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Abstract
RNA velocity-based methods estimate cellular dy-
namics and cell developmental trajectories based
on spliced and unspliced RNA counts. Although
numerous methods have been proposed, the un-
derlying models vary greatly in their biophysical
assumptions, architectures, and use cases. In this
work we introduce a new architecture, CellFlows,
which incorporates self-supervised neural dimen-
sionality reduction with the flexibility of neural-
based latent time estimation into a mechanistic
model, improving model interpretability and accu-
racy. CellFlows models splicing dynamics to infer
gene and context-specific kinetic rates at single-
cell resolution and correctly identifies both linear
and branching cellular differentiation pathways
originating from mouse embryonic stem cells.

1. Introduction
The biological processes driving cellular changes in de-
velopment and disease are inherently dynamic. The most
canonical dynamic process is the differentiation of pluripo-
tent stem cells, which can give rise to any of the functionally
diverse cells that compose a metazoan. Although single-cell
RNA sequencing has enabled the recovery of cellular hetero-
geneity by capturing gene expression profiles, the protocol
only provides a single snapshot of the transcriptome for
a given sample, making it difficult to infer the underlying
cellular dynamics experimentally.

To address this challenge, computational techniques have
been devised to infer the ordering of cells along a devel-
opmental trajectory based on their transcriptomic profiles.
Prior trajectory inference methods characterize cellular de-
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velopment as occurring along a continuous “pseudotime”
axis between 0 and 1, based on similarities of gene expres-
sion profiles between single cells (Haghverdi et al., 2016).
While pseudotime effectively serves as a one-dimensional
coordinate to arrange cells along a single lineage, it lacks
the expressivity required to capture the full complexity of
splicing dynamics and multiple lineages. Recently devel-
oped methods have incorporated a system of linear ordinary
differential equations (ODEs) (La Manno et al., 2018). The
linear ODEs determine the gradient of spliced and unspliced
RNA through interpretable kinetic rates that describe tran-
scription, splicing, and decay. By leveraging the causal rela-
tionship between spliced and unspliced RNA abundances in
single-cell data, methods based on the framework estimate
“RNA velocity”, the rate of change of spliced counts ds/dt.
Inferring the RNA velocity vector across all genes would
enable the prediction of future RNA abundance.

While the linear ODEs provide a mechanistic basis for RNA
velocity to model cellular dynamics, RNA velocity methods
apply the framework with varying assumptions inconsis-
tent with known underlying biophysics (Gorin et al., 2022).
The first RNA velocity model for single cells, velocyto
(La Manno et al., 2018), uses a steady-state model to esti-
mate the RNA velocity from spliced and unspliced counts,
assuming constant splicing rates across genes and cells. In
contrast, other methods such as scVelo use a fully dynamical
model of RNA kinetics (Bergen et al., 2020). Some methods
even eschew mechanistic equations in favor of purely neural
net-based black box approaches (Li, 2023).

The computational methods that aim to apply the RNA ve-
locity framework to infer and predict developmental trajec-
tories vary significantly in their architectures, parameter as-
sumptions, and mechanistic formulations. Here, we propose
CellFlows, a novel architecture that infers mechanistic cell
and gene-specific transcription, splicing, and decay kinetics
to regularize the latent representations learned through a
variational autoencoder (VAE) and neural ordinary differ-
ential equations (ODEs). We compare the model’s perfor-
mance on publicly available single-cell RNA sequencing
(scRNA-seq) datasets that capture the dynamics of mouse
embryonic stem cell differentiation and gastrulation ery-
throid maturation against recently published methods.
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2. Related Work
Learning cell-gene splicing kinetics. cellDancer (Li et al.,
2023) uses a “relay” model to infer velocity locally for
each cell based on its neighbors, rather than assuming the
same kinetics globally for all cells. Local velocity inference
based on gene-specific kinetic parameters enables the model
to handle heterogeneous cell populations. Prior velocity
methods such as scVelo (Bergen et al., 2020) rely on strong
biological assumptions such as uniform gene-specific kinet-
ics across all cells, which fails to account for differences in
kinetics between cell subpopulations. cellDancer addresses
the limitations directly by predicting cell and gene-specific
transcription, splicing, and degradation kinetic rates using a
multi-layer perception (MLP). The kinetic rates parameter-
ize the RNA velocity through a system of linear ODEs:

du

dt
= α(t) − β(t)u(t)

ds

dt
= β(t)u(t) − γ(t)s(t)

