SYLBER 2.0: A UNIVERSAL SYLLABLE EMBEDDING

Anonymous authors

Paper under double-blind review

ABSTRACT

Scaling spoken language modeling requires speech tokens that are both efficient and universal. Recent work has proposed syllables as promising speech tokens at low temporal resolution, but existing models are constrained to English and fail to capture sufficient acoustic detail. To address this, we present Sylber 2.0, a universal framework for coding speech at the syllable level, enabling efficient temporal compression and high-fidelity reconstruction across multiple languages and expressive styles. Building on the original Sylber, Sylber 2.0 improves both linguistic coverage and reconstruction quality by training on diverse multilingual speech and introducing a syllable-level acoustic encoder and vocoder. Sylber 2.0 achieves a very low token frequency around 5 Hz, while retaining both linguistic and acoustic detail. Experiments show that it performs on par with previous models operating on high-frequency baselines, and it outperforms the original Sylber by a significant margin. We further demonstrate the efficacy of Sylber 2.0 by training a text-to-speech model, which achieves comparable or better performance than current SOTA models using only 560 hours of data and 72M parameters. In sum, we establish an effective syllable-level abstraction for general spoken language. Samples can be found here: Demo link

1 Introduction

Modeling speech effectively requires capturing both its acoustic detail and linguistic content. Various modeling approaches have been proposed to encode such information, from acoustic spectral features to modern speech representational learning methods. Masked prediction—based speech self-supervised learning (SSL) (Hsu et al., 2021; Chen et al., 2022; Mohamed et al., 2022) has been shown to encode rich linguistic content (Pasad et al., 2021; 2023), and thus has been successful in many downstream tasks (Yang et al., 2021). However, the learned embeddings are mostly phonetic (Hsu et al., 2021; Cho et al., 2023; 2024a; Choi et al., 2024). Variational autoencoders (VAEs), with or without vector quantization (VQ), have provided compact representations of speech with audio reconstruction that can be used in generative modeling such as text-to-speech (TTS) (Défossez et al., 2022; Kumar et al., 2023; Ju et al., 2024; Ji et al., 2024; Zhang et al., 2023; Défossez et al., 2024; Guo et al., 2025; Liu et al., 2025; 2024; Wang et al., 2025a; Turetzky et al., 2024; Wu et al., 2025).

However, downstream models using speech tokens suffer from high token frequency. Unlike text, speech audio exists in continuous time without a clear delimiter, which has forced speech tokens to densely encode each frame. Some recent work has mitigated this with a large downsampling window. For example, Mimi (Défossez et al., 2024) codes speech at 12.5 Hz in quantized space. VibeVoice (Peng et al., 2025) and CLEAR (Wu et al., 2025) use VAEs to compress speech down to 7.5 Hz and 7.7 Hz, respectively. Yet, it is unknown whether these tokens, with their high compression rates and fixed windows, can encode linguistic content effectively beyond low-level acoustics, which is crucial in spoken language modeling and many other downstream tasks (Algayres et al., 2023; Cho et al., 2025; Baade et al., 2025; Yang et al., 2021).

Recent studies have proposed leveraging syllables to compress speech to around 5 Hz (Cho et al., 2025; Baade et al., 2025). These approaches are based on findings that syllabic segments naturally emerge in speech SSL without using text (Cho et al., 2024b; Komatsu & Shinozaki, 2024). By tokenizing speech using syllabic segments, (Cho et al., 2025; Baade et al., 2025) demonstrate that syllabic tokens enable more efficient spoken language modeling compared to dense tokens, with significantly reduced token length, and show that intelligible speech can be generated from those tokens. The benefits of using syllables for speech are well supported by linguistic theories and find-

Figure 1: Comparison of token frequecy of speech and text tokenization methods. (left) Each bar indicate token frequency of Sylber 2.0 for each language from 102 languages in FLEURS-R. (right) Comparison with text BPE tokens. Each dot denote each of 102 languages.

ings in cognitive neuroscience showing that syllables are natural behavioral and cognitive units of speech (Greenberg, 1998; Oganian & Chang, 2019; MacNeilage, 1998; Greenberg, 1998). However, previous syllabic tokens were trained only on English read speech and are not generalizable to different languages and styles, which significantly limits practical utility. Moreover, those tokens severely lack acoustic detail, such that speaker identity is outsourced or completely ignored in the generative process. While the lack of acoustic information may be desirable in higher-order semantic modeling, it is nonetheless crucial for a complete speech token.

To address these issues, we propose Sylber 2.0, a universal syllabic encoding–decoding framework that can compress any arbitrary speech into syllable embeddings with a token frequency of around 5 Hz. We extend the previous SSL framework, Sylber (Cho et al., 2025), to learn syllables from diverse languages and styles. Moreover, we made several architectural changes. We introduce a boundary detector to detect syllable boundaries that arise during training, which enables faster, parallelizable segmentation. We also introduce an auxiliary acoustic encoder that encodes acoustic details of syllabic tokens, which otherwise mostly contain linguistic content. Then, we train a lightweight vocoder (Siuzdak, 2024) to synthesize the original waveform at 24 kHz from the compressed embeddings. Our experiments show that Sylber 2.0 achieves near-perfect reconstruction, closing the gap with high-frequency tokens and surpassing the original Sylber by a wide margin.

While existing speech tokenizers aim to find a minimal set of codes (analogous to "bytes" in text processing), we position Sylber 2.0 similarly to Byte Pair Encoding (BPE) + Embedding dictionary in language models, directly projecting waveforms to embeddings with variable grouping of frames. As shown in Figure 1, Sylber 2.0 achieves the lowest token frequency for speech, ranging from 3.2 Hz to 6.4 Hz across various languages, with an average of 4.8 Hz. Compared with text BPE, Sylber 2.0 shows lower frequency in less common languages (Figure 1, right). We further validate our framework by training a small TTS model which performs on-par or better than previous SOTA TTS models.

Our contributions are summarized as follows:

- Our speech SSL framework, Sylber 2.0, can learn a universal syllabification of speech and detect syllables in many different languages.
- Sylber 2.0 can compress speech to 4.8 Hz on average across 102 languages, which is the lowest token frequency ever reported for multilingual speech.
- Sylber 2.0 outperforms the original Sylber in reconstruction quality and approximates the performance of previous high-frequency tokens, even in reconstructing expressive singing voice.
- We train a zero-shot multispeaker TTS model using Sylber 2.0 which achieves performance comparable to existing SOTA TTS models while using only minimal training resources.
- Our framework requires relatively minimal resources, fitting entirely on a single 24 GB memory GPU for training.

Figure 2: Encoding-decoding framework of Sylber 2.0. The model compresses speech into non-uniform (~ 5 Hz) embeddings with different components.

2 Related Work

Speech Tokenization Various speech tokenization methods have been proposed to represent raw waveforms (Défossez et al., 2022; Kumar et al., 2023; Ju et al., 2024; Ji et al., 2024; Zhang et al., 2023; Défossez et al., 2024; Guo et al., 2025). Earlier works primarily focused on quantizing acoustic details, while more recent approaches incorporate additional structure such as phonetic content or disentangled speaker identity (Ju et al., 2024; Zhang et al., 2023; Défossez et al., 2024), often leveraging pretrained SSL models as guidance (e.g., by distilling SSL features). Although much of this research has concentrated on reducing the coding space, the temporal dimension remains dense. Our model addresses this gap by exploiting the emergent syllabic structure in SSL representations of speech.

Since speech tokenization is mainly used in generative modeling, high-quality decoding is essential. However, discrete approaches often rely on many codebooks, which complicates generation. To avoid this, several recent works use continuous tokens with diffusion or flow matching replacing categorical sampling in the discrete code space (Liu et al., 2025; 2024; Wang et al., 2025a; Turetzky et al., 2024; Wu et al., 2025). This simplifies decoding compared to multi-codebook generation and provides finer control over the sampling process. Because encoding at syllable frequency would otherwise require more codebooks than high-frequency tokens when quantized, we design Sylber 2.0 to operate in a continuous embedding space. This design is particularly effective for multilingual settings, where phonetic boundaries vary substantially across languages.

Emergent Syllabic structure in speech SSL Previous studies have demonstrated that syllables can be learned from audio without text (Cho et al., 2024b; Komatsu & Shinozaki, 2024; Baade et al., 2025; Cho et al., 2025). Cho et al. (2024b); Komatsu & Shinozaki (2024) show that self-distillation can induce syllable segments from pretrained SSL models such as HuBERT. Baade et al. (2025) leverage masked prediction loss in HuBERT to induce syllables. Then, a segmentation algorithm is applied to produce syllabic tokens at 4–5 Hz. In particular, Cho et al. (2025); Baade et al. (2025) train generative models to reconstruct intelligible speech from the syllabic tokens. However, these models lack or ignore acoustic details and are limited to audiobook-style English speech.

