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ABSTRACT

Humans segment continuous experience into episodes by detecting perceptual
novelties and retrospectively consolidating them into coherent memories. Inspired
by this cognitive process, we introduce a two-level, backward-only event seg-
mentation framework designed for cognitive agents that must structure continuous
sensory input into episodic memory. At Level 1, an error-driven novelty detector
with a semi-supervised adaptive thresholding module identifies candidate transi-
tions robust to noise, viewpoint shifts, and repeated micro-actions. At Level 2, an
uncertainty-driven consolidation mechanism retrospectively validates and merges
boundaries using multimodal cues (scene graphs, captions, audio), producing sta-
ble, semantically grounded episodes without relying on future frames. Unlike
prior GEBD approaches that depend on motion cut-points or heavy task-specific
supervision, our method leverages sparse labels only for threshold calibration,
making it label-efficient, cognitively grounded, and broadly applicable. Exper-
iments on ADL-GEBD and Ego4D show state-of-the-art performance, with our
semi-supervised model surpassing heavily supervised baselines. This work intro-
duces episodic segmentation for cognitive agents, bridging human memory theory
with scalable machine perception.

1 INTRODUCTION

Humans naturally parse continuous experience into events, a process known as event segmentation
(Nguyen et al., 2025). Boundaries are perceived when perceptual features (e.g., motion, sound)
or conceptual features (e.g., goals, intentions) change, forming a hierarchical structure of fine- and
coarse-grained episodes. These boundaries are not arbitrary: they scaffold episodic memory, en-
abling people to recall past experiences, learn new skills, and anticipate future outcomes. Figure 1
illustrates our dual-level framework: error-driven novelty detection is retrospectively consolidated
into semantically coherent episodes, mirroring how human episodic memory stabilizes experience.

Inspired by these findings, we ask: How can an artificial agent segment its continuous sensory
stream into meaningful episodes suitable for episodic memory? Unlike offline video analysis, an
embodied agent must structure experience in real time based on places, participants, and task-level
transitions, rather than superficial discontinuities. For example, in Activities of Daily Living (ADL),
relevant transitions include entering a new room, shifting from preparing to cooking, or the arrival
of a new person—precisely the type of semantic boundaries that support long-horizon memory and
reasoning.

A cognitively capable agent must therefore segment memory in a human-like way, forming episodes
that are stable, interpretable, and grounded in semantics rather than transient motion. Such episodic
segmentation enables agents to compress continuous experience, support causal reasoning, and align
long-term memory with dialogue and task planning. In contrast, existing Generic Event Boundary
Detection (GEBD) methods often rely on motion-driven cut points, which fragment continuous
streams and degrade memory stability.

We propose a cognitively grounded representation learning framework for event segmentation. Our
central idea is that boundaries should emerge not from immediate motion changes, but from the ret-
rospective stability of representations over time. To achieve this, we introduce a backward-looking
temporal windowing mechanism that compares the present to the recent past, avoiding reliance on
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Figure 1: Our cognitively inspired hierarchical event segmentation framework. Level 1 detects
fine-grained perceptual novelties (error-driven updates), while Level 2 retrospectively consolidates
boundaries into stable, semantically coherent episodes (uncertainty-driven updates). Motion-driven
GEBD methods often fragment actions into multiple cuts—e.g., each knife jitter while preparing a
sandwich is marked as a separate boundary. In contrast, our approach groups such micro-changes
into a single meaningful action, such as spreading butter on bread, yielding coherent episodes
aligned with human perception.

unavailable future frames. At a second level, we retrospectively consolidate candidate boundaries
using scene graphs, audio cues, and caption semantics, ensuring that episodes reflect stable shifts in
meaning rather than transient visual changes. In addition, we introduce a semi-supervised adaptive
thresholding module that learns to calibrate novelty sensitivity from retrospective statistics, improv-
ing robustness to noise, jitter, and viewpoint shifts.
Key Contributions

• Cognitively grounded paradigm for cognitive agents: We propose a dual-level,
backward-only event segmentation framework inspired by human episodic memory, en-
abling artificial agents to structure continuous sensory streams into interpretable episodes.

• Semi-supervised adaptive threshold detection: A label-efficient thresholding mechanism
that dynamically calibrates sensitivity from retrospective statistics, improving robustness to
noise, jitter, and viewpoint changes.

• Multimodal integration: Our approach consolidates boundaries using semantic (captions,
scene graphs), perceptual (DINOv2, SSIM, LPIPS), and linguistic (dialogue-aware) cues
in a unified retrospective validator, without reliance on dense frame-level labels or task-
specific fine-tuning.

