

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SYLBER 2.0: A UNIVERSAL SYLLABLE EMBEDDING

Anonymous authors

Paper under double-blind review

ABSTRACT

Scaling spoken language modeling requires speech tokens that are both efficient and universal. Recent work has proposed syllables as promising speech tokens at low temporal resolution, but existing models are constrained to English and fail to capture sufficient acoustic detail. To address this, we present Sylber 2.0, a universal framework for coding speech at the syllable level, enabling efficient temporal compression and high-fidelity reconstruction across multiple languages and expressive styles. Building on the original Sylber, Sylber 2.0 improves both linguistic coverage and reconstruction quality by training on diverse multilingual speech and introducing a syllable-level acoustic encoder and vocoder. Sylber 2.0 achieves a very low token frequency around 5 Hz, while retaining both linguistic and acoustic detail. Experiments show that it performs on par with previous models operating on high-frequency baselines, and it outperforms the original Sylber by a significant margin. **We further demonstrate the efficacy of Sylber 2.0 in downstream tasks, especially in English TTS and low-resource ASR. Sylber 2.0 based TTS model, SylFlow, can generate speech with competitive intelligibility and quality with current SOTA models using only 72M, and be more effective in resource-constrained ASR than previous speech coding frameworks.** In sum, we establish an effective syllable-level abstraction for general spoken language. Samples can be found here: [Demo link](#)

1 INTRODUCTION

Modeling speech effectively requires capturing both its acoustic detail and linguistic content. Various modeling approaches have been proposed to encode such information, from acoustic spectral features to modern speech representational learning methods. Masked prediction-based speech self-supervised learning (SSL) (Hsu et al., 2021; Chen et al., 2022; Mohamed et al., 2022) has been shown to encode rich linguistic content (Pasad et al., 2021; 2023), and thus has been successful in many downstream tasks (Yang et al., 2021). However, the learned embeddings are mostly phonetic (Hsu et al., 2021; Cho et al., 2023; 2024a; Choi et al., 2024). Variational autoencoders (VAEs), with or without vector quantization (VQ), have provided compact representations of speech with audio reconstruction that can be used in generative modeling such as text-to-speech (TTS) (Défossez et al., 2022; Kumar et al., 2023; Ju et al., 2024; Ji et al., 2024; Zhang et al., 2023; Défossez et al., 2024; Guo et al., 2025; Liu et al., 2025; 2024; Wang et al., 2025a; Turetzky et al., 2024; Wu et al., 2025).

However, downstream models using speech tokens suffer from high token frequency. Unlike text, speech audio exists in continuous time without a clear delimiter, which has forced speech tokens to densely encode each frame. Some recent work has mitigated this with a large downsampling window. For example, Mimi (Défossez et al., 2024) codes speech at 12.5 Hz in quantized space. VibeVoice (Peng et al., 2025) and CLEAR (Wu et al., 2025) use VAEs to compress speech down to 7.5 Hz and 7.7 Hz, respectively. Yet, it is unknown whether these tokens, with their high compression rates and fixed windows, can encode linguistic content effectively beyond low-level acoustics, which is crucial in spoken language modeling and many other downstream tasks (Algayres et al., 2023; Cho et al., 2025; Baade et al., 2025; Yang et al., 2021).

Recent studies have proposed leveraging syllables to compress speech to around 5 Hz (Cho et al., 2025; Baade et al., 2025). These approaches are based on findings that syllabic segments naturally emerge in speech SSL without using text (Cho et al., 2024b; Komatsu & Shinozaki, 2024). By tokenizing speech using syllabic segments, (Cho et al., 2025; Baade et al., 2025) demonstrate that syllabic tokens enable more efficient spoken language modeling compared to dense tokens, with

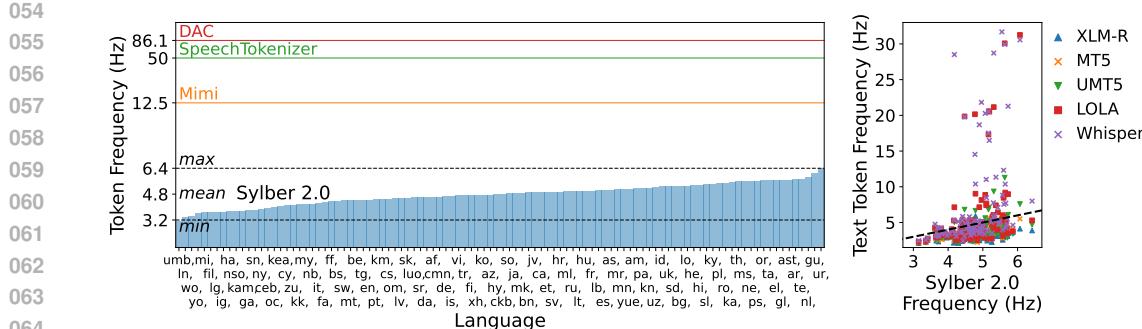


Figure 1: Comparison of token frequency of speech and text tokenization methods. (left) Each bar indicate token frequency of Sylber 2.0 for each language from 102 languages in FLEURS-R. (right) Comparison with text BPE tokens. Each dot denotes each of 102 languages.

