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Abstract

The Transformer architecture is widely applied in sequence modeling applications,
yet the theoretical understanding of its working principles remains limited. In
this work, we investigate the approximation rate results for the Transformer ar-
chitectures on general sequence to sequence target relationships. We begin by
establishing a representation theorem for the target space and introduce a novel
notion of complexity measures to construct approximation spaces. These measures
encapsulate both pairwise and pointwise interactions among input tokens. Based on
this framework, we derive an explicit Jackson-type approximation rate estimate for
the Transformer. This rate sheds light on the underlying structural characteristics
of the Transformer, thereby delineating the types of sequential relationships they
excel in approximating. Notably, our findings on approximation rates facilitate a
concrete comparison between the Transformer and traditional sequence modeling
approaches, such as recurrent neural networks.

1 Introduction

The Transformer architecture, as introduced by Vaswani et al. [30] has become immensely popular
in the field of sequence modeling. Variants such as BERT [8] and GPT [6] have achieved excel-
lent performance, becoming the default choices for natural language processing (NLP) problems.
Concurrently, Dosovitskiy et al. [11] successfully applied the Transformer to image classification
problems by flattening the image into a sequence of patches. Despite its success across various fields
of practical application, many theoretical questions remain unanswered. Among these, we focus on
two essential questions in this work: firstly, the approximation rate of the Transformer on sequence
modeling; secondly, the comparative advantages and disadvantages of the Transformer with recurrent
neural networks (RNNs) on different temporal structures.

The concept of Jackson-type approximation rates is derived from the Jackson Theorem for poly-
nomials [15], and is further elaborated in the work of DeVore [9] for addressing general forward
approximation problems. To illustrate this, consider classic polynomial approximation. It involves
defining an appropriate approximation space, accompanied by specific complexity measures, precisely
the Sobolev space. According to the Jackson theorem, a function with a small Sobolev norm can be
efficiently approximated by a polynomial. We aim to establish similar approximation rate results for
the Transformer. This identifies the type of targets that the Transformer can efficiently learn. We
examine general non-linear sequence-to-sequence target relationships, extending the linear target
form explored in previous studies of the approximation results for linear RNNs and linear temporal
convolution networks [24, 16]. We introduce a novel notion of complexity, establishing a concrete
target space from which approximation rates can be deduced. This enables us to identify the types
of sequential relationships that Transformer can approximate efficiently. Based on our theoretical
analysis, we identify concrete classes of temporal structures where the Transformer outperforms
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the RNNs and vice versa. Our main contributions are summarized as follows: 1. We develop
Jackson-type approximation rate results for single-layer Transformer networks with one attention
head. Our analysis reveals that the approximation capacity is governed by a low-rank structure
within the pairwise coupling of the target’s temporal features. Empirical validation confirms that the
findings observed under theoretical settings also hold true in practical applications. 2. We conduct
a comparative analysis between the Transformer and RNNs, aiming to identify specific types of
temporal structures where one model excels or underperforms compared to the other.

2 Related work

We first review the approximation results of Transformer networks. The universal approximation
property (UAP) of the Transformer architecture is first proved in Yun et al. [33], which is further
extended to Transformers with sparse attention matrices [34]. The above universal results are
developed for a deep Transformer structure. In contrast, Kajitsuka & Sato [17] applying a similar
technique to prove one layer Transformers can achieve UAP by increasing the width. Additionally,
Kratsios et al. [19], Edelman et al. [12], Luo et al. [25] considers the UAP of the Transformer in
various different settings. Giannou et al. [13] considers a special setting regarding expressiveness,
demonstrating that Transformers can represent any computer program. Beyond the UAP results, there
have been developments in specific approximation rate results. Gurevych et al. [14] demonstrated the
rate of the misclassification probability by considering the approximation of hierarchical composition
functions, which are composed of sparse functions. This rate takes into account both the level of
composition and the smoothness of the component functions. Bai et al. [1] and Wang & E [31] explore
target relationships with certain special structures. Additionally, Takakura & Suzuki [29] developed
approximation rates for a function space consisting of infinite-length sequence-to-sequence functions,
which is characterized by the smoothness of the functions. Our approximation rate result steps further
by considering temporal structures, shedding light on how the Transformer model handles temporal
relationships. Apart from the approximation results, numerous intrinsic properties of the Transformer
have been investigated. Dong et al. [10] and Bhojanapalli et al. [4] considers the rank structure of
the attention matrices. Levine et al. [20] examine the correlation between the dependency of input
variables and the depth of the model. The Transformer is a very flexible architecture, such that a
special configuration of parameters can emulate other architectures. For example, Cordonnier et al.
[7], Li et al. [21] showed that attention layers under certain assumptions can perform convolution
operations. However, not all emulations are valid explanations of the working principles of the
Transformer. In this context, definitions of complexity measures and the resulting Jackson-type
approximation rate estimates provide more insight into the inner workings of the architecture. This is
the focus of the current work.

3 Sequence modeling as an approximation problem

We first motivate the theoretical settings of Jackson-type approximation rate results by considering
classic polynomial approximation. Then, we formulate the Transformer as an instance of such an
approximation problem.

Motivation of Jackson-type Approximation Rates Consider two normed vector spaces, X and Y ,
designated as the input and output spaces, respectively. We define the target space C ⊂ YX as a set of
mappings from X to Y that we aim to approximate with simpler functions. The hypothesis space is
denoted by H =

⋃
m H(m), where H(m) represents a sequence of hypothesis spaces. Here,m denotes

the complexity or the approximation budget of these spaces. Hypothesis space H encompasses the
candidate functions used to approximate targets in C. Let α be a constant, we introduce a complexity
measure, denoted as C(α) : C → R, based on the structure of H. The complexity measure is used to
construct an approximation space C(α) := {H ∈ C : C(α)(H) < ∞}, which is usually dense in C.
Then for any H ∈ C(α), the Jackson-type approximation rate is expressed as follows:

inf
Ĥ∈H(m)

∥∥∥H − Ĥ
∥∥∥ ≤ E(C(α)(H),m). (1)

Here, the error bound E(·,m) decreases to zero as m approaches infinity, and the rate of decay is
usually called the approximation rate. In this context, C(α)(H) quantifies the complexity of a target
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H when approximated using H. A smaller value indicates that the target H can be more efficiently
approximated with candidates from H. Consequently, the complexity measure discerns the types of
targets that can be efficiently approximated within the given hypothesis space. Notably, different
hypothesis spaces typically give rise to different complexity measures and approximation spaces.
These variations characterize the approximation capabilities of the hypothesis spaces themselves.

Defining an appropriate approximation space C(α) is essential. Without specific structures, the general
target space C does not provide any rate results. Opting for an approximation space with defined
structures allows for the derivation of approximation rates. Moreover, the property that C(α) is dense
in C ensures that the restriction to C(α) is not overly limiting, preserving the necessary expressiveness
of the space. To illustrate these concepts, we consider polynomial approximation over the interval
[0, 1]. In this case we set X = [0, 1] and Y = R. The target space C = C([0, 1]) is the set of
continuous functions defined on [0, 1]. The hypothesis space comprises all polynomials, expressed as
follows:

H =
⋃
m∈N

H(m) =
⋃
m∈N

{
Ĥ(x) =

m−1∑
k=0

akx
k : ak ∈ R

}
.

According to the Jackson theorem for [15], the Sobolev norm serves as an appropriate complexity
measure, defined as C(α)(H) = maxr=1...α ∥H(r)∥∞. Let C(α) be the approximation space contain-
ing targets with finite complexity measures. Consequently, for H ∈ C(α), we have the following
approximate rate:

inf
Ĥ∈H(m)

∥H − Ĥ∥ ≤ cα
mα

C(H). (2)

Here, cα is a constant depending only on α. This theorem implies that smooth functions with
small Sobolev norms can be efficiently approximated by polynomials. Developing Jackson-type
approximation rates for various sequence modeling hypothesis spaces is crucial for understanding
their differences. Jackson-type results for RNNs, CNNs, and encoder-decoder hypothesis spaces have
been established in Li et al. [24], Jiang et al. [16], Li et al. [23], where complexity measures such
as decaying memory and sparsity were found to influence the approximation rates. In Section 4.1,
we identify appropriate complexity measures regarding the Transformer and develop corresponding
approximation rates. This enables us to discern the essential structures that facilitate efficient
approximation using the Transformer. Furthermore, it allows us to understand how and when the
Transformer architecture differs from traditional sequence modeling architecture RNNs, which we
will discuss in Section 6.

