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Abstract

Machine learning (ML) models have been widely used to make predictions. Instead
of a predictive statement about future outcomes, in many situations we want to
pursue a decision: what can we do to avoid the undesired future if an ML model
predicts so? In this paper, we present a rehearsal learning framework, in which
decisions that can persuasively avoid the happening of undesired outcomes can
be found and recommended. Based on the influence relation, we characterize the
generative process of variables with structural rehearsal models, consisting of a
probabilistic graphical model called rehearsal graphs and structural equations, and
find actionable decisions that can alter the outcome by reasoning under a Bayesian
framework. Moreover, we present a probably approximately correct bound to
quantify the associated risk of a decision. Experiments validate the effectiveness of
the proposed rehearsal learning framework and the informativeness of the bound.

1 Introduction

Machine learning (ML) has achieved great success in various applications, including computer vision
[1], natural language processing [2], recommender systems [3, 4], etc. In addition to perception tasks
such as classifying an image, ML models have been widely used to make predictions, or forecasting,
about future quantities of interest [5, 6]. In many scenarios, however, what we ultimately pursue
is typically not attaining merely a predictive statement on what is likely to happen. Instead, as a
potential next direction [7], we may seek a way, possibly through decision-making, to avoid the
happening of the upcoming undesired future, if the ML model predicts so.

Suppose we use variables X to predict a future outcome Y with an ML model h. Given an instance
x, h outputs a warning signal ŷ = h(x) which is outside our desired range. The problem is: what
can we do to make the future Y fall into the desired range? We assume that there is an intermediate
stage where one can make actionable decisions to influence Y; e.g., after a sales prediction made at
the beginning of a month, there is an intermediate time window before the month-end for the sales
manager to take action. We consider decisions in the form of altering variables with fixed values,
e.g., setting the discount to 10%. We henceforth call such decisions alterations. Let Z denote the
variables in the intermediate stage. The avoiding undesired future (AUF) problem is then how to alter
variables in Z so that the future Y could be shifted to fall into the desired range.

Common decision-making methods under the umbrella of reinforcement learning (RL) [8] can be
applied to the AUF problem but may not be the most appropriate. The reasons include that (a) RL
mainly focuses on sequential decision-making tasks while AUF desires a direct decision to change the
upcoming future outcome, for which considering decision sequences could be unnecessary or even
unrealistic; (b) the success of RL in playing games [9] and autonomous control [10] rely on sufficient
interactions between the agent and the environment, but interactions in real AUF problems can be
extremely sparse, e.g., the sales manager in the above example can only interact with the environment
and make decisions once a month; (c) the Markov decision process (MDP) formalism in RL abstracts
decision-making into states, actions, and rewards, which may overlook useful fine-grained structural
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information in AUF, e.g., the connections between variables that can be altered may help identify
useful actions without any exploration. Explicitly incorporating such connections in modeling the
AUF problem would be preferable since otherwise approximating them with MDPs may require
unnecessarily large state or action spaces.
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Figure 1: Relationship between corre-
lation, influence, and causation [7, 11].

Therefore, we need a specific method for solving AUF that
takes account of the structural information and avoids the use
of the large number of interactions. An immediate thought
would be seeking cause-effect relations between variables
[12], which have been leveraged for some decision-related
problems (see Section 5 for a discussion of related work).
But as indicated by Zhou [7], causal relations can help but
should not be taken as a prerequisite for decision-making for
reasons that (a) humans can make good decisions without a
thorough or faithful causal understanding of the surrounding
environment, sometimes correct decisions can even be made based on an incorrect causal understand-
ing; (b) guiding decisions with causal relations is not always sensible as causation reveals truths that
always hold, whereas decision-making is coping with real environments which are often open and
dynamic; (c) causal modeling could be helpless for decision-making if the identified causal factors
are unactionable; needless to say, it is very difficult to discover true cause-effect relations from data
[13]. Recognizing that correlation is helpful for prediction but insufficient for decision-making and
that causation is needed for scientific discovery but too luxury to be relied on for decision-making,
Zhou [7] claimed that what is required for decision-making is a kind of intermediate relation that is
stronger than correlation but less demanding than causation; this relation was later called influence
relation [11]. Moreover, Zhou [7] attributed a decision to a series of hypothesized “rehearsal” of
possible actions, which is an intuitive way of leveraging or even discovering the influence among
variables involved in a decision task. Fig. 1 depicts an intuitive demonstration of the relationship
among correlation, influence, and causation.

Based on the concept of rehearsal, we present the structural rehearsal model (SRM) to model the
AUF problem. The SRM consists of a new probabilistic graphical model called rehearsal graphs
and a collection of generative structural equations. In contrast to traditional structural causal models
(SCM) [12], the SRM allows dynamic modeling and accommodates the influence relation among
variables, effectively capturing the interactions between interrelated but not necessarily causally
linked variables. Given the true SRM, the effect of alterations can be calculated or estimated by
conducting rehearsals. Consequently, the AUF problem can be addressed by searching for optimal
alterations that yield the desired outcomes, though the search process could be complex and difficult.

Note that structural models such as SRMs are generally not available in advance, and learning them
from limited observational data is difficult as well. In solving the AUF problem, one needs to tackle
challenges posed by limited data, the uncertainty of structural models, and the possibly huge search
space for finding an optimal alteration. Moreover, a system outputting decisions should provide
some kind of guarantee on the probability of successfully avoiding undesired future, especially in
high-stake applications such as economic and safety tasks. The AUF problem can also come in
an online fashion and induce an exploration-exploitation trade-off: a decision-maker can choose
alterations that will reveal more structural information to benefit future decision-making or alterations
that will maximize the success probability in the current decision round.

To address the aforementioned challenges and tackle the AUF problem, we introduce a rehearsal
learning framework that integrates structural rehearsal models and Bayesian inference. This frame-
work effectively captures the inherent uncertainty in decision-making processes aimed at averting
undesired outcomes by unifying structural modeling, alteration finding, and success probability
bounding. Our contributions are as follows:

1. Structural Rehearsal Model: We propose SRM, a novel modeling approach distinct from SCM,
designed to model the influence relation, which is more essential than causal relations for decision-
making problems.

2. Constrained Optimization for AUF: We formulate a constrained optimization problem to solve
the AUF problem, striking a balance between averting undesired future scenarios and accurately
learning rehearsal models.
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3. Rehearsal Learning Framework: We develop a rehearsal learning framework tailored for solving
AUF, showing that building decisions based on the influence relation is practical and feasible. We
propose specific learning methods for the basic linear case and show that optimal solutions are not
attainable in polynomial time in the framework if joint alterations are allowed, assuming P 6= NP.
This insight underscores the significance of developing approximate solutions over exact ones.

4. Risk Quantification: We introduce a probably approximately correct bound to quantify the
associated risk inherent in a given decision. Our experiments provide empirical evidence of the
informativeness of this bound.

2 Structural Rehearsal Models

Conventionally, SCMs [12] are used to describe causal relations among variables, based on which
actions that affect the outcome could be found. However, in some real-world problems, especially
those involving decisions, causal relations are not adequate. For example, let P and Q denote the
prices of a product in two stores, respectively. If the first store decreases P to attract customers, the
second store will decrease Q accordingly because the second store will lose consumers otherwise.
From a causal view, it seems that P causes Q. But obviously, Q also causes P by symmetry. So we
have a bi-directional “causal” relation, which is invalid in causal modeling. Mistakes will occur if
one applies SCMs to this example as only a one-way causal relation is allowed in SCMs. The issue of
such interrelated but not necessarily causally linked variables, as well as several other issues such as
the dynamic and time-dependent nature of decision-making, which will be discussed later, are taken
into account in the following new structural model called the structural rehearsal model (SRM).

An SRM consists of a set of rehearsal graphs and corresponding structural equations. A rehearsal
graph qualitatively describes the relations between variables, and the structural equations characterize
the generating process of variables in detail. In contrast to static causal modeling, SRM allows
dynamic modeling by defining both the graphs and equations over a time index t, which accounts for
possible evolutions of the environment. We represent an SRM with {〈Gt,θt〉}t, where Gt denotes
the rehearsal graph at time t and θt parameterizes corresponding structural equations.

Rehearsal graphs allow both directional and bi-directional edges. The directional edges depict the
generation ordering of variables and the bi-directional ones indicate interrelated variables that are
mutually influenced. Fig. 2a depicts an example. The definition of rehearsal graphs is given below:
Definition 1 (Mixed graph). Let G = (V,E) be a graph, where V denotes the vertices and E the
edges. G is a mixed graph if for any distinct vertices u, v ∈ V, there is at most one edge connecting
them, and the edge is either directional (u→ v or u← v) or bi-directional (u↔ v).
Definition 2 (Bi-directional clique). A bi-directional clique C = (Vc,Ec) of a mixed graph G =
(V,E) is a complete subgraph induced by Vc ⊆ V such that any edge e ∈ Ec is bi-directional. C is
maximal if adding any other vertex does not induce a bi-directional clique.
Definition 3 (Rehearsal graph). Let G = (V,E) be a mixed graph. Let {Ci}li=1 denote all maximal
bi-directional cliques of G, where Ci = (Vc

i ,E
c
i ). G is a rehearsal graph if and only if:

1. Vc
i ∩Vc

j = ∅ for any i 6= j.
2. ∀i ∈ [l], u ∈ V \Vc

i , if there is any edge pointing from u to Vc
i , then ∀v ∈ Vc

i , u→ v.
3. The directional edges permit a topological ordering for {Ci}li=1.

