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ABSTRACT

In this paper, we discuss feature engineering for single-pass uncertainty estima-
tion. For accurate uncertainty estimates, neural networks must extract differences
in the feature space that quantify uncertainty. This could be achieved by cur-
rent single-pass approaches that maintain feature distances between data points as
they traverse the network. While initial results are promising, maintaining feature
distances within the network representations frequently inhibits information com-
pression and opposes the learning objective. We study this effect theoretically and
empirically to arrive at a simple conclusion: preserving feature distances in the
output is beneficial when the preserved features contribute to learning the label
distribution and act in opposition otherwise. We then propose Transitional Un-
certainty with Intermediate Neural Gaussian Processes (TUrING Processes)
as a simple approach to address the shortcomings of current single-pass estima-
tors. Specifically, we implement feature preservation by extracting features from
intermediate representations before information is collapsed by subsequent lay-
ers. We refer to the underlying preservation mechanism as transitional feature
preservation. We show that TUrING Processes match or outperform current
single-pass methods on standard benchmarks and in practical settings where these
methods are less reliable (imbalances, complex architectures, medical modalities).

1 INTRODUCTION

Effective single-pass uncertainty estimation in deep learning is governed by two design principals.
The first is defining an output score that reflects uncertainty. For instance, we can measure uncer-
tainty through distance from the training data (Liu et al., 2020), or the softmax confidence of the
output (Mukhoti et al., 2023). While score design plays a crucial role in measuring uncertainty, the
choice is dictated by application and uncertainty characteristics (Kendall & Gal, 2017). The second
principle concerns information availability, namely whether the network can preserve features that
reflect uncertainty information and does not “collapse” uncertain data points to certain representa-
tions (Van Amersfoort et al., 2020). We refer to the latter principle as feature preservation.

Despite their critical importance, preserving features is not trivial in neural networks. In particu-
lar, information compression is a desirable property of neural networks and a central component
of the learning problem (Tishby et al., 2000). In spite of this discrepancy, current single-pass un-
certainty methods preserve features by maintaining distances between data points in the output and
risk inhibiting compression of application irrelevant information (Liu et al., 2020; Van Amersfoort
et al., 2020; van Amersfoort et al., 2021; Mukhoti et al., 2023; Kwon et al., 2020; Prabhushankar
& AlRegib). In common practical scenarios such as distributional shift, this characteristic mani-
fests in performance decline (Postels et al., 2022). We provide a simple illustration of this effect in
Figure 1a. The left plot shows the 2D neural network output features of two clusters when trained
without explicit feature preservation. The network collapses the class clusters to single points creat-
ing a challenging setting for uncertainty estimation. The center plot shows the same 2D classification
problem, but depicts a network trained with feature preservation constraints on the output. While
the representations reflect uncertainty more accurately, the constraints introduce noise and cause an
overlap of both clusters (signified by misclassified samples). In Section 3, we delve deeper into this
effect and identify it as a limiting issue for current single-pass estimators both theoretically and em-
pirically. These disadvantages motivate the search for alternative feature preservation approaches.
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Figure 1: a) overview of different feature preservation paradigms. We show 2D representations of
neural networks where h1 and h2 denote the output dimensions in the feature space. Left: conven-
tional neural network. Samples are collapsed to two tight clusters with little uncertainty information.
Center: feature preservation in the output. Feature differences are maintained resulting in higher
uncertainty related content but also in a cluster overlap. Right: transitional feature preservation.
uncertainty is measured from differences between several representations of the same sample (de-
noted as hw1,2,3). b) overview of our method workflow in comparison to ensembles. For ensembles,
the representations come from several neural networks. Our method combines intermediate layer
representations.

To this end, a more conservative strategy preserves features in the collection of multiple representa-
tions of the same sample (Malinin & Gales, 2018). From a preservation perspective, the approach
is preferred as feature distances are encoded in differences (e.g. spread) of the individual sample
representations and does not require constraining the compression property. We term this approach
as transitional feature preservation and illustrate a toy example in the right plot of Figure 1a. We
show three different representations of the same two clusters collected from different sources hw1,2,3 .
While the sources collapse points individually, the inter-source difference for a given sample reflects
uncertainty (signified by �h). A classic model that enjoys this property are deep ensembles (Lak-
shminarayanan et al., 2017), where each source representation is collected from a separate network.
However, the evaluation requires several forward passes (one per network) and is limiting in appli-
cations with time and space constraints.