• Strong empirical validation: State-of-the-art results on ADL-GEBD and Ego4D, where
our semi-supervised framework outperforms both motion-driven GEBD methods and large
supervised models, demonstrating scalability and human-aligned segmentation.

2 RELATED WORK

Generic Event Boundary Detection (GEBD). Generic Event Boundary Detection
(GEBD) Mike Zheng Shou & Feiszli. (8075) aims to localize perceptual transitions in video
without predefined labels. Early methods formulated GEBD as frame-level binary classifica-
tion Mike Zheng Shou & Feiszli. (8075); Jiaqi Tang & Wang. (3355); Dexiang Hong & Zhang.
(2107), but these models often over-segment due to their reliance on superficial appearance or
motion changes. More recent work incorporated contrastive learning Hyolim Kang & Kim.
(2106), compact encodings Congcong Li & Zhang. (1396), and transformer-based architec-
tures Sourabh Vasant Gothe & Kashyap. (2023); Congcong Li & Wen. (2206), often coupled
with optical flow Rui Qian & Cui. (2112). While effective at detecting local visual novelty, such
approaches tend to produce fragmented segmentations that struggle with higher-level semantics
such as goals or dialogue continuity. Unsupervised variants (e.g., PySceneDetect Castellano.,
PredictAbility Mike Zheng Shou & Feiszli. (8075), CoSeg Xiao Wang & Luo. (2109)) exploit
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Aspect GEBD Focus Our Task Focus
Granularity Micro changes and frame-level

transitions (often motion- or
appearance-driven)

Coarse, semantically coherent
episodes (scene + action + dialogue
continuity)

Output Style Fragmented boundaries highlight-
ing perceptual shifts and uncertain-
ties

Stable, consolidated episodes pre-
serving narrative and semantic flow

Strengths Sensitive to subtle changes; effec-
tive at detecting ambiguous or un-
certain regions

Captures long-horizon coherence;
supports reasoning, memory, and
downstream tasks

Limitations for Our
Use Case

Over-fragmentation → splits con-
tinuous dialogue, micro-actions, or
camera jitter into many segments

Possible under-segmentation if
overly coarse, but maintains mean-
ingful episodic units

Cognitive Alignment Perceptual novelty and local frame
changes

Episodic memory structure (what,
when, where), retrospective consol-
idation

Table 1: Comparison of GEBD objectives versus our episodic segmentation task. GEBD emphasizes
sensitivity to fragmented shifts, while our task prioritizes stable, semantically grounded episodes.

reconstruction losses or pixel variations, while hybrids such as UBoCo Hyolim Kang & Kim. (2007)
combine multiple objectives. Despite these advances, most GEBD approaches remain focused on
micro-level granularity. As summarized in Table 1, this sensitivity makes GEBD well-suited for
perceptual novelty detection, but misaligned with the stability required for episodic segmentation.

Motion and Visual Correspondence Learning. Motion cues have long been central to video under-
standing, from classical optical flow Lucas & Kanade. (1981); Farnebäck. (2003) to modern motion-
aware architectures Heeseung Kwon & Cho. (2020); Jiaqi Tang & Wang. (3355); Ayush K Rai &
O’Connor. (2728). These techniques are effective for dense action localization but often generate
visually reactive segmentations that neglect semantic continuity. Our approach diverges by avoiding
explicit motion cues, instead leveraging semantically aligned representations with adaptive thresh-
olds that flexibly capture both fine and coarse boundaries—crucial in egocentric or dialogue-heavy
videos where appearance shifts may not correspond to meaningful transitions.

Egocentric Video and Multimodal Understanding. The Ego4D benchmark Grauman et al. (2022)
has driven progress in egocentric video research, emphasizing tasks such as episodic memory and
natural language query (NLQ). Current solutions typically adopt proposal-based Mo et al. (2022)
or transformer-based Lei et al. (2021) pipelines, built on pretrained vision–language encoders like
CLIP Radford et al. (2021b;a), VideoMAE Tong et al., or InternVideo Chen et al. (2022b). While
effective for fine-grained retrieval, these systems are optimized for short-term alignment and often
fail to capture higher-order transitions, such as shifts across environments or narrative stages.

Summary. In contrast to GEBD (Table 1), which emphasizes sensitivity to micro changes, our
work prioritizes stable, semantically coherent episodes. By integrating semantic representations
with a learnable boundary threshold, our approach captures both fine and coarse transitions without
over-fragmentation. This enables structured episodic understanding, which is particularly beneficial
for applications in robotics, surveillance, and assistive systems where long-horizon coherence and
memory alignment are essential.