Each vertex in a rehearsal graph corresponds to a variable. And the variables are generated following
the ordering depicted by the directional edges. The variables in a common maximal bi-directional
clique, where only bi-directional edges exist, are mutually influenced instead of having a fixed
generating order. Given a rehearsal graph G, structural equations accompanying the rehearsal graph
are defined over cliques {(Vc

i ,E
c
i )}li=1. Let PAG

i , {u | ∃v ∈ Vc
i , u→ v in G} denote parents of

the i-th maximal bi-directional clique. Suppose that the unobserved noise variables are Gaussian, then
the structural equation describing the generation process of Vc

i is parameterized by {βi,Σi}li=1 ⊆ θ:

Vc
i := fi(PAG

i ;βi) + εi, (1)

where fi is a multi-valued function parameterized by βi and εi ∼ N (0,Σi) denotes the noise.

We denote the operation that alters variable X with fixed value x by Rh(X = x), meaning that we
perform a rehearsal of setting X to x through realistic or hypothetical means. When Rh(X = x) is
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Figure 2: (a) displays an example rehearsal graph. (b) and (c) displays its alteration graphs with
rehearsal operations on {F} and {B, E, F} respectively. We use plate notation to simplify the edges:
If an endpoint of an edge falls exactly on the boundary of a rectangle, then there are edges for every
vertex in that rectangle. (d) shows a full SRM {〈Gt,θt〉}t, where t is the time index and the rehearsal
graph Gt and parameters θt can evolve over time. Recall the example of two stores and let the
variables follow the depicted SRM. Suppose that at t = 1, the second store takes a new marketing
strategy that no longer follows the price of the first store, then P will not directly affect Q: The
generation process evolves to P ← Q in G1 instead of P ↔ Q in G0. Then for the first store, a
previously correct decision at t = 0, which aims to affect C by altering P, is ineffective at t = 1.

applied, we remove the incoming arrows of X in the original rehearsal graph G to get an alteration
rehearsal graph GX=x, and the accompanying structural equations are modified according to the
newly introduced parental relations in GX=x, where a new set of parameters in θ could be introduced
for the unseen parental relations to offer more flexible modeling abilities. The distribution P(V |
Rh(X = x)) of all variables after applying Rh(X = x) can be derived from Eq. (1). Example
illustrations are in Figs. 2b-2c. The “invalid” bi-directional “causal” relations are valid in rehearsal
graphs: P↔ Q becomes P→ Q when applying Rh(P) and becomes P← Q when applying Rh(Q),
capturing the interrelated influence between the two variables.

An important feature of SRM that distinguishes it from SCM is the capability of modeling dynamic
and time-dependent real-world decision-making environments, where variable relations may evolve
and correct decisions can vary dramatically at different times even for the same problem [14]. It is
worth noting that these dynamic environments should not be confused with the conventional notion
of dynamic systems, where the relationships among variables simply repeat over time. As causal
modeling seeks to identify enduring cause-and-effect relationships, SCMs can be helpful in tasks such
as “AI for science" [15, 16, 17], where the objective is to uncover persistent scientific truths. However,
SCMs can be restrictive in describing the dynamic nature of decision problems. In contrast, the
dynamic and time-dependent feature of environments is captured by SRM using evolving rehearsal
graphs and corresponding parameters: At time t, the generating process characterized by 〈Gt,θt〉
can differ from previous ones. Fig. 2d illustrates an example where correct decisions vary across time
and an SRM {〈Gt,θt〉}t is used to model the dynamic decision environment.

Although θt can be learned from data with general supervised learning methods given a fixed
graphical structure, generally rehearsal graphs could not be uniquely identified from data. We present
basic properties of rehearsal graphs and a preliminary graph class learning procedure in Appendix A.

3 The AUF Problem

We treat AUF as a multi-round online decision-making problem, where in the t-th decision round,
an agent makes decisions to affect the outcome if it receives an undesired prediction, serving as a
warning signal, from an ML model. In real problems, variables involved in each decision round
generally do not appear simultaneously; e.g., if a single decision round spans a full month, then a
decision-maker may encounter new variables every day. Ignoring the variable generation order can
be problematic, but modeling the decision process with refined time granularity is too demanding.

Therefore, we make a midway proposal. We identify two important time points in AUF, the time
the ML prediction is made and the time just before the generation of the concerned outcome, so the
variables appearing in the t-th decision round fall into three consecutive time segments separated by
the two time points: Xt, variables appeared before the prediction is made; Zt, variables appeared
after the prediction and before the generation of the outcome; and Yt, the outcome variable. After the
prediction, if the agent decides to do something to change the future outcome, the only variables it
can alter are those in Zt, since Xt has already happened and cannot be altered. For example, suppose
that in the t-th month, a sales manager predicts the month sales Yt on the first day of that month and
designs promotions in that month accordingly. Then Xt can be marketing variables that appeared
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before the first day and Zt can be variables in the remaining days of that month, such as the price
next week, which can be altered to affect month sales.

X1

X2

X3

Y1

Y2

Xt Zt Yt

Z2 Z5

Z3 Z4

Z1 Z6

time

observe Xt and
︸ ︷︷ ︸

observe Zt

conduct alterations
make prediction

observe Yt

Figure 3: Rehearsal graph Gt in the t-th round. The
timeline shows the order in which the three sets of vari-
ables are generated and events that happened to an agent
at different times in one round.

More specifically, the decision process in
the t-th round is: An agent first observes
Xt, with which an ML model gives a pre-
diction Ŷt for the outcome; if Ŷt /∈ S,
where S denotes the set of desired values,
the agent should perform alterations on Zt
to prevent Yt /∈ S; after the alteration, the
agent can observe full Zt and the outcome
Yt. We assume that the generation mech-
anism of the encountered variables can be
described by an SRM {〈Gt,θt〉}t, where
〈Gt,θt〉 characterizes the generation pro-
cess in the t-th round. Fig. 3 depicts an
example. For simplicity, we assume that
the environment is stable, i.e., Gt = G,
θt = θ for all t. Note that the agent does not have access to the true SRM, instead, it can access
historical data D = {(xi, zi,yi)}mi=1, from which some information about the SRM can be learned.

In real scenarios, some variables cannot be manually altered or cannot be set to certain values. We
denote the set of feasible alteration values for an actionable variable Zi ∈ Z by ∆(Zi), which we
assume to be a closed interval. An alteration is denoted by ξt = {(Zai , zai)}ki=1, where Zai ∈ Z is
the variable to be altered, zai ∈ ∆(Zai) is the alteration value, and k is the alteration size. Applying
ξt is treated as performing a rehearsal Rh(ξt) , Rh({Zai = zai}ki=1) on G.

The overall AUF problem is then given D and xt, t = 1, . . . , T , that arrives sequentially, find
alterations ξt in each round t to successfully avoid the undesired future as many times as possible.
The problem can be formulated as

max
ξ1:T

Eε1:T

[
T∑
t=1

I (Yt ∈ S | xt, Rh(ξt))

]
, (2)

where ε is the noise in Eq. (1) and I(·) is the indicator function.

If the underlying SRM is known, one can obtain P(Yt | xt, Rh(ξt)), and the only issue is searching
for a ξt that maximizes P(Yt ∈ S | xt, Rh(ξt)). The main obstacle to solving AUF, however, is the
uncertainty of the SRM. The uncertainty leads to an exploration-exploitation trade-off: In each round,
if the agent chooses alterations that help reveal true SRMs (exploration), a more accurate environment
model may be obtained and benefit decisions in future rounds, but it may fail in the current round. On
the other hand, if the agent chooses a short-sighted decision that successfully avoids the upcoming
undesired future (exploitation), it may learn little about SRMs, making future optimizations difficult.
In addition, the effect of alterations can propagate to downstream variables through the directional
edges in a rehearsal graph, thus the value of unactionable variables may be affected by altering the
actionable ones. A feasible approach should take account of the uncertainty, exploration-exploitation
trade-off, and propagation of effects in the online decision process and yield reasonable decisions.

Some extra knowledge can be utilized. First, the partition of the three sets of variables reflects the
order in which the variables are generated. Any edge crossing the three sets should point from the
previous one to the latter one, which reduces the uncertainty on G. Further, since an agent observes
Xt before making a decision, the generating mechanism inside Xt does not affect the distribution of
outcomes, as shown in Prop. 4, so we can safely pretend that G does not have edges inside Xt.
Proposition 4. For any 〈G1,θ1〉 and 〈G2,θ2〉 on Xt ∪Zt ∪Yt, if they differ only in describing the
generation of Xt, then for any Xt = xt and alterations ξ on Zt, we have

P (yt | xt, Rh(ξ) ;G1,θ1) = P (yt | xt, Rh(ξ) ;G2,θ2) .

