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ABSTRACT

The static synaptic connectivity of neuronal circuits stands in direct contrast to
the dynamics of their function. As in changing community interactions, differ-
ent neurons can participate actively in various combinations to effect behaviors
at different times. We introduce an unsupervised approach to learn the dynamic
affinities between neurons in live, behaving animals, and to reveal which commu-
nities form among neurons at different times. The inference occurs in two major
steps.1 First, pairwise non-linear affinities between neuronal traces from brain-
wide calcium activity are organized by non-negative tensor factorization (NTF).
Each factor specifies which groups of neurons are most likely interacting for an
inferred interval in time, and for which animals. Finally, a generative model that
allows for weighted community detection is applied to the functional motifs pro-
duced by NTF to reveal a dynamic functional connectome. Since time codes the
different experimental variables (e.g., application of chemical stimuli), this pro-
vides an atlas of neural motifs active during separate stages of an experiment (e.g.,
stimulus application or spontaneous behaviors). Results from our analysis are
experimentally validated, confirming that our method is able to robustly predict
causal interactions between neurons to generate behavior.

1 INTRODUCTION

The connectome in neurobiology might seem roughly analogous to the architecture of artificial neu-
ral networks (ANNs) in artificial intelligence (AI), in the sense that it specifies the relevant structure
of connections. In AI, engineering this architecture is an engaging part of problem formulation;
in neurobiology, the structure of the connectome complicates the process of circuit dissection for
several reasons. First, there are different types of connections between neurons: some are due to
chemical synapses or electrical ones (gap junctions) (White et al., 1986; Jarrell et al., 2012; Cook
et al., 2019; Witvliet et al., 2021), and others induced by, e.g., extrasynaptic signaling of monoamines
or neuropeptides (Bentley et al., 2016; Ripoll-Sánchez et al., 2022; Beets et al., 2023). Each one de-
fines a distinct connectome (Fig. 1a). Secondly, unlike ANNs, in biology different connections can
be engaged at any given moment (e.g., as a result of neuromodulatory signals that alter system-wide
states (Bargmann & Marder, 2013)). As in complex social networks, the effective—or functional—
connectome varies with task and animal state; these dynamics render the predictive power of the
biological connectomes problematic. We agree with others working in different domains, e.g. Bas-
sett et al. (2011); Skarding et al. (2021), that a functional connectome that is dynamic across time is
required, given that a number of phenomena have been observed wherein neurons flexibly change
how they encode behavior in a state-dependent manner (Atanas et al., 2023). Our goal is to learn a
representation of these time-varying communities of neurons organized by behavioral responses in
a “simple” organism, Caenorhabditis elegans.

We present a novel algorithm for learning the dynamic community organization within a weighted
connectome, based on brain-wide activity measurements of each individual neuron. Our main con-
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tribution is to organize the connections—or estimated similarities between neural activity—rather
than the neurons themselves. It differs from previous attempts by considering the full system of
similarities and animals across time, rather than taking a step-by-step statistical approach (Varshney
et al., 2011; Bentley et al., 2016; Cook et al., 2019; Uzel et al., 2022). Our approach combines
two previously unrelated components: (i) the use of tensor factorization to reveal putative groups of
related neurons/animals in time, which are then (ii) passed to a community detection algorithm. Al-
though the emphasis here is on the algorithm, our results are confirmed with experiments that silence
specific neurons predicted by our method to directly measure their impact on behavior. Moreover,
even though the dynamic functional connectomes we reveal are specific to C. elegans, we believe
our approach is widely applicable to learning representations of dynamic communities of neurons
in other organisms, as well as in other domains, such as fMRI and social networks.