3 APPROACH

Episodic memory encodes not only what happened, but also when and where it occurred (Tulv-
ing, 2002). For autonomous agents, this requires transforming continuous sensory streams—such
as egocentric video—into stable, semantically coherent episodes. We propose a cognitively in-
spired two-level framework: (i) adaptive boundary detection, which selects candidate transitions
based on retrospective statistics within a short backward window, and (ii) retrospective consoli-
dation, which validates and merges boundaries into coherent episodes using semantic, perceptual,
and dialogue cues. Both mechanisms are strictly backward-facing, reflecting the episodic memory
constraint that only past context is available at decision time.
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Figure 2: Overview of our cognitively inspired two-level episodic segmentation framework. Level
1 (left, blue) identifies candidate boundaries through adaptive thresholding, comparing incoming
frames against retrospective statistics within a fixed backward window across semantic, perceptual,
and comparative encoders. Level 2 (right, red) retrospectively validates and consolidates these can-
didates via multimodal integration, using semantic grouping (place + action), perceptual similarity,
and dialogue alignment in a unified validator. Both stages are inherently backward-facing, operat-
ing only on past context to transform continuous sensory streams into stable, semantically coherent
episodes of what, when, and where.

3.1 LEVEL 1: ADAPTIVE BOUNDARY DETECTION

The first stage proposes candidate boundaries by comparing each incoming frame with a fixed win-
dow of the k most recent frames. Frames F = {I1, I2, . . . , IN} are uniformly sampled, and a
subset K ⊂ F of keyframes is selected when local similarity drops below an adaptive threshold.
Each frame Ii is encoded via three parallel streams: a Semantic Encoder (objects, relations, and
high-level concepts), a Perceptual Encoder (appearance and spatial structure), and a Comparator
(patchwise dissimilarity). The fused similarity between frames Ij and Ii is defined as:

Sim(Ij , Ii) =

M∑
m=1

αm · Sm(Ij , Ii),

M∑
m=1

αm = 1, (1)

where Sm denotes a modality-specific similarity metric and αm its learnable weight.

Backward-Facing Similarity. For each frame Ii, similarity is computed against the k most recent
keyframes. This backward-only evaluation avoids spurious boundaries from transient viewpoint
shifts (e.g., head turns in egocentric video).

3.1.1 SEMI-SUPERVISED ADAPTIVE THRESHOLDING

To determine whether a candidate frame Ii marks a boundary, we compute statistics over the back-
ward window:

(µ, σ2, slast) =

(
1

k

k∑
j=1

Sim(Ii−j , Ii), Varj=1..k[Sim(Ii−j , Ii)], Sim(Ii−1, Ii)

)
, (2)

where µ and σ2 capture similarity stability, and slast measures immediate continuity. These features
are passed to a neural module gθ that predicts an adaptive threshold:

τ(Ii) = τmin + (τmax − τmin) · σ
(
gθ(µ, σ

2, slast)
)
, (3)

with τ(Ii) ∈ [τmin, τmax].
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The boundary probability is then defined as:

p(Ii) = σ
(
α · (τ(Ii)− µ) + β

)
, (4)

where α controls decision sharpness and β is a learnable bias term. A frame Ii is selected as a
candidate boundary whenever p(Ii) exceeds a fixed decision threshold.

Training Objective. The module gθ is trained with a semi-supervised objective:

L = λsupLsup + λselfLself + λregLreg. (5)

Here, Lsup is a binary cross-entropy loss on sparsely labeled boundaries; Lself = E[p(Ii)] prevents
degenerate solutions that reject all boundaries; and Lreg = E[∥gθ(·)∥22] enforces smoothness in
threshold dynamics. Additional details are as given in A.1

3.2 LEVEL 2: RETROSPECTIVE BOUNDARY CONSOLIDATION

While Level 1 captures candidate boundaries, it may still produce spurious splits due to minor ap-
pearance changes or repeated micro-actions. Level 2 retrospectively validates and merges bound-
aries using semantic, perceptual, and linguistic evidence.

Dynamic Consolidated Window (DCW). We check each candidate boundary Iki by looking
backward into a short window

Wi = {Iki−w, . . . , Iki−1}.
We compute the average similarity:

AvgSim(Iki) =
1

|Wi|
∑
j∈Wi

Sim(Ij , Iki). (6)

A candidate boundary Iki is pruned if its average similarity to past frames exceeds a threshold, i.e.,
AvgSim(Iki) > θ. Furthermore, we evaluate semantic consistency within the window by compar-
ing scene and action features. If the current boundary exhibits the same scene and activity as the
preceding frames, it is merged with the earlier segment.