Formulation of Sequence Modeling as Approximation Problems In sequence modeling, we
seek to learn relationships between two sequences x and y. Mathematically, we consider an input
sequence space

X =
{
x : x(s) ∈ [0, 1]d, for all s ∈ [τ ]

}
. (3)

Here, [τ ] := {1, . . . , τ} and τ denotes the maximum length of the input, and we focus on the finite
setting, where τ <∞. Corresponding to each input x ∈ X is an output sequence y belonging to

Y = {y : y(s) ∈ R, for all s ∈ [τ ]} . (4)

We use H := {Ht}τt=1 to denote the mapping between x and y, such that y(t) = Ht(x) for each
t ∈ [τ ]. Define C(X ,Y) to denote the space of continuous mappings between the input and output
space. We may regard each Ht : [0, 1]

d×τ → R as a τ -variable function, where each variable is a
vector in [0, 1]d. Next, we define the Transformer hypothesis space.

The Transformer Hypothesis Space. We consider the following Transformer block retaining most
of the important components.

Ĥt(x) = F̂

(
τ∑

s=1

σ[(WQĥ(t))
⊤WK ĥ(·)](s) ·WV ĥ(s)

)
, (5)

where ĥ = f̂ ◦ x and F̂ : Rmv → R, f̂ : Rd → Rn are two feed-forward networks. The parameter
matrices have dimension WQ,WK ∈ Rmh×n, WV ∈ Rmv×n. The softmax function is denoted as
σ, such that σ[ρ(t, ·)](s) = exp(ρ(t,s))∑

s′ exp(ρ(t,s
′)) . We focus on a simplified architecture: a single-layer
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Transformer with one head. In this work, layer normalization and residual connections are not
taken into account. While this constitutes a simplified setting intended for theoretical analysis, it’s
worth noting that the phenomena observed under the theoretical settings also hold true in practical
applications, as we have demonstrated in Section 5. The approximation budget of the Transformer
depends on several components. We use F̂ (mFF) to denote the class of feed-forward networks used in
the Transformer with budget mFF, which is usually determined by the number of neurons and layers.
Let m = (n,mh,mv,mFF) denote the overall approximation budget. We use H(m) to denote the
Transformer with complexity m. Then, we define the Transformer hypothesis space by

H =
⋃
m

H(m), H(m) =
{
Ĥ : Ĥ satisfies Equation (5) with m

}
. (6)

4 Approximation results

Following the motivation of approximation problems for sequence modeling as discussed in Section 3,
this section discusses the approximation rate results for the Transformer. Firstly, we introduce the
notion of the permutation equivariance property of the Transformer and discuss the role of position
encodings in eliminating it. Next, we define the target space and present the corresponding repre-
sentation theorem. We then establish the complexity measures necessary to form the approximation
space. Our main result Theorem 4.2 presents the approximation rate results.

Permutation Equivariance and Position Encodings Our objective is to approximate a target
relationship H where each H belongs to C(X ,Y). It is important to note that without specific
modifications, the Transformer inherently cannot approximate such targets due to its permutation
equivariance properties. This property implies that permuting the temporal indices of the input
sequence results in a corresponding permutation of the output sequence. More precisely, if p
denotes a bijection on [τ ] representing a permutation of τ objects, a sequence of functions H is
considered permutation equivariant if for all bijections p and inputs x ∈ X , the condition H(x◦p) =
H(x)◦p holds. The Transformer Ĥ within the hypothesis space H is indeed permutation equivariant
(refer to Appendix A for details). Directly applying the Transformer, therefore, yields permutation
equivariant hypotheses, which are inadequate for approximating general sequential relationships
that lack this symmetry. In practical applications, incorporating position encodings is a widely
adopted approach to counteract permutation equivariance [30]. Various methods exist for embedding
positional information. The simplest approach is fixed encoding, which involves mapping x(t)
to a higher-dimensional space and then offsetting each x(t) by distinct distances. Formally, with
A ∈ Rd′×d where d′ ≥ d and a constant or trainable e(t) ∈ Rd′

, position encodings can be expressed
as x(t) 7→ Ax(t) + e(t). For general purposes, it’s sufficient for the encoded input space X (E) to
satisfy the following condition:

X (E) =
{
x : x(s) ∈ I(s) ⊂ Rd, where I(i), I(j) are disjoint, compact∀i, j ∈ [τ ]

}
. (7)

This ensures that for each input x = (x(1), . . . , x(τ)), all tokens x(i) and x(j) are distinct, meaning
no two input sequences are temporal permutations of each other. Define the set I =

⋃
Is to be the

range of the inputs. Moving forward, we assume that position encoding has been applied, allowing us
to consider X (E) as the input space. Consequently, we define the target space to be C = C(X (E),Y),
which denotes the space of continuous mappings between X (E) and Y .

4.1 Jackson-type approximation rate

To derive the Jackson-type approximation rate, it is necessary first to define the complexity measures
to form an approximation space so that approximation rates can be obtained. We begin with the
following representation theorem for the target space.

Representation of the target space C Given that the Transformer inherently captures both pair-
wise and pointwise relations among input tokens through attention and feed-forward components,
respectively, we are motivated to establish the following representation theorem for the target space
C. This theorem demonstrates that every target can be exactly expressed in terms of pairwise and
pointwise relations.
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Theorem 4.1 (Representation of the target space). Consider d-dimensional, length τ input space
X (E) with position encoding added. Then, for any H ∈ C(X (E),Y), there exists continuous
functions F ∈ C([0, 1]n,R), f ∈ C(I, [0, 1]n) and ρ ∈ C(I × I,R) such that for all t ∈ [τ ] we
have

Ht(x) = F

(
τ∑

s=1

σ[ρ(x(t), x(·))](s)f(x(s))

)
, (8)

where n = 2τd+ 1 and σ is the softmax function. The proof is presented in Appendix A.2.

We refer to ρ as the temporal coupling component and F and f as the element-wise components.
It’s important to note that the functions F , f , and ρ may not be uniquely determined. In Appendix
B.1, we explore certain invariant properties associated with Equation 8. Additionally, we provide
illustrative examples in Appendix B.1 where the target explicitly conforms to Equation 8. Leveraging
this representation theorem, we define the following complexity measures for targets H ∈ C.

Temporal Coupling Component Now, we discuss the complexity measures associated with
the temporal coupling term ρ(u, v) that is central to understanding the attention mechanism in
the Transformer. We employ the proper orthogonal decomposition (POD) [3] to decompose the
temporal coupling of ρ. This approach can be viewed as an extension of matrix singular value
decomposition (SVD) to functions of two variables. We have the following decomposition: ρ(u, v) =∑∞

k=1 σkϕk(u)ψk(v),where ϕk, ψk are orthonormal bases for L2(I), and the singular values σk ≥ 0
are arranged in descending order. The bases ϕk and ψk are of optimal choices, ensuring that ρ̂(u, v)
satisfies:

inf
rank(ρ̂)≤r

∥ρ(u, v)− ρ̂(u, v)∥22 =

∞∑
k=r+1

σ2
k, (9)

analogous to the Eckart-Young theorem for matrices, with the rank defined as the number of terms in
the POD decomposition. This implies that the approximation quality of ρ(u, v) can be measured by
the decay rate of its singular values. This motivates our following definition of complexity measure
regarding ρ. Let α > 1/2 be a constant, and {σ(ρ)

i } be singular values of ρ under POD. We define
the complexity measure of H by

C
(α)
1 (H) = inf

F,f,ρ
inf
{
c : σ(ρ)

s ≤ cs−α, s ≥ 1
}
, (10)

where the first infimum is taken over all F, f, ρ such that Equation (8) holds. In particular, C(g)
1 (H) <

∞ if it has a representation in the form (8) with ρ having fast decaying singular values.

Element-wise Component Now, we introduce the complexity measure for approximating the
element-wise components F and f . Let F (mFF) be a hypothesis space comprising feed-forward
neural networks with a budget of mFF, representing parameters such as width or depth. We assume
the existence of β > 0 such that:

inf
f̂∈F(mFF)

∥∥∥f − f̂
∥∥∥ ≤

C
(β)
FF (f)

mFF
β
. (11)

Here, CFF represents a complexity measure of f corresponding to its approximation by F (mFF). It is
essential to emphasize that we are assuming the existence of pre-existing approximation rate results
for the feed-forward component. For instance, in Barron [2], F (mFF) is considered to be one-layer
neural networks with sigmoidal activation, where mFF corresponds to the width of the network. By
adopting this result, we have β = 1/2 and C(β)

FF (f) is a moment of the Fourier transform of f . For
shallow ReLU networks commonly used in Transformers, Klusowski & Barron [18] demonstrate
β = 1/2 + 1/n, where n is the input dimension of the neural network. We maintain the generality
of Equation (11). This enables us to substitute any other relevant estimates from the mentioned
references. This flexibility allows for a broader application of the complexity measure in different
scenarios and settings. Next, we proceed to define the complexity measure for H ∈ H. This measure
considers all the components that need to be approximated using the feed-forward network.