Figure 1: From static to dynamic connectomes. (a) Different modes of neural communication are
represented by substantially different connectomes. Shown here are chemical synapses (Syn), gap
junctions (GJ), monoamines (MA), and neuropeptide (NP) connectomes for the nematode worm
C. elegans (image adapted from Bentley et al. (2016)). How these relate to behavior has been
problematic, however. The immediate neighborhoods for neuron AWB are shown (b) from Syn and
(c) from GJ; which governs AWB communication and when? (d, top) The dataset consists of activity
traces from each neuron in C. elegans across time; dashed lines illustrate stimulus presentation of
e.g. a repulsive chemical that is directly sensed by the worm. Note how the traces differ across
time and across worms. (d, bottom) Different modules, or communities of neurons, become active
at different time periods, revealing how neurons interact dynamically to encode behavior. Our goal
is to infer these communities comprising the dynamic functional connectome.

2 METHODS

It is now possible, using the “NeuroPAL” method (Yemini et al., 2021), to determine both the cell-
type-identity of every neuron and also record its activity in C. elegans across time in awake, and
even behaving animals (Dag et al., 2023). Previously, neural activity traces from multiple worms
have been analyzed using traditional statistics such as correlation (e.g., Kato et al. (2015); Yemini
et al. (2021); Susoy et al. (2021); Randi et al. (2023)), small local motifs (Uzel et al., 2022), or
more complex predictive models (Cecere et al., 2021; Dag et al., 2023) which assume that most
neurons will respond in roughly the same way when exposed to the same stimulus. However, both
past and recent studies indicate different ways that neurons can change how they encode behavior
in a state-dependent manner (Bargmann & Marder, 2013; Gordus et al., 2015; Atanas et al., 2023),
despite identical repeated presentations of chemosensory stimuli intended to produce stereotypical
behavior. Multiple worms are therefore needed to determine whether “typical” functional networks
might activate after the introduction of a particular stimulus.

The third dimension (individual worms) in the data suggests using a tensor rather than a matrix for
representation of neural activity (Williams et al., 2018; Dyballa et al., 2024). A naive tensor formu-
lation would be to build it using the temporal activity directly: WORMS × NEURONS × TEMPORAL
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TRACES (e.g., Williams et al. (2018)). However, this would restrict the similarity computation be-
tween traces to a multi-linear form, which can be ambiguous for imaging data. We propose instead a
novel tensor formulation with dimensions: TIME × WORMS × PAIRWISE AFFINITIES, where instan-
taneous affinities (that may vary over time) are precomputed from the temporal traces of each pair
of neurons. In this way, non-linearities can be introduced by performing the affinity computations
between neurons separately from the factorization (see below). Moreover, given that neural affinities
are expected to be state-dependent and changing over time, the tensor components will be able to
provide a summarized description of which communities or sub-networks are active and when. We
demonstrate this in Results.

2.1 INTERPRETABLE, INSTANTANEOUS AFFINITIES; FIG. 3A

Experimental recordings of C. elegans currently span several minutes to nearly half an hour in
duration, during which it is likely that different groups of neurons will become active at different
times. Affinities should thus be a function of time, rather than the more traditional method of
computing a global-time measure such as correlation (e.g., Yemini et al. (2021); Randi et al. (2023)).
We compute, instead, local non-linear similarities between pairs of neural trace curves, which we
term differential affinity.

Building a time-varying similarity measure between traces is a subtle problem. For example, two
neurons that are mostly silent throughout an experiment will have small Euclidean distance (and high
cosine similarity) between them, even though there may be no evidence that the neurons participate
in the same circuit. Or, if they happen to maintain high, constant levels of activity at some point in
time, then their distances will also be locally small, but if they reached those levels several seconds
apart, it is unlikely that the two neurons are actually interacting. The instantaneous trace values are
not meaningful individually: the temporal history of how they arrived at that level is highly relevant.
We rely on the information present in the rates of monotonic change in activity, and compute what
we term local differential affinity.

We compare two neurons’ derivatives during intervals in which both had a constant sign, i.e., peri-
ods of monotonic increase or decrease in activity. The intuition is that two neurons with coinciding
changes in activity are likely to be influencing one another, or being influenced by a common phe-
nomenon, and thereby participating in the same functional circuit. The details of this computation
are given in the Appendix; examples of the instantaneous local differential affinity are shown in
Fig. 2.