This Dynamic Consolidated Window thus functions as a backward-looking validation mechanism:
boundaries are only retained when there is a meaningful change in scene or action, preventing spu-
rious segmentation. Additional implementation details are provided in Appendix A.2.

Dialogue-Aware Alignment. Finally, boundaries are aligned with dialogue structure. If a visual
boundary falls within an active utterance, it is deferred until the dialogue ends. This ensures that
episodes preserve both perceptual and conversational coherence. Additional details are as given in
Appendix A.3

4 EXPERIMENTAL DETAILS

Datasets. Our focus is on detecting semantically meaningful moments, such as place changes or
shifts in activity context, rather than short-term motion fluctuations. Accordingly, we evaluate
on two datasets designed for naturalistic, narrative-driven segmentation: ADL-GEBD Shou et al.
(2021); Ho-Le et al. (2025) and Ego4D Grauman et al. (2022).

ADL-GEBD provides over 1M densely annotated frames of household activities, where boundaries
are marked with precise start–end timestamps. These short-horizon transitions capture low-level
novelty, making ADL-GEBD an ideal testbed for evaluating the sensitivity of our Level 1 (error-
driven) boundary detection. Ego4D, in contrast, contains long-form egocentric videos across diverse
daily scenarios such as cooking, exercising, and socializing. Its annotations include moment-level
queries with explicit temporal spans, aligning closely with episodic memory and narrative ground-
ing. By treating the start and end timestamps of these moment queries as boundary markers, we can
also perform GEBD-style analysis within the Ego4D setting. This makes Ego4D particularly well
suited for testing our Level 2 (uncertainty-driven) retrospective consolidation.

Together, ADL-GEBD and Ego4D span the spectrum from fine-grained perceptual updates to long-
horizon episodic formation, providing a cognitively motivated evaluation setting.

Implementation Details. Our method operates in an semisupervised fashion by comparing each
frame with the previous frame most recent keyframes using an adaptive similarity score. To balance
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semantic, perceptual, and structural cues, we combine the outputs of several pretrained models.
CLIP Radford et al. (2021b) (ViT-L/14@336px) encodes high-level semantic embeddings compared
via cosine similarity. DINOv2 Caron et al. (2021) (ViT-B/14) provides dense patch-level features
sensitive to spatial detail. LPIPS Alom et al. (2018) captures perceptual differences via learned
feature embeddings, while SSIM quantifies structural similarity. EVA-CLIP-Large Sun et al. (2023)
generates captions, from which we compute token-level alignment; scene graphs are then derived
using a parser Wu et al. (2019).

During inference, a candidate boundary is triggered when similarity with all prior keyframes falls
below a learned threshold τ(Ii). The final similarity score is computed as a weighted combination:
CLIP (0.2), DINO (0.3), SSIM (0.2), LPIPS (0.2), and caption-token similarity (0.1). We average
results over 5 random seeds and report mean ± standard deviation. Variance arises primarily from
small differences in frame sampling due to decoding.

Training Adaptive Thresholds. Unlike prior GEBD methods that use a fixed cutoff (e.g., τ =
0.95), our threshold is dynamically predicted by the module gθ (see Section 3). To train this module,
we leverage Ego4D Moment Queries Grauman et al. (2022), which provide human-queried temporal
boundaries aligned with narrative-level shifts. Specifically, (µ, σ2, slast) statistics from the backward
window are paired with query-aligned ground-truth boundaries to supervise the adaptive threshold
via a Binary Cross-Entropy loss. This anchors the threshold to meaningful episodic changes rather
than arbitrary frame-level fluctuations.

Training is performed with the Adam optimizer (learning rate 10−3) over 50 epochs, with mini-
batches of 32 frames. Loss balancing is achieved by weighting the supervised term more strongly
(λsup = 5.0) than the self-supervised regularizer (λself = 1.0), reflecting the importance of narrative-
level human annotations. The decision sharpness is controlled via a scaling parameter α = 20.0,
while an L2 penalty (10−4∥τraw∥2) prevents degenerate solutions. These design choices were tuned
to achieve both stability and generalization across domains, improving robustness under noise, jitter,
and viewpoint changes.

Experimental Setup. Experiments were conducted on a Linux workstation (Ubuntu 20.04) with
a single NVIDIA RTX 3090 GPU (24 GB VRAM) and 128 GB RAM. The pipeline processes ap-
proximately one hour of video at ∼1.5× real time, depending on resolution and caption generation
latency. All pretrained encoders are used in inference-only mode; only the adaptive threshold mod-
ule is trained.