(1)

where t is time, u(t) is the unspliced abundance, s(t) is
the spliced mRNA abundance, α(t) is the transcription rate,
β(t) is the splicing rate, and γ(t) is the decay rate, all at
time t. The MLP is trained with a loss function based
on velocity vector similarity to its k-nearest neighbors in
gene expression. cellDancer uniquely learns biologically
interpretable parameters to constrain its black-box nonlinear
approximation of the dynamics.

Joint inference of latent space and latent dynamics. sc-
Tour (Li, 2023) jointly infers developmental pseudotime,
a transcriptomic vector field, and latent representations of
cells. Unlike cellDancer and other RNA velocity methods,
scTour does not consider splicing dynamics and instead
leverages its unique model architecture to derive cell repre-
sentations. scTour applies a VAE to denoise and extract a
latent representation from the single-cell data. The model
simultaneously uses a second encoder to extract a pseudo-
time label for each cell. The latent state of the cell with the
earliest pseudotime, along with the encoded pseudotimes of
all cells, are fed directly into a neural ODE to predict future
gene expression-based cell states. scTour then aligns the
neural ODE-generated predictions with the VAE-based la-
tent representations of the measured cells to find the optimal
vector field that describes the developmental trajectory.

Key Limitations. cellDancer learns its transcriptomic vec-
tor field and cell-specific pseudotime in a two-stage process
similar to scVelo (Li et al., 2023). In the first stage, cell-
Dancer’s MLP is trained to learn RNA velocity and inter-
pretable kinetics. In the second stage, the velocity estimates
are used to construct cell-to-cell transition probabilities for
inferring pseudotime. This approach does not explicitly inte-
grate pseudotime into the deep learning model. On the other
hand, scTour learns the vector field and pseudotime jointly

in training using a neural ODE to overcome these issues,
but avoids learning dynamics from spliced and unspliced
abundances in favor of total gene expression (Li, 2023).

3. CellFlows Architecture
Consider a scRNA-seq dataset D = {Xi}ni=1, where Xi ∈
R2g corresponds to the concatenated g-dimensional read
counts of both spliced and unspliced RNA. n is the total
number of captured cells and g is the total number of genes.
Our dataset consists of RNA-seq snapshots taken across
multiple time points, and we consider τi ∈ R as the true
process time (in days) for each cell i.

3.1. Variational autoencoder and neural ODE-evolved
latent dynamics

CellFlows employs an encoder-decoder framework to ex-
tract a latent representation from input gene expression (Fig.
1). The encoder consists of three MLPs Encz : R2g → Rl,
Enct : R2g → [0, 1], and Enck : R2g → R3g. Encz , rep-
resenting the inference network of the VAE, maps spliced
and unspliced counts xi ∈ R2g for cell i to its correspond-
ing l-dimensional latent vector zi by sampling from the
Gaussian distribution parameterized by l-dimensional mean
µi(xi) and standard deviation σi(xi). Enct encodes a cell-
specific developmental time ti ∈ [0, 1] corresponding to a
continuous ‘pseudotime’ label that orders the cells along a
lineage. Enck encodes cell-gene-specific kinetic parame-
ters corresponding to transcription rate αi, splicing rate βi,
and degradation rate γi, where αi, βi, γi ∈ Rg .

We apply an Euler method-based ODE solver to time-evolve
the latent cell representations through pseudotime. We use
an MLP fz : Rl → Rl to represent the latent ODE function
dz
dt = fz(z, t), where t is pseudotime and fz outputs the
transcriptomic vector field. Integrating the neural ODE is
equivalent to solving an initial value problem (IVP) with
initial condition z0, where z0 is set to the encoded latent
representation of the cell assigned the earliest developmen-
tal pseudotime t0. By solving the IVP through integration
at all cell-labeled pseudotimes {ti}nj=1, we generate ODE-
predicted latent states for each cell {zti}ni=1. Hence, we
can directly compare each of our ODE-predicted cell la-
tent states zti with a corresponding VAE-encoded latent
representation of the measured cell zi with pseudotime ti.

