural networks’ theoretical ability to approximate
option pricing functions, but empirical evidence regarding robustness to market
regime shifts remains limited. Motivated by practical scenarios where the clas-
sical deterministic Black-Scholes equation becomes computationally challenging
in high-dimensional settings or under complex market conditions, we examine
neural network performance during volatility regime transitions. Models trained
on low-volatility regimes (σ = 0.2) show significant errors under higher volatil-
ity (σ = 0.3). We provide detailed theoretical and empirical analyses indicating
that these errors reflect fundamental representational limits of current architectures
rather than optimization issues.

1 INTRODUCTION

The classical Black-Scholes formula for option pricing is given by:

C(S, t) = SΦ(d1)−Ke−r(T−t)Φ(d2), (1)
where

d1 =
ln(S/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t. (2)

Here, C(S, t) is the call option price, S the asset price, K the strike price, r the risk-free rate, T
the maturity, and σ the volatility. Φ(·) denotes the cumulative distribution function of the standard
normal distribution.

Recent studies suggest neural networks as potential approximators for option pricing Han et al.
(2018); Sirignano & Cont (2019), particularly valuable in scenarios involving high-dimensional
data or stochastic volatility, where traditional deterministic models become computationally im-
practical Peng & Yan (2021). Nevertheless, neural network behavior under volatility regime shifts
lacks comprehensive analysis.

2 PROBLEM FORMULATION

Consider a neural network fθ : R2 → R trained to approximate the Black-Scholes pricing function.
The network receives inputs (S, t) and outputs an estimated option price. During training, all data is
generated with fixed volatility σtrain = 0.2. At test time, the model encounters data with σtest = 0.3,
constituting a structured covariate shift.

3 THEORETICAL ANALYSIS

3.1 APPROXIMATION THEORY FRAMEWORK

Let Fθ denote the class of feedforward neural networks with ReLU activations. For any fθ ∈ Fθ, the
network partitions the input space into polyhedral regions where the function is locally affine Bartlett
et al. (2019). Formally, there exists a set of regions {Ri}ki=1 such that:
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fθ(x) = Wix+ bi for x ∈ Ri (3)

The Black-Scholes pricing function, however, exhibits distinct nonlinear scaling with volatility:

∂C

∂σ
= S

√
T − tϕ(d1) > 0 (4)

where ϕ(·) is the standard normal PDF. This creates fundamental tension between the network’s
piecewise linear structure and the required nonlinear sensitivity to volatility shifts.

3.2 ERROR PROPAGATION ANALYSIS

Consider the approximation error decomposition Geman et al. (1992):

E[(f(x)− f̂(x))2] = (E[f̂(x)]− f(x))2︸ ︷︷ ︸
bias2

+E[(f̂(x)− E[f̂(x)])2]︸ ︷︷ ︸
variance

(5)

For a volatility shift ∆σ = σtest − σtrain, the error propagates according to:

∆E ≈ ∂C

∂σ
∆σ +

1

2

∂2C

∂σ2
(∆σ)2 (6)

The quadratic term explains the nonlinear error growth visible in the contour plots (Figure 1).

3.3 GEOMETRIC INTERPRETATION

The contour plots in Figure 1 reveal the geometric structure of this approximation failure. Consider
the level sets of the pricing function:

Lc = {(S, σ) : C(S, T ;σ) = c} (7)

These exhibit hyperbolic-like curvature due to the interaction between S and σ in equations 1 and
2. The network’s piecewise linear regions necessarily approximate these curves with polygonal
boundaries, creating systematic errors that compound under volatility shifts.

The error phase diagram (Figure 1b) shows how these approximation errors concentrate along spe-
cific geometric features of the pricing function, particularly near the boundaries between the net-
work’s linear regions.

