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Abstract

Out-of-distribution (OOD) generalization is a challenging machine learning prob-1

lem yet highly desirable in many high-stake applications. Distributionally robust2

optimization (DRO) is a promising learning paradigm to tackle this challenge but3

suffers from several limitations. To address this challenge, we propose graph-4

relational distributionally robust optimization that trains OOD-resilient machine5

learning models by exploiting the graph structure of data distributions. Our ap-6

proach can uniformly handle both fully-known and partially-known graph struc-7

tures. Empirical results on both synthetic and real-world datasets demonstrate the8

effectiveness and flexibility of our method.9

1 Introduction10

Recent years have witnessed a surge of applying machine learning (ML) in high-stake and safety-11

critical applications, such as health diagnoses and self-driving cars. Such applications pose an12

unprecedented out-of-distribution (OOD) generalization challenge [16]: ML models are constantly13

exposed to unseen distributions that lie outside their training space. Despite well-documented14

success for interpolation, modern ML models (e.g., deep neural networks) are notoriously weak for15

extrapolation; a highly accurate model on average can fail catastrophically when presented with rare16

or unseen distributions [1]. Without addressing this challenge, ML models cannot be safely deployed.17

A promising solution for out-of-distribution generalization is to conduct distributionally robust18

optimization (DRO) [13, 21, 11]. Different from empirical risk minimization (ERM) [24] that19

minimizes the average loss, DRO aims to optimize the worst-case generalization risk over a set of20

training groups. For instance, data with a similar distribution can compose a group [18]. However,21

it suffers from critical limitations. (1) DRO recklessly prioritizes the worst-case groups without22

assessing the risk that they might be outliers [27]; optimizing over outliers would fundamentally23

damage OOD generalization. (2) The worst-case groups are not necessarily the influential ones that24

are truly connected to unseen distributions; optimizing over the worst-case rather than influential25

groups would yield mediocre generalization performance.26

To address these challenges, we propose a novel method for graph-relational distributionally robust27

optimization. Instead of the worst-case distributions, our key idea is to minimize the generalization28

risks over influential groups. Such influential groups can be identified by analyzing the graph of data29

distributions. Graph structures widely exist in the real world and can usually be represented by a30

graph. For instance, to capture the similarity of weather events in the U.S. [26], one can construct a31

graph where each state (group) realizes a node, and the physical adjacency between two states results32

in an edge. A significant merit of our approach is that it can uniformly handle various scenarios33

when the graph structure is either fully or partially available. Empirical results on both synthetic and34

real-world datasets demonstrate the superior performance of our method over SOTA.35
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2 Related Work36

Distributionally Robust Optimization. In the context of distributionally robust optimization (DRO),37

[3] and [20] argued that minimizing the maximal loss over a set of possible distributions can provide38

better generalization performance than minimizing the average loss. The robustness guarantee of39

DRO heavily relies on the quality of the uncertainty set which is typically constructed by moment40

constraints [2], f -divergence [13] or Wasserstein distance [19]. To avoid yielding overly pessimistic41

models [5], group DRO [8, 18] is proposed to leverage pre-defined data groups to formulate the42

uncertainty set as the mixture of these groups. However, none of these methods incorporate the43

physical prior that widely exists in real-world applications.44

Out-of-Distribution Generalization. The goal of OOD generalization is to generalize models from45

source distributions to unseen target distributions. There are mainly two branches of methods to tackle46

OOD generalization: domain-invariant learning [1, 9, 12] and distributionally robust optimization.47

The goal of domain-invariant learning is to exploit the causally invariant correlations across multiple48

distributions. Invariant Risk Minimization (IRM) is one of the most representative methods which49

learns the optimal classifier across source distributions. However, recent work [17] shows IRM can50

fail catastrophically unless the test data are sufficiently similar to the training distribution.51

3 Problem Formulation and Preliminary Works52

Problem Formulation. We focus on the problem of out-of-distribution (OOD) generalization. Let53

X be the input space and Y be the target space. (X,Y ) are random variables defined over samples54