In the following, we restrict our attention to a basic instance of the AUF problem: The structural
equations fis are linear and the desired set S is a convex polytope, i.e.,

Vc
i := βTi PAG

i + εi, S = {y ∈ R|Y| |My ≤ d}, (3)

where | · | denotes the cardinality of a set, d ∈ Rs, M ∈ Rs×|Y|, and βi ∈ R|PAG
i |×|V

c
i |.

5



4 Rehearsal Learning

In this section, we present a rehearsal learning framework to address the AUF problem in Eq. (2) and
present specific methods for the linear case in Eq. (3), in which we use sampling and rehearsal of
actions as a basic building block to find and evaluate decisions.

To account for the uncertainty introduced by limited data, we resort to Bayesian inference. The state
of knowledge of the SRM is described by the posterior distribution:

P(G,θ | Dt) = P(G | Dt)P(θ | G,Dt), (4)

whereDt is the evidence collected until the beginning of round t, consisting of the initial observational
data D and {(xi, ξi, zi,yi)}t−1i=1 . To handle the exploration-exploitation trade-off between choosing
alterations that help recovers the true SRM and alterations that can avoid undesired future in the
current round, we leave the choice to the agent by introducing a hyper-parameter τ that balances
these two kinds of alterations. In the t-th round, we propose to solve

max
ξt

I (G,Θ; Zt,Yt | Dt,xt, Rh(ξt)) (5)

s.t. EG,θ|Dt [I (Yt ∈ S | G,θ,xt, Rh(ξt))] ≥ τ. (6)

The constraint in Eq. (6) reflects the required performance: Performing the alteration should make
the belief that the desired future can be successfully achieved greater than τ given knowledge of the
SRM so far. The objective function in Eq. (5) denotes the mutual information between the SRM
and the observations revealed after the alteration. Overall, the solution to the optimization problem
should avoid undesired future and meanwhile be most informative about the true SRM.

The proposed optimization problem introduces computational challenges, e.g., one has to sum over
a super-exponential number of rehearsal graphs to compute the mutual information or the success
probability. We divide rehearsal learning into three approximately tractable components: Bayesian
update of SRMs, candidate alteration selection, and mutual information maximization. To better
guide decision-making, we also present a sampling-based probably approximately correct (PAC)
bound to quantify the risk associated with the selected alteration.

4.1 Bayesian Update of SRMs

Recall that the posterior of SRMs is divided into the posterior of graphs P(G | Dt) and that of
structural equation parameters P(θ | G,Dt) in Eq. (4). For the former term, we adopt a bootstrapping-
based approximation [18], which learns multiple rehearsal graphs on bootstrapped data to build a set
of graphs G and weigh each graph G ∈ G equally. The approximated posterior of graphs is

P(G | Dt) ≈
1

|G|
∑
G′∈G

I(G′ = G). (7)

Consequently, for the second term P(Θ | G, Dt), we only need to estimate parameters corresponding
to graphs that appear in G, which greatly reduces computation. The parameter posterior factorizes as

P(θ | G,Dt) =
∏

G′∈A(G),Vc∈G′

P(βVc ,ΣVc | G′, Dt),

whereA(G) is a set of graphs that includesG and related alteration graphs and Vc denotes a maximal
bi-directional clique. P(βVc ,ΣVc | G′, Dt) is the posterior of a set of regression parameters and
noise variance given data of Vc and its parents in G′. So various Bayesian learning methods [19]
are applicable for its estimation. We adopt Bayesian ridge regression [20] to learn the parameters.
In addition, as graph learning is time-consuming, we use an incremental implementation: We build
an initial graph posterior from purely observational data for t = 0 using Eq. (7), then update the
posterior with

P(G | Dt) ∝ P(G | Dt−1) · 1

n

n∑
i=1

P(zt,yt | xt, ξt, G,θi),

where θi is sampled from P(θ | G,Dt−1) and the averaged summation term is an empirical estimate
of likelihood. With the above approximations and learning, we effectively obtain an approximate
posterior and an efficient sampler over SRMs, which forms the basis of the following two steps.
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4.2 Candidate Alteration Selection

In the second part, we find candidate alterations that satisfy the performance constraint in Eq. (6). The
constraint cannot be accurately computed as it takes an expectation over discrete G and continuous θ.
To reduce the computational burden, we estimate the constraint with posterior samples. Note that the
value of variables V is uniquely determined by G, θ, and the noise ε in Eq. (1). We can evaluate all
alterations by generating Yt from a common set of SRMs and noise samples. Suppose we have an
i.i.d. sample S = {〈Gi,θi, εi〉}ni=1, the empirical estimate of Eq. (6) is

p̂ξt(S) , |{i | yit,ξt ∈ S}|/n,

where yit,ξt is the concerned outcome generated following the SRM specified by 〈Gi,θi, εi〉 and
Rh(ξt). A general method for candidate alteration selection has three stages:

1. Sample two sets of i.i.d. parameters, the training set Str = {〈Gi, θi, εi〉}ni=1 and the validation
set Sval = {〈Gi, θi, εi〉}2ni=n+1, from P(G,θ | Dt) and P(ε | θ).

2. Build a candidate alteration set C by conducting rehearsals on Str and finding alterations ξt that
achieve required performance τ , i.e., ∀ξt ∈ C, p̂ξt(Str) ≥ τ .

3. Validate alterations in C by rehearsals on Sval and remove those with p̂ξt(Sval) < τ from C.

The validation procedure is to alleviate overfitting as in standard machine learning pipelines. If stage
2 or 3 outputs an empty set, the system should refuse to make any recommendations. The agent can
lower τ and restart if a smaller τ is still adequate for the task at hand.

For a given alteration, validation is relatively easy to perform. The only issue to address is to find a
set of alterations that pass the test on Str. An immediate approach would be enumerating possible
alterations and making rehearsals on training samples to check the constraint. But the enumeration
can be computationally prohibitive as the alteration space can be combinatorial and continuous. A
compromise between the optimality of recommended alterations and the computational feasibility is
to work on some finite subset of alterations using some discretization tricks or heuristics. Fortunately,
due to the linear structure of the SRMs considered here, Prop. 5 shows that the outcome variables are
linear in the alteration values, implying the existence of more efficient and effective solutions.
Proposition 5. Let ξ = {(Zai , zai)}ki=1 be a valid alteration where Zai ∈ Zt and zai ∈ ∆(Zai).
Given 〈G,θ, ε〉 and xt, the outcome variables are linear in the alteration values. We have

Yt = Axt + Bzξ + Cε, (8)

where zξ = (za1 , . . . , zak)T . A, B, and C are constant matrices of appropriate shapes and are
uniquely determined by G, θ and altered variables Zξ = {Zai}ki=1.

Algorithm 1 Finding candidate alterations of size 1

Input: Str = {〈Gi,θi, εi〉}ni=1, Sval = {〈Gj , θj , εj〉}j
1: C ← ∅ . Store candidate alterations
2: for Zi ∈ Z do
3: int1← FIND(Str, Zi, τ) . Training
4: int2← FIND(Sval, Zi, τ)
5: C ← C ∪ {〈Zi, int1 ∩ int2〉} . Validation
6: function FIND(S, Z, τ ) . Find alteration values for Z
7: int← ∅ . Store valid intervals
8: for 〈G,θ, ε〉 ∈ S do
9: [u, v]← solution of M(Ax + Bzξ + Cε) ≤ d

10: .A, B, C are determined by G, θ, Z
11: int← int ∪ {[u, v] ∩∆(Z)}
12: return {z | nτ ≤ #intervals in int containing z}
Output: The found alterations C

Size-1 Alteration. We consider cases
where an agent can alter only one variable
in each round, i.e., k = 1. Suppose the
altered variable in round t is Zi. Provided
with a fixed SRM, along with fixed noise,
Eq. (8) reduces to a line in R|Y| with di-
rection B ∈ R|Y|. Due to the convexity
of the desired region S, if altering Zi can
make Y ∈ S, then the set of feasible al-
teration values can be represented by an
interval [u, v] (the endpoints can be infin-
ity). Finding candidate alterations on the
training data is then equivalent to finding
elements that intersect at least n · τ inter-
vals obtained from samples in Str, which
is easy to compute. Alg. 1 includes the ba-
sic training and validation stages of finding candidate alterations. The overall time complexity is
O(|Zt| · n log n). A more detailed algorithm and running time analysis are given in Appendix B.

Size-k Alteration. By relating to the NP-hard maximum feasible subsystem problem [21], we
prove Thm. 6, showing that finding a single ξ that satisfies the constraint, which is much simpler
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than finding all valid alterations, is difficult if P = NP. This result suggests that we should focus
on approximate solutions rather than exact ones. We also give a mixed integer linear programming
approach in Appendix B.

Theorem 6. Unless P = NP, finding a k-dimensional zξ ∈ ∆(Zξ) that satisfies
∑n
i=1 I(M(Aix +

Biz
ξ + Ciεi) ≤ d) ≥ n · τ (if there is a valid solution) is not solvable with any algorithm of running

time polynomial in k and n.