C
(β)
2 (H, k) = inf

F,f,ρ

(
C

(β)
FF (F ) + C

(β)
FF (f) + C

(β)
FF (ρ, k)

)
, (12)
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where C(β)
FF (ρ, k) =

∑k
i=1(C

(β)
FF (ϕi) +C

(β)
FF (ψi)) considers the approximation of the approximation

of the POD bases ϕi and ψi for the target function ρ . Notably, this complexity measure is dependent
on a parameter k, which determines the number of bases we want to consider in the approximation of
ρ. Finally, we define a complexity measure considering the norm of the target.

C0(H) = inf
F,f,ρ

{
KF ∥f∥∞ (sup

i
∥ψi∥∞ + ∥ϕi∥∞), 1

}
, (13)

where KF is the Lipschitz constant of F and ϕi, ψi are POD bases of ρ.

Approximation Rates Combining the complexity measures Equations (10) and (13) and Equa-
tion (12) discussed above, we define the approximation spaces, which consists of targets that have
finite complexity measures:

C(α,β) = {H ∈ C : C0(H) + C
(α)
1 (H) + C

(β)
2 (H, k) <∞, k ≥ 1}. (14)

One can understand this as an analog of the classical Sobolev spaces for polynomial approximation
but adapted to the Transformer hypothesis space. Note that C(α,β) is also dense in general continuous
target space C(X (E),Y) when n sufficiently large (See Appendix A.2). We are now ready to present
the main result of this paper.
Theorem 4.2 (Jackson-type approximation rates for the Transformer). Consider sequences with
a fixed length τ . Suppose the target H ∈ C(α,β) has a representation in the form Equation (8)
with F ∈ C([0, 1]n

′
,R) and f ∈ C(I, [0, 1]n′

). Let the hidden dimension of the Transformer be
n = 2 ∗mh +mv , with mv ≥ n′. Then, we have:

inf
Ĥ∈H(m)

∫
I

τ∑
t

∣∣∣Ht(x)− Ĥt(x)
∣∣∣ dx ≤ τ2C0(H)

(
C

(α)
1 (H)

mh
2α−1

+
C

(β)
2 (H,mh)

mβ
FF

· (mh)
β+1

)
,

where m = (n,mh,mv,mFF) is the approximation budget, and C0, C
(α)
1 C

(β)
2 are complexity

measures of H defined in (13), (10) and (12), respectively. The proof is presented in Appendix A.3.

Here, mh denotes the hidden dimension of the attention mechanism, essentially the size of the
query and key vectors, while mFF represents the complexity measure of the pointwise feed-forward
network employed in the Transformer. We first consider how the attention mechanism ρ̂(x(t), x(s))
approximates the temporal coupling term ρ. By setting [WQ]k = ek and [WK ]k = ek+mh+1, we
can write ρ̂ into ρ̂(x(t), x(s)) = (WQf̂(x(t)))

⊤WK f̂(x(s)) =
∑mh

k=1 ϕ̂k(x(t))ψ̂k(x(s)), where
ϕ̂k, ψ̂k : I → R for k ∈ [mh] are components of f̂ and are represented by the feed-forward
network. This suggests that the approximation of ρ by ρ̂ is a low-rank approximation as discussed
in Equation (9). When we increase mh, the first term in the error rate that considers the POD
decomposition decreases since there are more basis functions included. However, in scenarios where
mFF remains unchanged, the second term in the error bound will increase. It is important to highlight
that this error increment pertains only to the error bound, not to the best approximation error, which
does not necessarily become worse when increasing the approximation budget. When mh increases,
there are more basis functions that need to be approximated by the feed-forward components; thus,
the error bound converges when bothmh → ∞ andmβ

FF/m
β+1
h → ∞. In Appendix B.2, we provide

a synthetic example to illustrate the above discussion.

The complexity measureC2(·) accounts for the quality of approximation using feed-forward networks.
On the other hand, C1(·) is the most interesting part, which concerns the internal structure of the
attention mechanism. It tells us that if a target can be written in form (8) with ρ(u, v), then it can
be efficiently approximated with small mh if ρ(u, v) has fast decaying singular values. This decay
condition can be understood as effectively a low-rank condition on (u, v) 7→ ρ(u, v), analogous to
the familiar concept for low-rank approximations of matrices. These observations provide important
insights into the structure, bias, and limitations of the Transformer.

5 Numerical Demonstrations

In this section, we present numerical examples to demonstrate our approximation rate results. We
begin with synthetic examples, where we can specify the singular value decay patterns, thus validating
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the Jackson-type approximation rates in Theorem 4.2. Then, we turn to a practical example involving
a Vision Transformer (ViT) model applied to the CIFAR10 dataset, where we do not have direct
access to the singular values. We will discuss methods to estimate the singular value decaying pattern.

5.1 Practical Example

We next analyze a practical example, focusing on the Vision Transformer (ViT) model with the
CIFAR10 dataset. In this scenario, we do have direct access to the temporal coupling term ρ of the
target relationship. However, we demonstrate that as we train a sequence of models with increasing
attention dimension mh, the singular values of ρ̂ converges, implying the decaying pattern of ρ. Our
first step is to estimate the rank of ρ̂ from sampled data. Subsequently, we examine the singular value
decay pattern, and the error changes when altering the attention head size mh.

(a) Estimated singular values (b) Singular values for different
mh

(c) Training Errors

Figure 1: (a) is the estimated singular value of the attention matrix over a set of inputs for mh = 64.
The violin plot shows the distribution of each singular value. (b) plots the estimated singular values
for models with different mh. (c) plots the training error against mh.

Estimate the Rank of ρ̂ Given a trained model, it is hard to directly compute the rank of ρ̂(u, v).
Instead, we examine the attention matrix ρ̂(x) ∈ Rτ×τ where [ρ̂(x)]t,s = ρ(x(t), x(s)). This is
essentially a sample from ρ̂. By analyzing the rank of these sampled matrices, we can estimate the
rank of ρ̂. According to Braun [5], the singular values of the matrix ρ̂(x) exhibit the same decay
pattern as those of ρ̂(u, v). Consequently, we can approximate the singular values of ρ̂(u, v) by
averaging the singular values of ρ̂(x) across various inputs. In Figure 1(a), we numerically estimate
the singular values of ρ̂ in the ViT-B 16 model [11]. We observe that the singular values tend to be
more concentrated, suggesting that we can effectively estimate the rank of ρ̂(u, v) by evaluating it at
sampled inputs.

We next estimate the singular value decaying pattern of the temporal coupling term ρ in the target.
In Figure 1(b), we analyze the singular values of the ρ̂ for ViT models with varying values of mh.
We estimate the singular values by averaging over a set of inputs. We observe that as mh increases
and reaches a sufficiently large value, the decaying pattern of the singular values starts to converge.
As an example, Figure 1(b) plots the estimated singular values for the first head of the last layer for
models with different mh. This convergence suggests that the rank of the attention matrix becomes
representative of the actual rank of ρ in the target. Consequently, it suggests the presence of a
low-rank structure in real-world datasets. In Figure 1(c), we plot the training error as an estimation of
the approximation error. The plot reveals that the error decreases as mh increases, following a power
law decaying pattern O

(
1/m0.27

h

)
. This indicates that the target indeed exhibits a low-rank structure,

and the pattern of error decay aligns with our approximation rate presented in Theorem 4.2. This
illustrates that while our theorem is formulated based on a simplified scenario, the phenomenon of
low rank is also observable in real-world datasets and models.

6 Comparison with RNN

Based on the approximation results in Theorem 4.2, this section presents a comparison between the
Transformer and RNN. Our comparison centers on how each model is affected by the alterations in
the temporal structures of sequential relationships. We primarily investigate two distinct temporal
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structures: temporal ordering and temporal mixing, as they have varying impacts on the performance
of each architecture. Our approach involves manipulating the temporal structures within the sequential
relationships and evaluating how each architecture is affected by these changes. Proof are presented
in Appendix D.2 and Appendix D.3.

6.1 Temporal Ordering Structure

We first analyze how the Transformer and RNN handle the change in temporal ordering of the
sequential relationship. Empirically, it is observed that in certain contexts, the ordering of inputs
does not significantly impact the relationships. For instance, in NLP applications, altering the word
order in a sentence often does not drastically change its meaning. Similarly, in the ViT model, the
arrangement of image patches typically does not substantially affect the outcome. However, in
specific applications such as time series analysis, temporal ordering plays a crucial role, as the target
relationships are governed by the ordering of the sequence. To alter the temporal order of target H ,
we apply a fixed permutation p and define the new target as H̃t(x ◦ p) = Ht(x). This permutes the
input but keeps the output unchanged, resulting in a change to the temporal ordering.