significantly reduced token length, and show that intelligible speech can be generated from those tokens. The benefits of using syllables for speech are well supported by linguistic theories and findings in cognitive neuroscience showing that syllables are natural behavioral and cognitive units of speech (Greenberg, 1998; Oganian & Chang, 2019; MacNeilage, 1998; Greenberg, 1998). However, previous syllabic tokens were trained only on English read speech and are not generalizable to different languages and styles, which significantly limits practical utility. Moreover, those tokens severely lack acoustic detail, such that speaker identity is outsourced or completely ignored in the generative process. While the lack of acoustic information may be desirable in higher-order semantic modeling, it is nonetheless crucial for a complete speech token.

To address these issues, we propose Sylber 2.0, a universal syllabic encoding-decoding framework that can compress any arbitrary speech into syllable embeddings with a token frequency of around 5 Hz. We extend the previous SSL framework, Sylber (Cho et al., 2025), to learn syllables from diverse languages and styles. Moreover, we made several architectural changes. We introduce a boundary detector to detect syllable boundaries that arise during training, which enables faster, parallelizable segmentation. We also introduce an auxiliary acoustic encoder that encodes acoustic details of syllabic tokens, which otherwise mostly contain linguistic content. Then, we train a lightweight vocoder (Siuzdak, 2024) to synthesize the original waveform at 24 kHz from the compressed embeddings. Our experiments show that Sylber 2.0 achieves near-perfect reconstruction, closing the gap with high-frequency tokens and surpassing the original Sylber by a wide margin.

While existing speech tokenizers aim to find a minimal set of codes (analogous to “bytes” in text processing), we position Sylber 2.0 similarly to Byte Pair Encoding (BPE) + Embedding dictionary in language models, directly projecting waveforms to embeddings with variable grouping of frames. As shown in Figure 1, Sylber 2.0 achieves the lowest token frequency for speech, ranging from 3.2 Hz to 6.4 Hz across various languages, with an average of 4.8 Hz. Compared with text BPE, Sylber 2.0 shows lower frequency in less common languages (Figure 1, right). We further validate our framework by training a small TTS model which performs on-par or better than previous SOTA TTS models **in terms of intelligibility and quality of generated audio**.

Our contributions are summarized as follows:

- Our speech SSL framework, Sylber 2.0, can learn a universal syllabification of speech and detect syllables in many different languages.
- Sylber 2.0 can compress speech to 4.8 Hz on average across 102 languages, which is the lowest token frequency ever reported for multilingual speech.
- Sylber 2.0 outperforms the original Sylber in reconstruction quality and approximates the performance of previous high-frequency tokens, even in reconstructing expressive singing voice.
- We train a zero-shot multispeaker TTS model using Sylber 2.0 which achieves performance comparable to existing SOTA TTS models while using only 72M parameters.
- Our framework requires relatively minimal resources, fitting entirely on a single 24 GB memory GPU for training.

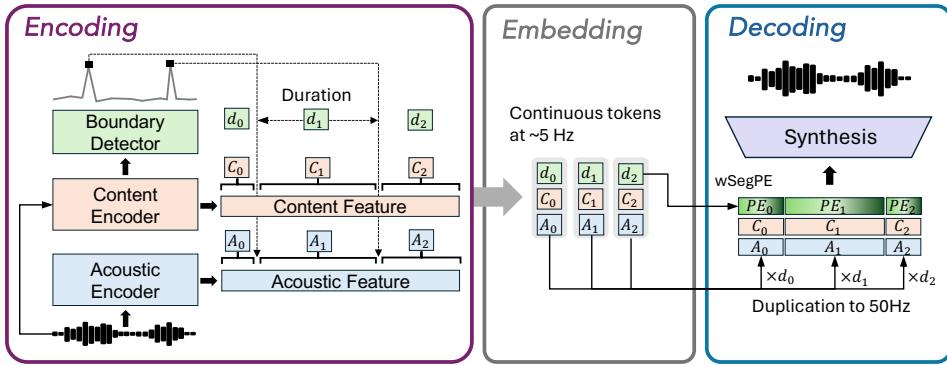


Figure 2: Encoding-decoding framework of Sylber 2.0. The model compresses speech into non-uniform (~ 5 Hz) embeddings with different components.