Affinities show how similar two curves are, locally, in terms of their absolute derivatives, which is
motivated by the fact that two neurons with very similar but opposite sign derivatives are still likely
to be interacting by means of some inhibitory mechanism. As a result, they can be interpreted as how
likely it is for the two neurons to be interacting (either directly or indirectly, perhaps via common
input). The instantaneous pairwise affinities a

(t)
ij at a time t = 1, . . . , T may be bundled into an

affinity matrix, A(t), which is used in the tensor incorporating information across multiple worms.

2.2 DYNAMIC AFFINITY TENSOR DECOMPOSITION; FIG. 3B

We now have a set of affinity matrices {A(t)}, each one encoding an affinity network at a time t,
on which a community detection algorithm could be run. This would yield a collection of “instan-
taneous” network communities. However, which instants should be selected? How long should
they be? Are they independent? Rather than addressing these questions individually, we exploit
the summarization power of non-negative tensor factorization to automatically cluster affinity net-
works across time (and animals!): we seek contiguous intervals during which a given affinity pattern
is approximately preserved across several worms. Recall that our tensor has dimensions: TIME ×
WORMS × PAIRWISE AFFINITIES. (We note as an aside that this tensor can also help with “com-
pleting” affinity matrices containing missing data from a few neurons.) See Fig. 3 for a graphical
illustration of the following discussion.

If there are n neurons, A(t) has dimension n × n. Note that there is no expectation for parts of
the connectivity structure in A(t) to be decomposable as the product of two matrices. Therefore,
instead of stacking the 2-D matrices in a 4-way tensor, we vectorize each A(t) by reshaping it as a
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Figure 2: Computation of dynamic differential affinity. (a, top) Activity traces of two neurons,
AWCL and ASER, across time. Note that they share marked periods of similar trends in activity.
(a, middle) Smoothed derivatives of the top traces. Note how the derivatives agree during periods in
which both traces vary together. (a, bottom) Affinity trace across time computed between AWCL and
ASER (see section 2.1 and Appendix A.1 for details). Note how the “bumps” coincide with regions
of potential interest. (b) Similar plots for a different neuron pair. Again, our non-linear affinity
measure has low value except for periods when both neurons increase or decrease their activities,
i.e., are more likely to be interacting.

vector of dimension n(n− 1)/2, the total number of pairs (for computational efficiency, since they
are symmetric, only the upper-triangular part is used).

In a Canonical Polyadic (CP) decomposition (Carroll & Chang, 1970; Harshman et al., 1970; Kolda
& Bader, 2009), the goal is to approximate a n-way tensor T ∈ RI1×I2×...×In by a sum of rank-1
tensors. Letting R be the number of components chosen, we may express the specific case of a
3-way tensor as (Kolda, 2006):

T̃ =

R∑
r=1

v(1)r ◦ v(2)r ◦ v(3)r , (1)

where ◦ stands for the vector outer product and X(k) is called a factor matrix containing the factors
v
(k)
r as its columns. Each rank-1 tensor is thus formed by the outer product between each factor in the

same component (a component refers to each set of associated factors). Most tensor decomposition
algorithms use squared reconstruction error as objective function (Cichocki et al., 2009):

min
X(1),X(2),X(3)

1

2
∥T − T̃ ∥2. (2)

where ∥ · ∥ is the norm of the vectorized tensor.

Since the data consist of non-negative neural affinities, we adopt a non-negative tensor decomposi-
tion, also known as non-negative tensor factorization (NTF) (Bro & De Jong, 1997), which adds a
non-negativity constraint X(k) ≥ 0,∀k to eq. 2. Non-negative factorization is popularly used for
matrices (NMF), and achieves a parts-based representation with more easily-interpretable compo-
nents (Lee & Seung, 1999; Cichocki et al., 2009); additionally, it has been shown to produce more
stable factors, is less prone to overfitting, and has high parameter efficiency (Williams et al., 2018).
We use a hierarchical alternating least squares (HALS) algorithm (Cichocki & Phan, 2009), as im-
plemented in the tensortools Python library (Williams, 2024). Its efficiency when applied to
real-world datasets has been compared against several other algorithms in Phan & Cichocki (2008).