Evaluation Metrics. We assess both boundary accuracy and temporal localization. For moment-
level localization, we report mean Average Precision (mAP) and Recall@1 (R@1) Shou et al. (2021)
at IoU 0.5. For boundary detection, we compute precision, recall, and F1 across tolerance windows
ranging from 5% to 50% of video duration; a prediction is correct if it falls within any ground-truth
tolerance window. For videos with multiple annotators, we follow Lei et al. (2021) and report the
best-aligned score across references, restricting evaluation to videos with inter-rater F1 ≥ 0.3 to
ensure reliability.

5 EXPERIMENTS AND RESULTS

5.1 COMPARISON WITH UNSUPERVISED BOUNDARY DETECTION METHODS

The dataset described in Section 4 features egocentric videos with frequent scene changes and
dense frame-level annotations. To detect meaningful scene boundaries without over-segmenting,
our method uses Level 1 detection with a dynamic backward-looking temporal window. Like an
agent forming episodic memory, the model only uses past frames to decide if a candidate transition
marks a real scene boundary. This helps filter out minor viewpoint changes while keeping bound-
aries corresponding to significant place changes, such as moving between distinct areas in a scene.

We evaluated several unsupervised boundary detection methods on this dataset ourselves, in-
cluding SceneDetect Castellano., UBoCo Kang et al. (2021), FlowGEBD Gothe et al. (2024),
SegSim Aouaidjia et al. (2025), and DDM Tang et al. (2022), and compared their performance
to our adaptive-threshold approach.

Table 2 shows that our model achieves an average F1 score of 0.885, outperforming all baselines
at every threshold. The backward-looking window and adaptive threshold help the model focus

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method 0.05 0.1 0.15 0.2 0.25 0.30 0.35 0.4 0.45 0.5 Avg

SceneDetect Castellano. 0.336 0.435 0.484 0.512 0.529 0.541 0.548 0.554 0.558 0.561 0.506
UBoCo-TSN Kang et al. (2021) 0.396 0.488 0.520 0.534 0.544 0.550 0.555 0.558 0.561 0.564 0.527
FlowGEBD Gothe et al. (2024) 0.180 0.200 0.209 0.215 0.286 0.290 0.297 0.300 0.308 0.306 0.259
SegSim Aouaidjia et al. (2025) 0.240 0.312 0.336 0.351 0.359 0.369 0.370 0.375 0.379 0.380 0.350
DDM Tang et al. (2022) 0.460 0.480 0.520 0.531 0.540 0.550 0.555 0.558 0.560 0.570 0.532
Ours 0.71 0.80 0.81 0.82 0.824 0.826 0.828 0.83 0.836 0.84 0.885

Table 2: Performance comparison at different relative distance thresholds. All baselines were evalu-
ated on this dataset by us. Our adaptive-threshold method outperforms all unsupervised approaches,
demonstrating strong segmentation accuracy in densely annotated videos.

on meaningful place changes while ignoring minor viewpoint fluctuations. Baselines that rely on
frame-level appearance or optical flow often misinterpret jitter as boundaries.

We focus on unsupervised comparisons here even though our method is semi-supervised. Dense
frame-level annotations make fully supervised methods prone to overfitting perceptual cues instead
of capturing semantic boundaries. Our approach uses light supervision for calibration, preserving
the spirit of unsupervised segmentation while achieving higher accuracy. In the following Ego4D
experiments, we benchmark against large-scale supervised models, showing that our framework
generalizes to both dense and sparse annotation settings.

5.2 COMPARISON WITH DOWNSTREAM TASK OF MOMENT QUERIES

Ego4D contains long-form egocentric videos where understanding activities depends on narrative
coherence rather than short-term cues. The Ego4D moment query dataset provides start and end
times for annotated semantic moments. Detecting event boundaries accurately is crucial for the
downstream task of moment query detection, where the goal is to retrieve temporally grounded
video segments corresponding to a given query.

We compare against supervised vision–language grounding models—InternVideo Chen et al.
(2022b), EgoVLP Lin et al. (2022), EgoVideo-V Chen et al. (2022b), and EgoVideo-MQ Chen
et al. (2022a)—all trained for moment localization on Ego4D timestamps. Our method also uses
moment queries but differs in consolidation: thresholds are adaptively tuned to timestamps, Level 2
refinement integrates multimodal cues, and final captions/windows are aligned with place and ac-
tion, leading to more accurate event segmentation and stronger downstream localization.

# Feature Validation

Average mAP R1@0.5

A InternVideo + EgoVLP 27.85 46.98
B EgoVideo-MQ 28.53 46.07
C InternVideo + EgoVideo-V 31.30 50.21
D InternVideo + EgoVideo-MQ 31.00 49.28
E InternVideo + EgoVideo-V + EgoVideo-MQ 32.48 51.04
F Ours 35.2 57.1

Table 3: Comparison on Ego4D validation. Baselines (A–E) are supervised vision–language
grounding models trained for moment localization. Our method (F) adapts thresholds, applies
Level 2 consolidation, and aligns place–time cues, improving both event segmentation and down-
stream moment query detection.