In this paper, we address shortcomings of current single-pass uncertainty estimators by implement-
ing transitional feature preservation in a single forward pass. We contrast our method to ensembles
in Figure 1b. Instead of sourcing multiple representations from separate networks, we utilize in-
termediate representations to extract features before they are collapsed by subsequent layers. We
further combine our preservation approach with a single-pass uncertainty estimator, approximate
Gaussian Processes, and arrive at a new single-pass model: Transitional Uncertainty with Interme-
diate Neural Gaussian Processes or TUrING Processes in short. Our estimator requires less
labeled training data and outperforms current single-pass estimators both on standard benchmarks
and other data modalities (CT scans). Further, we show that TUrING Processes are prefer-
able under distributional shifts, complex architectures, and class imbalance; challenging settings for
current single-pass estimators.

2 BACKGROUND

2.1 NEURAL NETWORKS IN THE INFORMATION PLANE

Consider the input space X with a corresponding probabilistic random variable X . Further, let Y
denote a lower dimensional target space characterized by variable Y . The learning problem for
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neural networks is equivalent to finding the minimally sufficient statistical mapping h
⇤(X) with

respect to the mutual information I(X;Y ) Shwartz-Ziv & Tishby (2017).

h
⇤(X) = argmin

hw:I(hw(X);Y )=I(X;Y )
I(hw(X);X) (1)

Equation 1 is intuitive. During training, we optimize the network hw to fit the lower dimensional
distribution Y - i.e. maximize the mutual information I(hw(X);Y ) between the representation dis-
tribution hw(X) and the target distribution Y . At the same time, the neural network must compress
information irrelevant to the lower dimensional target variable Y . In Equation 1, we minimize the
mutual information I(hw(X);X) between the representation hw(X) and the input distribution X .
In practice, we derive hw from training data D = {yi, xi}

N
i=1 often collected from a subset of the

full input space XID ⇢ X . As a result, the network optimizes with respect to the in-distribution
variable XID and produces arbitrarily bad results when exposed to out-of-distribution (OOD) data
XOOD ⇢ X : XOOD \ XID = ;. For this reason, accurate uncertainty estimation is contingent
on modeling information related to the full input distribution without over-fitting to XID (Liu et al.,
2020).

2.2 DISTANCE-BASED FEATURE PRESERVATION IN THE OUTPUT

An intuitive approach to uncertainty estimation involves modeling distributional information in the
output of the neural network feature extractor (Van Amersfoort et al., 2020; van Amersfoort et al.,
2021; Mukhoti et al., 2023; Liu et al., 2020). The approach is practical as we can compute the
network output in a single forward pass and measure uncertainty from the logits directly. To ensure
accurate uncertainty estimates, current single-pass methods model input information by maintaining
the distances between data points as they traverse the network. By preserving meaningful distances,
we can estimate uncertainty by measuring the distance to the training domain XID (Liu et al., 2020).
More formally, given an input space X equipped with a meaningful distance dX , we learn a neural
network hw : X ! H that allows a distance dH within the feature manifold that reflects the true
distance dX (Liu et al., 2020):

dH(hw(x1), hw(x2)) = dX(x1,x2) (2)

Unfortunately, neural networks do not naturally implement distance preservation and “collapse”
data points to the same output. For this purpose, current single-pass methods enforce distance
preservation artificially through constraints on the network representation. Popular examples of
constraints include the two-sided gradient penalty (Gulrajani et al., 2017) and spectral normalization
in combination with residual connections (Miyato et al., 2018).

3 MOTIVATION FOR TRANSITIONAL FEATURE PRESERVATION

3.1 THEORETICAL PITFALLS OF FEATURE PRESERVATION IN THE OUTPUT

While distance preservation in the output is a desirable property for uncertainty estimation, enforc-
ing Equation 2 frequently results in performance degradation in neural networks: directly preserv-
ing distances in the network output can inhibit compression of information; a learning objective
according to Equation 1. In this section, we provide theoretical justification that enforcing distance
preservation on the network can act in direct opposition to the learning problem. We further arrive
at an intuitive conclusion: distance preservation in the output is beneficial only when the preserved
distances contain information related to the label distribution Y - i.e. when they are relevant to the
application.