Each component resulting from our tensor will be constituted by three factors: one representing a
pattern fa of (vectorized) pairwise affinities; a vector ft representing periods of time where such pat-
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Figure 3: The procedure for inferring dynamic functional connectomes in three stages. (a) Stage 1:
Building affinities. Neurons in behaving worms are imaged to yield a matrix of activity (in time)
for each neuron for each worm. The differential affinity computation compares traces to yield a
tensor of affinities (in time) for each neuron pair for each worm. (b) Stage 2: Non-negative tensor
factorization yields components that reveal affinity patterns found for certain worms (bar plot) over
different time intervals (temporal curve). For example, component 2 indicates that neuron pairs with
high affinity in worms 4 and 6 are active early in the experiment, and the last factor applies mainly to
worm 2. (c) Stage 3: From affinities to a functional connectome. The affinity factor from a selected
tensor component is rearranged as an affinity matrix, from which an equivalent weighted graph
is implicitly built. A community detection algorithm then reveals groupings of neurons behaving
similarly over the indicated time interval.

tern was observed; and a vector fw whose loadings, or coefficients, indicate how much each worm’s
affinities can be described by fa at those times expressed in ft. These components, combined, can
be seen as a soft multi-clustering of worms in terms of their activity patterns and the times at which
they occur. See Fig. 3b and Appendix A.4.

2.3 NEURAL AFFINITY COMMUNITIES; FIG. 3C

Notice that, because the neurons are sorted in an arbitrary way, looking at the affinity factor matrices
should not be particularly enlightening. However, because affinities are non-negative and bounded,
they can be readily treated as adjacencies (weighted edges) in a graph where the nodes correspond
to individual neurons. This enables us to use a community-detection algorithm to cluster similar
neurons based on their activity over time.

Although several methods for dynamic community detection (DCD) exist, using both traditional ML
(Rossetti & Cazabet, 2018) and deep learning (Skarding et al., 2021), the vast majority are focused
on unweighted networks (Li et al., 2021). That is because in many applications a dynamic network
refers to a graph that changes its number of nodes or edges over time, not their weights (with few
exceptions, e.g., Guo et al. (2014)). Of course, for our purposes the edge weights (i.e., affinity
factors from NTF) are essential, as they convey the likelihood that two neurons interact over some
period of time (section 2.1).
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Figure 4: Tensor components for a real worm during an experiment in which repellent and attractive
stimuli were applied. The application of these stimuli is important, since it provides correspondence
between the time axes. (a) One tensor component that selects out the interval during which repulsive
NaCl (salt) was applied. All worms reacted, but worms 5, 6, and 7 showed higher responses for
certain pairs of neurons (from the affinity factor, shown as an unsorted matrix). The weighted
graph visualized with a traditional force-directed embedding is difficult to interpret, but the nested
community structure revealed by the NWSBM algorithm (b) provides a clear view of the neuronal
modules involved in salt perception. (c) A different tensor component that selects several time
intervals when stimuli were applied, but is especially involved with the attractant 2,3-pentanedione.
Most worms are again implicated, but the community of neurons (d) is qualitatively different.

Since our tensor decomposition organizes the temporal dimension—i.e., which networks are active
at which times—we seek a community detection method appropriate for handling edge weights.
Additionally, we wish to prevent spurious aggregations of nodes due to random fluctuations in the
affinity values (from possible noise in the activity traces). Therefore it is preferable to infer a latent
community structure that carries explanatory power, as opposed to adopting classical descriptive
methods that attempt to find communities according to some preconceived notion of a good division
of the network into groups.

A classical model for community structure is the stochastic block model (SBM) (Holland et al.,
1983), which groups nodes according to their probabilities of connection to the rest of the network.
Statistical inference can be used to find the best-fitting model to the data. A principled approach
for this task is to formulate generative models that allow this modular decomposition to be found
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via statistical inference (Aicher et al., 2015; Peixoto, 2019). In particular, the nested weighted-SBM
algorithm (NWSBM) (Peixoto, 2018; 2014) extends the SBM to be applied to weighted networks
by treating edge weights as covariates, and employs a Bayesian approach capable of inferring the
number of communities from the data in an unsupervised fashion. Moreover, it requires no hyper-
parameter tuning.