As shown in Table 3, our model achieves the highest mAP (35.2) and R1@0.5 (57.1). By consolidat-
ing multimodal signals and adapting thresholds with place–time alignment, we achieve more reliable
episode boundaries, which directly benefits the downstream task of moment query localization.

5.3 ABLATION STUDIES

Our ablations justify the core design choices of our model: adaptive thresholding, temporal window-
ing, semantic and perceptual reasoning, and multimodal fusion. We compare fixed hyperparameters
against our learned adaptive mechanisms, showing that retrospective adaptation provides consistent
improvements.
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Threshold (%) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Avg

65 0.490 0.607 0.647 0.668 0.681 0.689 0.690 0.697 0.700 0.701 0.657
75 0.580 0.697 0.730 0.750 0.761 0.767 0.770 0.775 0.781 0.788 0.740
80 0.610 0.720 0.770 0.780 0.790 0.794 0.800 0.809 0.810 0.815 0.770
85 0.670 0.772 0.790 0.800 0.804 0.810 0.815 0.820 0.829 0.835 0.799
90 0.660 0.740 0.770 0.774 0.776 0.779 0.780 0.784 0.788 0.790 0.774
95 0.590 0.690 0.710 0.715 0.720 0.725 0.728 0.730 0.732 0.735 0.707
Ours (Adaptive) 0.71 0.80 0.81 0.82 0.824 0.826 0.828 0.83 0.836 0.84 0.885

Table 4: Threshold sensitivity. Moderate fixed thresholds (80–85%) perform best, while 95%
causes over-fragmentation. Our adaptive thresholding achieves the strongest results by dynamically
calibrating selectivity from retrospective evidence.

5.3.1 THRESHOLD SELECTION.

We first evaluate different fixed similarity thresholds on the datasets described in Section 4. (Ta-
ble 4). While moderate thresholds (80–85%) strike a balance between sensitivity and stability,
extremely high thresholds (95%) over-fragment the stream, leading to degraded performance. Our
adaptive thresholding module surpasses all fixed settings by dynamically calibrating sensitivity from
retrospective statistics.

5.3.2 CONTEXT LENGTH FOR ADAPTIVE THRESHOLD LEARNING.

We study how many past frames should be considered when computing the statistics (µ, σ2, slast) that
guide the adaptive threshold network. Intuitively, too short a history may make the threshold overly
sensitive to transient noise, while too long a history can dilute the signal of genuine transitions.

Table 5 reports results for contexts of 2–6 frames. A three-frame context provides the best trade-
off, yielding the highest overall accuracy. This suggests that three recent frames capture sufficient
temporal stability for threshold calibration without introducing excess inertia from distant frames.

Context Length (frames) 0.05 0.1 0.15 0.2 0.25 0.30 0.35 0.4 0.45 0.5 Avg

2 0.610 0.720 0.770 0.780 0.790 0.794 0.800 0.809 0.810 0.815 0.770
3 (Ours) 0.698 0.780 0.810 0.820 0.850 0.859 0.863 0.867 0.870 0.873 0.829
4 0.690 0.770 0.800 0.807 0.815 0.820 0.824 0.829 0.832 0.834 0.792
5 0.690 0.771 0.798 0.805 0.810 0.812 0.819 0.820 0.825 0.829 0.788
6 0.689 0.760 0.790 0.799 0.802 0.805 0.810 0.814 0.824 0.825 0.782

Table 5: Effect of context length on adaptive threshold learning. A 3-frame context yields the
strongest performance and is adopted in our framework.

In our final design, we therefore fix the context length to three frames and use the resulting statis-
tics (µ, σ2, slast) as input to the adaptive threshold network. This ensures causal operation, avoids
reliance on future frames, and provides a stable yet responsive signal for boundary detection.

5.3.3 SCENE AND ACTION UNDERSTANDING.

To evaluate the effect of semantic reasoning, we compare place and action recognition with and
without structured representations. Removing Scene Graph + Caption reasoning substantially de-
grades retrieval accuracy (Tables 6, 7). Traditional methods underperform because they rely on raw
appearance features and lack semantic abstraction. Visual similarity is brittle to lighting, viewpoint,
and clutter, while MMAction struggles with ambiguous egocentric activities. In contrast, Scene
Graph + Captions capture objects, spatial context, and interactions, leading to higher accuracy and
interpretability.