We start by considering the RNN, which is affected by the change in temporal ordering. As demon-
strated in Li et al. [22], a linear RNN is represented by the form Ĥt(x) =

∑
s c

⊤eWsUx(t − s).
When we employ it to approximate linear targets represented by Ht(x) =

∑
s ρ(s)x(t − s), the

complexity measures of the RNN CRNN(H) is determined by both decay speed and magnitude of
ρ(s). We use CRNN to denote the approximation space for the RNN. (See Appendix D.1). We next
show that the RNN is affected by the change in temporal ordering.
Proposition 6.1. Let H ∈ CRNN and p be a fixed permutation, such that there exists t′ with p(t′) > t′.
Suppose H̃ is defined by H̃t(x ◦ p) = Ht(x). Then H̃ /∈ CRNN.

This proposition shows that the altered target H̃ no longer belongs to the approximation space for
RNN. This lies in the fact that RNN can only handle causal targets, where y(t) does not depend on
future inputs. However, the permuted target x̃ is no longer causal, making the RNN incapable of
learning such relationships. We next show that the Transformer, in contrast, remains unaffected by
changes in temporal ordering.

Proposition 6.2. Let H ∈ C(α,β) and p be a fixed permutation. Suppose H̃ is defined by H̃t(x◦p) =
Ht(x). Then H̃ have same complexity measures with H for the complexity measures C0, C1, C2

defined in Equation (13),(10) and (12).

This proposition shows that the altered target H̃ maintains the same complexity measures as the
original target. This observation implies that the Transformer’s approximation capability is not
affected by alterations in temporal ordering. This point is further substantiated by our testing of
the Transformer on real-world datasets, as illustrated in Table 1. We consider the ViT model on the
CIFAR10 dataset and the base Transformer structure [30] on the WMT2014 English-German dataset.
To alter the temporal ordering of the target relationship, we fix a permutation of indices denoted as
p and apply it to all inputs while keeping the output unchanged. The experimental results provide
evidence that the performance of the Transformer is unaffected by the temporal ordering of the target
relationships.

CIFAR10 (Acc.) ENG-DE (BLUE)
Original 0.98 26.85
Altered 0.96 25.91

Table 1: Numerical results of the Transformer on original and altered targets. The altered target is
constructed by permuting the entire input dataset while keeping the output unchanged.

6.2 Temporal Mixing Structure

In this section, we explore how mixing elements from different time indices can affect the performance
of the Transformer and RNN. Temporal mixing refers to the idea of blending information from various
time indices, often through operations like convolution, which can alter the temporal structure. To
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illustrate, consider a linear relationship represented as Ht(x) =
∑

s ρ(s)x(t − s). Now, imagine
we apply a weighted sum of the input sequence x using a filter θ to get an altered input. We
denote this operation as x̃ = θ∗x, where (θ∗x)[t] =

∑l−1
s=0 θ(s)x(t + s). This mixes the

information in the sequence from different time indices. In this case, we define the altered target as
H̃t(x) = Ht(θ∗x) =

∑
s ρ̃(s)x(t− s), where ρ̃ = θ∗ ρ is the altered kernel (See Appendix D.3).

This scenario often arises in signal processing and data analysis. For example, when dealing with a
noisy input signal x, one capproach is to apply a moving average filter to smooth it out. This filtering
process involves mixing information from different time indices, which can significantly affect the
behavior of target relationships. In the following sections, we will explore how such temporal mixing
affects the temporal structures in sequential relationships. We begin by examining the linear RNN.

Proposition 6.3. Let H ∈ CRNN associated with representation ρ, such that |ρ(s)| ≤ e−
s
γ for some

γ > 0. Let θ be a length l filter such that ∥θ∥1 ≤ 1. Suppose H̃ is defined by H̃t(x) = Ht(θ∗x).
Then we have both CRNN(H) ≤ γ and CRNN(H̃) ≤ γ, where CRNN is the complexity measure of the
RNN (See Equation (75)).

This proposition shows that under temporal mixing θ with certain conditions, the complexity measure
of the altered target H̃ does not worsen. As a result, the performance of the RNN is unaffected in such
cases. However, performance of the Transformer can be impacted by temporal mixing in the target
relationship. Consider H ∈ C(α,β) and an altered target H̃t(x) = Ht(θ∗x). This alteration can
affect the complexity measures for F̃ , f̃ and ρ̃ in H̃ . In Appendix D.3, we present an example where
the rank of ρ̃ increases compared to ρ, leading to a performance drop in the Transformer. Numerical
results in Table 1 also indicate that temporal mixing influences the Transformer’s approximation
capability. Preprocessing the input to mitigate this temporal mixing could potentially enhance
performance, we leave this as a future direction. The following numerical examples demonstrate the
above discussions. We conduct numerical experiments to substantiate the discussions above. These
experiments focus on a linear target relationship defined as Ht(x) =

∑
s e

−sx(t− s). To manipulate
the temporal ordering, we apply permute the function e−s. Additionally, for introducing temporal
mixing, the input is convolved with a randomly generated filter. Both the RNN and the Transformer
are employed to learn these targets. Detailed experimental settings are discussed in the Appendix C.
The results are presented in Table 2. The bold font indicates a performance drop in the architecture
under the corresponding modification of temporal structures. It is observed that the performance of
the Transformer remains unaffected by changes in the temporal ordering structure; however, it is
impacted by temporal mixing. In contrast, the RNN exhibits opposite behaviors. This highlights
that neither architecture consistently outperforms the other, as they each adapt to different types of
temporal structures.

Temporal Ordering Temporal Mixing
RNN Trans. RNN Trans.

Original 1.02e−7 2.18e−5 1.02e−7 2.18e−5
Altered 3.57e−2 2.51e−5 1.58e−7 2.39e−4

Table 2: The table presents the MSE values for both RNN and the Transformer under different
alterations of temporal structures.

7 Conclusion

In this paper, we have developed Jackson-type approximation rates for the Transformer in a simplified
setting. An important outcome of our work is the identification of complexity measures and approx-
imation space defined in Equation (14). This, in turn, enables us to derive explicit Jackson-type
approximation rate results in Theorem 4.2. Our rate results suggest that the Transformer performs
well when the temporal coupling of the target exhibits a low-rank pattern. The experiments presented
in Section 5 showcase the existence of low-rank patterns in real-world applications. Furthermore,
the comparisons with RNNs underscore the specific temporal structures that each model handles
efficiently. Future research directions involve extending the analysis to multi-headed attention and
deeper Transformers. Additionally, we aim to investigate the potential benefits of removing temporal
mixing in the input to enhance the performance of the Transformer.
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A Proof of Theorems

A.1 Permutation Equivariance of the Hypothesis Space H

Let p : [τ ] → [τ ] be a permutation. Let’s consider an Ĥ ∈ H with permuted inputs:

Ĥt(x ◦ p) = F̂

(
τ∑

s=1

σ[(WQf̂(x(p(t))))
⊤WK f̂(·)](p(s)) ·WV f̂(x(p(s)))

)
, (15)

Since the permutation of index s does not affect the sum, we have

= F̂

(
τ∑

s=1

σ[(WQf̂(x(p(t))))
⊤WK f̂(·)](s) ·WV f̂(x(s))

)
, (16)

= Ĥp(t)(x). (17)

This shows that the Transformer hypothesis H is permutation equivariant.

A.2 Density of the Target Space C

In this section, we show that the target space C defined in Equation (8) is dense in the general
continuous target space C(X (E),Y). This ensures that the space defined is general enough to
approximate arbitrary continuous targets.

To begin with, we first introduce the following representation theorem for multivariate functions.

Theorem A.1 (Kolmogorov Representation Theorem). [26] Let I1, . . . , Iτ be compact d dimen-
sional metric spaces. Then there are continuous functions ψqs : Is → [0, 1] and continuous function
gq : [0, τ ] → R, such that any continuous function f :

∏
Ii → R can be represented as

f(x1, . . . , xτ ) =

2τd∑
q=0

gq

(
τ∑

s=1

ψqs(xs)

)
. (18)

This theorem states that any τ variable functions can be decomposed into superpositions of one
variable function.

Now, we discuss how the pointwise functions on a sequence can apply different mappings on different
time indices.

Proposition A.2. Suppose we have τ variables in disjoint domains, where x1 ∈ I1, ·, xτ ∈ Iτ and
I1, . . . , Iτ are all disjoint. We consider the following vector-valued function

f(x1, . . . , xτ ) = (f1(x1), . . . , fτ (xτ )), (19)

where fs : Is → R for s ∈ [τ ]. We can indeed define a pointwise function g :
⋃

Is → R to represent
f . Since all Is are disjoint, we can define a piecewise function g, where g(xs) = fs(xs) holds for all
s ∈ [τ ].

This proposition demonstrates that for a sequence input x with appropriate positional encodings,
where x(i) and x(j) belong to disjoint sets, a pointwise function can represent distinct mappings for
these elements. We are now ready to present the following theorem.