The decoder network Decz ∈ Rl → R2n, representing the
generative component of the VAE, maps the l-dimensional
latent representations to the original gene expression space
R2n. The same Decz is utilized both for reconstructing the
original gene expression xi from zi and for decoding the
ODE-predicted latent state zti to generate an ODE-predicted
gene expression state xti for each cell i and corresponding
pseudotime ti.
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Figure 1. CellFlows jointly infers latent embeddings, developmental pseudotime, and kinetic rates. The VAE and neural ODE solver learn
the latent state zi and its time-evolved counterpart zti , where ti is the pseudotime label assigned to cell i. Both states are decoded to
reconstruct gene expression matrices xi and xti . zi is used to predict gene expression from the VAE-based latent states while zti is
used to predict the observed gene expression at all future pseudotimes t from an initial latent state z0. Concurrently, the model uses
kinetic equations to mechanistically time-evolve expression counts, leveraging the encoded splicing rates αi, βi, and γi to predict gene
expression xti from an initial gene expression state x0.

3.2. Interpretable mechanistic ODEs to infer cell-gene
splicing dynamics

Concurrent with the VAE, we mechanistically predict gene
expression using the linear ODEs described in Equation 1.
The gradients of the spliced and unspliced abundances are
parameterized by the kinetic rates αi, βi, and γi derived
from Enck. By incorporating the Euler method-based ODE
solver, we can predict the gene expression values across all
cell-labeled pseudotimes {ti}ni=1 via

ui(ti+1) = ui(ti) + (αi(ti)− βi(ti)ui(ti))∆t

si(ti+1) = si(ti) + (βi(ti)ui(ti)− γi(ti))∆t
(2)

where ∆t = ti+1 − ti and ti+1 > ti. We can solve the
mechanistic linear ODEs at any given time point ti given
an initial gene expression state u0 and s0, resulting in ODE-
predicted spliced and unspliced abundances. The initial
states u0 and s0 correspond to the spliced and unspliced
abundances of the cell with the earliest pseudotime t0. Si-
multaneously learning the dynamics from the linear ODEs
in gene expression space and the neural ODE in latent space
allows for mechanistic regularization of the neural dynam-
ics. Additionally, the linear ODEs provide gene-cell-specific
kinetic parameters that can identify genes undergoing sig-
nificant transcriptional boosting and driving differentiation
dynamics.

3.3. CellFlows Loss Function

The overall loss function is,

L(θ) = − log p(x|zVAE) +DKL(q(zVAE|x)||p(zVAE))

+ ||zVAE − zODE||22 + ||x− x̂ODE||22
+ ||x− x̂MECH||22

where θ includes all trainable parameters and x represents
the input gene expression matrix with spliced and unspliced
counts concatenated together. zVAE represents the VAE-
encoded latent states of all measured cells, while zODE is
derived through neural ODE integration along learned devel-
opmental pseudotimes t for each cell. zODE is subsequently
fed back into the decoder to produce ODE-predicted gene
expression states x̂ODE. x̂MECH is generated by utilizing
the learned splicing kinetic parameters α, β, γ to parame-
terize and integrate the mechanistic ODEs as described in
Equation 2.

The first two terms correspond to the standard VAE loss,
with our data likelihood following a zero-inflated negative
binomial. This distribution is parameterized by dispersion
and dropout parameters output by the decoder Decz . The
term ||zVAE − zODE||22 represents the mean-squared error
(MSE) between the VAE-encoded representations and the
latent ODE-integrated predictions, serving to constrain ex-
cessive divergence between the two and encouraging the
model to learn a vector field that best fits the cell trajec-
tory. For the time-evolved gene expression matrices x̂ODE
and x̂MECH, we use the MSE to constrain the mechanistic
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and decoded latent ODE-based predictions to align with the
true gene expression x. Jointly learning the mechanistic
and latent dynamics ensures that the inferred pseudotimes
are consistent across different ODE frameworks, enabling
accurate estimation of the cell-gene kinetics.