2 RELATED WORK

Speech Tokenization Various speech tokenization methods have been proposed to represent raw waveforms (Défossez et al., 2022; Kumar et al., 2023; Ju et al., 2024; Ji et al., 2024; Zhang et al., 2023; Défossez et al., 2024; Guo et al., 2025). Earlier works primarily focused on quantizing acoustic details, while more recent approaches incorporate additional structure such as phonetic content or disentangled speaker identity (Ju et al., 2024; Zhang et al., 2023; Défossez et al., 2024), often leveraging pretrained SSL models as guidance (e.g., by distilling SSL features). Although much of this research has concentrated on reducing the coding space, the temporal dimension remains dense. Our model addresses this gap by exploiting the emergent syllabic structure in SSL representations of speech.

Since speech tokenization is mainly used in generative modeling, high-quality decoding is essential. However, discrete approaches often rely on many codebooks, which complicates generation. To avoid this, several recent works use continuous tokens with diffusion or flow matching replacing categorical sampling in the discrete code space (Liu et al., 2025; 2024; Wang et al., 2025a; Turetzky et al., 2024; Wu et al., 2025). This simplifies decoding compared to multi-codebook generation and provides finer control over the sampling process. Because encoding at syllable frequency would otherwise require more codebooks than high-frequency tokens when quantized, we design Sylber 2.0 to operate in a continuous embedding space. This design is particularly effective for multilingual settings, where phonetic boundaries vary substantially across languages.

Emergent Syllabic structure in speech SSL Previous studies have demonstrated that syllables can be learned from audio without text (Cho et al., 2024b; Komatsu & Shinozaki, 2024; Baade et al., 2025; Cho et al., 2025). Cho et al. (2024b); Komatsu & Shinozaki (2024) show that self-distillation can induce syllable segments from pretrained SSL models such as HuBERT. Baade et al. (2025) leverage masked prediction loss in HuBERT to induce syllables. Then, a segmentation algorithm is applied to produce syllabic tokens at 4–5 Hz. In particular, Cho et al. (2025); Baade et al. (2025) train generative models to reconstruct intelligible speech from the syllabic tokens. However, these models lack or ignore acoustic details and are limited to audiobook-style English speech.

3 METHODS

3.1 ENCODING-DECODING FRAMEWORK WITH SYLLABIC EMBEDDINGS

Compared to previous fixed-rate speech coding, Sylber 2.0 is dynamic and flexible in producing tokens at syllabic granularity around 5 Hz. The syllabic tokens are composed of three components: *duration*, *content embedding*, and *acoustic embedding* (d, C, A tokens in Figure 2). The duration indicates the length of each token, which is used to restore the original full frames for reconstruction. The content embedding represents the linguistic abstraction of the syllables that convey the intelligible content of the speech (§3.2). The acoustic embedding provides information on the acoustic details (e.g., voice identity) that are missing in the abstract content feature (§3.3). During decod-

162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215

ing, the tokens are expanded to the original frame rate using the duration information, and then a lightweight vocoder synthesizes the original waveform at a 24 kHz sampling rate. The inference pipeline is depicted in Figure 2. The model is trained with carefully curated stages of different SSL methods to learn embeddings that are linguistically grounded and compressed with extremely short token lengths. The details are explained in the following sections. Note that no text is used in any stage of training.

3.2 LINGUISTIC CONTENT ENCODER TRAINING

3.2.1 FRAME-WISE SELF-DISTILLATION

We utilize teacher–student self-distillation to induce an initial syllabic structure from a pretrained speech SSL model, where the teacher, \mathcal{M}_T , is the exponential moving average (EMA) of the student, \mathcal{M}_S . In a similar vein of vision SSL models (Chen et al., 2020; Caron et al., 2021; Oquab et al., 2023), this learning objective aims to learn invariant linguistic content from different augmented view of the input waveform, $\tau(x)$, where x is waveform and $\tau \sim \mathcal{T}$ is data augmentation. More importantly, self-distillation methods can induce syllabic structure in the embedding space (Cho et al., 2024b; Komatsu & Shinozaki, 2024). In particular, we use frame-wise self-distillation, which minimizes $\text{MSE}(\mathcal{M}_S(\tau(x)), \mathcal{M}_T(\tau'(x)), \tau, \tau' \sim \mathcal{T})$.