(a) True price surface showing nonlinear σ depen-
dence

(b) Error contours revealing systematic approxi-
mation failures

Figure 1: Visualization of pricing function structure and approximation errors.
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4 EXPERIMENTAL RESULTS

We implement a feedforward neural network with architecture [2, 64, 64, 1] and ReLU activations,
following architectural guidelines from Sirignano & Cont (2019); Ozbayoglu et al. (2020). Training
uses Adam Kingma & Ba (2017) optimizer with learning rate 0.001 for 100 epochs on 1000 samples
generated with σ = 0.2, consistent with the methodology in Huang et al. (2020). This setup aligns
with recent work on financial deep learning Peng & Yan (2021).

4.1 TRAINING AND GENERALIZATION PERFORMANCE

The model achieves strong in-distribution performance during training (σ = 0.2), but exhibits sys-
tematic failures under distribution shift. To quantify these failures rigorously, we employed bootstrap
resampling (n = 100) evaluating metrics such as Mean Squared Error (MSE) and coefficient of
determination (R2). Our experimental setup used:

• 1000 training samples with σ = 0.2

• 300 uniformly spaced test points with σ = 0.3

• Adam optimizer with learning rate 0.001
• 100 epochs of training
• Bootstrap resampling for uncertainty estimation

Figure 2: Test predictions on out-of-distribution data (σ = 0.3). The model shows significant
deviation from true values (MSE: 137.8351, R2: 0.5378), with 95% confidence intervals derived
from bootstrap sampling indicating systematic underprediction at higher prices.

4.2 ERROR ANALYSIS

We analyze errors through Residual plots indicating nonlinear patterns and Q-Q plots (quantile-
quantile) for assessing error normality. Two key patterns emerge in the error structure:

1. Volatility Sensitivity: Under σ = 0.3, the model shows poor generalization with R2 =
0.54 and MSE = 137.84, indicating significant prediction errors. The systematic nature of
these errors is evident in Figure 3, which shows clear deviation between predicted and true
values, particularly at higher prices.

2. Distributional Shift: Analysis reveals:
• Consistent underprediction of option values in high-volatility regimes
• Heteroscedastic errors that increase with option price
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• Non-normal error distribution, as evidenced by the Q-Q plot
• Clear nonlinear patterns in residuals, suggesting fundamental limitations in the

model’s learned representations

Figure 3: Diagnostic plots revealing systematic prediction failures. Left: Residual plot showing
nonlinear patterns and heteroscedasticity in prediction errors. Right: Q-Q plot demonstrating sig-
nificant deviation from normality, particularly in the tails of the error distribution.

5 ANALYSIS OF FAILURE MODES

The observed failures arise from three key limitations:

1. Representation Capacity: The piecewise linear structure of ReLU Agarap (2019) net-
works fundamentally limits their ability to capture the nonlinear volatility scaling of option
prices, as evidenced by the systematic errors in our diagnostic plots (Figure 3).

2. Training Dynamics: The network optimizes for low bias in the training regime (σ = 0.2)
at the cost of high variance under distribution shifts, resulting in poor generalization to
σ = 0.3 as shown in Figure 2.

3. Structural Constraints: The model fails to learn invariances implied by no-arbitrage con-
ditions and volatility scaling relationships, leading to economically inconsistent predic-
tions.

These limitations suggest that architectural modifications, rather than simple hyperparameter tuning,
may be necessary to achieve robust performance across volatility regimes. The quantitative evidence
from our bootstrap analysis supports this conclusion, showing consistent underestimation patterns
that persist across multiple training runs.

6 IMPLICATIONS AND FUTURE DIRECTIONS

This analysis suggests several directions for improving deep learning approaches to option pric-
ing including development of architectures that explicitly encode financial invariances, theoretical
frameworks for analyzing model behavior under structured covariate shifts and methods for detect-
ing and quantifying model reliability boundaries.

7 CONCLUSION

We have demonstrated fundamental limitations in neural network approximation of option pricing
functions under volatility regime shifts. These results highlight the importance of understanding
both the mathematical structure of financial models and the approximation properties of neural net-
works when developing deep learning solutions for quantitative finance.
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