Theorem A.3. Consider d-dimensional, length τ input space X (E) with position encoding
added. Then, for any H ∈ C(X (E),Y), there exists continuous functions F ∈ C([0, 1]n,R),
f ∈ C(I, [0, 1]n) and ρ ∈ C(I × I,R) such that for all t ∈ [τ ] we have

Ht(x) = F

(
τ∑

s=1

σ[ρ(x(t), x(·))](s)f(x(s))

)
, (20)

where n = 2τd+ 1 and σ is the softmax function.
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Proof. Based on the representation for continuous function Theorem A.1, we can decompose H into

Ht(x) =

2τd∑
q=0

g(t)q

(
τ∑

s=1

ψq,s(xs)

)
, (21)

where ψ(τ)
q,s : Is → [0, 1] and g(t)q : [0, τ ] → R are continuous functions. We next construct F, f and

ρ to make H satisfy this form. Firstly, since Is are disjoint we can define proper piecewise function

ρ such that σ[ρ(x(t), ·)](x(s)) =

{
2

τ+1 t = s
1

τ+1 t ̸= s
, which simplifies Equation (8) to

Ht(x) = F

(
1

τ + 1

(
f(x(t)) +

τ∑
s=1

f(x(s))
))

. (22)

Next, based on Proposition A.2, we let the pointwise function f : I → [0, 1]n to apply different
mappings for each x(s), such that

f : x(s) 7→
(
ψ̂0,s(xs), . . . , ψ̂2τd,s(xs), bs

)
, (23)

where bs ∈ [0, 1] are different constants. We then have that

f(x(t)) +

τ∑
s=1

f(x(s)) =

(
ψ̂0,t(xt) +

τ∑
s=1

ψ̂0,s(xs), . . . , ψ̂2τd,t(xt) +
τ∑

s=1
ψ̂2τd,s(xs), bt +

τ∑
s=1

bs

)
.

(24)

Here, bt performs as a shifting to make the range of Equation (24) disjoint for different t. Again,
based on Proposition A.2, we can define F to have individual mappings for different t. We first define
F1 : [0, τ + 1]n → [0, τ ]n to be

F1 : u(t) 7→
(
u1(t)− ψ̂0,t(xt), . . . , u2τd+1(t)− ψ̂2τd,t(xt), un(t)−

τ∑
s=1

bs

)
, (25)

where ui denotes the i-th dimension of u. Next, define F2 : [0, τ ]n → R to be

F2 : u(t) 7→
2τd∑
q=0

g(t)q (uq(t)) . (26)

Finally, let F (u) = F2 ◦ F1((τ + 1)u). Substitute into Equation (22) we get that

Ht(x) =

2τd∑
q=0

g(t)q

(
τ∑

s=1

ψq,s(xs)

)
. (27)

This theorem shows that the target space C is, in fact, a representation of the general continuous target
space C(X (E),Y). In particular, since I is a compact metric space, the complexity measures of each
component g(s)q and ψq,s used in the construction of H have finite complexity measures C0, C1 and
C2. This implies that the approximation space C(α,β) is also dense.

A.3 Proof of Jackson-type approximation rate Theorem 4.2

Now, we present the proof of the Jackson-type approximation rates.

Lemma A.4. The following inequality will be used to prove the theorem.∣∣∣ab− âb̂
∣∣∣ ≤ |a| |b− b̂|+ |b̂||a− â| (28)

≤ |a| |b− b̂|+ |b| |a− â|+ |a− â| |b− b̂| (29)
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Proof. Proof of Theorem 4.2 Since there are various components in the model, we will consider each
of them separately. Firstly let’s consider the approximation of F .

Let

ht(x) =

τ∑
s

σ(ρ(x(t), x(s)))f(x(s)) (30)

and

ĥt(x) =

τ∑
s

σ(ρ̂(x(t), x(s)))f̂(x(s)) (31)

we have ∣∣∣F (h)− F̂ (ĥ)
∣∣∣ = ∣∣∣F (h)− F (ĥ) + F (ĥ)− F̂ (ĥ)

∣∣∣ (32)

≤ KF

∣∣∣h− ĥ
∣∣∣+ ∣∣∣F (ĥ)− F̂ (ĥ)

∣∣∣ . (33)

Let’s consider
∣∣∣F (ĥ)− F̂ (ĥ)

∣∣∣ first. Since I is a compact domain and ĥ is continuous, its range

ĥ(I) is a compact set. For all x ∈ ĥ(I) we have
∣∣∣F (ĥ(x))− F̂ (ĥ(x))

∣∣∣ ≤ ∥F − F̂∥L∞(ĥ(I)). This
implies that

τ∑
t

∫
I

∣∣∣F (ĥt(x))− F̂ (ĥt(x))
∣∣∣ dx ≤

τ∑
t

∫
I

dx ·
∥∥∥F − F̂

∥∥∥
L∞(ĥ(I))

(34)

= τ∥I|
∥∥∥F − F̂

∥∥∥
L∞(ĥ(I))

(35)

where |I| denotes the volume of I. Recall that ĥt(x) =
∑τ

s σ(ρ̂(x(t), x(s)))ρ̂(x(s)), we may
assume the parameters of f̂ is bounded such that f̂(x(s)) ⊂ [0, 1]. By the property of Softmax we
have ĥ(I) ⊂ [0, 1], thus,

≤ τ |I|
∥∥∥F − F̂

∥∥∥
L∞([0,1])

≤ τ
∥∥∥F − F̂

∥∥∥ . (36)

Next, let’s consider the first term of (32),∣∣∣h− ĥ
∣∣∣ ≤ τ∑

s

∣∣∣σ(ρ(xt, xs))f(xs)− σ(ρ̂(xt, xs))f̂(xs)
∣∣∣ (37)

≤
τ∑
s

|f | |σ(ρ(xt, xs))− σ(ρ̂(xt, xs))|+ |σ(ρ̂(xt, xs))|
∣∣∣f − f̂

∣∣∣ (38)

Since Softmax is Lipschitz continuous and bounded by 1, we have that

≤
τ∑
s

|f | |ρ− ρ̂|+
τ∑
s

∣∣∣f − f̂
∣∣∣ . (39)

The second term is an approximation with neural networks∫ τ∑
t,s

∣∣∣f(xs)− f̂(xs)
∣∣∣ dx ≤ τ2

∥∥∥f − f̂
∥∥∥ . (40)

Now we remain to derive a bound for |ρ− ρ̂|. Let ρ̃ be a mh term truncation of POD expansion of ρ,
then

|ρ− ρ̂| = |ρ− ρ̃+ ρ̃− ρ̂| (41)
≤ |ρ− ρ̃|+ |ρ̃− ρ̂| . (42)
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The first term is the error estimates using POD, which says that∫ τ∑
t,s

|ρ(xt, xs)− ρ̃(xt, xs)|2 dx = τ2 ∥ρ− ρ̂∥22 (43)

≤ τ2
∞∑

i=mh+1

σ2
i . (44)

The second term is again approximation with neural works, which we have
mh∑
i=1

∣∣∣ϕiψi − ϕ̂iψ̂i

∣∣∣ ≤ mh∑
i=1

|ϕi| |ψi − ψ̂i|+ |ψi|
∣∣∣ϕi − ϕ̂i

∣∣∣+ ∣∣∣ϕi − ϕ̂i

∣∣∣ |ψi − ψ̂i| (45)

Thus, combining all the inequalities above, we have that∫ τ∑
t

∣∣∣Ht(x)− Ĥt(x)
∣∣∣ dx ≤ (46)

KF sup |f |τ2
( ∞∑

i=mh+1

σ2
i +

mh∑
i=1

sup |ϕi|
∥∥∥ψi − ψ̂i

∥∥∥+ sup |ψi|
∥∥∥ϕi − ϕ̂i

∥∥∥+ ∥∥∥ϕi − ϕ̂i

∥∥∥∥∥∥ψi − ψ̂i

∥∥∥)
(47)

+ τ2
∥∥∥F − F̂

∥∥∥+ τ2
∥∥∥f − f̂

∥∥∥ (48)

By substituting the complexity measure of H to R.H.S., we have that

R.H.S. ≤ τ2C0(H)

(
C

(α)
1 (H)

m2α−1
h

+
C

(β)
2 (H)

mβ
FF

· (mh)
β+1

)
. (49)

This completes the proof.

B Extra discussions

B.1 Numerical Examples of the Target Form Equation (8)

In this section, we provide numerical examples that follow the target form Equation (8):

Ht(x) = F

(
τ∑

s=1

σ[ρ(x(t), x(·))](s)f(x(s))

)
.

This form, in fact, is not a unique representation; in other words, for H1 = H2 we may not have
F1 = F2, f1 = f2 and ρ1 = ρ2. However, we have the following propositions that characterize the
invariant properties of the target form.
Proposition B.1. Suppose H1 and H2 are in the form of Equation (8), then the following properties
hold.

1. If H1(x) = H2(x) holds for all x, then F1 ◦ f1 = F2 ◦ f2.

2. Suppose σ is hard-max function. For non constant H1,H2 ∈ C̃, if H1(x) = H2(x) holds
for all x, then argmax

x(s)

[ρ1(x(t), x(s))] = argmax
x(s)

[ρ2(x(t), x(s))] if the argmax is unique

and F1 ◦ f1, F2 ◦ f2 are injections.