We start our discussion by connecting the learning problem in Equation 1 to distances in the feature
space. In particular, the minimally sufficient statistic shares the following dependency to feature
distances for networks preserving distances in the output:

h
⇤(X) = argmin

hw:{I(fk

H
(hw(Mk));Y k)=I(Mk;Y k), k2[1,Np]}

X

k

I(fk
H(hw(M

k)); fk
X(Mk)). (3)

Here, Mk is the corresponding random variable of a subset of the input space Mk
⇢ X , where each

point in M
k has a unique distance to a fixed anchor point xk 2 X . Together, all Np partition subsets
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form the entire input space X =
S

k2[1,Np]
M

k :
T

k2[1,Np]
M

k = ;. Further, fk
L(.) = dL(xk; .)

is a distance function with respect to the anchor point. We provide a formal definition of unique
distance sets Mk, as well as proof for Equation 3 in Appendix A.1.

Equation 3 is conceptually important as it provides a direct dependency between the learning prob-
lem of neural networks and distances in the feature plane. In particular, we note that the compression
objective involves minimizing I(dH(hw(xk);hw(Mk)); dX(xk;Mk)) which is in direct opposition
to preservation constraints that aim to maximize the similarities between the input and feature dis-
tances. We further note the maximization objective between the feature distances and the label
distribution I(fk

H(hw(Mk));Y k). Here, preservation constraints can be beneficial: when additional
distances are preserved that contain information related to the label distribution Y

k, the term is
increased. We arrive at the following observation:
Observation 1. Preserving distances in the output is beneficial if the preserved distances contribute
to the application objective (i.e. contain information of label distribution), and oppose the learning
problem otherwise.

In the following, we analyze the practical scenario of class imbalance to showcase Observation 1.

3.2 DISTANCE PRESERVATION UNDER CLASS IMBALANCE

Figure 2: Classification accuracy with and with-
out distance preservation in the output: a) uni-
formely removed training and test data (left); b)
class imbalance at different severity levels (right).
In both graphs, we show the classification accu-
racy on the y-axis. The x-axis on the left graph
represents the percentage of uniformely removed
data, on the right the axis represents the fraction
of imbalanced classes. The zero point on the x-
axis is equivalent for both scenarios and repre-
sents the standard CIFAR100 benchmark without
imbalance or data removal.

In practice, relevancy information of features is
not available and popular options preserve dif-
ferences between features blindly without re-
gard of application (Miyato et al., 2018; Gulra-
jani et al., 2017). A common example where
this characteristic is problematic is class im-
balance. Here, information is either over- or
under-represented in the training set, resulting
in an increase of application-irrelevant data. In
this subsection, we investigate the generaliza-
tion performance when preserving features in
the output under different severities of class im-
balance. We find that distance constraints re-
sult in performance decline under high imbal-
ance severities. In addition to generalization
performance, we further investigate the uncer-
tainty estimates under class imbalance in Ap-
pendix C.1.

Experimental Setup To illustrate class im-
balance, we artificially imbalance the CI-
FAR100 benchmark by removing either train-
ing or test samples of a previously balanced
class. The portion of classes we artificially im-
balance determines the severity of imbalance. For our experiments, we enforce distance preservation
through spectral normalization in combination with residual connections (Miyato et al., 2018). We
choose spectral normalization due to its simplicity and often stronger performance than the double
sided gradient penalty (Gulrajani et al., 2017). We compare other distance-based methods in our
benchmark experiments in Section 6. Full details on both imbalance method and experimental setup
are provided in Appendix B.1.

Accuracy Curves We compare the classification accuracy with and without spectral normalization
in Figure 2. In addition to class imbalance, we further consider settings where we randomly remove
training samples (left graph). We show this setting to determine that the accuracy gain/loss from
output feature preservation is dependent on the available information, not the number of samples.
Our experiments highlight both advantages and disadvantages of preserving features in the output
representation: if the target distribution is sufficiently similar to the input distribution, additional
preserved features correlate with the generalization objective and results in a performance increase.
This can be seen from the accuracy improvement with spectral normalization under low imbalance
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severities or when samples are removed randomly. The opposite can be observed where, in contrast
to random sample removal (left graph), we explicitly remove training and test samples to imbal-
ance classes (right graph). Here, the training set contains more significant amounts of irrelevant
information and spectral normalization significantly decreases the generalization performance.