(x, y) ∈ X × Y and the joint distribution P(X,Y ). Since we cannot sample directly from P(X,Y ),55

we usually assume data are drawn from a set of groups Eall, where each group e ∈ Eall is sampled from56

a distinct distribution P(Xe, Y e), e.g., the distribution of medical images varies at different hospitals57

due to equipment or demographic differences. Let Etrain ⊊ Eall be a finite subset of training groups,58

and assume that for each e ∈ Etrain , we have access to a dataset De :=
{(

xe
j , y

e
j

)}ne

j=1
sampled i.i.d.59

from P (Xe, Y e). Given a function class F and a loss function ℓ, our goal is to learn a predictor60

f ∈ F using the data from De that minimizes the worst-case risk over the entire family of Eall:61

min
f∈F

max
e∈Eall

EP(Xe,Y e)ℓ (f (Xe) , Y e) . (1)

It is challenging to learn a predictor f ∈ F that generalizes from the finite set of training domains62

Etrain to perform well on the set of all domains Eall since we do not have access to data from any63

unseen group e ∈ Etest, where Etest = Eall \ Etrain.64

Empirical Risk Minimization (ERM) [24]. ERM minimizes the average loss over the distribution65

of all training groups Etrain:66

min
f∈F

m∑
e=1

EP(Xe,Y e)[ℓ (f (Xe) , Y e)],

where m = |Etrain| is the number of training groups. Models trained via ERM heavily rely on spurious67

correlations that do not always hold under distributional drifts [1].68

Distributionally Robust Optimization (DRO) [18]. Instead of minimizing the average loss, DRO69

minimizes the worst-combination loss of different training groups:70

min
f∈F

max
q∈∆m

m∑
e=1

qeEP(Xe,Y e)[ℓ (f (Xe) , Y e)], (2)

where q is the mixture vector of Etrain and ∆m = {q ∈ Rm |
∑m

k=1 qk = 1;∀k, qk ≥ 0}. We empiri-71

cally found that DRO blindly prioritizes the worst-case groups that incur higher losses than others.72

However, favoring the worst-case groups would inevitably ignore the influential ones that are truly73

connected to unseen distributions; optimizing over the worst-case rather than influential groups would74

yield compromised OOD resilience.75

2



Table 1: Accuracy (%) on DG-15 and DG-60. Our method sets the new SOTA on both datasets.

ERM [24] IRM [1] REx [10] SD [22] DRO [18] Ours
DG-15 58.00 57.87 57.22 57.56 43.22 67.56
DG-60 76.02 76.61 86.89 81.04 79.59 89.19
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60

1

(b) DG-60
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15

1

(a) DG-15
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Train

Test

Train

Test

Figure 1: Data groups of (a) DG-15 and (b) DG-60 datasets.

4 Approach76

4.1 Graph-Relational Distributionally Robust Optimization77

Generalizing ML models to arbitrary unseen distributions without any prior knowledge or structural78

assumption is impossible [6]. Fortunately, the graph structures of Eall are often available as prior79

knowledge and can be captured by a graph G = (V,E), where the nodes V = ∪e∈EallX
e symbolize80

the groups and the edges E represent interactions among groups. We assume the graph captures81

covariate shift (Pe(X) ̸= Pe′(X)) rather that concept shift (Pe(Y |X) ̸= Pe′(Y |X)) . Given the82

graph G, we can identify influential groups and incorporate them as a physical prior p (see Sec. 4.2)83

to constrain the optimization in Eq. 2: D(q∥p) ≤ τ , where D(·) is a distance metric over the space84

of distributions. τ is a fixed margin the controls the extent to which we enforce the prior constraint.85

4.2 Implementation of Physical Prior86

Motivated by centrality analysis [14] in social networks, we propose to assess the group centrality to87

identify influential groups that are truly connected to unseen distributions, which can be calculated88

using graph measurements [23] such as degree, betweenness, and closeness. In this paper, we89

calculate the betweenness centrality of each node in G as a physical prior p to identify influential90

groups. Betweenness centrality measures how often a node is on the shortest path between two other91

nodes in the graph. [4] indicates that nodes with higher betweenness centrality would have more92

control over the graph as more information will pass through them. We consider two scenarios: graph93

structure is fully known and partially known.94

Fully-known structure denotes the graph structure of all groups Eall is available. Let s ∈ Etrain95

and t ∈ Etest be the start and end of a path in G. We define the centrality of group e as the fraction96

of shortest paths that pass through it: cfull
e =

∑
s∈Etrain,t∈Etest

σ(s,t|e)
σ(s,t) , where σ(s, t) is the number of97

shortest paths between groups s and t in the graph ((s, t)-paths), and σ(s, t | e) is the number of98

(s, t)-paths that go through group e.99

Partially-known structure denotes only the graph structures of training groups Etrain is available.100