3 Methods

3.1 ENCODING-DECODING FRAMEWORK WITH SYLLABIC EMBEDDINGS

Compared to previous fixed-rate speech coding, Sylber 2.0 is dynamic and flexible in producing tokens at syllabic granularity around 5 Hz. The syllabic tokens are composed of three components: duration, $content\ embedding$, and $acoustic\ embedding\ (d,\ C,\ A\ tokens$ in Figure 2). The duration indicates the length of each token, which is used to restore the original full frames for reconstruction. The content embedding represents the linguistic abstraction of the syllables that convey the intelligible content of the speech (§3.2). The acoustic embedding provides information on the acoustic details (e.g., voice identity) that are missing in the abstract content feature (§3.3). During decod-

ing, the tokens are expanded to the original frame rate using the duration information, and then a lightweight vocoder synthesizes the original waveform at a 24 kHz sampling rate. The inference pipeline is depicted in Figure 2. The model is trained with carefully curated stages of different SSL methods to learn embeddings that are linguistically grounded and compressed with extremely short token lengths. The details are explained in the following sections. Note that no text is used in any stage of training.

3.2 LINGUISTIC CONTENT ENCODER TRAINING

3.2.1 Frame-Wise Self-Distillation

We utilize teacher–student self-distillation to induce an initial syllabic structure from a pretrained speech SSL model, where the teacher, \mathcal{M}_T , is the exponential moving average (EMA) of the student, \mathcal{M}_S . In a similar vein of vision SSL models (Chen et al., 2020; Caron et al., 2021; Oquab et al., 2023), this learning objective aims to learn invariant linguistic content from different augmented view of the input waveform, $\tau(x)$, where x is waveform and $\tau \sim \mathcal{T}$ is data augmentation. More importantly, self-distillation methods can induce syllabic structure in the embedding space (Cho et al., 2024b; Komatsu & Shinozaki, 2024). In particular, we use frame-wise self-distillation, which minimizes $\text{MSE}(\mathcal{M}_S(\tau(x)), \mathcal{M}_T(\tau'(x)), \tau, \tau' \sim \mathcal{T}$.

We use a set of data augmentation. The speaker identity is perturbed by modifying formant levels, applied with p=0.3 (Qian et al., 2022; Komatsu & Shinozaki, 2024). Environmental noise (Reddy et al., 2021) and other randomly cropped speech clips are added with p=0.2 and p=0.05, respectively (if applied, only one of these is chosen with equal probability). We also randomly apply room impulse responses (RIRs) sampled from the GTU-RIR corpus (Pekmezci, 2025). Lastly, random white noise is added with p=0.3.

The model is initialized with a multilingual SSL model, mHuBERT (Boito et al., 2024), which is trained on 147 languages. The last three layers are randomly reinitialized. The teacher targets are L2-normalized, and student model has an additional fully connected layer that is not used in the teacher. The EMA decay rate is set to 0.999.

3.2.2 Self-Segmentation Distillation

The syllabic structure learned from the previous stage is further refined through self-segmentation distillation (Cho et al., 2025), an SSL method proposed in the original Sylber. The model is trained by predicting segment-averaged embeddings from the teacher, where the segments are derived by an unsupervised segmentation algorithm on the teacher's features. In particular, we minimize the Mean Squared Error between the student's outputs and the segment-averaged teacher's outputs, $\text{MSE}(\mathcal{M}_S(\tau(x)), \text{seg}(\mathcal{M}_T(x)), \ \tau \sim \mathcal{T}$ where seg means the segmentation and average pooling. The teacher is initialized with the student weights and updated through multiple stages. The same data augmentation described in §3.2.1 is applied, but only to the student's inputs.

Compared to the previous Sylber, we remove the explicit silent masking in the original Sylber to better preserve information. Sylber explicitly removed frames regarded as silent (Figure 3, top panels) by predicting "0s" for those frames. However, as a result, the model often misses syllables with low gain. Therefore, we removed this masking in our framework. Consequently, our model produces more tokens by retaining segments, but this enables much more accurate reconstruction of the original audio.

Boundary Detection To replace the expensive segmentation algorithm, we introduce a boundary detector. The previous approach compared similarities between adjacent frames, incurring quadratic computational cost. Sylber introduced a greedy algorithm that reduced this to linear order, but it requires clean boundaries and is sensitive to noise as shown in Figure 3, the first and third panel. Moreover, its dynamic nature prevented parallelization in GPU. To solve this, we introduce a boundary detector to predict boundaries drawn by the unsupervised segmentation algorithm. A peak detection algorithm is then applied to the boundary probabilities, which is much faster than similarity-based algorithms. See Appendix A.2 for Real-Time Factor comparison.

Multi-Stage Training The training of the content encoder is divided into four stages. At each stage, the teacher model is initialized with the student weights at the beginning and then fixed throughout

Figure 3: Similarity matrix after stage 1 and 3. The detected boundaries are denoted as red dashed lines. "Greedy+Refine" denotes using additional refinement after greedy segmentation, which can clean noisy boundaries of greedy algorithm. Note that this segmentation is replaced with the boundary detector. See Figure 4 bottom right for the final result.

that stage. The stage 1 is the frame-wise self-distillation described in §3.2.1. The stage 2 and 3 follow the original Sylber, using unsupervised segmentation on the teacher's outputs to obtain target segments. We used a greedy algorithm suggested by Cho et al. (2025) with additional refinement (See Appendix A.1.1 for details). Figure 3 illustrates how the embedding space is progressively evolve into syllables after the stage 1 and 3, and the effectiveness of the refinement strategy. The last stage is trained with the boundary detector as a drop-in replacement for the segmentation algorithm. In stage 2,3, and 4, the boundary detector is trained with Binary Cross-Entropy to predict the probability of boundaries obtained from the teacher segments.

The student model consists of 9 Transformer layers, following Sylber. Unlike Sylber, we use the 8th layer of the teacher to extract target features. The boundary detector has 3 Transformer layers with the same architecture as the main model, followed by a fully connected layer with a binary logit.

The trained model serves as a *content encoder* to extract the linguistic content of speech. Frames are averaged within segments predicted by the boundary detector, producing a compressed content embedding at around 5 Hz. This segment-averaged embedding is further refined with residual fully connected layers, reducing the dimension to 64 during training of the syllable-to-speech synthesis model (see §3.4). We refer to this 64-dimensional embedding as the content embedding (C tokens in Figure 2).

3.3 SYLLABLE-GUIDED ACOUSTIC ENCODER

Sylber 2.0 is designed to provide a complete encoding-decoding framework that can compress speech into syllables. The previous works target single speaker generation (Baade et al., 2025) or borrow speaker embeddings from other pretrained models (Cho et al., 2025) since the acoustic information tends to be marginalized out by self-distillation (Cho et al., 2024b; Komatsu & Shinozaki, 2024; Cho et al., 2025).

We train a separate *acoustic encoder* to augment missing acoustic details learned from the self-distillation training. This additional acoustic encoding is also represented at the syllable level, by using the segments inferred by the boundary detector. The acoustic encoder consists of a CNN and 6 transformer layers. The CNN is initialized with that from WavLM-Large (Chen et al., 2022), except the 2nd layer since it has a wider $(2\rightarrow 3)$ stride to increase receptive field from 320 to 480, since we use a 24KHz input. The output frames are averaged within each segment detected from the boundary detector. Similar to the content encoder, the averaged embeddings are projected using residual fully-connected layers to a lower dimension of 64. This embedding is referred to as *acoustic embedding* of the Sylber 2.0 embedding space (A tokens in Figure 2).

3.4 VOCODER FOR SYLLABLE-TO-SPEECH SYNTHESIS

We train a vocoder to synthesize speech from our syllabic embeddings. The content and acoustic embeddings are duplicated according to the original duration back into 50 Hz frames (Figure 2, right, *Decoding* panel). We introduce within-segment positional encoding (wSegPE), which is concatenated to each frame to indicate its relative position within the segment. The position of frame

Figure 4: Similarity matrix in three different languages using Sylber (top) and Sylber 2.0 (bottom). The ground truth syllable boundaries are denoted below each plot. The boundaries detected are denoted as red dashed lines. "*" denotes the segments which are masked out in the previous Sylber.

that increases from 0 at the beginning to 1 at the end is used to lookup a learnable embedding template. Since this position is continuous, we interpolate two closest embeddings in the template. The template has 11 embeddings.