4 OUR METHOD: TURING PROCESSES

4.1 TRANSITIONAL FEATURE PRESERVATION

Within the previous sections we found that feature preservation in the output can oppose the learn-
ing objective; an undesirable property for neural networks. To this end, a more prudent strategy
involves preserving distance information in a collection of representations instead of a single output.
Classic models that implement this property are ensembles (Lakshminarayanan et al., 2017). Un-
certainty is encoded in the collection of ensemble models without explicit preservation constraints
and the feature distance is then preserved in the difference or “spread” of the individual represen-
tations (Malinin et al., 2019). We formalize the concept within the context of distance preserva-
tion: given a set of neural network representations {hw1(x), ..., hwN

(x)} and a transitional function
�h : H1 ⇥H2 ⇥ ...⇥HN ! V , we seek to learn feature mappings that allow a distance dV within
the transitional space that reflects the true distance dX :

dV (�h(x1),�h(x2)) = dX(x1,x2) (4)

We refer to methods along Equation 4 as transitional feature preservation or TFP in short. While
powerful iterative methods such as ensembles implement TFP, their evaluation requires several for-
ward passes and is frequently infeasible due to time or space limitations. In this paper, we implement
TFP in single-pass uncertainty estimation by considering a linear combination of intermediate layer
representations within the neural network. In particular, we find that the linear combination of in-
termediate distances

PL
l=0 rldHl

(hwl
(x1), hwl

(x2)) is distance preserving when the first layer is
collapse resistant (i.e. dH0(hw0(x1), hw0(x2)) 6= 0) for dX(x1,x2) 6= 0). This requirement is
different from Equation 2 as it allows distance contraction or expansion of dH0 with respect to dX ,
not full preservation. Proposition 1 makes the concept more precise.
Proposition 1 (Transitional Feature Preservation in Intermediate Representations). Consider the
neural network mapping hw : X ! H with the layered architecture hw = hw0 �hw1 ...�hwL

, where
the first layer hw0 is collapse resistant with respect to the input space, dH0(hw0(x1), hw0(x2)) 6= 0
for dX(x1,x2) 6= 0. Then there exists a C 2 R such that

LX

l=0

rldHl
(hwl

(x1), hwl
(x2)) = C ⇤ dX(x1,x2),

where C = 1 under an appropriate choice of rl. In other words, there exists a linear combination
of intermediate representations that is feature preserving in transition - i.e. satisfies Equation 4.

We provide proof of Proposition 1 in Appendix A.2. Note that Proposition 1 assumes collapse
resistance in the first layer. In practice, this can be achieved by enforcing preservation constraints
such as spectral normalization on the first layer only, which theoretically comes with the same risks
outlined in Section 3 (to a significantly lesser degree). Empirically, we found that omitting the
constraint entirely does not compromise the quality of the uncertainty estimates suggesting that the
first layer rarely collapses data points in practice.

4.2 ALGORITHM

Our method consists of three components: a principal feed-forward network, shallow-deep network
exits with individual internal classifiers, and a combination head (Figure 3). During training, the
shallow-deep network exits are trained jointly with the feed-forward component, while the combi-
nation head is fitted after optimization on a validation set extracted from the training data XID. We
emphasize that our method does not require out-of-distribution validation samples as the combina-
tion head is fitted with data from the training set. During inference, the input sample traverses both
the feed-forward network, as well as the shallow exits. The final output prediction is derived from
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the main network, while the uncertainty score is derived from a combination of the intermediate out-
put logits. In addition to our description in the main paper, we provide additional implementation
details and algorithm pseudo code in Appendix D.

Figure 3: Workflow of our method during inference. The architecture consists of a main network,
internal classifiers (IC), as well as a combination head. During inference, the input traverses the
main network, as well as the internal classifiers. The prediction is obtained from the main network
output, while the uncertainty score is obtained from a combination of internal classifier outputs.

Shallow-Deep Network Exits Shallow-Deep networks (SDNs) (Kaya et al., 2019) were originally
introduced in the context of computation reduction. A SDN is a modified version of a conventional
DNN where additional internal classifiers are placed on intermediate representations to produce
preliminary predictions. In our context, we utilize internal classifiers to produce intermediate logits
for uncertainty estimation. Formally, given the intermediate layer l of the principal feed-forward
network with the latent representation h

l
wl
(x) 2 RMl , an internal classifier is a shallow network

f
l
wl

: RMl ! RK that produces prediction logits for K classes. Regarding positioning, we place
internal classifiers uniformly across the feed forward network, similar to Kaya et al. (2019).