For example, let the partition of the network into C communities be denoted as c = {ci}, where
ci ∈ [0, C − 1] is the community membership of node i. A model can be defined that generates a
network G with probability

P (G|θ, c) , (3)
where θ is a set of parameters controlling how the node partition affects the structure of G. Assum-
ing there is only one choice of θ that is compatible with the generated network, we may write the
Bayesian posterior probability as

P (c|G) =
P (G|θ, c)P (θ, c)

P (G)
. (4)

The selected model is the one found to yield the smallest description length (Peixoto, 2015), namely

L = − lnP (G|θ, c)− lnP (θ, c), (5)

since eq. 4 above can be rewritten as

P (c|G) =
exp(−L)
P (G)

. (6)

Such a problem is NP-hard in general, so the likelihood is optimized stochastically. Hence, instead
of assuming that there is a single “best fit” to the model, an efficient multi-flip Markov-Chain Monte
Carlo (MCMC) algorithm performs model averaging to increase the robustness of the results; addi-
tional details can be found in Peixoto (2018). This algorithm was chosen after running benchmark
tests against several other popular community detection methods (section 3.3, Table 1).

3 RESULTS

Our approach was applied to the dataset from Yemini et al. (2021), in which calcium activity from
189 neurons in the head of C. elegans were recorded from a total of 21 individual worms. Each worm
performed a series of behavioral tasks in response to stimuli: one gustatory repellent (NaCl) and two
olfactory attractants (2-butanone and 2,3-pentanedione) were flushed into the worm surroundings
over periods of 10 s. Different worms were exposed to the stimuli in 3 possible sequences. We
restricted the data to sensory and inter-neurons, since those are more likely to be directly responsive
to the chemosensory stimuli used.

3.1 DYNAMIC FUNCTIONAL CONNECTOMES

Fig. 4a,c shows informative factors resulting from running NTF on our tensor (section 2.3). Each
affinity factor yields a vectorized affinity matrix, which can be reorganized as the upper-triangular
part of a symmetric matrix (for ease of visualization). This matrix in turn can be interpreted as a
weighted adjacent matrix of a network in which nodes represent individual neurons (section 2.3).
The communities inferred by the NWSBM algorithm for each factor then apply to certain time win-
dows and worms, weighted by their respective factor loadings, and represent a transient functional
connectome. Two examples are shown in Fig. 4b,d, with their respective temporal factors revealing
that such neural interactions are mostly active during the presence of NaCl and pentanedione, re-
spectively. A richly-connected individual community from the NaCl-sensing connectome is further
analyzed in Fig. 5.

3.2 VALIDATION EXPERIMENTS

Our algorithm predicted the involvement of multiple neurons in the salt-sensing (NaCl) circuit, as
those neurons found clustered with the canonical NaCl-sensing neuron ASE. Among these predic-
tions were several neurons not previously known to play a role in this salt-sensation circuit. For
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Figure 5: A transient community for salt sensing. (a) We here highlight one community from the
dendrogram shown in Fig. 4a (cf. inset below). By reverting back to the original activity traces, we
can confirm that the individual neuronal responses agree with a functional circuit organization, and
that the affinity measure is meaningful. (b) The temporal factor of the corresponding tensor compo-
nent shows that this particular circuit is most prominently involved in a response to NaCl (salt), plus
minor but non-negligible responses to the other two stimuli (2-butanone and 2,3-pentanedione). (c)
Individual activity traces for the most strongly connected neurons within the community, highlighted
in proportion to the instantaneous temporal loadings. Note that the traces are most similar precisely
during the NaCl interval for several worms; traces are plotted from the three worms with highest
loadings in the corresponding worm factor (see Fig. 4a). (d) Note the complexity of the traces out-
side this interval. In particular, even though in worm 7 all the selected neurons were correlated
throughout the experiment, this was not true for other worms, which explains the NaCl specificity
in the temporal factor. Notice that, because the affinities are computed from absolute derivatives,
neurons will be strongly connected even when their traces have opposite signs.

example, our algorithm predicted that the worm’s primary aversive olfactory neuron AWB (Troemel
et al., 1997) is substantially involved in salt sensation. Therefore, we decided to experimentally test
this surprising prediction of a previously unknown role for AWB in sensing NaCl.