3. Suppose σ is softmax function. For non constant H1,H2, if H1(x) = H2(x) holds for
all x and ρ1, ρ2 are unbounded, then argmax

x(s)

[ρ1(x(t), x(s))] = argmax
x(s)

[ρ2(x(t), x(s))]

if the argmax is unique and F1 ◦ f1, F2 ◦ f2 are injections.
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Proof. By considering a constant input sequence x = (x, . . . , x), we get F1 ◦ f1(x) = F2 ◦ f2(x)
for all x.

Suppose argmax[ρ1(x(t), x(s))] = c1 and argmax[ρ2(x(t), x(s))] = c2, then H1(x) = H2(x)
implies F1 ◦ ρ1(c1) = F2 ◦ ρ2(c2). By the injection assumption, we have c1 = c2, which implies the
argmax are equal.

When the normalization is softmax, since ρ is unbounded, we consider a sequence of inputs {x(i)}
such that the ρ(x(i)(t), x(i)(s)) goes to infinity, which became the same as the previous hard-max
case.

Although these properties need to satisfy certain conditions to be theoretically correct, we empirically
found they generally hold true in real applications.

Next, we demonstrate these concepts through numerical examples by utilizing the Transformer model
to learn different targets. We consider the following simplified version of a single layer Transformer

Ĥt(x) = F̂
(
WV f̂(x) · σ[(WQf̂(x))

⊤WK f̂(x)]
)
. (50)

Here, x ∈ Rd×τ is the input, F̂ , f̂ are two nonlinear mappings applied column-wise, and σ is the
softmax function applied column-wise to the matrix.

Nearest point to a set In this example, we consider two sets of points U ⊂ Rd and V ⊂ Rd as
inputs. For each point ut ∈ U , we aim to determine the nearest point from set V . More specifically,
we define an input sequence x ∈ X ⊂ R2d×τ in the form x(t) = (ut, vt) ∈ R2d, where ut and vt
are two d-dimensional points belonging to point set U and V , respectively. The output is defined as

y(t) = argmin
v∈V

|u(t)− v|. (51)

This can be rewritten as

y(t) =

τ∑
s=1

σH [−|u(t)− v(·)|](s)v(s), (52)

(53)

where σH : Rτ → Rτ is the hard-max function. Note this equation conforms with the form in
Equation (8) with F ◦f begin identity and ρ(u, v) = |u−v|. For the numerical example, we consider
U, V ⊂ R2 and each have 6 points, and train a Transformer model to learn this target and examine
the learned model.

(a) Attention matrix (b) Graph recovered by the model (c) Scatter plot of F̂ ◦ f̂

Figure 2: For Figures (a) and (b) we examine a particular instance of the input x. Figure (a) plots the
attention matrix A, while Figure (b) illustrates the learned relationships, with green points and red
points representing points from set U and V , respectively. Figure (c) is the scatter plot of F ◦ f(x)
for randomly generated inputs x.

In Figure 2(a), we plot the attention matrix A of a particular instance of the input x. For Figure 2(b),
we visualize the point set U, V based on their coordinates and establish connections according
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to the values in A. Specifically, two points ui and vj are connected based on the value of Aij .
This visualization reveals exactly that each green point in set U is linked to the nearest point in V ,
demonstrating the model’s ability to recover the target relationship accurately. Furthermore, for the
target form Equation (52), F ◦ f in this case is an identity function. As shown in Figure 2(c), F̂ ◦ f̂
is also found to learn an identity function. This observation is in accordance with Proposition B.1,
despite the theoretical assumptions that may not fully apply.

Weighted average by weight In this scenario, we are given sequences of point masses as inputs.
Our objective is to compute the center of gravity for each sequence. These point masses are in Rd

space, each with a mass m ∈ R.

Consider a sequence containing τ points. We extend this to a sequence of τ + 1 points by adding an
extra point xpred /∈ X at the beginning of the sequence, serving as a prediction token. Consequently,
the input sequence is represented as:

x = (xpred,

(
x1
m1

)
, . . . ,

(
xτ
mτ

)
). (54)

The corresponding output sequence is formulated as:
y = (|x̄|, |x1|, . . . , |xτ |), (55)

where xpred is mapped to x̄, and the other points remain unchanged. | · | denotes the Euclidean norm.
The center of gravity x̄ is defined by the equation:

x̄ :=

τ∑
s=1

ms∑
s′ ms′

xs. (56)

We may consider several sequence segments of point masses, denoted as x1 to xn, which may vary
in length. These sequences are concatenated to form an input sequence x. Correspondingly, the
output y concatenates y1 to yn.

As an example, consider the following input-output pair:

x = (xpred,

(
x1
m1

)
,

(
x2
m2

)
,

(
x3
m3

)
, xpred,

(
x4
m4

)
,

(
x5
m5

)
). (57)

y =

(∣∣∣∣∣
∑3

s=1msxs∑3
s′=1ms′

∣∣∣∣∣ , |x1|, |x2|, |x3|,
∣∣∣∣∣
∑5

s=4msxs∑5
s′=4ms′

∣∣∣∣∣ , |x4|, |x5|
)
. (58)

In this example, the output sequence y includes the norm of the computed centers of gravity for each
concatenated segment of the input sequence x, where each segment is separated by the prediction
token xpred. This can be formulated as target form Equation (8) such that

y(t) =


∥∥∥∥∥ ∑s∈Ix

ms∑
s′∈Ix

ms′
x(s)

∥∥∥∥∥ x(t) = xpred∥∥∥∥ τ∑
s=1

1s=t x(s)

∥∥∥∥ otherwise

, (59)

where Ix denotes the index of the sequence segment corresponding to xpred. The weighted output here
depends on the prediction token, such that it only takes the weighted average within the corresponding
sequence. For numerical illustration, we consider input x of length 10, containing sequence segments
of length at least 2. We apply the single-layer Transformer model to learn this target.

In Figure 3, we analyze an input x comprising two sequence segment, x1 and x2, with lengths of
3 and 5, respectively. In this scenario, x(0) and x(5) are prediction tokens. The attention matrix
behaves as expected: the outputs y(0) and y(5) are influenced predominantly by the points within
their respective sequences, and the values are approximately the normalized weight. Furthermore,
since the remaining outputs are the same as the inputs, the attention matrix values for these elements
are confined to the diagonal, which means that the output at that point is only determined by itself.

Furthermore, in Figure 3(c) we observe that F̂ ◦ f̂ can successfully recover F ◦ f in the target which
is a norm of the R2 vector.
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(a) Attention matrix (b) Graph recovered by the model (c) Contour plot of F̂ ◦ f̂

Figure 3: Figure (a) plots the attention matrix A, while Figure (b) is the illustration of the learned
relationship. In this instance, there are two sequences, x1 and x2, each connected to their respective
predictions. The color of the connecting lines represents the corresponding values in A. Figure (c)
presents the contour plot of F ◦ f(x), generated for a set of random inputs x.

Weighted average by selection The previous calculated the weighted average by specifying the
weight of each point. Now, we consider another way to calculate a weighted average where we
specify a subset of points we are going to take the average. Suppose we have a length τ sequence
of Rd vectors v ∈ Rd×τ . We also have a sequence of vectors s ∈ [τ ]k×τ consisting of sequences
of indices. We stack v and s to form the input sequence x ∈ R(d+k)×τ . This extends the qSA task
proposed in Sanford et al. [27].

The output y(t) is defined as

y(t) =
1

k

∑
s∈s(t)

vs. (60)

This can be written in the target form Equation (8) such that F ◦ f is identity. Depending on the
frequency of s appears in the index vector s(t), we have that

ρ(x(t), x(s)) ∈
{
0,

1

k
,
2

k
, . . . , 1

}
(61)

As an example, we have the following input-output pairs.

v = (v1, v2, v3),

s =
((1

1
2

)
,

(
1
2
3

)
,

(
3
3
3

))
.

y =
1

3

(
2v1 + v2, v1 + v2 + v3, 3v3

)
.

(62)

In our numerical experiments, we set τ = 8, d = 2, and k = 3. This configuration implies that both
the input and output sequences have a length of 8, and the output y(t) is computed as the average
of three inputs, as indices designated by s(t). For this particular setting we have ρ ∈ {0, 12 ,

2
3 , 1}.

Again, we use a single-layer transformer model to learn this target.