4.3 Mutual Information Maximization

The remaining task is to optimize the mutual information (5) over the found candidate alteration set
C. We factorize the objective function with two information entropy terms over Zt and Yt:

I (G,Θ; Zt,Yt |Dt,xt, ξt) = H(Zt,Yt |Dt,xt, ξt)−H(Zt,Yt |G,Θ, Dt,xt, ξt). (9)

Eq. (9) can be estimated with samples from P(G,θ | Dt) and P(zt,yt | G,θ,xt, ξt). Due to the
sampling involved in the estimation procedure, Eq. (9) is expensive to evaluate. The continuous input
space makes it difficult to find an optimal alteration value for a fixed alteration target Zξ. Thus, we
find zξ∗ with Bayesian optimization [22], which seeks to optimize a black-box function g(z) with
a small number of evaluations by iteratively querying function values at some data points. We run
the optimization procedure for every alteration target in C and find the corresponding best alteration
values. Finally, the alteration that gives maximum mutual information is selected as the recommended
output. Details about the estimation procedure and Bayesian optimization are given in Appendix C.

Given a decision, it is important to know how likely the decision can successfully avoid the undesired
future. Though the candidate selection procedure already rules out potentially terrible alterations
using Str and Sval, a more refined measure is preferable. Based on the scenario approach in robust
control literature [23, 24], we derive a PAC-style bound on the posterior success probability in Thm. 7.
The bound is easy to compute as it only requires posterior samples. The practical implication of the
bound is that it quantifies the uncertainty, or risk, associated with the alteration, thus can help make
better decisions. Notably, the bound holds for any SRM with arbitrary additive noise, which could be
helpful for future extensions with non-Gaussian noise and nonlinear SRMs.

Theorem 7. Given an observed evidence xt, an alteration ξ, and a desired set S = {y ∈ R|Y| |
My ≤ d}, let Seval = {〈Gi,θi, εi〉}ni=1 be n i.i.d. samples from P(G,θ, ε | Dt). Let {yi}ni=1 be
generated from Rh(ξ) and Seval following the structural equations in Eq. (1). Define no , |{i |
yi 6∈ S}|. Let p̂ , 1− no/n, p, 1− F−1(1− δ/(2n);no + 1, n− no) if no < n otherwise p , 0,
and p̄ , 1 − F−1(δ/(2n);no, n − no + 1) if no > 0 otherwise p̄ , 1, where F−1( · ;α, β) is the
inverse cumulative distribution function of the beta distribution with parameters α and β. For any
δ ∈ (0, 1), with probability at least 1− δ, we have

max
{

p, p̂−
√

ln(2/δ)/2n
}
≤ P (Yt ∈ S|Dt,xt, Rh(ξ)) ≤ min

{
p̄, p̂+

√
ln(2/δ)/2n

}
.

4.4 Discussion

The proposed rehearsal learning framework is general and flexible, with any of the three steps ad-
justable without interfering with the others. For scenarios more complicated than linear ones, one
can replace methods in each step accordingly: The Bayesian update of SRMs can use any advanced
Bayesian (structure) learning methods [25, 26, 27, 28] as long as they allow sampling from the poste-
rior. The mutual information maximization step can leverage any black-box optimization methods
[22, 29]. For the most important and difficult candidate alteration finding step, which is difficult
even for the linear case when allowing joint alterations, efficient heuristics or linearization tricks
can be used. Given the great uncertainty of real-world problems, exactly solving the AUF problem
is extremely difficult if not impossible, while with the rehearsal learning framework, we provide a
practical and systematic approximate solution that tackles the problem with certain guarantees, which
exhibits that developing more efficient approximate solutions is a promising future direction.

For the SRM, there are some practical considerations. After a rehearsal operation, the change of
the parental relations results in new sets of parameters. In the absence of further constraints, as is
the case in this work, these new parameters may bear no direct resemblance to the previous ones.
However, it is conceivable to impose specific assumptions on these parameters to achieve more
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efficient modeling. For instance, one may assume the new parameters are connected with the original
ones through operations like marginalization. In practical implementations, it is also reasonable to
limit the size of a clique and maintain the number of parameter sets to an acceptable level. Moreover,
it is unlikely that we would need to or be able to alter every possible subset of a clique, so one can
reduce unnecessary computational burden by ignoring the parameters that would not be used.

5 Related Work

There have been some efforts to combine structural models with decision-making, with most of them
focusing on causal structures [30]. Some work explores the causal bandit problem, where the causal
structure underlying rewards and actions is considered [31, 32, 33, 34, 35, 36]. In a different vein,
Aglietti et al. [37] investigated a Bayesian optimization problem with a known causal DAG, and
Aglietti et al. [38] extended this work to a dynamic setting. However, these studies typically assume
that the true causal graph is known, a condition that is challenging to meet in real-world applications,
although causal discovery methods could help to some extent [39, 40, 41, 42, 43, 44]. To remove
the assumption, de Kroon et al. [45] leveraged separating sets, while Lu et al. [46] focused on the
Markov equivalence class of the true causal graphs. However, even when causal relations are known,
applying causal bandits or causal Bayesian optimization to AUF is not suitable because they often
seek a single universally optimal action. In contrast, optimal decisions in AUF can vary depending on
the context X. Some research approaches decision problems from the perspective of causal structures
and causal effect estimation. For example, Wang et al. [47] developed a method for estimating a set
of possible causal effects to aid decision-making. Additionally, there has been active research in
estimating causal structures or effects in interactive environments [48, 49, 50, 51, 52].

The aforementioned efforts yielded effective methods for certain decision-related problems, but all of
them rely on causal modeling, which could be too luxurious and restrictive for decision problems [7].
On the other hand, correlation, which is the basis of most ML models, is insufficient for decision-
making. Therefore, we turn to the influence relation, which lies between correlation and causation
and forms a basis of decisions [7]. Building on the influence relation, we propose SRM, which
is capable of modeling interrelated but not necessarily causally linked variables and dynamically
evolving decision systems. Moreover, the proposed rehearsal learning framework demonstrates the
feasibility of building decision-making upon influence and rehearsal.

6 Experiments

We evaluate the proposed approach on two datasets. We are mainly interested in if the proposed ap-
proach can successfully avoid the undesired future with high probability, the exploration-exploitation
trade-off, and the informativeness of the PAC-style guarantees. For each dataset, we alter one variable
in each round and repeat experiments with 100 rounds 20 times. The graph prior is initialized with
samples from the learnable graph equivalence class instead of learning from data as well-established
rehearsal graph learning methods are still in the process of development. The success probability is
estimated with 1,000 samples from the true SRM. We compute the PAC bound with 1,000 samples
from the posterior with δ = 0.05. The observational dataset size is set to 10. We also compare with
several reinforcement learning methods DDPG [53], PPO [54], SAC [55], and CATS [56].

Ride-Hailing Data. We abstract an SRM from a ride-hailing scenario, where a ride-hailing app
needs to make decisions to promote user rating (RAT). We consider relevant variables including
the weather condition, the number of users, traffic congestion (TRA), etc. The app can alter two
variables, the discount level (DIS) and the recommendation level (REC) of a specific route. There
exist interrelated variables in the scenario: If REC of a specific route is high, then TRA on that route
will be high since more users will choose that route; and if there is a high TRA on that route, the REC
should be low. The size of Xt, Zt, and Yt are 2, 4, and 1 respectively. The true structural equations
are set according to domain knowledge. The feasible alteration values are [−2, 2] for DIS and REC.
The range of RAT is [0, 1], so we set the desired region to S = [0.8, 1] to avoid RAT below 0.8.

Bermuda Data. We take an example from ecology, where environment variables in Bermuda are
recorded [57] and the variable generation order is available [58]. The size of Xt, Zt, Yt are 3, 7,
and 1 respectively. The true structural equations are obtained by performing linear regression on
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Figure 4: Results on the Ride-hailing and the Bermuda data. The bands depict standard deviations.

normalized data. We assume that 5 variables are actionable [37], with a feasible alteration region
[−1, 1]. Yt represents the net coral ecosystem calcification (NEC). We want to maintain a high NEC.
So we set the desired region to S = [0.5, 2] which is above the 75th percentile of the dataset.

Dataset DDPG PPO SAC CATS τ = 0.7

Ride-hailing 0.173 0.154 0.177 0.104 0.714
Bermuda 0.230 0.190 0.205 0.215 0.679

Table 1: Avg. success probability.

Table 1 shows the average probabilities of suc-
cessfully avoiding the undesired future of several
RL methods and the proposed rehearsal learning
method with τ = 0.7. Our method achieves the
goal of AUF with a probability around 0.7, while
the others fail to do so with merely 100 interac-
tions with the environment, which further underscores the importance of considering structural
information in the interaction-limited AUF problem. On the other hand, if we increase T , RL methods
can achieve satisfying performance, e.g., DDPG achieves 0.688 average success probability when
T = 10, 000 on the Bermuda data. For the ride-hailing data, 95.8% alterations recommended by the
proposed method are to alter REC, which affects RAT through the interactions between REC and
TRA and the direct link between TRA and REC: REC↔ TRA→ RAT. Note that REC cannot be
identified as a valid cause so causal modeling is not suitable for this problem.