Training Procedure We train internal classifiers jointly with the feed-forward network, similar to
Kaya et al. (2019). For this purpose, we propose a weighted loss function for each internal classifier,
as well as the principal network output. Given the final logits of the principle network hw(x), an
appropriate proper scoring rule (or loss) Ls, the SDN Loss is defined as

LSDN (x, y) = p0Ls(hw(x), y) +
NICX

i=1

piLs(f
i
wl
(x), y). (5)

where pi represent individual loss weights, and NIC is the total number of internal classifiers. In
our experiments, we found that equal weighting (i.e. pk = 1

NIC+1 )) produces sufficient results but
emphasize that other weighting schemes may be more desirable depending on the application.

Combination Head While heavily utilizing early layer representations is intuitive, we found that
relying on shallow outputs exclusively results in poor uncertainty scores. Specifically, in addition to
increased domain awareness, early intermediate outputs contain significant amounts of application-
irrelevant information that results in unreliable uncertainty estimates. For this purpose, we propose
a fusion scheme by first calculating individual uncertainty scores and subsequently combining them
by a weighted scaled sum.

ufinal(x) =
1

PNIC

i=1 ri

NICX

i=1

rius(f
i
wi
(x)). (6)

In Equation 6, us represents the individual uncertainty score, and ri the score weights. While
principally any uncertainty score can be used, we replace the output layer of the internal classifiers
with approximate gaussian processes and calculate uncertainty similar to (Liu et al., 2020). Our
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Table 1: OOD detection and classification accuracy on the CIFAR10 dataset.
OOD AUROC

Architecture Algorithms Preservation Constraint Accuracy CIFAR10-C CIFAR100-C SVHN

ResNet-50

DNN No Constraint 95.533 ± 0.080 0.715 ± 0.007 0.903 ± 0.000 0.927 ± 0.015
Energy-Based (Liu et al., 2021) 0.688 ± 0.016 0.879 ± 0.003 0.919 ± 0.008
SNGP(Liu et al., 2020) SN 95.033 ± 0.076 0.721 ± 0.007 0.928 ± 0.005 0.976 ± 0.003
DUQ(Van Amersfoort et al., 2020) GP 88.867 ± 0.211 0.618 ± 0.003 0.824 ± 0.008 0.829 ± 0.016
TUrING Processes No Constraint 94.880 ± 0.324 0.738 ± 0.006 0.936 ± 0.003 0.946 ± 0.012

ResNet-101

DNN No Constraint 95.837 ± 0.103 0.690 ± 0.006 0.894 ± 0.001 0.922 ± 0.012
Energy-Based (Liu et al., 2021) 0.715 ± 0.006 0.849 ± 0.009 0.890 ± 0.034
SNGP(Liu et al., 2020) SN 91.907 ± 0.183 0.636 ± 0.009 0.912 ± 0.015 0.906 ± 0.018
DUQ(Van Amersfoort et al., 2020) GP 89.427 ± 0.315 0.620 ± 0.003 0.833 ± 0.004 0.830 ± 0.004
TUrING Processes No Constraint 94.257 ± 0.349 0.722 ± 0.006 0.937 ± 0.003 0.938 ± 0.004

ResNet-152

DNN No Constraint 95.877 ± 0.097 0.690 ± 0.006 0.891 ± 0.000 0.928 ± 0.005
Energy-Based (Liu et al., 2021) 0.665 ± 0.008 0.849 ± 0.004 0.905 ± 0.018
SNGP(Liu et al., 2020) SN 90.510 ± 0.814 0.636 ± 0.009 0.899 ± 0.016 0.847 ± 0.020
DUQ(Van Amersfoort et al., 2020) GP 91.263 ± 0.185 0.623 ± 0.002 0.731 ± 0.059 0.842 ± 0.012
TUrING Processes No Constraint 94.213 ± 0.777 0.722 ± 0.006 0.927 ± 0.004 0.945 ± 0.004

choice is based on simplicity and the strong performance of approximate Gaussian processes. We
call our resulting method Transitional Uncertainty with Intermediate Neural Gaussian Processes or
TUrING Processes in short.