In Figure 4 we examine a particular input, where

s =
((4

5
5

)
,

(
4
4
4

)
,

(
1
1
7

)
,

(
5
5
5

)
,

(
0
3
7

)
,

(
0
6
7

)
,

(
2
2
2

)
,

(
2
3
4

))
. (63)

In Figure 4(a), we observe that the attention matrix accurately reconstructs ρ, as demonstrated in
Equation (61). Figure 4(b) illustrates the graph representation of this input-output correlation based
on the matrix A. In this graph, an output i and an input j are connected by the value of Aij . The
figure highlights the model’s capability to recover the relationship: Output y(1), y(3), y(6) each rely
on a singular input value, output y(0), y(2) are calculated as the average of two values, and output
y(4), y(5), y(7) each represent an average over three values.
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(a) Attention matrix (b) Graph recovered by the model (c) Contour plot of F̂ ◦ f̂

Figure 4: Figure (a) plots the attention matrix A, while Figure (b) illustrates the learned relationship.
The points in different colors refer to the input and output, respectively. They are connected based on
the value of A. Figure (c) presents the scatter plot of F ◦ f(x), generated for a set of random inputs
x.

In summary, these examples demonstrate tasks that follow the form presented in Equation (8).
Moreover, the numerical experiments validates Proposition B.1, where F ◦ f is always the same, and
the attention matrix recovers the desired weights.

B.2 Synthetic Examples

(a) σk =

{
k−0.55 k ≤ r

0 k > r
(b) σk =

{
k−1 k ≤ r

0 k > r

Figure 5: We consider two class of ρ with different singular value decay rate α as indicated above.
Here, r denotes the rank of the target. For each (a) and (b), we consider three targets with ρ having
different ranks, where r = 2, 6,∞. The figure plots the training error against mh. Each colored line
corresponds to a target with rank r as indicated in the legend. The grey dotted line plots m−(2α−1)

h .

The Jackson-type approximation rate in Theorem 4.2 has the following prediction. For sequence
relationships admitting a representation Equation (8), if its rank r is finite, then perfect approximation
is possible as long as mh ≥ r with mFF large enough. If r = ∞, then the approximation error is
determined by decay of σk. Concretely, if σk ∼ k−α, then the error decays likem−(2α−1)

h +constant,
provided mFF is sufficiently large. We numerically verify the prediction by constructing a set of
targets using Equation (8). In this specific example, we set both F and f as the identity function.
The temporal coupling term ρ(u, v) is formulated using an orthonormal bases where ϕi, ψi ∈
{
√
2 sin 2iπx : i ≥ 1}, accompanied by singular values with various decaying patterns. Subsequently,

we trained the Transformer as defined in Equation (5) to learn these targets. Figure 5 plots the training
error against mh, where (a) and (b) correspond to targets with different singular value decay patterns.
We also consider different rank r of the targets as plotted using lines with different colors. The error
decay rates of (a) and (b) are different, which follows the decay rate determined by that of the singular
values. Furthermore, for a fixed mh, the error increases with the target’s rank. The experiment results
are consistent with our estimates in Theorem 4.2.
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C Experiment settings

In this section, we summarize the settings for the numerical experiments.

Experiments in Appendix B.2 These experiments consider the synthetic targets with simpli-
fied Transformer models as defined in Equation (5). The target relationship is constructed using
Equation (8):

Ht(x) = F

(
τ∑

s=1

σ[ρ(x(t), x(·))](s)f(x(s))

)
. (64)

We consider scalar inputs where d = 1 and F (x) = f(x) = x are identity functions. ρ(u, v) is
constructed using the POD decomposition:

ρ(u, v) =

r∑
i=1

σiϕi(u)ψi(v). (65)

We consider orthonormal bases ϕi, ψi ∈ {
√
2 sin 2iπx : i ≥ 1}. By doing this, we can specify σi,

which are then exactly the singular values. The input sequence of length 16 is generated using a
uniform distribution on [0, 1]. We use Transformers as defined in Equation (5) to learn these targets.
The feed-forward part is constructed using a dense network with a width of 128 and a depth of 3 to
ensure it has enough expressiveness. Moreover, we have n = dv = 32 and mh, which range from
1 to 16, to construct a model with different ranks. We use PyTorch default initialization and use
normal training procedures with Adam Optimizer. We train enough epochs to ensure the loss does
not decrease so that we can use the training error to estimate the approximation error.

Experiments in Section 5.1 In this example, we tested the ViT model on the CIFAR10 dataset. We
consider the baseline model ViT B16 [11]. This model configuration utilizes 12 heads, and each head
is of dimension 64. In Figure 1(a), we plot the singular values distribution of the attention matrix
(before Softmax normalization) from the first attention head. We then vary the size of each attention
head from 1 to 64 while keeping other configurations unchanged. We follow the training procedure
as described in [11] to train the modified models.

Experiments in Section 6

Comparison of the Transformer and RNNs We consider the following linear target relationship:

Ht(x) =

t∑
t=0

ρ(s)x(t− s), (66)

with kernel ρ(s) = exp (−s). The input sequence of length 32 is generated using a uniform
distribution on [0, 1]. For the RNN, we utilize a one-layer vanilla RNN architecture with 128
hidden units, employing a linear activation function. For the Transformer, we use the simplified
structure as presented in Equation (8) with position encoding added. For parameter settings, we have
n = dv = mh = 32. The feed-forward part is constructed using a dense network with a width 128
and a depth 3.

To change the temporal ordering, we permute the input while keeping the output unchanged, this
leads to a change in the temporal ordering of the target relationship. For all the input sequences, we
exchange the first 10 values with the last 10 values, resulting in a change in the underlying temporal
structure. For the temporal mixing operation, we use a randomly generated length 5 filter and the
operation∗ described in Section 6.2.

In Table 2, it is also interesting to note that for this target, the RNN performs better than the
Transformer. This is potentially because temporal ordering is inherently important in this target,
and the Transformer is not good at capturing such relationships. Some variants of the Transformer,
such as Informer [36] and Autoformer [32], have been proposed specifically to address temporal
relationships, particularly in sequence forecasting tasks. However, empirical results presented in
Zeng et al. [35] indicate that these variants still cannot effectively capture temporal relationships.

As a comparison, we consider a different type of linear relationship where the temporal ordering is
unimportant. We randomly generate the filter such that ρ(s) ∼ U[0,1]. This does not have temporal
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ordering since if we permute ρ, the distribution of it does not change. The results are shown in
Table 3. We can observe that it is hard for RNN to learn this target. But the Transformer can learn
this target, and a permutation of the input does not affect its performance.

RNN Trans.

Original 5.58 5.43e−4
Permuted 5.24 5.36e−4

Table 3: The table presents the MSE values for both RNN and the Transformer datasets without
temporal ordering.

Real-world datasets for the Transformer In Table 1, we test the performance of the Transformer
on a permuted dataset considering real-world examples. For the ViT experiment, we use the ViT B16
model. For the WMT2014 English-German dataset, we use the original Transformer model as
proposed in [30]. For both experiments, when testing on the permuted dataset, we initialize the model
with parameters that are trained on the original dataset. To generate the permuted dataset, we fix a
permutation such that the first 10 elements are shifted to the end of the sequence. This operation is
applied to all the input sequences. Note that the permutation of the ViT dataset is before the addition
of position encoding and after the convolution embedding.

D Detailed Dissuasion of Section 6

In this section, we provide additional discussions related to Section 6. We first review the approxima-
tion results for the RNN, the we provide proofs for the propositions presented in Section 6.

D.1 Introduce the approximation results for the RNN

We here review the results of approximation results of RNN presented in Li et al. [23]. Here, we
consider input and output space defined by

X =
{
x : x(s) ∈ [0, 1]d, s ∈ N≥0

}
(67)

and
Y = {y : y(s) ∈ R, s ∈ N≥0} . (68)

There are infinite sequences with time indices starting from zero.

We consider the following dynamics for the linear RNN:

h(t) =Wh(t− 1) + Ux(t) (69)

y(t) = c⊤h(t), (70)

where h ∈ Rn with h(0) = 0 is the hidden state of the RNN.W ∈ Rn×n, U ∈ Rd×n and c⊤ ∈ Rn×1

are parameters. The approximation budget of the model is n, which is the size of its hidden state. We
can explicitly solve this dynamic where we get

Ĥt(x) =

t∑
s=0

c⊤W sUx(t− s). (71)

Here, we assume the eigenvalue of W has a negative real part to ensure it is stable when s increases.

For the target, we consider a linear relationship represented by

Ht(x) =

t∑
s=0

ρ(s)x(t− s), (72)

where ∥ρ(s)∥ ≤ ∞ is a unique representation of H . Thus, the approximation capability of the RNN
is characterized by the properties of ρ.
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Note that ρ̂(s) = c⊤W sU in the RNN exhibits an exponential decaying pattern. Thus, the target
must also have a similar decay pattern to achieve a good approximation. We have precisely defined
the following complexity measures for the RNN.