Fig. 4 shows the full results. Given τ , the found alteration can satisfy the probability requirement in
most cases. Exceptions are settings where τ = 0.9. Alterations with such a high success probability
rarely exist, so the method can fail. In our implementation, when the recommendation is not attainable,
the constraint is dropped and the method will only optimize the mutual information. Therefore the
corresponding number of success rounds, as well as the success probability, is low, but the mutual
information is high. The third column shows a trade-off between avoiding the undesired future and
learning the SRM: smaller τ is likely to give higher mutual information. An interesting phenomenon
is that the true success probability often fluctuates around τ instead of achieving higher values. An
explanation is that if an alteration has a high success probability, then the effect of the alteration is less
uncertain, so less new information can be revealed and the method will instead choose others with
lower success probabilities. Finally, the last column shows that the true probabilities are bounded by
the PAC-style bound with a relatively small gap, so it can be informative for guiding real decisions.

7 Conclusion

Realizing that correlation is inadequate and that causation is not always suitable, we advocate relying
on the influence relation for decision-making. In this paper, we propose the first rehearsal learning
framework that tackles the AUF (Avoiding Undesired Future) problem with influence modeling.
The key to the proposed framework is SRM, which considers the interrelations of variables and the
dynamic time-dependent nature of decision environments. By unifying rehearsals on SRMs and
Bayesian inference, the framework recommends decisions that can persuasively avoid the undesired
future. We also provide a PAC-style bound to quantify the associated risk of recommended decisions
and further show the hardness of a basic linear instance of the framework, revealing that future work
should focus on developing approximate solutions rather than exact ones.
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A Rehearsal Graphs: Characterization and Learning

In this section, we present full motivations, basic properties, and preliminary learning strategies for
rehearsal graphs.

The ability to describe and identify causal relations is at the heart of both human and artificial
intelligence. The work of Pearl [12] on causality lays the foundation for accurately describing causal
relations and making a sound inference. Despite its elegance and expressiveness in abstracting causal-
ity from human cognition, one may encounter difficulties when applying Pearl’s causal framework to
real-world observations. We identify three kinds of misspecifications that could make causal modeling
fail: a) model misspecification b) data-collection misspecification c) adversary misspecification.

Model misspecification means that the variables used in the causal modeling process are inaccurate
so there are indeterminant causal relations among the variables. For example, demand (D) and price
(P ) are two variables that are causally related. But there is not a determinant causal direction between
D and P since intervening on D causes P to change but meanwhile intervening on P causes D to
change. A workaround is modeling with finer granularity by adding a time index to D and P . Then
we have Dt causes Pt+1 and Pt causes Dt+1.

Data-collection misspecification means that the data collected are not perfectly aligned with the
specified variable. For example, we may have variables D1, D2, P1, P2 in the causal model that
denote two measures D and P at different time. But the data collected may not rigorously follow the
order since there can be time delays and mismatches of the modeling time intervals and real ones.
This misspecification results in a misalignment between the model and data, hence no sound causal
conclusions can be drawn from the data.

Adversary misspecification refers to ignoring the existence of adversaries in causal modeling. For
example, let P and Q denote the prices of a product in two stores. If P is decreased then Q will also
be decreased, otherwise, the second store will lose some consumers. From a causal view, it seems
that P causes Q. But obviously, Q also causes P by symmetry. So we have a bi-directional causal
relation, which is cannot be described in causal modeling. The reason for this phenomenon is that
each store is an adversary that reacts to interventions from other agents.

The preceding three misspecifications are not necessarily disjoint in real problems and are hard to
identify in advance. The consequence is that one cannot identify perfect causal knowledge even if
with an infinite amount of data since the modeling and the data do not exhibit consistent determinant
causal relations. In order to model both the non-determinant and determinant causal relations in data,
we introduce a new probabilistic graphical model: rehearsal graphs.

A.1 Rehearsal Graphs as a Probabilistic Graphical Model

Definition 8 (Mixed graph). Let G = (V,E) be a graph, where V denotes the vertices and E the
edges. G is a mixed graph if for any distinct vertices u, v ∈ V, there is at most one edge connecting
them, and the edge can be either directional or bi-directional, i.e., u→ v, u← v, or u↔ v.
Definition 9 (Bi-directional clique). A bi-directional clique C = (Vc,Ec) of a mixed graph G =
(V,E) is a complete induced subgraph such that any edge e ∈ Ec is bi-directional. A single vertex
also constituents a valid bi-directional clique. C is maximal if adding any other vertex does not
induce a bi-directional clique.
Definition 10 (Rehearsal graph). LetG = (V,E) be a mixed graph. Let {Ci}li=1 denote all maximal
bi-directional cliques of G, where Ci = (Vc

i ,E
c
i ). G is a rehearsal graph if and only if:

1. Vc
i ∩Vc

j = ∅ for any i 6= j.
2. ∀i ∈ [l], u ∈ V \Vc

i , if there is any edge pointing from u to Vc
i , then ∀v ∈ Vc

i , u→ v.
3. The directional edges permit a topological ordering for {Ci}li=1.

Definition 11 (Factorization). Let G = (V,E) be a rehearsal graph and Ci = (Vc
i ,E

c
i ), i ∈ [k] be

maximal bi-directional cliques of G. We say that a joint probability P over V factorizes according to
G if P can be expressed as a product

P (V) =

l∏
i=1

P (Vc
i | PAi), (10)

where PAi = {u | ∃v ∈ Vc
i , u→ v in G}.
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A.2 c-Separation

As a probabilistic graphical model, like Bayesian networks or Markov networks, rehearsal graphs
also have a graphical characterization of independence relations. Mimicking the d-separation for
Bayesian networks, we present c-separation for rehearsal graphs. Here the “c” means “cliques”.
Definition 12 (c-separation). A path p in a rehearsal graph G is said to be c-separated (or blocked)
by a set of vertices Z if and only if

1. p contains a chain i → m1 ↔ m2 ↔ · · · ↔ ml → j or a fork i ← m1 ↔ m2 ↔ · · · ↔
ml → j such that the bi-directionally connected vertices {mi}li=1 ⊆ Z, or

2. p contains an inverted fork (or collider) i → m1 ↔ m2 ↔ · · · ↔ ml ← j such that no
vertices in {mi}li=1 are in Z and such that no descendants of {mi}li=1 are in Z.

A set Z is said to c-separate X from Y if and only if Z blocks every path from a vertex in X to a
vertex in Z. We write X ⊥⊥G Y | Z when Z c-separates X from Y in G.
Lemma 13. Let G = (V,E) be a rehearsal graph, x, y ∈ V be two distinct vertices, and Z a set
of vertices. Let C(v) denote the vertices of the maximal bi-directional clique to which v belongs. If
x ⊥⊥G y | Z, then C(x) ⊥⊥G C(y) | Z.

Proof. We prove this by contradiction. Assume that C(x) ⊥⊥G C(y) | Z does not hold given
x ⊥⊥G y | Z, meaning that there exists a path p unblocked by Z between some u ∈ C(x) and some
v ∈ C(y). Then there is an unblocked path x↔ p↔ y between x and y, which is a contradiction
since Z is supposed to block every path between x and y.

Lemma 14. Let G = (V,E) be a rehearsal graph, Ca, Cb ⊆ V be a set of vertices of two distinct
maximal bi-directional cliques, and Z a set of vertices. If Ca ⊥⊥G Cb | Z, then for all probability
functions P that factorizes according to G, Ca ⊥⊥P Cb | Z.

Proof. We construct a DAG G̃ = (Ṽ , Ẽ) from G with an one-to-one mapping f : every maximal
cliques Ci of G is represented with a vertex ṽi ∈ G̃, ṽi = (v1i , . . . , v

|Ci|
i ), and the edge directions

between Cis are kept. For any path p ṽα1 − ṽα2 − · · · − ṽαl (here we omit the edge directions)
in G̃, where {αi}i is an index set, there is a counterpart q in the original G that reads v1α1

↔
v2α1
↔ · · · ↔ v

|Cα1
|

α1 − v1α2
↔ v2α2

↔ · · · ↔ v
|Cα2

|
α2 − · · · − v1αl ↔ v2αl ↔ · · · ↔ v

|Cαl |
αl ,

where vjαk is the j-th vertex in Cαk . For any Z ⊆ V , we map it to a set of vertices in G̃ with
h(Z) = {ṽ ∈ Ṽ | f−1(ṽ) ⊆ Z}. From the definition of c-separation for rehearsal graphs and
d-separation for Bayesian networks, we see that if q is c-separated by Z in G, then p is d-separated by
h(Z) in G̃. Therefore, if Ca ⊥⊥G Cb | Z, then every path between ṽa and ṽb is d-separated by h(Z).
Due to the Markov property of Bayesian networks, for all P that factorizes according to G̃ (which also
factorizes according to G by definition), we have ṽa ⊥⊥P ṽb | h(Z), i.e., Ca ⊥⊥P Cb | f−1(h(Z)).
Since f−1(h(Z)) ⊆ Z, we have Ca ⊥⊥P Cb | Z.

Theorem 15. Let G = (V,E) be a rehearsal graph. For all probability functions P that factorizes
according to G and any three disjoint subsets of vertices X,Y, Z ⊆ V, if X ⊥⊥G Y | Z, then
X ⊥⊥P Y | Z.