Fitting the Combination Head Fitting the weights ri in Equation 6 is more involved. While
several methods exist to fit uncertainty parameters (Lee et al., 2023; 2018; Liang et al., 2017), they
require either a) access to a small set of XOOD, and/or b) access to all labels in XID. In this paper,
we assume neither. Our fitting algorithm requires two steps. First, we derive proxy labels from the
small validation set. Second, we derive the weight parameters by formulating a binary classification
problem, using the individual uncertainty scores us(f i

wi
(x)), and proxy labels s(x) derived from

the disagreement in between different SDN exits. In Appendix C.2, we study the proxy labels in
detail and compare disagreement in SDN exits with ensembles. Note, that our algorithm assumes
that the validation set represents a small amount of unlabeled samples originating from XID and
does not require out-of-distribution samples or additional data of any kind. We define our proxy
labels through disagreement in the form of prediction switches between internal classifiers. Given a
validation sample xval, we define a prediction switch as

s(xval) = min(
NICX

i=2

1fi
wi

!=fi�1
wi�1

, 1) (7)

where f
i
wi

are abbreviations for the internal classifier predictions pred(f i
wi
(xval), and 1fi

wi
!=fi�1

wi�1

is a binary variable reducing to one if two subsequent classifier predictions differ or zero other-
wise. Our choice regarding the disagreement label is based on simplicity. By evaluating prediction
switches, we reduce the tuning process to a binary classification problem allowing a partition of
the validation set into coarse high-, and one low-uncertainty subgroups. Specifically, we classify
the sample xval as high-uncertainty if s(xval) amounts to one and as low-uncertainty otherwise.
Subsequently, we derive the weighting parameters through logistic regression, where we map the
individual uncertainty scores to the us(f i

wi
(xval)) to the corresponding subgroup s(xval):

r1, ..., rNIC
= LR({s(xi),vi}

Nval

i=1 ) (8)

In our notation, LR is an abbreviation for logistic regression, and vi are the individual uncertainty
scores [us(f1

w1
(xi)), ..., us(fNIC

wNIC

(xi))] bundled into a single vector.

5 RELATED WORK

Single-Pass Uncertainty Estimation Our work most closely relates with estimating uncertainty
in a single forward pass. In this context, a significant amount of work includes replacing the loss
function (Malinin & Gales, 2018; Hein et al., 2019; Sensoy et al., 2018), the output layer (Liu et al.,
2021; Padhy et al., 2020; Bendale & Boult, 2016; Macêdo & Ludermir, 2022; Tagasovska & Lopez-
Paz, 2019), or alternative gradient representations (Kwon et al., 2020; Prabhushankar & AlRegib;
Lee et al., 2023). While several methods are promising, they do not explicitly consider information
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Table 2: OOD detection and classification accuracy on the CIFAR100 dataset.
OOD AUROC

Architecture Algorithms Preservation Constraint Accuracy CIFAR10-C CIFAR100-C SVHN

ResNet-50

DNN No Constraint 77.623 ± 0.276 0.832 ± 0.003 0.680 ± 0.004 0.859 ± 0.013
Energy-Based (Liu et al., 2021) 0.829 ± 0.008 0.682 ± 0.006 0.815 ± 0.050
SNGP(Liu et al., 2020) SN 75.083 ± 0.889 0.821 ± 0.010 0.707 ± 0.005 0.900 ± 0.008
DUQ(Van Amersfoort et al., 2020) GP - - - -
TUrING Processes No Constraint 78.437 ± 0.223 0.868 ± 0.002 0.738 ± 0.002 0.955 ± 0.008

ResNet-101

DNN No Constraint 77.257 ± 0.285 0.834 ± 0.003 0.671 ± 0.005 0.851 ± 0.024
Energy-Based (Liu et al., 2021) 0.836 ± 0.004 0.674 ± 0.007 0.856 ± 0.042
SNGP(Liu et al., 2020) SN 74.380 ± 1.978 0.816 ± 0.028 0.674 ± 0.031 0.906 ± 0.027
DUQ(Van Amersfoort et al., 2020) GP - - - -
TUrING Processes No Constraint 78.550 ± 0.213 0.863 ± 0.004 0.730 ± 0.002 0.959 ± 0.001