We use a set of data augmentation. The speaker identity is perturbed by modifying formant levels, applied with $p = 0.3$ (Qian et al., 2022; Komatsu & Shinozaki, 2024). Environmental noise (Reddy et al., 2021) and other randomly cropped speech clips are added with $p = 0.2$ and $p = 0.05$, respectively (if applied, only one of these is chosen with equal probability). We also randomly apply room impulse responses (RIRs) sampled from the GTU-RIR corpus (Pekmezci, 2025). Lastly, random white noise is added with $p = 0.3$.

The model is initialized with a multilingual SSL model, mHuBERT (Boito et al., 2024), which is trained on 147 languages. The last three layers are randomly reinitialized. The teacher targets are L2-normalized, and student model has an additional fully-connected layer that is not used in the teacher. The EMA decay rate is set to 0.999.

3.2.2 SELF-SEGMENTATION DISTILLATION

The syllabic structure learned from the previous stage is further refined through self-segmentation distillation (Cho et al., 2025), an SSL method proposed in the original Sylber. The model is trained by predicting segment-averaged embeddings from the teacher, where the segments are derived by an unsupervised segmentation algorithm on the teacher’s features. In particular, we minimize the Mean Squared Error between the student’s outputs and the segment-averaged teacher’s outputs, $\text{MSE}(\mathcal{M}_S(\tau(x)), \text{seg}(\mathcal{M}_T(x)), \tau \sim \mathcal{T})$ where seg means the segmentation and average pooling. The teacher is initialized with the student weights and updated through multiple stages. The same data augmentation described in §3.2.1 is applied, but only to the student’s inputs.

Compared to the previous Sylber, we remove the explicit silent masking in the original Sylber to better preserve information. Sylber explicitly removed frames regarded as silent (Figure 3, top panels) by predicting “0s” for those frames. However, as a result, the model often misses syllables with low gain. Therefore, we removed this masking in our framework. Consequently, our model produces more tokens by retaining such segments, but this enables much more accurate reconstruction of the original audio.

Boundary Detection To replace the expensive segmentation algorithm, we introduce a boundary detector. The previous approach compared similarities between adjacent frames, incurring quadratic computational cost. Sylber introduced a greedy algorithm that reduced this to linear order, but it requires clean boundaries and is sensitive to noise as shown in Figure 3, the first and third panel. Moreover, its dynamic nature prevented parallelization in GPU. To solve this, we introduce a boundary detector to predict boundaries drawn by the unsupervised segmentation algorithm. A peak detection algorithm is then applied to the boundary probabilities, which is much faster than similarity-based algorithms. See Appendix B.1 for Real-Time Factor comparison.

Multi-Stage Training The training of the content encoder is divided into four stages. Except the first stage, the teacher model is initialized with the student weights at the beginning and then fixed

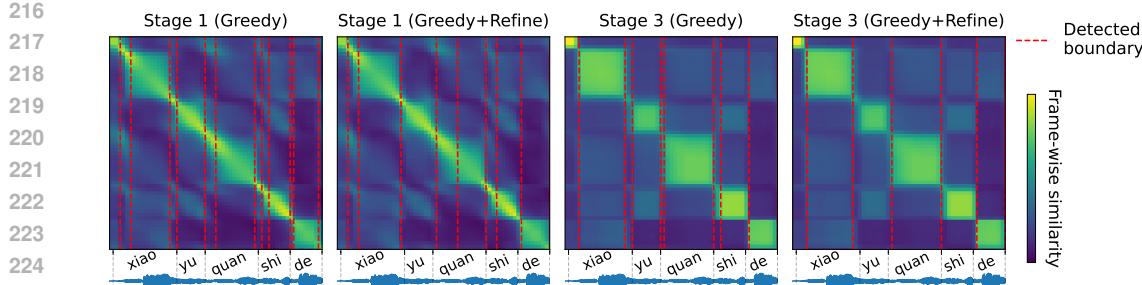


Figure 3: Similarity matrix after stage 1 and 3. The detected boundaries are denoted as red dashed lines. “Greedy+Refine” denotes using additional refinement after greedy segmentation, which can clean noisy boundaries of greedy algorithm. Note that this segmentation is replaced with the boundary detector. See Figure 4 bottom right for the final result.

throughout that stage. The stage 1 is the frame-wise self-distillation described in §3.2.1. The stage 2 and 3 follow the original Sylber, using unsupervised segmentation on the teacher’s outputs to obtain target segments. We used a greedy algorithm suggested by Cho et al. (2025) with additional refinement (See Appendix A.1.1 for details). Figure 3 illustrates how the embedding space is progressively evolve into syllables after the stage 1 and 3, and the effectiveness of the refinement strategy. The last stage is trained with the boundary detector as a drop-in replacement for the segmentation algorithm. The boundary detector is trained in stage 3 and 4, using Binary Cross-Entropy to predict the probability of boundaries obtained from the teacher segments.