To do so, we compared salt avoidance in worms where AWB was functional versus worms where
AWB was silenced. Briefly, we used a standard “drop test” (Bazzicalupo & Hilliard, 2005) to mea-
sure avoidance of salt, wherein a drop of 160 mM NaCl buffer (as used in Yemini et al. (2021))
was placed in front of worms, and their response was recorded as avoidance if they reversed, and
non-avoidance if they continued moving forward. Each of our samples consisted of 25–50 worms
that were drop tested, and collectively scored for their mean avoidance. We tested 12 such sam-
ples of functional AWB controls versus 12 samples with AWB silenced. To silence AWB, we used
a published collection of worms (Wang et al., 2017), and crossed an AWB neuron-specific driver
(syIs666) to an inhibitory histamine-gated chloride channel (HisCl1–syIs373) effector (Pokala et al.,
2014). These AWB>HisCl1 worms (strain YYY24, with genotype syIs666;syIs373) have a func-
tional AWB that is silenced upon treatment with histamine.

We found that silencing AWB substantially increased salt avoidance (p-value = 5.7e-11, mean effect
size = +25%); see Fig. A2 (Appendix A.3). Our results are particularly striking since AWB is an
aversive neuron and thus silencing it would be expected to decrease avoidance rather than increase
it as we observed. This suggests the potential for oppositional interactions between salt sensation
and olfactory aversion circuits. Our results not only validate the predictive power of our algorithm,
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Table 1: Mean NMI scores of algorithms applied to the weighted-LFR benchmark
.

Algorithm Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8 Net 9

NWSBM 0.28 0.33 0.39 0.65 0.39 0.54 0.25 0.51 0.64
Louvain 0.08 0.19 0.13 0.04 0.23 0.29 0.12 1.0 0.19
Combo 0.13 0.18 0.14 0.04 0.23 0.28 0.12 1.0 0.16
AS 0.18 0.16 0.16 0.47 0.20 0.12 0.28 0.20 0.20
NNSED 0.0 0.18 0.38 0.32 0.39 0.50 0.39 0.43 0.45
GNNS100 0.14 0.19 0.15 0.04 0.22 0.28 0.12 1.0 0.18

they further highlight its strength in predicting results that expert scientific researchers may find
contradict assumptions they have based on published canonical neuronal roles.

3.3 COMPARISON WITH OTHER COMMUNITY DETECTION METHODS

The NWSBM method was compared to other popular algorithms for community detection, includ-
ing classical methods such as Louvain (Blondel et al., 2008; Rossetti et al., 2019) and Combo
(Sobolevsky et al., 2014), based on modularity maximization; asymptotic surprise (AS) (Traag
et al., 2015); NNSED (Sun et al., 2017; Rozemberczki et al., 2020), a non-negative encoder-decoder
approach; and GNNS (Sobolevsky & Belyi, 2022; Belyi, 2022), based on recurrent graph neural
networks. The quality of their results was evaluated using normalized mutual information (NMI)
(Danon et al., 2005), a widely adopted measure of agreement between clustering assignments (For-
tunato, 2010). Because it requires ground truth—not available for the vast majority of real network
datasets with weighted edges—, the algorithms above were evaluated on a benchmark of synthetic
networks generated using the popular Lancichinetti-Fortunato-Radicchi (LFR) algorithm (Lanci-
chinetti & Fortunato, 2009), a standard tool for creating benchmarks with various types of networks
(Gopalan & Blei, 2013; Fortunato & Hric, 2016; Yang et al., 2016). It provides several parameters
that control the how the connections and their weights will be distributed within and across com-
munities, allowing for a rich variety of block structures to be generated. Our benchmark consisted
of 9 different types of network (see Appendix A.2 and Fig. A1 for details). Table 1 shows the aver-
age NMI scores obtained by each algorithm over ten instances of each type of network. Although
most of the algorithms tested was able to score highest for at least one network type, NWSBM
outperformed the others in the majority of cases.