ResNet-152

DNN No Constraint 78.160 ± 0.242 0.830 ± 0.002 0.674 ± 0.002 0.851 ± 0.010
Energy-Based (Liu et al., 2021) 0.828 ± 0.002 0.674 ± 0.002 0.852 ± 0.009
SNGP(Liu et al., 2020) SN 74.077 ± 2.631 0.822 ± 0.028 0.659 ± 0.039 0.889 ± 0.015
DUQ(Van Amersfoort et al., 2020) GP - - - -
TUrING Processes No Constraint 78.877 ± 0.311 0.857 ± 0.010 0.715 ± 0.010 0.926 ± 0.031

preservation within the representations of the network. In contrast, recent methods consider fea-
ture preservation within the output as a vital component for reliable uncertainty scores (Liu et al.,
2020; Van Amersfoort et al., 2020; van Amersfoort et al., 2021; Mukhoti et al., 2023). Our work
complements these approaches by considering feature preservation with intermediate representa-
tions without explicit constraints. Finally, several approaches explore intermediate representations
for the application of uncertainty estimation (Lee et al., 2023; 2018; Guo et al., 2017; Liang et al.,
2017). However, they assume access to out-of-distribution validation samples and/or a fully labeled
training set. Our work is complementary by investigating feature preservation without access to a
out-of-distribution validation set and does not assume that all samples are labeled in training.

Iterative Uncertainty Estimation In addition to single-pass uncertainty, significant related work
exists in iterative uncertainty estimation. With iterative uncertainty estimation, we refer to methods
requiring several forward passes for computation. Here, the state-of-the-art are deep ensembles
(Lakshminarayanan et al., 2017), as well as several parameter-efficient counterparts (Wen et al.,
2020; Dusenberry et al., 2020; Thiagarajan et al., 2022). Further examples include Bayesian Neural
Networks (Wenzel et al., 2020; Osawa et al., 2019) and MC-Dropout (Gal & Ghahramani, 2016).
In practice, these methods tend to render powerful uncertainty estimates but require several forward
passes to compute, limiting their applicability in practice. In Appendix E, we provide additional
related work on distance preserving neural networks.

6 BENCHMARK EXPERIMENTS
6.1 CIFAR10 AND CIFAR100

We start by demonstrating our uncertainty method on standardized benchmarks in out-of-distribution
(OOD) detection. The following combinations are evaluated: CIFAR10 vs. CIFAR10-C/CIFAR100-
C/SVHN and CIFAR100 vs. CIFAR10-C/CIFAR100-C/SVHN (Krizhevsky et al., 2009; Netzer
et al., 2011; Hendrycks & Dietterich, 2019). In addition to a standard softmax DNN, we compare
against three single-pass uncertainty baselines that do not require additional OOD data: the energy-
based model (Liu et al., 2021), DUQ (Van Amersfoort et al., 2020), and SNGP (Liu et al., 2020).
We choose these three methods because 1) their strong empirical performance and 2) they utilize
three popular methods for feature preservation in the network output. DUQ preserves features with
a double sided gradient penalty (GP) (Gulrajani et al., 2017), SNGP implements spectral normaliza-
tion (SN) (Miyato et al., 2018), and the energy based model relies on the softmax density without
regularization (No constraint). To investigate robustness with respect to network complexity, we
consider three architectures with residual connections and varying depth: ResNet architectures (He
et al., 2016) with 50, 101, and 152 layers. We restrict our experiments to these architectures as SNGP
requires residual connections for its full functionality. For fine-tuning the uncertainty weights, we
partition a small amount (10%) of training samples and remove the labels to perform the unsu-
pervised fitting algorithm. In Table 1 and Table 2, we report the AUROC scores for training on
CIFAR10 and CIFAR100 respectively. When evaluating the corruption datasets, CIFAR10-C and
CIFAR100-C, we average all corruption types and intensities. Further details on implementation and
feature preservation can be found in Appendix B.3 and B.2. In addition, we investigate calibration,
runtime, and imbalanced settings in Appendix C.3, and C.4.
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Table 3: AUROC and classification accuracy on on the organ{C, A, S} datasets.
AUROC