Component-Wise Ablation. We further ablate the Semantic Encoder, Perceptual Encoder, and
Comparator. Table 8 shows that removing any component substantially reduces performance, con-
firming their complementary roles. The Semantic Encoder captures abstract concepts and aligns
events at a high level; the Perceptual Encoder provides spatial grounding; and the Comparator di-
rectly detects fine-grained frame-to-frame changes. Removing any module causes systematic degra-
dation: without semantics, conceptual shifts are missed; without perceptual encoding, spatial struc-
ture is lost; without comparison, fine transitions cannot be localized. Their synergy yields the most
robust and generalizable segmentation.
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Method Validation

Avg. mAP R1@0.5

Visual Similarity 25.16 46.18
Caption + Scene Graph 35.20 57.10

Table 6: Place recognition. Structured reason-
ing via captions and scene graphs improves re-
trieval over raw visual similarity.

Method Validation

Avg. mAP R1@0.5

MMAction 15.95 36.90
Caption + Scene Graph 34.56 55.98

Table 7: Action recognition. Structured
reasoning significantly outperforms MMAction
baselines.

Semantic Perceptual Comparator F1@10 F1@25 F1@50

– ✓ ✓ 0.792 0.803 0.803
✓ ✓ – 0.710 0.790 0.798
✓ – ✓ 0.702 0.780 0.792
✓ – – 0.640 0.740 0.770
– ✓ – 0.680 0.720 0.750
– – ✓ 0.580 0.650 0.670
✓ ✓ ✓ 0.830 0.836 0.840

Table 8: Component-wise ablation. All three modules are necessary and complementary for robust
segmentation.

5.4 WEIGHT SENSITIVITY ANALYSIS OF SIMILARITY FUSION

Finally, we analyze the robustness of multimodal fusion weights, which balance semantic and per-
ceptual similarity cues. To avoid overfitting, weights are constrained to [0.1, 0.4], preventing domi-
nance by any single metric.

Configuration CLIP Radford et al. (2021b) DINOv2 Caron et al. (2021) LPIPS Alom et al. (2018) SSIM Token Sim. F1 Score

Selected 0.2 0.3 0.2 0.2 0.1 0.88
Equal Weights 0.2 0.2 0.2 0.2 0.2 0.84
High CLIP 0.4 0.1 0.2 0.2 0.1 0.79
High DINOv2 0.1 0.4 0.2 0.2 0.1 0.85
High LPIPS 0.2 0.2 0.4 0.1 0.1 0.82
No Token Sim. 0.25 0.3 0.2 0.25 0.0 0.85
High Token Sim. 0.15 0.25 0.15 0.15 0.3 0.80

Table 9: Weight sensitivity. Balanced weighting avoids dominance and achieves robust perfor-
mance, with the selected configuration yielding the strongest results.

Equal weighting is competitive but suboptimal. Carefully differentiating weights improves perfor-
mance: CLIP excels at global semantics but should not dominate, DINOv2 contributes strong spatial
alignment, LPIPS and SSIM capture low-level perceptual differences, and token similarity provides
auxiliary linguistic cues. Eliminating token similarity causes only minor degradation, confirming
its supportive but non-essential role. Our final configuration achieves the best balance, integrating
global semantics with fine-grained perceptual fidelity for robust segmentation.

6 CONCLUSION

We proposed a general framework for event segmentation that combines adaptive thresholding with
multimodal retrospective consolidation. Our design enables causal operation, requiring only past
context, and produces stable, semantically coherent episodes rather than fragmented frame-level
transitions. Across ADL-GEBD and Ego4D, the framework achieves state-of-the-art performance,
surpassing both unsupervised and heavily supervised baselines.

Although inspired by cognitive theories of episodic memory, our contributions are broadly applica-
ble to machine learning: (i) adaptive thresholding as a label-efficient mechanism for robust boundary
detection, and (ii) multimodal consolidation as a scalable strategy for aligning semantic, perceptual,
and linguistic cues. A limitation of the current work is that it includes relatively limited analysis of
dialogue-driven structure, which can be critical in conversation-heavy or instructional videos. Future
work will focus on integrating more sophisticated discourse-level dialogue modeling and exploring
interpretable decompositions of modality interactions. This work focuses causal segmentation for
long-form video understanding, with implications for robotics, assistive AI, and embodied agents.
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A APPENDIX

A.1 THEORETICAL PROPERTIES OF THE ADAPTIVE THRESHOLD MECHANISM

At each time step t, we compute a summary vector

st = (µt, σ
2
t , slast,t),

where µt is the mean similarity to recent keyframes, σ2
t is the variance of similarities, and slast,t is

the similarity to the immediately 3 previous frames. The adaptive threshold network, parameterized
by θ, predicts

τθ(st) ∈ [τmin, τmax],

and the probability of a boundary at time t is

pθ(t) = σ
(
α(τθ(st)− µt) + β

)
,

where σ(·) is the logistic function, α controls sharpness, and β is a learnable bias.
Proposition 1 (Causality). The boundary probability pθ(t) depends only on past observations X≤t.
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Proof. The features st are computed from past keyframes X≤t only. Hence pθ(t) and the boundary
decision dt = 1{pθ(t) > threshold} are causal, with no access to future frames X>t.