The student model consists of 9 Transformer layers, following Sylber. Unlike Sylber, we use the 8th layer of the teacher to extract target features. The boundary detector has 3 Transformer layers with the same architecture as the main model, followed by a fully-connected layer with a binary logit.

The trained model serves as a *content encoder* to extract the linguistic content of speech. Frames are averaged within segments predicted by the boundary detector, producing a compressed content embedding at around 5 Hz. This segment-averaged embedding is further refined with residual fully-connected layers, reducing the dimension to 64 during training of the syllable-to-speech synthesis model (see §3.4). We refer to this 64-dimensional embedding as *content embedding* (C tokens in Figure 2).

3.3 SYLLABLE-GUIDED ACOUSTIC ENCODER

Sylber 2.0 is designed to provide a complete encoding-decoding framework that can compress speech into syllables. The previous works target single speaker generation (Baade et al., 2025) or borrow speaker embeddings from other pretrained models (Cho et al., 2025) since the acoustic information tends to be marginalized out by self-distillation (Cho et al., 2024b; Komatsu & Shinozaki, 2024; Cho et al., 2025).

We train a separate *acoustic encoder* to augment missing acoustic details learned from the self-distillation training. This additional acoustic encoding is also represented at the syllable level, by using the segments inferred by the boundary detector. The acoustic encoder consists of a CNN and 6 transformer layers. The CNN is initialized with that from WavLM-Large (Chen et al., 2022), except the 2nd layer since it has a wider (2→3) stride to increase receptive field from 320 to 480, as we use a 24 kHz input. The output frames are averaged within each segment detected from the boundary detector. Similar to the content encoder, the averaged embeddings are projected using residual fully-connected layers to a lower dimension of 64. This embedding is referred to as *acoustic embedding* of the Sylber 2.0 embedding space (A tokens in Figure 2).

3.4 VOCODER FOR SYLLABLE-TO-SPEECH SYNTHESIS

We train a vocoder to synthesize speech from our syllabic embeddings. The content and acoustic embeddings are duplicated according to the original duration back into 50 Hz frames (Figure 2, right, *Decoding* panel). We introduce within-segment positional encoding (wSegPE), which is concatenated to each frame to indicate its relative position within the segment. The position of frame

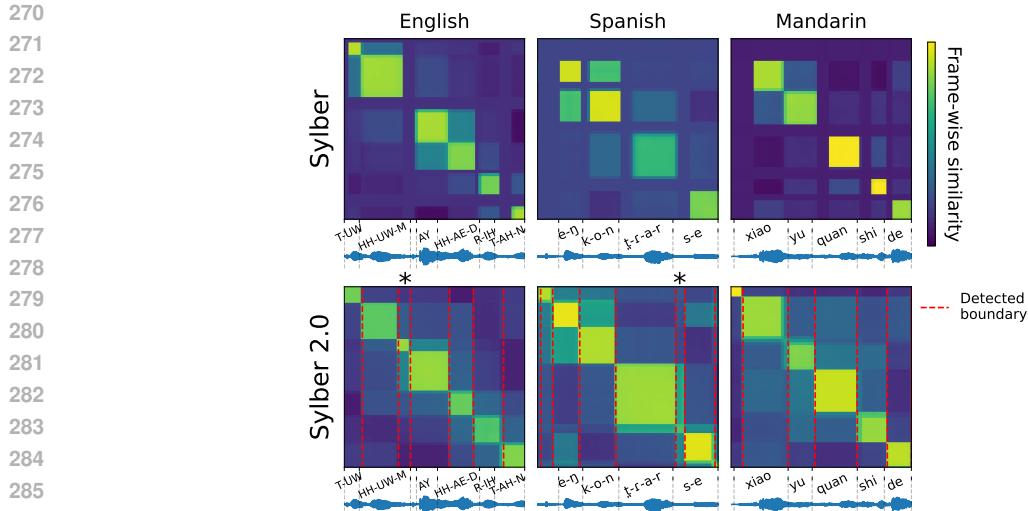


Figure 4: Similarity matrix in three different languages using Sylber (top) and Sylber 2.0 (bottom). The ground truth syllable boundaries are denoted below each plot. The boundaries detected are denoted as red dashed lines. “*” denotes the segments which are masked out in the previous Sylber.

that increases from 0 at the beginning to 1 at the end is used to lookup a learnable embedding template. Since this position is continuous, we interpolate two closest embeddings in the template. The template has 11 embeddings.