Dataset Algorithms Preservation Constraint Accuracy organA organC organS

organA

DNN No Constraint 94.602 ± 0.388 - 0.906 ± 0.004 0.850 ± 0.007
Energy-Based (Liu et al., 2021) - 0.887 ± 0.005 0.841 ± 0.008
SNGP(Liu et al., 2020) SN 93.906 ± 0.297 - 0.907 ± 0.010 0.857 ± 0.006
TUrING Processes No Constraint 95.254 ± 0.191 - 0.915 ± 0.003 0.869 ± 0.003

organC

DNN No Constraint 92.106 ± 0.176 0.884 ± 0.001 - 0.780 ± 0.005
Energy-Based (Liu et al., 2021) 0.857 ± 0.001 - 0.751 ± 0.006
SNGP(Liu et al., 2020) SN 90.941 ± 0.530 0.849 ± 0.008 - 0.765 ± 0.007
TUrING Processes No Constraint 92.122 ± 0.227 0.894 ± 0.003 - 0.794 ± 0.003

organS

DNN No Constraint 80.258 ± 0.299 0.754 ± 0.010 0.815 ± 0.003 -
Energy-Based (Liu et al., 2021) 0.733 ± 0.012 0.775 ± 0.005 -
SNGP(Liu et al., 2020) SN 79.918 ± 0.280 0.707 ± 0.009 0.790 ± 0.010 -
TUrING Processes No Constraint 80.002 ± 0.126 0.778 ± 0.001 0.822 ± 0.003 -

Our method outperforms the other single-pass methods despite having access to less training annota-
tions. This holds true over varying architectures and training datasets. In particular, methods trained
with spectral normalization achieve lower accuracy with increasing network depth. For instance, the
accuracy of SNGP reduces nearly three percent when extending ResNet-50 to ResNet-101. We re-
late this observation to the scaling of the Lipschitz bounds. Specifically, the lower and upper bounds
scale exponentially with the number of layers and are tighter for shallow models while looser for
deeper ones. Hence, the preservation constraint is weaker for deeper models and fails to maintain
the distance between data-points. The remaining methods deploy a different feature preservation
strategy and are thus agnostic to this effect. Further, DUQ did not converge on CIFAR100 due to
training instabilities. These arise when the class centroids get noisy from increasing class and data
complexity.

6.2 MEDICAL MODALITIES

We consider a natural example where the training data contains different information as the test set.
For this purpose, we benchmark TUrING Processes on three CT scan datasets from Yang et al.
(2023). All three datasets contain CT scans of the same eleven body organs and are named after the
three planes (axial, coronal, and saggittal) in which the data was collected. In our experiments, we
train on one plane and perform misclassification detection on the combined test set of the original
plane and an additional plane. We report AUROC and accuracy on the in-domain test set in Table 3.
Each row shows the a different training set, while each column refers to the test set that is combined
with the in-distribution test set. All experiments are performed with a ResNet-50 architecture and
we use the same hyperparameters as in our previous experiments. TUrING Processes match or
outperform competing methods. Similar to our previous observations, we note that SNGP does not
perform well when the information within the training set does not correlate well with the test set
and supports our usage of TFP in TUrING Processes.

7 DISCUSSION AND LIMITATIONS

A central observation we made in this work is that enforcing feature preservation by constraining
model representations can be harmful to the model performance and highlight application relevance
as a key requirement for effective representation constraints. For practical applications of uncertainty
estimation, the characteristic is undesirable as training distributions can severely differ from deploy-
ment. We propose single-pass transitional feature preservation through intermediate representations
to address these disadvantages. While our approach is effective and simple, we do not claim that
the illustrated improvements solve the problem of feature preservation in single-pass uncertainty
estimation entirely. In particular, we propose one instance of TFP through SDNs that comes with
its own set of limitations: similar to iterative methods, the success depends on the amount of source
representations in �h to preserve features. For this purpose, SDNs are less effective on shallow
architectures with fewer intermediate options to extract from. Finally, we chose the combination
of SDNs with Gaussian Processes out of simplicity and the strong empirical performance. How-
ever, key novelties of this paper (SDNs and singe-pass TFP) are not limited to one uncertainty score
(Gaussian Processes) and can be viewed as building blocks for single-pass uncertainty methods. We
encourage researchers to implement different combinations of single-pass TFP and either existing
or novel uncertainty scores to advance the critical field of single-pass uncertainty estimation.
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