C1(H) = 1 + inf{β > 0 : lim
t→∞

e
t
β |ρ(t)| = 0}. (73)

This measures the decaying speed of the RNN, we assume ρ exhibits an exponential decay, with
decaying speed measured by C1. The next complexity considers the norm of ρ:

C2(H) = sup{e
t

C1(H) |ρ(t)| : t ≥ 0}. (74)

Combined together, we define the complexity measure for RNN as

CRNN = C1(H) · C2(H) (75)

This considers the magnitude of ρ, C2 is small if ρ does not have a large value far from the origin.
We define the RNN approximation space to be targets that have finite complexity measures

CRNN = {H satisfies Equation (72) : CRNN <∞}. (76)

The approximation rate of the RNN follows
d · CRNN

m
.

D.2 Discussion of Section 6.1

Proof of Proposition 6.1 We now present the proof for Proposition 6.1

Proof. Let p : N≥0 → N≥0 be a permutation on the time indices. We consider an altered target

H̃t(x ◦ p) = Ht(x) (77)

We then have

H̃t(x ◦ p) =
t∑

s=0

ρ̃(s)x(p(t− s)) (78)

Let’s consider the most simple case where p only permute two time indices such that p(t1) = t2 and
t2 > t1. We consider the output at t1

Ht1(x) =

t1∑
s=0

ρ(s)x(t1 − s) (79)

=

t1∑
s=1

ρ(s)x(t1 − s) + ρ(0)x(t1). (80)

However, for H̃t1(x) we have

H̃t1(x ◦ p) =
t1∑
s=0

ρ̃(s)x(p(t1 − s)) (81)

=

t1∑
s=1

ρ̃(s)x(t1 − s) + ρ̃(0)x(t2). (82)

Note the in this case the output at t1 depends on a future value of input x(t2), this means that H̃ is
no longer causal. Consequently, H̃ cannot be written in the form of Equation (72), thus not belong to
the RNN approximation space.
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Proof of Proposition 6.2 We next consider the Proposition 6.2

Proof. For a fixed permutation p : τ → τ , we consider H̃t(x ◦ p) = Ht(x). Suppose the altered
target has the following form:

H̃t(x ◦ p) = F̃

(
τ∑

s=1

σ[ρ̃(x(p(t)), x(·))](p(s))f̃(p(x(s)))

)
, (83)

we next show that F̃ , f̃ and ρ̃ has same complexity measures as F, f and ρ. Firstly, we note that
we can remove the permutation on index s because the ordering of a summation does not affect the
result.

H̃t(x ◦ p) = F̃

(
τ∑

s=1

σ[ρ̃(x(p(t)), x(·))](s)f̃(s))

)
. (84)

We now consider the POD expansion of ρ̃ where

ρ̃(x(p(t)), x(s)) =

r∑
i=1

σiϕ̃i(x(p(t))) ψ̃i(x(s)). (85)

Recall that our input space is defined as Equation (7). Where xs ∈ Is such that Ii and Ij are closed
disjoint sets. Thus, for a pointwise function ϕ, we can write it into the following piecewise form

ϕ(x) = ϕ(t)(x) x ∈ It. (86)

Let ϕ̃i(x) = ϕi
(p(t))(x) for x ∈ It. This is essentially the permutation of the disjoint pieces of ϕ̃i.

Thus we have

ϕ̃i(x(p(t))) = ϕ
(t)
i (x(t)). (87)

Consequently, we have ρ̃(x(p(t)), x(s)) = ρ(x(t), x(s)). Finally let F̃ = F and f̃ = f we achieved
H̃t(x ◦ p) = Ht(x). Since F̃ and f̃ remain unchanged, we only need to consider the complexity
measure for ρ. We note that the rank of the POD is unaffected. We remain with CFF(ϕ̃i). The
function ϕ̃i is a permutation of pieces of the piecewise function ϕi. We next discuss the kind of
approximation schemes that CFF(ϕ̃i) is unchanged under this operation.

Since the set I is disconnect, we apply Tietze extension theorem to extend ϕi to its convex hull,
denoted as Φi, such that Φi(x) = ϕi(x) for x ∈ I and sup{|Φi(x)|} = sup{|ϕi(x)|}.

We first consider the polynomial approximation as we introduced in Section 3. In this case, we
have CFF(ϕi) = maxr=1...α ∥ϕi∥∞. We next show that CFF(ϕ̃i) = CFF(ϕi). Since I is closed
and ϕ̃ is continuous, we apply Tietze extension theorem to extend ϕ̃i to Rd denoted as Φ̃i, such that
Φ̃i(x) = ϕ̃i(x) for x ∈ I and sup{|Φ̃i(x)|} = sup{|ϕ̃i(x)|}. This implies that CFF(ϕ̃i) = CFF(ϕi).
Thus, in the case of polynomial approximation, the complexity measures remain unchanged.

Next, we consider the approximation using the ReLu network. We assume ϕi to be Hölder continuous
such that

|f(x)− f(y)| ≤ C ∥x− y∥α . (88)

The Tietze extension theorem states we can extend it to Φi with the same C and α.

As shown in Shen et al. [28], the approximation capability of a ReLU network on a Hölder function
depends on C and α. Where functions with small C,α can be approximated more effectively. Since
ϕ̃i is a permutation of disconnected pieces of ϕi, its Hölder constant remains unchanged. Thus, its Φ̃i

has same Hölder constant as Φi, which implies the complexity measure is the same.

In the above proof, we considered two different approximation schemes where the complexity
measures of H̃ remain unchanged.

23



D.3 Discussion for Section 6.2

Proof of Proposition 6.3 We first discuss Proposition 6.3. Consider a filter θ which is a length l
filter with ∥θ∥1 ≤ 1. The altered target is defined by

H̃t(x) = Ht(θ∗x) =

t∑
s=0

ρ[s](θ∗x)[t− s]. (89)

Rearrange the summation, and we get

H̃t(x) =

t∑
s=0

ρ[s](θ∗x)[t− s] (90)

=

t∑
s=0

ρ(s)

l−1∑
s′=0

θ[s′]x(t− s+ s′) (91)

=

t∑
s=0

l−1∑
s′=0

θ[s′]ρ(s)x(t− s+ s′) (92)

=

t∑
s=0

l−1∑
s′=0

θ[s′]ρ[s+ s′]x[t− s] (93)

=

t∑
s=0

(θ∗ ρ)[s]x[t− s] (94)

=

t∑
s=0

ρ̃[s]x[t− s]. (95)

Thus, we have the altered kernel denoted as ρ̃ = θ∗ ρ.

Proof. Firstly, for |ρ(s)| ≤ exp(− s
β ), by the definition of C1 and C2 we have C1(H) ≤ β and

C2(H) ≤ 1.

By assumption we have ρ exhibits exponential decay such that |ρ(s)| ≤ e−βs for some β. We then
have

|ρ̃(s)| = |(θ∗ ρ)[t]| =
l−1∑
s′=0

|θ(s′)ρ(s+ s′)| ≤ e−βs ∥θ∥1 = e−βs, (96)

which shows that ρ̃[t] is also bounded by e−βs. This implies that C1(H̃) ≤ β and C2(H̃) ≤ 1.

Transformer Affected by Temporal Mixing Finally, we present an example where a temporal
mixing in the input will affect the target’s rank. For simplicity we consider the case where d = 1 and
τ = 2, and x1, x2 ∈ [0, 1]. Note that here, we do not assume x1 and x2 belong to disjoint intervals
for simplicity. For target in the form of Equation (8), we consider a temporal coupling term ρ defined
as

ρ(x1, x2) = 1 +
√
2 sin(2πx1) ·

√
2 sin(2πx2). (97)

In this case, ρ(u, v) is of rank 2 with both singular values equal to 1. Consider a new input
x̃ = (x1, x2 + x1) with temporal mixing. We then have

ρ(x1, x2 + x1) = 1 +
√
2 sin(2πx1) ·

√
2 sin(2π(x1, x)). (98)

We numerically estimate the singular values of ρ̃ to get σ1 = 1.265, σ2 = 0.5 and σ3 = 0.4. The
rank of ρ̃ increases, and there are also extra bases included. Here, we only consider the rank ρ from
the same representation, while we do not exclude the possibility that there exist other representations
that may have another rank pattern. Indeed, analyzing the temporal mixing in the Transformer is non-
trivial; we only provided an example where the rank increases. Conversely, a suitable deconvolution
process can also decrease the complexity measure of the target. We leave it as a future direction for
analysis.
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NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We made simplification and assumptions for theoretical analysis. However, we
performed empirical experiments to demonstrate the implication of the theoretical results
also holds true in general settings.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

25



Answer: [Yes]
Justification: All the theoretical settings and assumptions are presented. Complete proofs of
theorems are presented in the appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We conducted numerical experiments to demonstrate our theoretical results,
settings are presented in the appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: We conducted numerical experiments, with settings clearly presented in the
paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed experiment settings are presented in the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our numeric demonstrations does not require error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Our paper does not contain computational extensive experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The Code of Ethics is followed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our results are theoretical, and there is no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper have no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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