We adopt Vocos (Siuzdak, 2024) for fast, lightweight synthesis that can instantly convert syllables into speech waveforms. Our setup uses 12 ConvNext layers (Liu et al., 2022b) to predict phase and magnitude, generating 24 kHz audio through an inverse short-time Fourier transform (iSTFT). The model has only 100M parameters, making it significantly smaller than the Transformer stacks used in previous syllable-to-speech vocoders (Cho et al., 2025; Baade et al., 2025). We use the same losses as Vocos (Siuzdak, 2024), including reconstruction loss, multi-period and multi-scale adversarial losses, and feature-matching loss. In addition, we include the perceptual loss proposed by Parker et al. (2025), computed with WavLM-Large (Chen et al., 2022) using layer 0 (CNN output) and layers 3, 6, 9, and 12. **An ablation experiment in Appendix B.1 well substantiates the individual contribution of the model component to the high-fidelity reconstruction.**

To learn embeddings with the intended decomposition into content and acoustic embeddings, we employ some strategies during training. First, we freeze the upstream model of the content encoder and boundary detector. (The final residual FC layers in content encoder are updated). To encourage acoustic–content disentanglement, we apply random voice perturbations to both the input to the acoustic encoder and the targets, while keeping the content embedding consistent with the original speech. The acoustic embeddings within each clip are randomly averaged or shuffled across time to prevent the model from overly relying on acoustic information to generate audio.

3.5 TRAINING DETAILS

For training the content encoder, we use a collection of multilingual datasets including Emilia (He et al., 2024), MLS (Pratap et al., 2020), and FLEURS (Conneau et al., 2023). We exclude English and French from MLS since they are already extensively covered in Emilia. FLEURS is included to expose the model to a broader range of languages, up to 102 in total. To balance language exposure, each language in Emilia and MLS is evenly sampled during training, while FLEURS is sampled as a whole with twice the sampling probability of an individual language. To fit within a 24 GB GPU, audio is randomly cropped to 5 seconds. See Appendix A.1.3 for the hyperparameters for each training stage.

For training the acoustic encoder and synthesis model, we use a separate set of speech data with clean audio quality. Specifically, we use FLEURS-R (Ma et al., 2024), EXPRESSO (Nguyen et al., 2023), Globe (Wang et al., 2024), and GTsinger (Zhang et al., 2024). This composition covers speech with diverse styles, accents, languages, and even singing voice. During training, samples from FLEURS-R are drawn at $7 \times$ the rate of the other corpora, and a random 3-second window

324
 325 Table 1: Syllable detection performance measured in three languages. For Sylber 2.0, metrics are
 326 also measured with small chunks filtered. The highest scores are emphasized in **bold**.

Model	English				Spanish				Mandarin			
	Pr↑	Re↑	F1↑	R↑	Pr↑	Re↑	F1↑	R↑	Pr↑	Re↑	F1↑	R↑
Sylber	76.6	68.3	72.2	75.9	73.5	69.9	71.7	75.9	74.9	68.0	71.3	75.3
Sylber 2.0	66.2	83.5	73.9	69.5	69.1	80.1	74.2	74.6	54.6	85.6	66.7	45.5
filtered with ≥ 60 ms	69.2	82.8	75.4	73.9	70.5	79.5	74.7	76.1	60.3	84.9	70.5	58.4
≥ 80 ms	71.7	81.7	76.3	77.1	71.7	78.5	74.9	77.3	65.9	83.5	73.7	69.1
≥ 100 ms	74.1	76.3	75.2	78.6	72.3	72.8	72.5	76.5	69.6	81.5	75.1	74.8
≥ 120 ms	74.6	70.5	72.5	76.5	71.7	66.0	68.7	73.3	71.2	79.4	75.1	76.8

335
 336 is cropped. We train the model with multiple cycles of learning rate schedules, where the training
 337 strategies described in §3.4 are differentially applied in each cycle; see Appendix A.1.4 for details.

338 Sylber 2.0 training requires minimal computational resources, as each stage can be run on a single
 339 NVIDIA RTX A5000 GPU with 24 GB of memory. This is a significant advantage compared to
 340 modern large-scale speech model training.