We adopt Vocos (Siuzdak, 2024) for fast, lightweight synthesis that can instantly convert syllables into speech waveforms. Our setup uses 12 ConvNext layers (Liu et al., 2022b) to predict phase and magnitude, generating 24 kHz audio through an inverse short-time Fourier transform (iSTFT). The model has only 100M parameters, making it significantly smaller than the Transformer stacks used in previous syllable-to-speech vocoders (Cho et al., 2025; Baade et al., 2025). We use the same losses as Vocos (Siuzdak, 2024), including reconstruction loss, adversarial loss, and feature-matching loss. In addition, we include the perceptual loss proposed by Parker et al. (2025), computed with WavLM-Large (Chen et al., 2022) using layer 0 (CNN output) and layers 3, 6, 9, and 12.

To learn embeddings with the intended decomposition into content and acoustic embeddings, we employ some strategies during training. First, we freeze the upstream model of the content encoder and boundary detector. (The final FC layers in content encoder are updated). To encourage acoustic—content disentanglement, we apply random voice perturbations to both the input to the acoustic encoder and the targets, while keeping the content embedding consistent with the original speech. The acoustic embeddings within each clip are randomly averaged or shuffled across time to prevent the model from overly relying on acoustic information to generate audio.

3.5 TRAINING DETAILS

For training the content encoder, we use a collection of multilingual datasets including Emilia (He et al., 2024), MLS (Pratap et al., 2020), and FLEURS (Conneau et al., 2023). We exclude English and French from MLS since they are already extensively covered in Emilia. FLEURS is included to expose the model to a broader range of languages, up to 102 in total. To balance language exposure, each language in Emilia and MLS is evenly sampled during training, while FLEURS is sampled as a whole with twice the sampling probability of an individual language. To fit within a 24 GB GPU, audio is randomly cropped to 5 seconds. See Appendix A.1.3 for the hyperparameters for each training stage.

For training the acoustic encoder and synthesis model, we use a separate set of speech data with clean audio quality. Specifically, we use FLEURS-R (Ma et al., 2024), EXPRESSO (Nguyen et al., 2023), Globe (Wang et al., 2024), and GTSinger (Zhang et al., 2024). This composition covers speech with diverse styles, accents, languages, and even singing voice. During training, samples from FLEURS-R are drawn at $7 \times$ the rate of the other corpora, and a random 3-second window is cropped. We train the model with multiple cycles of learning rate schedules, where the training strategies described in §3.4 are differentially applied in each cycle; see Appendix A.1.4 for details.

Table 1: Syllable detection performance measured in three languages. For Sylber 2.0, metrics are also measured with small chunks filtered. The highest scores are emphasized in **bold**.

		English				Spa	nish		Mandarin			
Model	Pr↑	Re↑	F1↑	R↑	Pr↑	Re↑	F1↑	R↑	Pr↑	Re↑	F1↑	R↑
Sylber	76.6	68.3	72.2	75.9	73.5	69.9	71.7	75.9	74.9	68.0	71.3	75.3
Sylber 2.0 filtered with \geq 60 ms \geq 80 ms	66.2 69.2 71.7	83.5 82.8 81.7	73.9 75.4 76.3	69.5 73.9 77.1	69.1 70.5 71.7	80.1 79.5 78.5	74.2 74.7 74.9	74.6 76.1 77.3	54.6 60.3 65.9	85.6 84.9 83.5	66.7 70.5 73.7	45.5 58.4 69.1
≥ 80 ms ≥ 100 ms ≥ 120 ms	74.1 74.6	76.3 70.5	75.2 72.5	78.6 76.5	72.3 71.7	72.8 66.0	72.5 68.7	76.5 73.3	69.6 71.2	81.5 79.4	75.1 75.1	74.8 76.8

Sylber 2.0 training requires minimal computational resources, as each stage can be run on a single NVIDIA RTX A5000 GPU with 24 GB of memory. This is a significant advantage compared to modern large-scale speech model training.

4 EMERGENT MULTILINGUAL SYLLABIC STRUCTURE

As we can see in Figure 4, Sylber 2.0 successfully learns syllabic structure without any textual supervision. In the similarity matrices shown in Figure 4, the detected boundaries are well aligned with syllable boundaries inferred from transcripts. The embeddings within segments are highly consistent, forming flat "squares" between boundaries. We evaluate syllable detection performance on three languages: English, Spanish, and Mandarin that were used in (Cho et al., 2025). We measure precision (Pr), recall (Re), F1 score (F1), and R-value with a 50 ms tolerance from the text-based syllable boundaries. The test data are taken from LibriSpeech (Panayotov et al., 2015), MLS (Pratap et al., 2020), and AISHELL-3 (Shi et al., 2021) for each respective language.

We compare Sylber 2.0 syllable detection with the original Sylber. Since Sylber 2.0 preserves small silent tokens, we also report scores after filtering out short segments with thresholds ranging from 60 ms to 120 ms (Table 1). As shown in the table, Sylber 2.0 achieves significantly higher recall and lower precision across all three languages, resulting in higher F1 scores for English and Spanish. This suggests that Sylber 2.0 more accurately recovers text-driven syllable boundaries, albeit with additional short segments (denoted as * in Figure 4). These extra segments can be removed through threshold-based filtering, boosting R-values beyond those of the original Sylber. Since our goal is speech coding with minimum loss, we retain all segments without filtering in our framework.

5 HIGH-FIDELITY, NEAR-LOSSLESS COMPRESSION AT 5 HZ

To evaluate the reconstruction performance of Sylber 2.0, we measure both intelligibility and quality of resynthesized audio. For intelligibility, we use Whisper-Large-v3 (Radford et al., 2023) to transcribe audio and compute the word error rate (WER), and we also measure short-time objective intelligibility (STOI) (Taal et al., 2010). For perceptual quality, we use Perceptual Evaluation of Speech Quality (PESQ) and UTMOS (Saeki et al., 2022).

We measure these metrics on the test sets of three corpora: LibriTTS (Zen et al., 2019), FLEURS-R (Ma et al., 2024), and GTSinger (Zhang et al., 2024). For LibriTTS, we report scores separately for the clean and other subsets. For FLEURS-R, we target 20 languages with sufficiently low Whisper transcription error rates, and provide individual scores for representative languages. For GTSinger, we measure F0 (pitch) reconstruction instead of WER, since pitch is more crucial in singing. We use CREPE (Kim et al., 2018) to extract F0 and report the Pearson correlation coefficient (F0-PCC) and coefficient of determination (F0- R^2) for voiced frames.

Additionally, we evaluate speaker similarity (SSIM) through cosine similarity using Resemblyzer speaker embeddings.² We compare Sylber 2.0 against several representative open-sourced speech tokenizers operating at different token frequencies (12.5–86.1 Hz): DAC(Kumar et al., 2023), FA-

¹Selected languages: ko, ja, es, it, cmn, pt, de, ca, en, fr, pl, nl, ru, tr, uk, id, nb, sv, fi, ms.

²https://github.com/resemble-ai/Resemblyzer

Table 2: Resynthesis performance on different datasets. The highest scores are emphasized in **bold**, separately for low-frequency regime (Sylber and Sylber 2.0) and high-frequency regime (others). See Appendix 2 for full FLEURS-R scores.

English	LibriTT	S)

			test-clean					test-other					
Model	Hz	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑		
DAC	86.1	3.32	0.99	4.46	3.92	1.00	5.99	0.99	4.43	3.40	1.00		
FACodec	80	3.49	0.95	2.91	4.04	0.97	7.14	0.93	2.61	3.48	0.96		
SpeechTokenizer	50	3.53	0.93	2.61	3.80	0.96	7.81	0.90	2.41	3.28	0.95		
WavTokenizer	40	16.78	0.87	1.79	3.51	0.88	31.04	0.84	1.69	3.08	0.87		
Mimi	12.5	3.59	0.97	3.47	3.85	0.97	7.06	0.95	3.25	3.33	0.97		
Sylber	4.22		0.75	1.13	4.09	0.76	13.29	0.72	1.13	3.91	0.71		
Sylber 2.0 (Ours)	5.81	3.86	0.89	1.99	3.80	0.92	8.58	0.87	1.89	3.54	0.91		

Multilingual Speech (FLEURS-R)