4 DISCUSSION AND CONCLUSION

We present here an algorithm for dynamic connectome discovery in the nematode worm C. ele-
gans. The key insight was to use the differential affinity between neurons in a tensor factorization
approach, rather than (the more common) use of individual neurons. The advantages were (i) that
non-linear methods could be used in calculating affinities before they were tensorized; (ii) the tem-
poral factor in each tensor component revealed experimental epochs during which functional circuits
appeared; and (iii) the affinity factors could be remade into weighted graphs on which community
detection algorithms could be run. In the end, the algorithm was able to make (surprising) pre-
dictions about individual neurons that were involved in unexpected functional roles, which were
experimentally confirmed.

While this last point illustrates a role for machine learning in biological research, we also showed
that reverting the community structure back to the original affinities (Fig. 5) can explain how the
original traces caused a given pair of nodes to be ultimately grouped together.

Finally, we believe that our approach could be used more widely in understanding community be-
havior not only in neuroscience, but also in social and ethological situations. Working with the
higher-order affinities directly informed the biology in our case; this is most likely true for other
dynamical interactions as well.
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Giulio Rossetti and Rémy Cazabet. Community discovery in dynamic networks: a survey. ACM
Computing Surveys (CSUR), 51(2):1–37, 2018.
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A APPENDIX

A.1 LOCAL DIFFERENTIAL AFFINITIES

We begin by computing each neuron i’s derivative gi(t) over time, pre-smoothing the raw trace τi(t)
with a Gaussian filter of bandwidth 0.5 sec to avoid the amplification of any measurement noise
(Fig. 2, top panels). Notice that periods where the derivative sign is constant must necessarily start
and end at points where the derivative is either exactly zero or changes sign, and are commonly
termed “zero-crossings”. Because sampling is discrete over time, under a sampling interval T a
zero-crossing is computed as those time points t such that

gi(t− T/2)gi(t+ T/2) ≤ 0, (7)

i.e., there is a change of sign between two consecutive samples, and

|gi(t− T/2)|+ |gi(t+ T/2)| > 0, (8)

i.e., the derivatives are not both exactly zero. When both conditions are met, we say gi(t) is a
zero-crossing, and denote it as

gi(t)
×
≈ 0. (9)

We then partition gi(t) by those intervals where it has constant sign (i.e., those lying between
zero-crossings); we call these bumps. Thus the support of gi(t) (subset of the time domain dur-
ing which the neuron’s activity is not constant), may be represented as a set of m time intervals
b
(1)
i , b

(2)
i , . . . , b

(m)
i , where b

(t)
i denotes the interval (t0, t1), such that

gi(t0)
×
≈ 0

×
≈ gi(t1). (10)

Thus, two bumps b(t)i and b
(t′)
j from neurons i and j, respectively, will overlap when

b
(t)
i ∩ b

(t′)
j > 0. (11)

The affinity aij between neurons i and j at time t is then defined as the fraction of overlap between
the areas under their derivative bumps occurring at t: bi and bj respectively. This is analogous to the
Jaccard index:

a
(t)
ij ≡ area(bi) ∩ area(bj)

area(bi) ∪ area(bj)
, (12)

where area(bi) is the unsigned area under the bump bi:

area(bi) ≡
∫ t′bi

tbi

b
(t)
i dt, (13)

with the integral taken over the time interval under each bump. Note that these affinity values lie in
the range [0, 1], and because they are computed locally, will be sensitive to spurious fluctuations of
activity. To prevent this, we take into account global information about the traces and weight this by
the relative change in trace levels during those local bumps compared to the global range of values
of τi(t).