343 4 EMERGENT MULTILINGUAL SYLLABIC STRUCTURE

344
 345 As we can see in Figure 4, Sylber 2.0 successfully learns syllabic structure without any textual
 346 supervision. In the similarity matrices shown in Figure 4, the detected boundaries are well aligned
 347 with syllable boundaries inferred from transcripts. The embeddings within segments are highly
 348 consistent, forming flat “squares” between boundaries. We evaluate syllable detection performance
 349 on three languages: English, Spanish, and Mandarin that were used in (Cho et al., 2025). We
 350 measure precision (Pr), recall (Re), F1 score (F1), and R-value with a 50 ms tolerance from the
 351 text-based syllable boundaries. The test data are taken from LibriSpeech (Panayotov et al., 2015),
 352 MLS (Pratap et al., 2020), and AISHELL-3 (Shi et al., 2021) for each respective language.

353 We compare Sylber 2.0 syllable detection with the original Sylber. Since Sylber 2.0 preserves small
 354 silent tokens, we also report scores after filtering out short segments with thresholds ranging from
 355 60 ms to 120 ms (Table 1). As shown in the table, Sylber 2.0 achieves significantly higher recall and
 356 lower precision across all three languages, resulting in higher F1 scores for English and Spanish.
 357 This suggests that Sylber 2.0 more accurately recovers text-driven syllable boundaries, albeit with
 358 additional short segments (denoted as * in Figure 4). These extra segments can be removed through
 359 threshold-based filtering, boosting R-values beyond those of the original Sylber. Since our goal is
 360 speech coding with minimum loss, we retain all segments without filtering in our framework.

361 362 5 HIGH-FIDELITY, NEAR-LOSSLESS COMPRESSION AT 5 Hz

363
 364 To evaluate the reconstruction performance of Sylber 2.0, we measure both intelligibility and quality
 365 of resynthesized audio. For intelligibility, we use Whisper-Large-v3 (Radford et al., 2023) to
 366 transcribe audio and compute the word error rate (WER), and we also measure short-time objective
 367 intelligibility (STOI) (Taal et al., 2010). For perceptual quality, we use Perceptual Evaluation of
 368 Speech Quality (PESQ) and UTMOS (Saeki et al., 2022).

369
 370 We measure these metrics on the test sets of three corpora: LibriTTS (Zen et al., 2019), FLEURS-R
 371 (Ma et al., 2024), and GTsinger (Zhang et al., 2024). For LibriTTS, we report scores separately for
 372 the clean and other subsets. For FLEURS-R, we target 20 languages with sufficiently low Whisper
 373 transcription error rates,¹ and provide individual scores for representative languages. For GTsinger,
 374 we measure F0 (pitch) reconstruction instead of WER, since pitch is more crucial in singing. We
 375 use CREPE (Kim et al., 2018) to extract F0 and report the Pearson correlation coefficient (F0-PCC)
 376 and coefficient of determination ($F0-R^2$) for voiced frames.

377
 378 ¹Selected languages: ko, ja, es, it, cmm, pt, de, ca, en, fr, pl, nl, ru, tr, uk, id, nb, sv, fi, ms.

378 Table 2: Resynthesis performance on different datasets. The highest scores are emphasized in **bold**,
 379 separately for low-frequency regime (Sylber and Sylber 2.0) and high-frequency regime (others).
 380 See Appendix 9 for full FLEURS-R scores.