					1,1416		ur op	(0110 11)						
				Spani	sh				Frenc	:h				Russia	an	
Model	Hz	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	86.1	2.91	1.00	4.53	3.29	1.00	6.34	1.00	4.52	3.08	1.00	5.26	1.00	4.51	3.32	1.00
FACodec	80	3.21	0.96	3.34	3.32	0.98	8.90	0.95	2.90	3.21	0.98	5.88	0.95	2.86	3.34	0.98
SpeechTokenizer	50	3.13	0.94	3.06	2.96	0.97	8.71	0.92	2.72	2.91	0.97	6.02	0.93	2.63	3.04	0.98
WavTokenizer	40	14.57	0.87	1.98	2.73	0.92	53.89	0.85	1.81	2.89	0.90	27.58	0.85	1.72	2.73	0.90
Mimi	12.5	2.93	0.98	3.91	3.14	0.98	6.66	0.96	3.64	2.98	0.98	5.45	0.97	3.56	3.15	0.98
Sylber	3.71	10.66	0.77	1.18	3.37	0.84	59.03	0.74	1.22	3.61	0.82	24.13	0.75	1.19	3.56	0.80
Sylber 2.0 (Ours)	4.86	3.18	0.93	2.56	2.91	0.98	8.92	0.91	2.28	2.99	0.97	6.57	0.91	2.23	3.16	0.98
				Manda	rin				Korea	ın			2) Langı	iages	
Model	Hz	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	86.1	6.93	1.00	4.53	3.16	1.00	4.30	1.00	4.52	3.51	1.00	6.03	1.00	4.52	3.29	1.00
FACodec	80	8.65	0.95	3.02	3.19	0.98	5.36	0.96	3.24	3.63	0.98	7.29	0.95	3.06	3.35	0.98
SpeechTokenizer	50	8.48	0.93	2.80	2.91	0.97	4.96	0.94	2.96	3.25	0.97	7.59	0.93	2.81	3.06	0.97
WavTokenizer	40	38.97	0.86	1.80	2.70	0.89	24.42	0.88	1.97	2.97	0.90	33.94	0.86	1.82	2.79	0.90
Mimi	12.5	7.39	0.97	3.67	3.00	0.98	4.69	0.98	3.78	3.38	0.98	6.35	0.97	3.72	3.17	0.98
Sylber	3.71	38.10	0.75	1.21	3.62	0.83	17.96	0.80	1.22	3.61	0.82	28.42	0.76	1.18	3.55	0.82
Sylber 2.0 (Ours)	4.86	8.21	0.91	2.29	2.96	0.97	5.05	0.94	2.60	3.30	0.97	7.57	0.92	2.35	3.09	0.98

Singing Voice (GTSinger)

Model	Hz	F0-PCC(r)↑	F0-R ² ↑	STOI↑	PESQ↑	UTMOS↑	SSIM↑
DAC	86.1	0.99	0.99	0.96	4.37	2.43	1.00
FACodec	80	0.97	0.85	0.84	2.85	2.46	0.98
SpeechTokenizer	50	0.97	0.84	0.77	2.35	2.15	0.96
WavTokenizer	40	0.94	0.76	0.70	1.81	2.07	0.92
Mimi	12.5	0.98	0.95	0.86	3.26	2.29	0.97
Sylber	1.87	0.78	-2.41	0.47	1.11	2.23	0.80
Sylber 2.0 (Ours)	3.37	0.96	0.88	0.73	2.14	2.33	0.95

Codec (Ju et al., 2024), SpeechTokenizer (Zhang et al., 2023), WavTokenizer (Ji et al., 2024), and Mimi (Défossez et al., 2024), along with the original Sylber.

As shown in Table 2, Sylber 2.0 reconstructs high-quality audio that preserves intelligible content. Sylber 2.0 outperforms Sylber by a wide margin in every aspect except UTMOS. In fact, some UTMOS scores of Sylber are even higher than those of high-frequency tokens, because Sylber's resynthesis relies on an external vocoder with a quality-enhancement capacity (Cho et al., 2024c).

Several Sylber 2.0 scores approach those of high-frequency tokens. Specifically, WER scores show only minimal gaps: Sylber 2.0 achieves 7.57% WER across 20 languages in FLEURS-R, while the best high-frequency token, DAC, achieves 6%, a trend also reflected in individual languages and corpora. PESQ scores are reasonably high, but below those of high-frequency tokens. This is because that PESQ is sensitive to frame-level acoustic details that may be lost when averaging within segments. For singing voice reconstruction, Sylber 2.0 shows F0 correlations comparable to high-frequency tokens, with R^2 values even surpassing some of them. This high level of reconstruction quality is achieved with a very low token frequency. While it can vary across languages and styles, Sylber 2.0 averages around 5 Hz: 4.8 Hz across 102 languages in FLEURS-R (Figure 1, left; a full

Table 3: TTS performance on LibriSpeech (PC) test-clean. ♠ denotes the score reported in the corresponding baseline papers. ♦ denotes the score reported in F5-TTS. ♠ denotes the score reported in CLEAR. The highest scores are emphasized in **bold**. Table adapted from Wu et al. (2025).

Model	#Params	Training Data	WER(%)↓	SIM-o↑	UTMOS↑
Ground Truth	-	-	2.47	0.69	4.09
CosyVoice (Du et al., 2024a)	300M	Multi-170k	3.59	0.66	-
CosyVoice 2 (Du et al., 2024b) ♣	500M	Multi-170k	2.47	0.65	4.35
FireRedTTS (Guo et al., 2024) [♦]	580M	Multi-248k	2.69	0.47	-
MaskGCT (Wang et al., 2025b) [♠]	1048M	Emilia-100k	2.72	0.69	3.90
F5-TTS (Chen et al., 2024) [♠]	300M	Emilia-100k	2.42	0.66	3.88
DiTAR (Jia et al., 2025) [♠]	600M	Emilia-100k	2.39	0.67	4.22
CLEAR-Base (Wu et al., 2025)♣	439M	Libri-50k	2.21	0.59	4.22
CLEAR-Large (Wu et al., 2025)♣	686M	Libri-50k	1.88	0.59	4.22
SylFlow (Ours)	72M	LibriTTS-0.6k	3.29	0.67	4.26

report is in Table 9). Interestingly, Sylber 2.0 can be even more efficient in low-resource languages, where text BPE token frequencies (Conneau et al., 2020; Xue et al., 2021; Chung et al., 2023; Srivastava et al., 2025; Radford et al., 2023) are significantly higher (Figure 1, right).

Sylber 2.0 may adopt a universal phonological rule applicable to many languages, even if it does not align precisely with language-specific syllabification rules defined by linguists. Given the lack of consensus on syllabification rules in linguistics (Anderson, 1985; Goldsmith et al., 2011; Treiman & Danis, 1988), our method provides *a universal syllabification that is consistent across languages*, naturally emerging from machine speech perception. The extensive analysis on multiple languages and styles supports this idea.

6 TEXT-TO-SPEECH THROUGH SYLLABLE EMBEDDING

To further demonstrate downstream utility, we train a small text-to-speech (TTS) model using Sylber 2.0 embeddings. Since the embedding conveys full speech information, our goal is to generate these embeddings directly from text. As Sylber 2.0 tokenizes speech in a continuous space, we adopt a continuous-value autoregressive (AR) model (Liu et al., 2025; 2024; Wang et al., 2025a; Turetzky et al., 2024; Wu et al., 2025). Inspired by Wu et al. (2025), we use rectified flow (RF) (Liu et al., 2022a) with AR backbone, which we call *SylFlow*. We train under a minimal setting: LibriTTS (Zen et al., 2019), which has only 560 hours of data. See Appendix A.1.5 for details, and we evaluate on the LibriSpeech (PC) test-clean subset opensourced by Chen et al. (2024).

Table 3 shows the results of the TTS experiments. Following the evaluation protocol in Wu et al. (2025), measuring WER, speaker similarity (SIM-o) and UTMOS (Appendix A.1.6). Our TTS with Sylber 2.0 performs on par with prior methods in speaker similarity and UTMOS, while requiring $10-100\times$ less training data and being $5-10\times$ smaller in model size. WER is also competitive compared to prior SOTA methods, achieving 3.29. This suggests that Sylber 2.0 provides a more efficient and effective alternative to previous speech tokens.

7 CONCLUSION

We propose a novel speech embedding model, Sylber 2.0, that learns a universal syllabification of raw speech audio. Sylber 2.0 can compress speech from any language, style, or even singing into a linguistically grounded token sequence at around 5 Hz. Its decoder can reconstruct the original audio nearly perfectly from this short sequence, surpassing the original Sylber. Sylber 2.0 offers strong potential for transparent and efficient speech tokenization, as well as for scalable and effective spoken language modeling.

ETHICS STATEMENT

We view our model as a significant advancement in speech modeling and spoken language understanding. Our approach provides efficient and effective speech tokenization, though it also carries the potential for misuse. Therefore, it is essential that users, researchers, and developers apply this model and framework with ethical care and responsibility.

Reproducibility Statement

494 495 496

486

487 488

489

490

491

492 493

> In keeping with the principles of open research, we will make all code related publicly available. This includes both the pretrained model weights and the resources needed to retrain the model.

497 498

USE OF LLM TECHNOLOGY

499 500 501

In this research project, standard LLMs were used for general assistance such as for formatting and styling tables or with basic tab-completion for coding.