Proof.

X ⊥⊥G Y | Z =⇒ ∀x ∈ X, y ∈ Y, x ⊥⊥G y | Z (11)

Lem. 13
====⇒ ∀x ∈ X, y ∈ Y,C(x) ⊥⊥G C(y) | Z (12)

Lem. 14
====⇒ ∀x ∈ X, y ∈ Y,C(x) ⊥⊥P C(y) | Z (13)

=⇒ ∀x ∈ X, y ∈ Y, x ⊥⊥P y | Z (14)

=⇒ X ⊥⊥P Y | Z. (15)
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Figure 5: An example rehearsal graph and its Bayesian network counterparts that encode the same
conditional independence relations. We use plate notation to simplify the edges. For example, in (a),
vertex A having an edge pointing to the rectangle containing three vertices, implies that A→E, A→F,
and A→G.

Theorem 16. Let G = (V,E) be a rehearsal graph. Let G′ = (V,E′) be any DAG that have
identical skeleton with G (see Fig. 5 for an example). If all directional edges in G appear in G′, then
for any disjoint set of vertices X,Y and Z, we have X ⊥⊥G Y | Z if and only if X ⊥⊥G′ Y | Z,
where ⊥⊥G means c-separation for rehearsal graphs and ⊥⊥G′ d-separation for DAGs.

Proof. We first prove X ⊥⊥G Y | Z ⇒ X ⊥⊥G′ Y | Z.

Every path p in G has a unique counterpart p′ in G′ that shares the same vertex sequence. p and p′
only differ in some edges: a bi-directional edge u↔ v in G is a directed one u→ v or u← v in G′.
Obviously, the mapping between p and p′ is one-to-one. We only need to show that for any path p′ in
G′, if its counterpart p in G is c-separated by a set Z, then p′ is d-separated in G.

We prove it by contradiction. Assume that p′ is not d-separated by Z, then according to the definition
of d-separation, we have that (a) for every chain i → m → j and every fork i ↔ m ← j in p′,
m 6∈ Z, and that (b) for every inverted fork i→ m← j in p′, ({m} ∪ des(m)) ∩ Z 6= ∅. For every
chain i→ m1 ↔ m2 ↔ · · · ↔ ml → j and every fork i← m1 ↔ m2 ↔ · · · ↔ ml → j in p, we
have {mi}li=1 6⊆ Z since otherwise either ∗ ← ml → j in p′ and ml ∈ Z, or ∗ → ml → j in p′ and
ml ∈ Z, which violate requirement (a). For every inverted fork i→ m1 ↔ m2 ↔ · · · ↔ ml ← j
in p, ({mi}li=1 ∪ des({mi}li=1)) ∩ Z 6= ∅ since otherwise there exists an inverted fork ∗ → mt ←
∗, t ∈ [l] such that ({mt}∪des(mt))∩Z = ∅, which violates requirement (b). Combining the above
results, we have that p is not c-separated by Z, which is a contradiction. Therefore, p′ is d-separated
by Z, which concludes that X ⊥⊥G Y | Z ⇒ X ⊥⊥G′ Y | Z.

We next prove X ⊥⊥G′ Y | Z ⇒ X ⊥⊥G Y | Z.
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Again we prove by contradiction. Assume that there exists a path p from x ∈ X to y ∈ Y in G
that is not c-separated by Z. Let p be x − m1

1 ↔ m2
1 ↔ · · · ↔ ml1

1 − m1
2 ↔ m2

2 ↔ · · · ↔
ml2

2 − · · · − m1
t ↔ m2

t ↔ · · · ↔ mlt
t − y (we omit the direction of directional edges). We

construct a path q from x to y by picking one vertex from each bi-directionally connected subpath
m1
i ↔ m2

i ↔ · · · ↔ mli
i in order such that q contains only directional edges, so q is also a path in

G′. For each bi-directionally connected subpath m1
i ↔ m2

i ↔ · · · ↔ mli
i in p, if it is a part of a

chain ∗ → m1
i ↔ m2

i ↔ · · · ↔ mli
i → ∗ or a fork ∗ ← m1

i ↔ m2
i ↔ · · · ↔ mli

i → ∗, then by
the definition of c-separation, {mj

i}
li
j=1 \ Z 6= ∅, so we randomly select a vertex vi ∈ {mj

i}
li
j=1 \ Z

to join q. If the bi-directionally connected subpath is a part of an inverted fork ∗ → m1
i ↔ m2

i ↔
· · · ↔ mli

i ← ∗, then by the definition of c-separation, either some mj
i ∈ Z or some descendant of

{mj
i}
li
j=1 is in Z. In the former case, we select vi = mj

i to join q, and in the latter, we randomly
select any vi ∈ {mj

i}
li
j=1. By construction, q = x−v1−· · ·−vt−y is a path from X to Y in G′ and

is not d-separated, which is a contradiction. Therefore, any path p from X to Y in G is c-separated
by Z, which concludes X ⊥⊥G′ Y | Z ⇒ X ⊥⊥G Y | Z.

Theorem 17. Let G = (V,E) be a rehearsal graph. For any three disjoint subsets of vertices
X,Y, Z ⊆ V , if X ⊥⊥P Y | Z for all probability functions P that factorizes according to G, then
X ⊥⊥G Y | Z.

Proof. Let G′ = (V,E′) be any DAG that has identical skeleton with G and has all directional edges
in G. Let Vi = {vj}lj=1 denote the set of vertices in a maximal bi-directional clique in G and PAi
the parent of Vi. Then Vi is also a clique in G′. Without loss of generality, assume the topological
ordering among Vi is v1 ≺ v2 ≺ · · · ≺ vl. By the chain rule, we have P (Vi | PAi) =

∏l
k=1 P (vk |

vk−1, vk−2, . . . ), where the LHS is the conditional probability defined in the factorization of G and
the RHS is the factorization defined by G′. So if P is a probability function that factorizes according
to G, then p also factorizes according to G′, and vice versa. Let P(·) denote the probability family
that factorizes according to ·. We have P(G) = P(G′).

∀P ∈ P(G), X ⊥⊥P Y | Z
P(G)=P(G′)
========⇒ ∀P ∈ P(G′), X ⊥⊥P Y | Z (16)

completeness of d-separation
===============⇒ X ⊥⊥G′ Y | Z (17)

Thm. 16
=====⇒ X ⊥⊥G Y | Z. (18)

A.3 Structure Learning

If we drop the bi-directional edges in a rehearsal graph, it becomes a valid Bayesian network, which
means that Bayesian networks are special cases of rehearsal graphs. So learning rehearsal graphs can
only be harder than learning Bayesian networks. In this subsection, we present a preliminary learning
method. More efficient learning methods are left for further research.

Thm. 16 shows that a rehearsal graph has several Bayesian network counterparts that have the same
skeleton and encode the same conditional independence relations. So by learning a Bayesian network
or a Markov equivalence class of Bayesian networks from data, we can determine the skeleton of
the rehearsal graph. Then we can get a rehearsal graph or a set of rehearsal graphs that cannot be
distinguished from observational data by adding bi-directional edges to the edges whose directions
are not determined. Assuming that the observational distribution factorizes according to a rehearsal
graph and that all conditional independence relations of the distribution are encoded by the rehearsal
graph, Algorithm 2 lists all valid rehearsal graphs. The first three steps of Algorithm 2 are simply the
IC algorithm for Bayesian network learning [12]. Then we list all Bayesian networks and map them
back to rehearsal graphs by replacing directional edges with bi-directional ones.
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Algorithm 2 Learning rehearsal graphs from observational data

Input: Observational distribution P (V).
1: For each pair of variables a and b in V, search for a set Sab such that a ⊥⊥ b | Sab holds.

Construct an undirected graph G such that vertices a and b are connected with an edge if and
only if no set Sab can be found.

2: For each pair of nonadjacent variables a and b with a common neighbor c, check if c ∈ Sab. If it
is, then continue. If it is not, then add arrowheads pointing at c, i.e., a→ c← b.

3: In the partially directed graph that results, orient as many of the undirected edges as possible
subject to two conditions:

(i) Any alternative orientation would yield a new v-structure;
(ii) Any alternative orientation would yield a directed cycle.

4: List all Markov equivalent directed graphs from the partially directed graph. Denote the set of
Markov equivalent graphs with G1.

5: For each listed graph g in G1, build a set of mixed graphs Gg2 by enumerating all possible
combinations of cliques and replace the directional edges therein with bi-directional edges.

6: Check if the graphs in each Gg2 are valid rehearsal graphs. If they are not, remove them from
corresponding Gg2 .

Output: Markov equivalent rehearsal graphs G1 ∪ (∪g∈G1G
g
2 ).

B Candidate Alteration Selection

B.1 Size-1 Alteration

Algorithm 1 in the main text shows the main steps of finding candidate alterations, where details on
finding alteration values that satisfy the performance requirement are omitted. Here we give more
details in Algorithm 3. The main idea is to sort the found intervals in increasing order, then keep
those that appear more than n · τ times. Sorting the array in Line 17 on average costs O(n log n)
time if using quicksort. Other operations cost O(n) time. Thus, the overall average running time of
Algorithm 3 is O(|Zt| · n log n).