4. Results
We applied CellFlows and existing methods on the publicly
available scRNA-seq datasets from (Maizels et al., 2023) to
evaluate the performance of trajectory inference and RNA
velocity estimation. The datasets consist of metabolically
labeled data for mouse embryonic stem (ES) cells differen-
tiating towards either a neural or mesodermal lineage. The
sequencing data captures the development of mouse ES cells
differentiating into neuromesodermal progenitors (NMPs),
neural progenitors, mesodermal cells, and spinal cord neu-
rons. Additionally, we evaluated all methods on an erythroid
maturation dataset from (Pijuan-Sala et al., 2019), which
captures the differentiation of hematoendothelial progenitor
cells. All three benchmarking datasets include single-cell
snapshots captured at multiple timepoints measured in days,
allowing for an assessment of each model’s pseudotime
estimation.

For each dataset, we selected the top 2000 variable genes
to ensure computational tractability. Unlike RNA veloc-
ity models such as veloVI and cellDancer, we explicitly
chose not to perform log(1+x) transformation or k-nearest-
neighbor smoothing to preserve the full biological signal
from the measured gene expression. (Gorin et al., 2022)
demonstrated that common preprocessing steps in single-
cell analysis, such as normalization and smoothing, can
introduce significant distortions and instabilities in RNA ve-
locity estimates. By learning splicing dynamics in the VAE
latent space, CellFlows demonstrates robustness through
superior performance compared to methods that rely on
extensive data preprocessing.

4.1. Trajectory Analysis and Visualization

In (Fig. 2), we provide an overview of the inferred pseu-
dotime and vector field estimates for the neural branching
dataset from (Maizels et al., 2023). The UMAP representa-
tions of the cells are derived from the weighted combination
between the VAE-encoded cell states and the latent ODE-
predicted states.

As is common practice in RNA velocity methods, we use
our vector field to construct a cell-to-cell transition matrix
based on nearest neighbors and visualize the trajectory with
Uniform Manifold Approximation and Projection (UMAP)
using the predicted transitions (Bergen et al., 2020). The
UMAP primarily serves as a sanity check to confirm that the
model has learned the appropriate differentiation trajectory.

Figure 2. UMAP visualization of inferred developmental pseudo-
times and vector field from gene expression of differentiating
neural cells using CellFlows. The model projects the combined
latent state from zVAE and zODE and learns the vector field through
the neural ODE.

Fig. 2 shows that the pseudotime estimates t align with
the true measured process times τ . Early neural and neural
cells are assigned earlier pseudotimes than V3 interneurons,
motor neurons (MN), and floor plate (FP) cells. The in-
ferred vector fields from CellFlows accurately predict the
direction of differentiation and the transitions between cell
types. The visualizations of weighted latent representations
demonstrate a correct ordering of cell types along the differ-
entiation pathway.

4.2. Quantitative Benchmarks

Table 1. Summary of methods based on whether they provide cell-
gene-specific kinetic rates, accept unprocessed counts for robust
inference, or perform joint inference of kinetics and pseudotime.

METHOD CELL-GENE RAW COUNTS JOINT INF.

CELLFLOWS∗ √ √ √

CELLDANCER
√

× ×
VELOVI × ×

√

SCTOUR ×
√ √

While all methods estimate a vector field over cells, previ-
ous works have primarily assessed the quality of their vector
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Table 2. Spearman correlation coefficients between inferred pseudotime and marker gene expression across cell types.

NEURAL MESODERM

METHOD E-NEURAL PMN P3 FP MN V3 NMP E-NEURAL PMN MESODERM

CELLFLOWS∗ 0.301 0.124 0.371 0.094 0.425 0.489 0.326 0.169 0.116 0.255
CELLDANCER 0.198 0.280 0.370 0.090 0.253 0.371 0.130 0.166 0.086 0.243
VELOVI 0.128 0.006 0.056 0.087 0.127 0.234 0.061 0.092 0.160 0.184
SCTOUR 0.230 0.164 0.398 0.132 0.416 0.248 0.360 0.175 0.044 0.258

fields based on UMAP visualizations. However, UMAPs are
sensitive to hyperparameters such as the number of neigh-
bors, and extensive tuning can introduce confirmation bias
when interpreting results from RNA velocity models (Gorin
et al., 2022). Given the unreliability of UMAP visualizations
for robust and reproducible evaluation, we propose three
quantitative benchmarks for assessing each method’s perfor-
mance on inferred estimates of pseudotime. In these bench-
marks, we measure the Spearman correlation coefficient
between the model-inferred pseudotimes and ground truth
observations of process time points and cell type-specific
marker gene expression.