502

REFERENCES

504 505 506

507

508

Robin Algayres, Yossi Adi, Tu Anh Nguyen, Jade Copet, Gabriel Synnaeve, Benoit Sagot, and Emmanuel Dupoux. Generative spoken language model based on continuous word-sized audio tokens. arXiv preprint arXiv:2310.05224, 2023.

509 510

Stephen R Anderson. Phonology in the twentieth century: Theories of rules and theories of representations. University of Chicago Press, 1985.

511 512

Alan Baade, Puyuan Peng, and David Harwath. SyllableLM: Learning coarse semantic units for speech language models. In The Thirteenth International Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=dGSOn7sdWg.

513 514

Marcely Zanon Boito, Vivek Iyer, Nikolaos Lagos, Laurent Besacier, and Ioan Calapodescu. mhubert-147: A compact multilingual hubert model. arXiv preprint arXiv:2406.06371, 2024.

515 516 517

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of* the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

519 520 521

522

523

518

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-training for full stack speech processing. IEEE Journal of Selected Topics in Signal Processing, 16(6):1505-1518, 2022.

524 526

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pp. 1597–1607. PMLR, 2020.

527 528 529

Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, and Xie Chen. F5-tts: A fairytaler that fakes fluent and faithful speech with flow matching. arXiv preprint arXiv:2410.06885, 2024.

531 532 533

530

Cheol Jun Cho, Peter Wu, Abdelrahman Mohamed, and Gopala K Anumanchipalli. Evidence of vocal tract articulation in self-supervised learning of speech. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5. IEEE, 2023.

534 536

538

Cheol Jun Cho, Abdelrahman Mohamed, Alan W Black, and Gopala K Anumanchipalli. Selfsupervised models of speech infer universal articulatory kinematics. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 12061– 12065. IEEE, 2024a.

- Cheol Jun Cho, Abdelrahman Mohamed, Shang-Wen Li, Alan W Black, and Gopala K Anumanchipalli. Sd-hubert: Sentence-level self-distillation induces syllabic organization in hubert. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 12076–12080. IEEE, 2024b.
 - Cheol Jun Cho, Peter Wu, Tejas S. Prabhune, Dhruv Agarwal, and Gopala K. Anumanchipalli. Coding speech through vocal tract kinematics. *IEEE Journal of Selected Topics in Signal Processing*, 18(8):1427–1440, 2024c. doi: 10.1109/JSTSP.2024.3497655.
 - Cheol Jun Cho, Nicholas Lee, Akshat Gupta, Dhruv Agarwal, Ethan Chen, Alan Black, and Gopala Anumanchipalli. Sylber: Syllabic embedding representation of speech from raw audio. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=FyMjfDQ9RO.
 - Kwanghee Choi, Ankita Pasad, Tomohiko Nakamura, Satoru Fukayama, Karen Livescu, and Shinji Watanabe. Self-supervised speech representations are more phonetic than semantic. *arXiv* preprint arXiv:2406.08619, 2024.
 - Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, and Noah Constant. Unimax: Fairer and more effective language sampling for large-scale multilingual pretraining. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=kXwdLlcWOAi.
 - Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Édouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual representation learning at scale. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 8440–8451, 2020.
 - Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara Rivera, and Ankur Bapna. Fleurs: Few-shot learning evaluation of universal representations of speech. In 2022 IEEE Spoken Language Technology Workshop (SLT), pp. 798–805. IEEE, 2023.
 - Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio compression. *arXiv preprint arXiv:2210.13438*, 2022.
 - Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dialogue. Technical report, Kyutai, September 2024. URL http://kyutai.org/Moshi.pdf.
 - Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer based on supervised semantic tokens. *arXiv* preprint arXiv:2407.05407, 2024a.
 - Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang, Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with large language models. *arXiv preprint arXiv:2412.10117*, 2024b.
 - John A Goldsmith, Jason Riggle, and CL Alan. *The handbook of phonological theory*. John Wiley & Sons, 2011.
 - Steven Greenberg. A syllable-centric framework for the evolution of spoken language. *Behavioral and brain sciences*, 21(4):518–518, 1998.
 - Hao-Han Guo, Yao Hu, Kun Liu, Fei-Yu Shen, Xu Tang, Yi-Chen Wu, Feng-Long Xie, Kun Xie, and Kai-Tuo Xu. Fireredtts: A foundation text-to-speech framework for industry-level generative speech applications. *arXiv preprint arXiv:2409.03283*, 2024.
 - Yiwei Guo, Zhihan Li, Hankun Wang, Bohan Li, Chongtian Shao, Hanglei Zhang, Chenpeng Du, Xie Chen, Shujie Liu, and Kai Yu. Recent advances in discrete speech tokens: A review. *arXiv* preprint arXiv:2502.06490, 2025.

- Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen Yang, Jiaqi Li, Peiyang Shi, et al. Emilia: An extensive, multilingual, and diverse speech dataset for large-scale speech generation. In 2024 IEEE Spoken Language Technology Workshop (SLT), pp. 885–890. IEEE, 2024.
 - Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked prediction of hidden units. *IEEE/ACM transactions on audio, speech, and language processing*, 29:3451–3460, 2021.
 - Shengpeng Ji, Ziyue Jiang, Wen Wang, Yifu Chen, Minghui Fang, Jialong Zuo, Qian Yang, Xize Cheng, Zehan Wang, Ruiqi Li, et al. Wavtokenizer: an efficient acoustic discrete codec tokenizer for audio language modeling. *arXiv preprint arXiv:2408.16532*, 2024.
 - Dongya Jia, Zhuo Chen, Jiawei Chen, Chenpeng Du, Jian Wu, Jian Cong, Xiaobin Zhuang, Chumin Li, Zhen Wei, Yuping Wang, and Yuxuan Wang. DiTAR: Diffusion transformer autoregressive modeling for speech generation. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=8tRtweTTwv.
 - Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Yanqing Liu, Yichong Leng, Kaitao Song, Siliang Tang, et al. Naturalspeech 3: Zero-shot speech synthesis with factorized codec and diffusion models. *arXiv preprint arXiv:2403.03100*, 2024.
 - Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. Crepe: A convolutional representation for pitch estimation. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 161–165. IEEE, 2018.
 - Ryota Komatsu and Takahiro Shinozaki. Self-supervised syllable discovery based on speaker-disentangled hubert. pp. 1131–1136, 2024. doi: 10.1109/SLT61566.2024.10832325.
 - Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-fidelity audio compression with improved rvqgan. *Advances in Neural Information Processing Systems*, 36:27980–27993, 2023.
 - Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022a.
 - Yanqing Liu, Ruiqing Xue, Chong Zhang, Yufei Liu, Gang Wang, Bohan Li, Yao Qian, Lei He, Shujie Liu, and Sheng Zhao. Next tokens denoising for speech synthesis. arXiv preprint arXiv:2507.22746, 2025.
 - Zhijun Liu, Shuai Wang, Sho Inoue, Qibing Bai, and Haizhou Li. Autoregressive diffusion transformer for text-to-speech synthesis. *arXiv preprint arXiv:2406.05551*, 2024.
 - Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11976–11986, 2022b.
 - Min Ma, Yuma Koizumi, Shigeki Karita, Heiga Zen, Jason Riesa, Haruko Ishikawa, and Michiel Bacchiani. Fleurs-r: A restored multilingual speech corpus for generation tasks. In *Proc. Interspeech 2024*, pp. 1835–1839, 2024.
 - Peter F MacNeilage. The frame/content theory of evolution of speech production. *Behavioral and brain sciences*, 21(4):499–511, 1998.
 - Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt, Jakob D Havtorn, Joakim Edin, Christian Igel, Katrin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars Maaløe, et al. Self-supervised speech representation learning: A review. *IEEE Journal of Selected Topics in Signal Processing*, 16(6): 1179–1210, 2022.
 - Tu Anh Nguyen, Wei-Ning Hsu, Antony d'Avirro, Bowen Shi, Itai Gat, Maryam Fazel-Zarani, Tal Remez, Jade Copet, Gabriel Synnaeve, Michael Hassid, et al. Expresso: A benchmark and analysis of discrete expressive speech resynthesis. *arXiv preprint arXiv:2308.05725*, 2023.