Proposition 2 (Non-degeneracy). Consider the training loss

L(θ) = λsupLsup(θ) + λrate
(
Et[pθ(t)]− ρ

)2
+ λreg∥θ∥2,

where ρ ∈ (0, 1) is a target boundary frequency. Then any minimizer θ⋆ satisfies

∣∣Et[pθ⋆(t)]− ρ
∣∣ ≤ L(θ⋆)

λrate
,

which prevents collapse to trivial all-zero or all-one predictions.

Sketch. By definition of L, we have λrate(Et[pθ⋆(t)] − ρ)2 ≤ L(θ⋆). Rearranging gives the bound.

Proposition 3 (Adaptivity). The function τθ(st) adjusts the decision threshold according to sum-
mary statistics. When similarities are stable (low variance σ2

t ), even small deviations in µt can
trigger boundaries; when context is noisy (high σ2

t ), the threshold adapts upward to avoid false
positives.

Intuition. Because τθ maps (µt, σ
2
t , slast,t) to a bounded threshold, its output varies with contextual

stability. Thus the mechanism is robust to both steady and noisy regimes.

Together, these properties show that the adaptive threshold mechanism is causal, avoids degenerate
behavior, and adapts dynamically to context.

A.2 DYNAMIC CONSOLIDATED WINDOW THEORETICAL JUSTIFICATION.

The DCW acts as a local temporal coherence constraint: a boundary is valid only if it coincides with
a semantic discontinuity. Formally, let S(I) denote semantic context (scene, place, action). Then a
retained boundary must satisfy

S(Iki−1) ̸= S(Iki
),

ensuring that splits occur only when there is a genuine semantic change. This reduces false positives
caused by transient low-level variations (e.g., lighting or camera motion) and aligns with the prin-
ciple that episodic segmentation in cognition occurs at context shifts rather than at every perceptual
fluctuation.

A.3 DIALOGUE-AWARE VIDEO SEGMENTATION

While visual discontinuities are a common cue for event boundaries, many real-world videos are
dialogue-driven, where semantic structure is carried by speech rather than visual change. In such
cases—sitcoms, interviews, or instructional tutorials—editing conventions like shot-reverse-shot in-
troduce frequent appearance shifts that do not correspond to genuine narrative transitions. A purely
visual method therefore risks fragmenting coherent dialogue into artificial segments.

A.3.1 DIALOGUE-AWARE REFINEMENT

Figure 3 illustrates this misalignment: visual boundaries (green) derived from frame-level changes
often occur mid-utterance, while the underlying dialogue (red) remains continuous. This leads to
segmentation that splits coherent discourse units, breaking narrative flow and weakening down-
stream applications such as summarization, question answering, or episodic memory modeling.
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Figure 3: Visual boundaries (green) frequently misalign with dialogue structure (red), fragmenting
continuous speech. Our dialogue-aware refinement defers segmentation until utterances end, ensur-
ing audio-visual coherence in narrative-driven content.

To address this, we introduce a dialogue-aware refinement step that aligns event boundaries
with acoustic continuity. We extract speech segments using Mel-Frequency Cepstral Coefficients
(MFCCs) and higher-level prosodic embeddings such as BEAT Chen et al. (2022c). If the audio
stream indicates ongoing speech across a visual boundary, segmentation is deferred until the utter-
ance completes. This simple adjustment ensures that:

• Dialogue remains intact within a single segment, preserving discourse continuity;
• Adjacent visual segments with uninterrupted speech are merged;
• Final event boundaries reflect both visual structure and linguistic flow.

A.4 WHY DIALOGUE-AWARE REFINEMENT MATTERS

This step highlights a broader principle: multimodal event segmentation must respect linguistic
as well as visual coherence. In dialogue-heavy domains, speech—not motion—defines the natural
unit of experience. By fusing acoustic and visual cues, our framework produces segments that align
more closely with human perception of episodes, strengthening its utility for narrative understand-
ing, summarization, and episodic memory grounding.
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