The underlying assumption is that the unobserved part of the graph should not be very different101

from the observed part and training groups with high centrality also exert strong influence on unseen102

groups. Instead of sampling groups pairs from two separate sets, we sample (s, t) from Etrain. We103

define the centrality of group e as: cpartial
e =

∑
s,t∈Etrain

σ(s,t|e)
σ(s,t) .104

We use softmax function to normalize ce and the prior probability for group e is: pe =105

exp(ce)/
∑m

e=1 exp(ce). In Sec. 5, we empirically found that the proposed method with cpartial
e106

still outperforms other baselines by a large margin and is only slightly worse than that with cfull
e .107
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Table 2: Mean Squared Error (MSE) of task N (24) → S (24) on TPT-48 [25]. Our method achieves
the lowest MSE of all test groups.

Group ERM [24] IRM [1] REx [10] SD [22] DRO [18] Ours

Hop-1 1.084 1.133 0.487 1.169 0.931 0.889
Hop-2 1.265 1.312 0.944 1.354 1.170 0.991
Hop-3 1.975 2.021 2.266 2.091 2.027 1.678

All 1.426 1.474 1.194 1.523 1.356 1.177

Table 3: Ablation study on partially-known graph structure. Ours (partial) outperforms other baselines
by a large margin and is only slightly worse than Ours (full).

DG-15(↑) E(24)→W(24)(↓) N(24)→S(24)(↓)
ERM [24] 58.00 1.716 1.426
DRO [18] 43.22 1.684 1.356

Ours (partial) 66.44 1.471 1.301
Ours (full) 67.56 1.466 1.177

5 Experiments108

Datasets. (1) DG-15 [26] is a synthetic binary classification dataset with 15 groups. Each group109

contains 100 data points. In this dataset, adjacent groups have similar decision boundaries. Following110

[26], we use six connected groups as the training groups, and use others as test groups. (2) DG-60 [26]111

is another synthetic dataset generated using the same procedure as DG-15, except that it contains 60112

groups, with 6,000 data points in total. We randomly select six groups as the training groups, and113

use others as test groups. Visualization of DG-15 and DG-60 are shown in Fig. 1. (3) TPT-48 [25]114

contains the monthly average temperature for the 48 contiguous states in the US from 2008 to 2019.115

We focus on the regression task to predict the next 6 months’ temperature based on the previous first116

6 months’ temperature. We consider two generalization tasks: E(24) → W(24): we use the 24 eastern117

states as training groups and the 24 western states as test groups; N(24) → S(24): we use the 24118

northern states as training groups, the 24 southern states as test groups.119

Baselines. We compare our method with the following methods: (1) Empirical Risk Minimization120

(ERM) [24]; (2) Group distributionally robust optimization (DRO) [18]; (3) Invariant Risk Minimiza-121

tion (IRM) [1]; (4) Risk Extrapolation (REx) [10]; (5) Spectral Decoupling (SD) [15]. Following [7],122

we perform model selection based on a validation set constructed from training groups only.123

Results. Results of DG-15 and DG-60 are summarized in Tab. 1. As seen, in both datasets, our124

method achieves the best performance. In DG-15, all other baselines are inferior or ERM while ours125

outperforms ERM by 9.56%. We show the results for task N (24) → S (24) on TPT-48 in Tab. 2. As126

observed, our method achieves the lowest average MSE. We also report the average MSE of Hop-1,127

Hop-2, and Hop-3 test groups. Although REx achieves the lowest error on Hop-1 and Hop-2 groups,128

it yields the highest prediction error on Hop-3 groups. Our method achieves the best performance on129

Hop-3 groups, indicating its generalization capability under large distributional drifts.130

Ablation Study. We evaluate our method with partially-known graph structure. In this scenario,131

we assume only the graph structure of training groups are available. We report the results in Tab. 3.132

As seen, in all datasets, ours (partial) is only slightly worse than ours (full), indicating the strong133

effectiveness and flexibility of our method.134

6 Conclusion135

In this paper, we proposed Graph-Relational Distributionally Robust Optimization. We integrate136

graph information into distributionally robust optimization to develop OOD resilience. Our method137

strikes a good balance between the worst-case and influential groups, preventing the model from138

overfitting to worst-case groups and rationally improving generalization performance. Empirical139

results on both synthetic and real-world datasets demonstrate the effectiveness of our method.140
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