- Yulia Oganian and Edward F Chang. A speech envelope landmark for syllable encoding in human superior temporal gyrus. *Science advances*, 5(11):eaay6279, 2019.
 - Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. *arXiv* preprint arXiv:2304.07193, 2023.
 - Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus based on public domain audio books. In 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 5206–5210. IEEE, 2015.
 - Julian D Parker, Anton Smirnov, Jordi Pons, CJ Carr, Zack Zukowski, Zach Evans, and Xubo Liu. Scaling transformers for low-bitrate high-quality speech coding. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=4YpMrGfldX.
 - Ankita Pasad, Ju-Chieh Chou, and Karen Livescu. Layer-wise analysis of a self-supervised speech representation model. In 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 914–921. IEEE, 2021.
 - Ankita Pasad, Bowen Shi, and Karen Livescu. Comparative layer-wise analysis of self-supervised speech models. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.
 - Mehmet Pekmezci. GTU-RIR: Room Impulse Response (RIR) Data Collection and Generation Project. https://github.com/mehmetpekmezci/gtu-rir, 2025.
 - Zhiliang Peng, Jianwei Yu, Wenhui Wang, Yaoyao Chang, Yutao Sun, Li Dong, Yi Zhu, Weijiang Xu, Hangbo Bao, Zehua Wang, et al. Vibevoice technical report. *arXiv preprint arXiv:2508.19205*, 2025.
 - Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert. Mls: A large-scale multilingual dataset for speech research. *Interspeech*, 2020.
 - Kaizhi Qian, Yang Zhang, Heting Gao, Junrui Ni, Cheng-I Lai, David Cox, Mark Hasegawa-Johnson, and Shiyu Chang. Contentvec: An improved self-supervised speech representation by disentangling speakers. In *International conference on machine learning*, pp. 18003–18017. PMLR, 2022.
 - Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In *International conference on machine learning*, pp. 28492–28518. PMLR, 2023.
 - Chandan KA Reddy, Harishchandra Dubey, Vishak Gopal, Ross Cutler, Sebastian Braun, Hannes Gamper, Robert Aichner, and Sriram Srinivasan. Icassp 2021 deep noise suppression challenge. In *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 6623–6627. IEEE, 2021.
 - Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and Hiroshi Saruwatari. Utmos: Utokyo-sarulab system for voicemos challenge 2022. *arXiv preprint arXiv:2204.02152*, 2022.
 - Yao Shi, Hui Bu, Xin Xu, Shaoji Zhang, and Ming Li. Aishell-3: A multi-speaker mandarin tts corpus and the baselines. *Interspeech*, 2021.
 - Hubert Siuzdak. Vocos: Closing the gap between time-domain and fourier-based neural vocoders for high-quality audio synthesis. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=vY9nzQmQBw.
 - Nikit Srivastava, Denis Kuchelev, Tatiana Moteu Ngoli, Kshitij Shetty, Michael Roeder, Hamada Zahera, Diego Moussallem, and Axel-Cyrille Ngonga Ngomo. Lola–an open-source massively multilingual large language model. In *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 6420–6446, 2025.

- Cees H. Taal, Richard C. Hendriks, Richard Heusdens, and Jesper Jensen. A short-time objective intelligibility measure for time-frequency weighted noisy speech. In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4214–4217, 2010. doi: 10.1109/ICASSP.2010.5495701.
 - Rebecca Treiman and Catalina Danis. Syllabification of intervocalic consonants. *Journal of memory and language*, 27(1):87–104, 1988.
 - Arnon Turetzky, Nimrod Shabtay, Slava Shechtman, Hagai Aronowitz, David Haws, Ron Hoory, and Avihu Dekel. Continuous speech synthesis using per-token latent diffusion. *arXiv preprint arXiv:2410.16048*, 2024.
 - Hui Wang, Shujie Liu, Lingwei Meng, Jinyu Li, Yifan Yang, Shiwan Zhao, Haiyang Sun, Yanqing Liu, Haoqin Sun, Jiaming Zhou, et al. Felle: Autoregressive speech synthesis with token-wise coarse-to-fine flow matching. *arXiv preprint arXiv:2502.11128*, 2025a.
 - Wenbin Wang, Yang Song, and Sanjay Jha. Globe: A high-quality english corpus with global accents for zero-shot speaker adaptive text-to-speech. *arXiv preprint arXiv:2406.14875*, 2024.
 - Yuancheng Wang, Haoyue Zhan, Liwei Liu, Ruihong Zeng, Haotian Guo, Jiachen Zheng, Qiang Zhang, Xueyao Zhang, Shunsi Zhang, and Zhizheng Wu. MaskGCT: Zero-shot text-to-speech with masked generative codec transformer. In *The Thirteenth International Conference on Learning Representations*, 2025b. URL https://openreview.net/forum?id=ExuBFYtCQU.
 - Chun Yat Wu, Jiajun Deng, Guinan Li, Qiuqiang Kong, and Simon Lui. Clear: Continuous latent autoregressive modeling for high-quality and low-latency speech synthesis. *arXiv* preprint *arXiv*:2508.19098, 2025.
 - Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 483–498, 2021.
 - Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y Lin, Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb: Speech processing universal performance benchmark. *arXiv* preprint arXiv:2105.01051, 2021.
 - Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu. Libritts: A corpus derived from librispeech for text-to-speech. *arXiv preprint arXiv:1904.02882*, 2019.
 - Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified speech tokenizer for speech large language models. *arXiv preprint arXiv:2308.16692*, 2023.
 - Yu Zhang, Changhao Pan, Wenxiang Guo, Ruiqi Li, Zhiyuan Zhu, Jialei Wang, Wenhao Xu, Jingyu Lu, Zhiqing Hong, Chuxin Wang, et al. Gtsinger: A global multi-technique singing corpus with realistic music scores for all singing tasks. *Advances in Neural Information Processing Systems*, 37:1117–1140, 2024.

A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

A.1.1 Greedy Segmentation with Refinement for Stage-2 and -3 training

The greedy algorithm for unsupervised segmentation proposed by Cho et al. (2025) segments frames by grouping adjacent frames with cosine similarity above a threshold ("merge threshold") in a single sweep. However, this requires embeddings with clean boundaries, which are not available in the early stages of training. To address this, Cho et al. (2025) used pre-extracted segments from a clustering-based algorithm for the first stage of training. At the same time, the authors reported that

boundary errors are not critical for syllable learning; rather, the granularity of the initial segments is more important (see Appendix A.2.6 of Cho et al. (2025)). Therefore, we merge segments shorter than 80 ms that have cosine similarity with adjacent segments higher than a "refinement threshold." This preserves syllable-level token frequency while maintaining the linear computational complexity. Figure 3 illustrates the effectiveness of refinement (right and middle plots).

A.1.2 THRESHOLD SETTING

The merge threshold is sampled from [0.5, 0.7] in the first stage and [0.7, 0.9] in the second stage, increasing sensitivity over time. Similarly, the refinement threshold is set to 0.5 for the first stage and 0.7 for the second.

For the peak detection in the boundary detection, we set a minimum peak value of 0.2, filtering boundaries with either prominence > 0.05 or probability > 0.8 (prominence of 0.1 during inference yields minimal difference).

A.1.3 OPTIMIZER CONFIGURATIONS USED IN CONTENT ENCODER

The content encoder training is comprised of four stages. Table 4 denotes the hyperparameters used in the AdamW optimizer for each training stage.

Table 4: Hyperparameters used in each training stage.

Stage	Batch size	Learning rate	Warmup steps	β_1	β_1	Weight decay	Iterations
Stage-1	72	1e-4	2000	0.9	0.999	1e-3	100K
Stage-2	50	1e-4	1000	0.9	0.95	1e-2	100K
Stage-3	50	1e-4	1000	0.9	0.95	1e-2	100K
Stage-4	50	1e-5	1000	0.9	0.95	1e-2	200K

A.1.4 OPTIMIZER CONFIGURATIONS USED IN ACOUSTIC ENCODER AND SYNTHESIS MODEL

The acoustic encoder and synthesis model are trained jointly through multiple cycles of cosine learning rate schedule. All cycles use a batch size of 12 with $\beta_1=0.8$ and $\beta_2=0.9$ with weight decay of 0.01 for the AdamW optimizer. The number of iterations and the training strategies described in §3.4 are differentially applied to each cycle. Table 5 denotes the information.

Table 5: Hyperparameters used in each cycle.

Cycle	learning rate	Iterations	Perceptual Loss	Freeze Content Encoder	Freeze Acoustic Encoder
Cycle-1	5e-5	2000K	no	yes	no
Stage-2	1e-5	2000K	yes	yes	no
Cycle-3	1e-5	100K	yes	yes	no
Cycle-4	1e-5	100K	yes	yes	yes

Cycle	Perturbing Voice Prob.	Perturbing Audio Prob.	Mean-pooling Acoustics Prob.	Shuffling Acoustics Prob.
Cycle-1	0.2	0.2	0.2	0.0
Cycle-2	0.2	0.2	0.1	0.0
Cycle-3	0.2	0.2	0.1	0.5
Cycle-4	0.0	0.0	0.0	0.0

A.1.5 IMPLEMENTATION DETAILS OF TTS (SYLFLOW)

The AR backbone consists of 12 causal Transformer layers with 12 heads and hidden dimension of 512, a relatively small model size. The RF head comprises 6 residual fully connected layers with hidden dimension of 512.