Notice that the areas are unsigned, meaning we ignore the signs of the bumps. This is motivated
by the fact that two neurons with very similar but opposite sign derivatives are still likely to be
interacting by means of some inhibitory mechanism. This further contributes to making the affinities
interpretable as indicating the likelihood of interactions between pairs of neurons, regardless of the
specific physiological connectivity mechanisms involved.

A.2 WEIGHTED COMMUNITIES BENCHMARK

A total of 9 weighted networks with N=125 nodes (compatible with the size of our affinity net-
works) were generated using the weighted LFR benchmark (Lancichinetti & Fortunato, 2009). The
mean neighborhood size k influences the resulting number of communities produced. How such
neighborhoods are distributed between intra- and inter-community connections is determined by the
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topology (µt) and weight (µw) mixing parameters, respectively. The weights within a node’s neigh-
borhood are sampled from a power-law distribution with exponent β. Finally, the degree sequence
and community sizes are drawn from power-law distributions with exponents −τ1 and −τ2, respec-
tively. By choosing different sets of parameters for each network type, we aimed to vary several
properties: the number of communities (determined by the k/N ratio ); the density of inter-block
connections (µw/µt ratio); as well as the overall weight distribution (β); we thus cover a variety
of scenarios. Example weighted adjacency matrices from each style and their respective parameters
are shown in Fig. A1.

β= 0.5 β= 1 β= 2

μt= 0.25 μt= 0.50 μt= 0.75

k= 10 μw= 0.25 μw= 0.75

1 2 3

4 5 6

7 8 9

Figure A1: Family of synthetic networks generated using the weighted LFR benchmark. Each panel
shows the weighted adjacency matrix of one instance of each type of network, sorted by its ground-
truth community membership. Default parameter values used: N = 125, k = 25, maxk = 100,
µw = 0.5, µt = 0.5, β = 2, τ1 = 2, τ2 = 1. Each network type varies a single parameter
from this list (value shown above the matrix). (1–3) Varying β while keeping other parameters
fixed dramatically changes the weight distribution. (4–6) Smaller values of µt increase the intra-
block connections (irrespective of their weights). (7) A smaller k creates a larger number of small
communities. (8–9) The µw/µt ratio controls the ratio between inter- and intra-block weights.
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A.3 EXPERIMENTAL VALIDATION RESULTS

Silencing AWB substantially increased salt avoidance (p-value=5.7e-11, mean effect size = +25%),
validating the predictive power of our algorithm; see Fig. A2. Surprisingly, this suggests the poten-
tial for oppositional interactions between salt sensation and olfactory aversion circuits.

Figure A2: Results for avoidance to 160 mM NaCl for AWB controls (+AWB) vs. silenced (-AWB).
Two-tailed unpaired t-test P=5.7574e-11, mean effect size is +25% avoidance when silencing AWB,
N=12 vs. 12. red=95% CI, blue=1 SD.

A.4 SELECTION OF THE NUMBER OF TENSOR COMPONENTS

Our logic for selecting the number of tensor components, R, was to use as many as possible to
minimize reconstruction error, provided the results across multiple random initializations remained
stable (i.e., small variance). Small reconstruction error suggests a faithful representation, and small
variability guarantees that the retained components are robust. Based on Fig. A3a, the error vari-
ability (std. dev. across 15 runs) reaches a minimum when R ≈14–15 (shaded area), then increases
sharply for R > 15. We therefore selected R=15. Fig. A3b shows that the distributions of error
for each choice of R are separate until R = 15, after which they being to overlap; this further
strengthens our confidence in our choice for the number of tensor components.
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Figure A3: Selecting the number of tensor components, R. (a) Reconstruction error as a function
of R. Although the mean error (blue curve) always decreases with increasing R, its variability (std.
dev. across 15 runs, dashed gray curve) reaches a minimum when R ≈ 14–15 (shaded area), then
increases sharply for R > 15. (b) The empirical distributions of error for each choice of R remain
separate until R=15, but starting at R = 16 they begin to overlap. These results motivate our choice
for the number of tensor components to use, namely 15.
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