We compare CellFlows to recently published methods: sc-
Tour, cellDancer, and veloVI. veloVI was developed as a
variational inference-based deep generative alternative to
scVelo’s dynamical expectation-maximization (EM) model
(Gayoso et al., 2024). A summary of the methods based
on their interpretable parameters and features is provided
in Table 1. While all four methods provide pseudotime
estimates, they vary greatly in their kinetics formulation.
veloVI infers cell-gene-specific latent times jointly with
gene-specific kinetic rates in their generative model. Due to
veloVI’s biophysical assumption of uniform gene kinetics
across cells, however, the method cannot be used to deter-
mine the main drivers of cell subpopulations. cellDancer
relies on a two-stage training process where the latent time
is inferred separately from the deep learning model that
learns RNA velocity. CellFlows jointly infers pseudotime
and cell-gene-specific kinetics through its combined neural
and mechanistic ODE framework.

Table 3. Spearman correlation coefficients between inferred pseu-
dotime and process time τ .

METHOD ERYTHROID NEURAL MESODERM

CELLFLOWS∗ 0.816 0.802 0.920
CELLDANCER 0.739 0.738 0.765
VELOVI 0.605 0.279 0.662
SCTOUR 0.791 0.846 0.917

Time Correlations. We can benchmark the quality of in-
ferred pseudotimes across methods by examining how well
aligned their pseudotimes are with the process time by cal-

culating the Spearman correlation coefficient between the
two quantities. As shown in Table 3, CellFlows outperforms
the other methods in pseudotime correlations in two of three
datasets, and is second only to scTour for the neural dataset.

Marker Gene Expression Correlation. We can further
benchmark the quality of inferred pseudotimes from each
method by examining how well correlated their pseudotimes
are with the expression of marker genes per cell type in each
dataset. Cell-type specific markers are only available for the
neural and mesoderm datasets from (Maizels et al., 2023).
We calculated the Spearman correlation coefficient between
the marker gene’s expression profile and the inferred pseu-
dotime for each annotated cell type population. We then
averaged the coefficients across the marker genes to repre-
sent the method’s overall performance for each cell type.

CellFlows and scTour closely match in performance in
marker gene expression correlations across cell types while
both methods mostly outperform cellDancer and veloVI (Ta-
ble 2). CellFlows shows the most improvements for Early
Neural and V3 cells in the Neural dataset over the competing
methods, and scTour performs best overall in the Mesoderm
dataset.

5. Discussion
In this work, we introduced CellFlows, a novel computa-
tional framework that combines neural ordinary differen-
tial equations with mechanistic modeling to jointly infer
cell-gene-specific splicing kinetics, pseudotimes, and vec-
tor fields from single-cell transcriptomic data. Through
UMAP visualizations and quantitative benchmarking, we
demonstrated CellFlows’ ability to accurately estimate pseu-
dotime values that align closely with measured time points
and marker gene expression patterns across cell subpopula-
tions. A key strength of our approach is the integration of
data-driven neural networks with interpretable mechanistic
equations describing the underlying biological processes.

The implications of CellFlows extend beyond RNA velocity
and single-cell genomics analyses. Our framework provides
a powerful and flexible paradigm for studying latent dynam-
ical systems. Any domain where complex dynamics can be
partially described by mechanistic equations, while also ben-
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efiting from flexible neural network representations, could
leverage the strengths of our combined modeling approach.
Future research could explore extensions of CellFlows to
handle more complex and higher-dimensional dynamics, in-
corporate additional data modalities beyond transcriptomics,
or enable transfer learning across related latent dynamical
systems. Ultimately, CellFlows represents a promising step
towards tighter integration of neural networks with differen-
tial equations and domain knowledge for powerful scientific
discovery.
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