Following recent zero-shot AR TTS approaches, the TTS input consists of Sylber 2.0 tokens for style prompts and phoneme tokens from text, wrapped with special tokens at each end. The model is trained to generate the next Sylber 2.0 tokens. During training, style tokens are randomly selected from other clips of the same speaker, cropped at random with a length ratio in [0.1, 1.0]. We use the noise schedule from (Wu et al., 2025), which samples more time points in the middle. We also adopt the auxiliary velocity direction loss based on cosine distance (Wu et al., 2025). Finally, a separate end predictor is trained as a binary classifier to predict whether a given token is the last in the sequence.

A.1.6 EVALUATION METRICS OF TTS

We measure WER using Faster-Whisper-Large-v3 Radford et al. (2023), speaker similarity (SIM-o) using WavLM-Base-Plus-SV Chen et al. (2022), and UTMOS Saeki et al. (2022).

A.2 RTF COMPUTATION

 In Table 6, we show the Real-Time-Factor of extracting the content embeddings from Sylber 2.0 and compare it to Sylber and SDHubert Cho et al. (2024b). As you can see, Sylber 2.0 performs on-par or better than Sylber in the small and large batch settings.

Table 6: Real-time factor (RTF)

Batch Size	Model	RTF↓
1	SDHuBERT	0.00635
1	Sylber	0.00174
	Sylber 2.0	0.00172
32	SDHuBERT	0.00600
32	Sylber	0.00169
	Sylber 2.0	0.00109

A.3 INDIVIDUAL RESYNTHESIS RESULTS FOR LANGUAGES IN FLEURS-R

The scores for resynthesis are denoted for each language in Table 7 and 8. Also, we denote the token frequency of all 102 languages in Table 9.

Table 7: Resynthesis performance on different languages in FLEURS-R (Part A). \downarrow and \uparrow represent that lower or higher values are better.

nat lower or highe	er value	s are be	etter.							
			ca					cmn	l	
Model	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	5.27	1.00	4.49	3.31	1.00	6.93	1.00	4.53	3.16	1.00
FACodec	5.94	0.96	3.16	3.39	0.98	8.65	0.95	3.02	3.19	0.98
SpeechTokenizer	6.34	0.94	2.69	2.98	0.97	8.48	0.93	2.80	2.91	0.97
WavTokenizer	34.20	0.87	1.72	2.60	0.90	38.97	0.86	1.80	2.70	0.89
Mimi	5.45	0.98	3.70	3.16	0.98	7.39	0.97	3.67	3.00	0.98
Sylber	25.73	0.77	1.15	3.86	0.84	38.10	0.75	1.21	3.62	0.83
Sylber 2.0 (Ours)	6.37	0.93	2.35	2.94	0.97	8.21	0.91	2.29	2.96	0.97
			de					en		
Model	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	4.25	1.00	4.55	3.29	1.00	5.45	1.00	4.54	4.04	1.00
FACodec	5.20	0.95	3.09	3.35	0.98	6.38	0.94	2.90	4.11	0.98
SpeechTokenizer	5.53	0.93	2.88	3.15	0.98	10.13	0.92	2.85	3.89	0.98
WavTokenizer	26.06	0.87	1.88	2.96	0.91	15.47	0.86	1.87	3.75	0.92
Mimi	4.47	0.97	3.76	3.18	0.99	6.14	0.96	3.72	3.95	0.98
Sylber	19.21	0.78	1.21	3.58	0.83	10.84	0.77	1.22	3.91	0.86
Sylber 2.0 (Ours)	5.34	0.92	2.29	3.21	0.98	6.46	0.90	2.20	3.94	0.97
			es					fi		
Model	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	2.91	1.00	4.53	3.29	1.00	9.28	1.00	4.51	3.02	1.00
FACodec	3.21	0.96	3.34	3.32	0.98	11.38	0.95	3.00	3.09	0.98
SpeechTokenizer	3.13	0.94	3.06	2.96	0.97	12.71	0.92	2.66	2.75	0.97
WavTokenizer	14.57	0.87	1.98	2.73	0.92	49.28	0.84	1.75	2.39	0.91
Mimi	2.93	0.98	3.91	3.14	0.98	9.93	0.97	3.57	2.89	0.98
Sylber	10.66	0.77	1.18	3.37	0.84	32.73	0.73	1.18	3.30	0.81
Sylber 2.0 (Ours)	3.18	0.93	2.56	2.91	0.98	11.80	0.91	2.31	2.82	0.98
			fr					id		
Model	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	6.34	1.00	4.52	3.08	1.00	8.32	1.00	4.54	3.01	1.00
FACodec	8.90	0.95	2.90	3.21	0.98	9.90	0.94	2.91	3.08	0.98
SpeechTokenizer	8.71	0.92	2.72	2.91	0.97	10.11	0.93	2.78	2.86	0.98
WavTokenizer	53.89	0.85	1.81	2.89	0.90	32.91	0.85	1.75	2.52	0.90
Mimi	6.66	0.96	3.64	2.98	0.98	8.75	0.97	3.75	2.90	0.99
Sylber	59.03	0.74	1.22	3.61	0.82	33.80	0.74	1.16	3.38	0.82
Sylber 2.0 (Ours)	8.92	0.91	2.28	2.99	0.97	10.77	0.92	2.33	2.88	0.98
			it					ja		
Model	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	2.33	1.00	4.50	3.56	1.00	4.81	1.00	4.54	3.51	1.00
FACodec	2.71	0.96	3.26	3.59	0.99	5.44	0.96	3.25	3.61	0.98
SpeechTokenizer	2.84	0.94	2.90	3.18	0.97	5.70	0.94	3.00	3.32	0.97
WavTokenizer	12.83	0.87	1.99	2.88	0.92	21.73	0.89	1.98	2.97	0.91
Mimi	2.38	0.97	3.78	3.39	0.98	4.97	0.98	3.86	3.42	0.98
Sylber	7.77	0.76	1.17	3.63	0.81	15.54	0.80	1.18	3.45	0.83
Sylber 2.0 (Ours)	2.92	0.92	2.57	3.32	0.98	5.64	0.94	2.61	3.16	0.98
- , ,										

Table 8: Resynthesis performance on different languages in FLEURS-R (Part B). \downarrow and \uparrow represent that lower or higher values are better.

nat lower or highe	er value	s are be	etter.							
			ko					ms		
Model	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	4.30	1.00	4.52	3.51	1.00	9.15	1.00	4.51	2.96	1.00
FACodec	5.36	0.96	3.24	3.63	0.98	11.07	0.95	2.69	3.00	0.98
SpeechTokenizer	4.96	0.94	2.96	3.25	0.97	11.85	0.92	2.50	2.76	0.98
WavTokenizer	24.42	0.88	1.97	2.97	0.90	48.39	0.84	1.54	2.39	0.90
Mimi	4.69	0.98	3.78	3.38	0.98	9.76	0.97	3.50	2.87	0.98
Sylber	17.96	0.80	1.22	3.61	0.82	36.17	0.73	1.13	3.37	0.81
Sylber 2.0 (Ours)	5.05	0.94	2.60	3.30	0.97	11.38	0.91	2.04	2.78	0.98
			nb					nl		
Model	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	9.46	1.00	4.50	3.53	1.00	6.01	1.00	4.54	3.31	1.00
FACodec	10.38	0.96	3.18	3.62	0.98	7.54	0.95	3.03	3.41	0.97
SpeechTokenizer	10.51	0.94	2.81	3.14	0.97	8.28	0.93	2.77	3.15	0.97
WavTokenizer	34.07	0.89	1.92	2.81	0.92	49.84	0.86	1.72	2.95	0.88
Mimi	9.87	0.98	3.69	3.37	0.97	6.31	0.97	3.67	3.22	0.98
Sylber	20.98	0.80	1.23	3.58	0.81	40.40	0.77	1.15	3.70	0.81
Sylber 2.0 (Ours)	10.87	0.94	2.59	3.26	0.98	8.21	0.92	2.19	3.21	0.97
-			pl					pt		
Model	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	5.97	1.00	4.51	3.02	1.00	3.93	1.00	4.53	3.49	1.00
FACodec	7.51	0.95	2.91	3.07	0.98	4.28	0.95	3.08	3.53	0.98
SpeechTokenizer	8.42	0.93	2.61	2.85	0.97	4.43	0.93	2.96	3.32	0.98
WavTokenizer	55.72	0.85	1.66	2.69	0.90	13.32	0.87	1.83	2.95	0.90
Mimi	6.31	0.97	3.60	2.93	0.98	3.97	0.97	3.85	3.37	0.98
Sylber	55.33	0.77	1.15	3.47	0.80	15.23	0.77	1.18	3.67	0.84
Sylber 2.0 (Ours)	8.45	0.91	2.20	3.01	0.97	4.43	0.92	2.32	3.25	0.98
			ru					sv		
Model	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	5.26	1.00	4.51	3.32	1.00	8.56	1.00	4.54	3.49	1.00
FACodec	5.88	0.95	2.86	3.34	0.98	10.44	0.96	3.15	3.55	0.98
SpeechTokenizer	6.02	0.93	2.63	3.04	0.98	10.31	0.94	2.93	3.32	0.97
WavTokenizer	27.58	0.85	1.72	2.73	0.90	44.40	0.87	1.92	3.05	0.90
Mimi	5.45	0.97	3.56	3.15	0.98	9.08	0.97	3.81	3.34	0.98
Sylber	24.13	0.75	1.19	3.56	0.80	29.91	0.78	1.16	3.54	0.83
Sylber 2.0 (Ours)	6.57	0.91	2.23	3.16	0.98	10.90	0.92	2.38	3.31	0.98
			tr					uk		
Model	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑
DAC	6.64	1.00	4.54	3.40	1.00	7.33	1.00	4.54	3.28	1.00
FACodec	8.17	0.95	3.20	3.40	0.98	9.61	0.95	3.00	3.33	0.98
SpeechTokenizer	7.94	0.93	2.99	3.19	0.97	9.72	0.93	2.83	3.13	0.97
WavTokenizer	36.87	0.86	1.90	2.86	0.89	44.76	0.86	1.82	2.97	0.92
Mimi	6.99	0.97	3.87	3.31	0.98	7.80	0.97	3.76	3.16	0.98
Sylber	27.80	0.76	1.20	3.53	0.82	44.59	0.77	1.16	3.59	0.81
Sylber 2.0 (Ours)	8.23	0.92	2.44	3.08	0.98	9.93	0.92	2.29	3.18	0.98