B.2 Size-k Alteration

We propose to build a finite candidate set by solving a mixed-integer linear programming problem:

max
e∈{0,1}n′ ,zξ

∑
i

ei

s.t. M(Aix+Biz
ξ + Ciεi)− d ≤ (1− ei)α, i ∈ [n′],

where ei is a binary decision variable that equals 1 if the i-th inequality is satisfied and 0 otherwise,
and α is a constant vector that upper bounds the left-hand side. If the found solution satisfies∑
i ei ≥ n · τ , corresponding zξ will be joined in the candidate set. The above programming is run

for every combination of at most k alteration targets multiple times to obtain multiple alterations. The
hard constraints satisfied by previous programs for a common Zξ are randomly dropped in following
iterations to encourage diverse solutions, thus the n′ ≤ n constraints instead of n.

C Mutual Information Maximization

Here we detail the estimation of the mutual information objective in Eq. (5). We have

I (G,Θ; Zt,Yt |Dt,xt, ξt) = H(Zt,Yt |Dt,xt, ξt)−H(Zt,Yt |G,Θ, Dt,xt, ξt).

In order to estimate the mutual information, we only need to estimate H(Zt,Yt |Dt,xt, ξt) and
H(Zt,Yt |G,Θ, Dt,xt, ξt). We give a detailed estimation procedure in Algorithm 4. The entropy
estimation method ENTROPYESTIMATE that estimates information entropy with samples is used as a
black-box method since various methods are available, e.g., Sricharan et al. [59].

Let g , I (G,Θ; Zt,Yt | Dt,xt, ξt) denote the target optimization function to be used in Bayesian
optimization [22]. A Gaussian process is used to attain the posterior of g. Denote the posterior
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Algorithm 3 Find candidate single alterations

Input: Str = {〈Gi,θi, εi〉}ni=1, Sval = {〈Gi, θi, εj〉}2ni=n+1, τ
1: C ← ∅ . Store candidate alterations
2: for Zi ∈ Z do
3: int1← FIND(Str, Zi, τ) . Training
4: int2← FIND(Sval, Zi, τ)
5: C ← C ∪ {〈Zi, int1 ∩ int2〉} . Validation
6: function FIND(S, Z, τ ) . Find alteration values
7: int← ∅ . Store valid intervals
8: for 〈G,θ, ε〉 ∈ S do
9: [u, v]← solution of M(Ax + Bzξ + Cε) ≤ d . A, B, C are determined by G, θ, Z

10: int← int ∪ {[u, v] ∩∆(Z)}
11: return FILTERINTERVALS(int, dnτe)
12: function FILTERINTERVALS(I, k) . Find elements that appear more than k times in I
13: arr← ∅
14: for [u, v] ∈ I do
15: arr← arr ∪ {(u, 0)}
16: arr← arr ∪ {(v, 1)} . 0 or 1 indicates the value is taken from the left or the right

endpoints of an interval
17: arr← sorted(arr) . Sorted in increasing order with the first element as the key
18: cnt← 0
19: for 0 ≤ i < |arr| do
20: if arr[i][1] = 0 then . If the value is a left endpoint
21: cnt← cnt + 1
22: else
23: cnt← cnt− 1
24: arr[i][1]← cnt . Record the number of intervals that intersect at arr[i][0]

25: rtn← ∅
26: left← NULL, right← NULL
27: for 0 ≤ i < |arr| do . Scan the array and record valid intervals
28: right← arr[i][0]
29: if arr[i][1] ≥ k then
30: if left is NULL then
31: left← arr[i][0]

32: else
33: if left is not NULL then
34: rtn← rtn ∪ {[left, right]}
35: left← NULL
36: return rtn
Output: The found alterations C
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mean and variance at an unseen zl+1 by µg(zl+1) and σ2
g(zl+1) respectively. Given queried points

{z1, . . . , zl}, we use upper confidence bound [60] as a querying criterion to select the next point:

zl+1 = arg max
zl+1∈C(Zξ)

µg(z
l+1) + γ · σg(zl+1),

where γ is a constant and C(Zξ) is the feasible region of Zξ defined by C. We run this optimization
process for every alteration target in C to find the corresponding best alteration values. Finally,
the alteration, including both target variables and values, that has maximum mutual information is
selected as the recommended output.

Algorithm 4 Mutual information estimation

Input: The posterior estimate p(G,θ | Dt), the candidate graph set G, the observed x, the alteration
ξ, the number of samples for estimating an entropy term n, the number of samples for structural
parameters n′.

1: srms← ∅
2: for G ∈ G do
3: for i ∈ [dn · p(G | Dt)e] do
4: Sample θ from p(θ | G,Dt)
5: srms← srms ∪ {〈G,θi〉}
6: samples← ∅
7: for 〈G,θ〉 ∈ srms do
8: Sample z and y from p(z,y | G,θ,x, ξ)
9: samples← samples ∪ {(z,y)}

10: Ĥ1 ← ENTROPYESTIMATE(samples)

11: Ĥ2 ← 0
12: for G ∈ G do
13: entropies← ∅
14: for i ∈ [n′] do
15: Sample θ from p(θ | G,Dt)
16: samples← ∅
17: for i ∈ [n] do
18: Sample z and y from p(z,y | G,θ,x, ξ)
19: samples← samples ∪ {(z,y)}
20: entropies← entropies ∪ {ENTROPYESTIMATE(samples)}
21: cond_entropy ← average of entropies
22: Ĥ2 ← Ĥ2 + cond_entropy · p(G | Dt)

23: Î ← Ĥ1 − Ĥ2

Output: The mutual information estimate Î

D Proofs

In this section, we provide proof for claims in the main text.
Proposition 4. For any 〈G1,θ1〉 and 〈G2,θ2〉 on Xt ∪Zt ∪Yt, if they differ only in describing the
generation of Xt, then for any Xt = xt and alterations ξ on Zt, we have

P (yt | xt, Rh(ξ) ;G1,θ1) = P (yt | xt, Rh(ξ) ;G2,θ2) .

Proof. We have

P(y | x, Rh(ξ);Gi,θi)

=
∑
z

P(z | x, Rh(ξ);Gi,θi)P(y | z,x, Rh(ξ);Gi,θi), i = 1, 2.

Since (G1,θ1) and (G2,θ2) only differ in parameters controlling P(x), we have

P(z | x, Rh(ξ);G1,θ1) = P(z | x, Rh(ξ);G2,θ2),
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and
P(y | z,x, Rh(ξ);G1,θ1) = P(y | z,x, Rh(ξ);G2,θ2).

Combining the above equations gives

P (y | x, Rh(ξ) ;G1,θ1) = P (y | x, Rh(ξ) ;G2,θ2) .

Proposition 5. Let ξ = {(Zai , zai)}ki=1 be a valid alteration where Zai ∈ Zt and zai ∈ ∆(Zai).
Given 〈G,θ, ε〉 and xt, the outcome variables are linear in the alteration values. We have

Yt = Axt + Bzξ + Cε, (8)

where zξ = (za1 , . . . , zak)T . A, B, and C are constant matrices of appropriate shapes and are
uniquely determined by G, θ and altered variables Zξ = {Zai}ki=1.

Proof. The proposition is immediate by noting that if the parent of a set of variables can be described
by

PA = A′x + B′zξ + C′ε,

then
V = βTPA + εV = βTA′x + βTB′zξ + βTC′ε+ εV

can be described in a similar linear form.

Theorem 6. Unless P = NP, finding a k-dimensional zξ ∈ ∆(Zξ) that satisfies
∑n
i=1 I(M(Aix +

Biz
ξ + Ciεi) ≤ d) ≥ n · τ (if there is a valid solution) is not solvable with any algorithm of running

time polynomial in k and n.

Proof. We prove this by contradiction. Assume that the problem is solvable with a subroutine f that
runs in polynomial time. Then, given any infeasible linear system Σ : {Ax ≤ b}, we can find a
feasible subsystem containing as many inequalities as possible by finding a maximized τ that gives a
valid solution for the problem of finding a τ that satisfies at least n · τ inequalities. And the process
of finding a maximized τ can be finished by running a binary search on τ and calling f , which will
be called at most O(log n) times. Thus the overall running time will still be polynomial. However,
finding a maximum feasible subsystem is known to be NP-hard [21], which cannot be solved within
polynomial time if P 6= NP. Therefore we have a contradiction and conclude that the problem does
not admit a polynomial time algorithm.

Theorem 7. Given an observed evidence xt, an alteration ξ, and a desired set S = {y ∈ R|Y| |
My ≤ d}, let Seval = {〈Gi,θi, εi〉}ni=1 be n i.i.d. samples from P(G,θ, ε | Dt). Let {yi}ni=1 be
generated from Rh(ξ) and Seval following the structural equations in Eq. (1). Define no , |{i |
yi 6∈ S}|. Let p̂ , 1− no/n, p, 1− F−1(1− δ/(2n);no + 1, n− no) if no < n otherwise p , 0,
and p̄ , 1 − F−1(δ/(2n);no, n − no + 1) if no > 0 otherwise p̄ , 1, where F−1( · ;α, β) is the
inverse cumulative distribution function of the beta distribution with parameters α and β. For any
δ ∈ (0, 1), with probability at least 1− δ, we have

max
{

p, p̂−
√

ln(2/δ)/2n
}
≤ P (Yt ∈ S|Dt,xt, Rh(ξ)) ≤ min

{
p̄, p̂+

√
ln(2/δ)/2n

}
.