Table 9: Token frequency of individual languages in FLEURS-R (total 102 languages). Other text BPE tokenization from multilingual models are also denoted.

					LOLA	Whisper		Sylber 2.0		MT5	UMT5	LOLA	Whisp
af	4.62	2.83	3.10	2.97	3.15	3.67	am	5.16	3.39	4.88	6.82	17.32	17.51
ar	5.71	3.09	3.93	2.87	3.48	5.49	as	5.07	4.56	5.12	5.61	8.87	20.28
ast	5.69	4.19	4.64	4.20	4.28	4.71	az	4.75	2.76	3.57	3.33	5.31	5.27
be	4.41	2.99	3.57	3.68	5.19	5.27	bg	5.31	3.48	4.24	3.62	4.34	5.76
bn	4.90	3.10	3.89	3.60	7.14	18.67	bs	4.35	2.77	3.61	3.43	4.16	4.39
ca	4.91	3.22	3.82	3.27	3.76	3.76	ceb	3.91	3.05	3.14	3.10	3.44	3.71
ckb	4.79	5.91	4.95	6.65	9.03	10.39	cmn	4.64	2.48	2.58	3.11	2.91	4.40
cs	4.50	2.88	3.47	2.63	4.59	4.71	cy	4.11	2.94	3.83	3.61	4.06	3.99
da	4.62	2.95	3.40	2.88	3.48	4.04	de	4.65	2.75	3.07	2.59	2.67	3.21
el	5.66	4.10	5.11	3.96	5.14	7.70	en	4.43	2.65	2.93	2.56	2.49	2.44
es	5.05	2.93	3.53	2.82	2.93	3.37	et	4.93	2.78	3.06	2.95	3.93	4.22
fa	4.30	2.13	2.88	2.13	2.73	5.13	ff	4.35	3.19	3.19	3.22	3.52	3.61
fi	4.74	2.68	2.99	2.63	3.18	3.95	fil	3.66	2.46	2.77	2.69	2.94	3.26
fr	5.00	3.83	4.54	3.64	3.72	4.29	ga	3.80	3.04	3.74	3.75	4.16	4.27
gl	5.67	3.42	4.42	3.59	3.80	4.27	gu	6.07	4.13	5.51	7.58	31.26	30.5
ha	3.72	2.33	2.51	2.64	2.93	3.04	he	5.35	3.60	4.28	3.72	3.98	6.01
hi	5.38	3.14	4.45	3.57	7.41	11.35	hr	4.94	3.22	4.20	3.98	4.81	5.09
hu	4.99	2.93	3.44	2.82	3.41	4.85	hy	4.77	3.65	4.57	5.41	20.16	14.5
id	5.26	2.27	2.87	2.65	2.74	3.50	ig	3.70	3.99	3.70	3.84	4.07	4.27
is	4.68	2.93	3.45	3.44	4.44	4.67	it	4.24	2.46	3.05	2.35	2.49	3.08
ja	4.84	2.49	2.22	2.45	2.53	3.87	jv	4.91	2.49	2.89	2.96	3.15	3.40
ka	5.55	3.67	4.65	5.47	5.35	31.69	kam	3.74	3.11	3.24	3.23	3.38	3.6
kea	4.04	2.96	3.10	2.95	3.11	3.41	kk	4.16	2.16	2.49	2.54	5.28	5.3
km	4.47	3.15	3.07	6.81	19.85	19.79	kn	5.19	3.01	3.47	5.19	20.51	16.5
ko	4.74	2.67	3.25	3.11	3.17	3.42	ky	5.43	3.07	3.82	4.19	6.41	7.10
lb	5.02	4.47	4.40	4.37	4.51	4.89	lg	3.69	2.77	2.77	2.87	3.06	3.3
ln	3.36	2.24	2.22	2.24	2.40	2.54	lo	5.31	3.47	3.49	9.35	21.15	28.7
lt	4.98	3.26	3.75	3.35	5.10	5.20	luo	4.60	3.27	3.36	3.31	3.49	3.6
lv	4.56	3.06	3.56	3.32	4.92	5.14	mi	3.65	2.81	2.82	2.79	3.03	3.1
mk	4.85	2.94	3.57	3.41	4.50	5.20	ml	4.96	2.88	3.11	4.62	8.15	21.8
mn	5.10	3.37	4.53	4.64	7.67	8.47	mr	5.10	2.76	3.80	3.54	7.41	11.0
ms	5.57	2.58	3.30	3.05	3.13	4.04	mt	4.41	4.51	4.31	4.19	5.01	5.2
my	4.18	3.29	3.29	5.06	7.14	28.51	nb	4.20	2.56	2.95	2.51	3.16	3.5
ne	5.60	2.97	4.25	4.08	8.45	12.31	nl	5.86	3.61	4.09	3.42	3.78	4.6
nso	3.73	2.86	2.83	2.97	3.13	3.24	ny	3.84	2.84	2.66	2.86	3.22	3.50
oc	3.97	2.88	3.15	2.90	3.04	3.18	om	4.53	3.47	3.64	3.61	3.92	4.10
or	5.63	3.70	8.80	11.28	30.09	29.93	pa	5.17	3.82	5.65	7.05	20.58	20.5
pl	5.46	3.63	4.38	3.34	3.96	4.85	ps	5.61	3.37	4.42	4.49	5.84	7.5
pt	4.47	2.68	3.41	2.57	2.78	3.11	ro	5.49	3.64	4.39	3.41	5.27	5.1
ru	4.97	3.03	3.61	2.95	3.23	4.08	sd	5.30	3.24	4.86	4.86	6.06	7.7
sk	4.57	2.97	3.60	2.97	4.74	4.78	sl	5.43	3.46	4.04	3.72	5.05	5.2
sn	3.81	2.91	2.64	2.95	3.24	3.43	so	4.83	3.14	3.68	3.80	4.48	4.5
sr	4.61	3.13	3.82	3.54	5.32	5.81	sv	4.94	2.94	3.38	2.81	3.25	3.7
SW	4.40	2.40	2.85	2.97	3.35	3.71	ta	5.64	3.22	3.32	3.87	9.19	10.3
te	5.73	3.52	4.20	6.08	8.97	21.28	tg	4.42	4.43	3.74	3.90	5.42	5.8
th	5.57	2.76	2.78	3.54	6.03	8.82	tr	4.72	2.45	2.91	2.32	3.17	3.5
uk	5.27	3.40	4.15	3.31	5.77	5.33	umb	3.15	2.10	2.14	2.16	2.30	2.4
ur	6.42	3.88	5.26	4.70	5.30	8.00	uz	5.25	3.40	3.88	4.10	4.80	5.03
vi	4.71	2.84	5.17	2.83	3.03	4.24	wo	3.41	2.56	2.56	2.57	2.75	2.83
xh	4.74	3.43	3.43	3.85	4.16	4.44	yo	3.62	4.14	4.15	4.12	4.31	4.70
yue	5.12	2.46	2.76	3.13	2.75	3.91	zu	4.14	2.92	2.90	3.26	3.59	3.81