Proof. The proof is mainly based on the scenario approach [23] and adapted from Badings et al. [24].
The desired region for Y is given by S = {y ∈ R|Y| |My ≤ d}. We define a scaled version of S
by

R(λ) =
{

y ∈ R|Y| |My ≤ λd + (1− λ)Mh
}
, (19)

where h ∈ R is a Chebyshev center of S [61]. We have R(1) = S and R(λ1) ⊂ R(λ2) for any
0 ≤ λ1 < λ2. Using Prop. 5, we express each yi with

yi = Aix + Biz
ξ + Ciεi. (20)
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We use the scenario approach to estimate the probability of the happening of undesired Y with the
following convex scenario optimization problem with discarded samples:

min
λ≥0

λ

s.t. yi ∈ R(λ) ∀i ∈ {1, . . . , n} \Q,
(21)

which has a scalar decision variable λ. We denote the optimal solution of the above optimization
program with λ∗|Q|. Q is a subset of samples whose constraints have been discarded according to
the following rule [24, Lem. 1]: The sample removal set Q ⊆ {1, . . . , n} is obtained by iteratively
removing the active constraints from (21). Thus, given N samples and any two removal sets with
cardinalities |Q1| < |Q2|, it holds that Q1 ⊂ Q2. Moreover, any discarded sample i ∈ Q violates
the solution λ∗Q to Eq. (21), i.e. yi /∈ Rj

(
λ∗|Q|

)
, with probability one. When discarding |Q| = no

samples, it holds thatR(λ∗no) ⊆ S . When discarding |Q| = no−1 samples (no > 0),R(λ∗no−1) ⊃ S .

We further assume that given a sample 〈Gi,θi, εi〉 from P(G,θ, ε | Dt), the probability that the
generated yi is on the boundary of any polytope R(λ) for any λ ≥ 0 is zero.

Based on the results of Romao et al. [62, Thm. 5] and Badings et al. [24, Thm. 1], we have

P
{
P
(
y /∈ R(λ∗|Q|)

)
≤ ε
}

= F (ε; |Q|+ 1, n− |Q|), (22)

where F ( · ;α, β) is the cumulative distribution function of the beta distribution with parameters α
and β, |Q| < n. Equivalently, we have

P
{
P
(
y /∈ R(λ∗|Q|)

)
> ε
}

= 1− F (ε; |Q|+ 1, n− |Q|). (23)

Solving 1− F (ε; |Q|+ 1, n− |Q|) = δ
2n , we have

ε = F−1(1− δ

2n
; |Q|+ 1, n− |Q|). (24)

For notational convenience, let Fi(·) = F (·; i+ 1, n− i). We have

P
{
P
(
y /∈ R(λ∗|Q|)

)
> F−1|Q|(1−

δ

2n
)

}
=

δ

2n
. (25)

Using Boole’s inequality, we know that

P

{
n−1⋃
i=0

P (y /∈ R(λ∗i )) > F−1i (1− δ

2n
)

}
≤
n−1∑
i=0

P
{
P (y /∈ R(λ∗i )) > F−1i (1− δ

2n
)

}
=
δ

2
.

(26)
Therefore, we have

P

{
n−1⋂
i=0

P (y /∈ R(λ∗i )) ≤ F−1i (1− δ

2n
)

}
≥ 1− δ

2
. (27)

After observing yis at hand, we replace |Q| by no. Since R(λ∗no) ⊂ S and
⋂n−1
i=0 P (y /∈ R(λ∗i )) ≤

F−1i (1− δ
2n ) implies P

(
y /∈ R(λ∗no)

)
≤ F−1no (1− δ

2n ), we have

P
{
P (y /∈ S) ≤ F−1no (1− δ

2n
)

}
≥ P

{
P
(
y /∈ R(λ∗no)

)
≤ F−1no (1− δ

2n
)

}
≥ 1− δ

2
, (28)

which further gives

P
{
P (y ∈ S) ≥ 1− F−1no (1− δ

2n
)

}
≥ 1− δ

2
. (29)

When no = n, P (y ∈ S) ≥ 0 trivially holds. Thus, p ≤ P (Yt ∈ S | Dt,xt, Rh(ξ)) holds with
probability at least 1− δ

2 . For the other half of the lower bound, we apply Hoeffding’s inequality on bi-
nary variablesDi , I(yi ∈ S). Note that

∑n
i=1Di = no and E(Di) = P (Yt ∈ S | Dt,xt, Rh(ξ)),

we have

P

{
no − n · P (Yt ∈ S | Dt,xt, Rh(ξ)) ≥

√
n

2
ln

2

δ

}
≤ δ

2
, (30)
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that is,

P

{
P (Yt ∈ S | Dt,xt, Rh(ξ)) ≥ p̂−

√
ln(2/δ)

2n

}
≥ 1− δ

2
. (31)

Combining (29) and (31), we have with probability at least 1− δ
2 ,

max

{
p, p̂−

√
ln(2/δ)

2n

}
≤ P (Yt ∈ S | Dt,xt, Rh(ξ)) . (32)

For the upper bound, we adopt a similar approach. From Eq. (22), by noting that P
(
y /∈ R(λ∗|Q|)

)
+

P
(
y ∈ R(λ∗|Q|)

)
= 1, we get

P
{
P
(
y ∈ R(λ∗|Q|)

)
≥ 1− ε

}
= F|Q|(ε). (33)

Substituting F|Q|(ε) with δ
2n , we have

P
{
P
(
y ∈ R(λ∗|Q|)

)
≥ 1− F−1|Q|(

δ

2n
)

}
=

δ

2n
. (34)

Again via Boole’s inequality,

P

{
n−1⋂
i=0

P (y ∈ R(λ∗i )) ≤ 1− F−1i (
δ

2n
)

}
≥ 1− δ

2
. (35)

When no > 0, since R(λ∗no−1) ⊃ S and
⋂n−1
i=0 P (y ∈ R(λ∗i )) ≤ 1 − F−1i ( δ

2n ) implies P (y ∈
R(λ∗no−1)) ≤ 1− F−1no−1( δ

2n ), we have

P
{
P (y ∈ S) ≤ 1− F−1no−1(

δ

2n
)

}
≥ P

{
P
(
y ∈ R(λ∗no−1)

)
≤ 1− F−1no−1(

δ

2n
)

}
≥ 1− δ

2
.

(36)

When no = 0, P (y ∈ S) ≤ 1 trivially holds. Thus,

P (Yt ∈ S | Dt,xt, Rh(ξ)) ≤ p̄ (37)

holds with probability at least 1− δ
2 . Applying Hoeffding’s inequality from the other direction of

Eq. (30), we get

P

{
P (Yt ∈ S | Dt,xt, Rh(ξ)) ≤ p̂+

√
ln(2/δ)

2n

}
≥ 1− δ

2
. (38)

Combining the above results gives the upper bound that holds with probability at least 1− δ
2 :

P (Yt ∈ S | Dt,xt, Rh(ξ)) ≤ min

{
p̄, p̂+

√
ln(2/δ)

2n

}
. (39)

Combining the lower bound (32) and the upper bound (39) gives the overall bound.

E Data Details

E.1 Ride-Hailing Data

We give details about the Ride-Hailing data in this section. The variables included in the generation
process are

• weather: weather condition;
• #user: number of users in the neighborhood;

24



• recommend: recommendation level of the ride-hailing app for a specific route;
• congestion: traffic congestion on the route;
• time: time spent for the ride;
• discount: discount provided by the app;
• rating: user rating for the ride.

The rehearsal graph for the variables is given in Fig. 6. The presumed actionable variables that can be
altered by the app are ‘recommend’ and ‘discount’.

weather

#user

congestion

discount

time

recommend

rating

Xt Zt Yt

Figure 6: The rehearsal graph for ride-hailing data.

E.2 Bermuda Data

We give details about the Bermuda data in this section. The Bermuda data involves a set of environ-
mental variables [57, 58, 37]. The variables included in the generation process are

• Chla: sea surface chlorophyll a;
• Sal: sea surface salinity;
• TA: seawater total alkalinity;
• DIC: seawater dissolved inorganic carbon;
• CO2: seawater PCO2 ;
• Temp: bottom temperature;
• NEC: net ecosystem calcification;
• Light: bottom light levels;
• Nut: PC1 of NH4, NiO2 +NiO3, SiO4;

25



• pHsw: seawater pH
• ΩA: seawater saturation with respect to aragonite.

The rehearsal graph for the variables is given in Fig. 7. The presumed actionable variables that can be
altered are: DIC, TA, ΩA, Chla, and Nut.

Nut

Light

Temp

Sal

DIC

TA

ΩA

Chla

pHsw

CO2

NEC

Xt Zt Yt

Figure 7: The rehearsal graph for Bermuda data.
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