English (LibriTTS)																	
Model	Hz	test-clean						test-other									
		WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑						
DAC	86.1	3.32	0.99	4.46	3.92	1.00	5.99	0.99	4.43	3.40	1.00						
FACodec	80	3.49	0.95	2.91	4.04	0.97	7.14	0.93	2.61	3.48	0.96						
SpeechTokenizer	50	3.53	0.93	2.61	3.80	0.96	7.81	0.90	2.41	3.28	0.95						
WavTokenizer	40	16.78	0.87	1.79	3.51	0.88	31.04	0.84	1.69	3.08	0.87						
Mimi	12.5	3.59	0.97	3.47	3.85	0.97	7.06	0.95	3.25	3.33	0.97						
Sylber		4.22	5.44	0.75	1.13	4.09	0.76	13.29	0.72	1.13	3.91	0.71					
Sylber 2.0 (Ours)		5.81	3.86	0.89	1.99	3.80	0.92	8.58	0.87	1.89	3.54	0.91					
Multilingual Speech (FLEURS-R)																	
Model	Hz	Spanish				French				Russian							
		WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑	
DAC	86.1	2.91	1.00	4.53	3.29	1.00	6.34	1.00	4.52	3.08	1.00	5.26	1.00	4.51	3.32	1.00	
FACodec	80	3.21	0.96	3.34	3.32	0.98	8.90	0.95	2.90	3.21	0.98	5.88	0.95	2.86	3.34	0.98	
SpeechTokenizer	50	3.13	0.94	3.06	2.96	0.97	8.71	0.92	2.72	2.91	0.97	6.02	0.93	2.63	3.04	0.98	
WavTokenizer	40	14.57	0.87	1.98	2.73	0.92	53.89	0.85	1.81	2.89	0.90	27.58	0.85	1.72	2.73	0.90	
Mimi	12.5	2.93	0.98	3.91	3.14	0.98	6.66	0.96	3.64	2.98	0.98	5.45	0.97	3.56	3.15	0.98	
Sylber		3.71	10.66	0.77	1.18	3.37	0.84	59.03	0.74	1.22	3.61	0.82	24.13	0.75	1.19	3.56	0.80
Sylber 2.0 (Ours)		4.86	3.18	0.93	2.56	2.91	0.98	8.92	0.91	2.28	2.99	0.97	6.57	0.91	2.23	3.16	0.98
Model	Hz	Mandarin				Korean				20 Languages							
		WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑	
DAC	86.1	6.93	1.00	4.53	3.16	1.00	4.30	1.00	4.52	3.51	1.00	6.03	1.00	4.52	3.29	1.00	
FACodec	80	8.65	0.95	3.02	3.19	0.98	5.36	0.96	3.24	3.63	0.98	7.29	0.95	3.06	3.35	0.98	
SpeechTokenizer	50	8.48	0.93	2.80	2.91	0.97	4.96	0.94	2.96	3.25	0.97	7.59	0.93	2.81	3.06	0.97	
WavTokenizer	40	38.97	0.86	1.80	2.70	0.89	24.42	0.88	1.97	2.97	0.90	33.94	0.86	1.82	2.79	0.90	
Mimi	12.5	7.39	0.97	3.67	3.00	0.98	4.69	0.98	3.78	3.38	0.98	6.35	0.97	3.72	3.17	0.98	
Sylber		3.71	38.10	0.75	1.21	3.62	0.83	17.96	0.80	1.22	3.61	0.82	28.42	0.76	1.18	3.55	0.82
Sylber 2.0 (Ours)		4.86	8.21	0.91	2.29	2.96	0.97	5.05	0.94	2.60	3.30	0.97	7.57	0.92	2.35	3.09	0.98
Singing Voice (GTsinger)																	
Model	Hz	F0-PCC(r)↑						F0-R ² ↑									
		WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑	WER↓	PESQ↑	STOI↑	UTMOS↑	SSIM↑	
DAC		86.1	0.99	0.99	0.96	4.37											
FACodec		80	0.97		0.85	0.84		2.85		2.46							
SpeechTokenizer		50	0.97		0.84	0.77		2.35		2.15							
WavTokenizer		40	0.94		0.76	0.70		1.81		2.07							
Mimi		12.5	0.98		0.95	0.86		3.26		2.29							
Sylber		1.87	0.78		-2.41	0.47		1.11		2.23							
Sylber 2.0 (Ours)		3.37	0.96	0.88	0.73	2.14				2.33	0.95						

417 Additionally, we evaluate speaker similarity (SSIM) through cosine similarity using Resemblyzer
 418 speaker embeddings.² We compare Sylber 2.0 against several representative open-sourced speech
 419 tokenizers operating at different token frequencies (12.5–86.1 Hz): DAC(Kumar et al., 2023), FA-
 420 Codec (Ju et al., 2024), SpeechTokenizer (Zhang et al., 2023), WavTokenizer (Ji et al., 2024), and
 421 Mimi (Défossez et al., 2024), along with the original Sylber.

422 As shown in Table 9, Sylber 2.0 reconstructs high-quality audio that preserves intelligible content.
 423 Sylber 2.0 outperforms Sylber by a wide margin in every aspect except UTMOS. In fact, some
 424 UTMOS scores of Sylber are even higher than those of high-frequency tokens, because Sylber’s
 425 resynthesis relies on an external vocoder with a quality-enhancement capacity (Cho et al., 2024c).

426 Several Sylber 2.0 scores approach those of high-frequency tokens. Specifically, WER scores show
 427 only minimal gaps: Sylber 2.0 achieves 7.57% WER across 20 languages in FLEURS-R, while
 428 the best high-frequency token, DAC, achieves 6%, a trend also reflected in individual languages
 429 and corpora. PESQ scores are reasonably high, but below those of high-frequency tokens. This is
 430 because that PESQ is sensitive to frame-level acoustic details that may be lost when averaging within

431 ²<https://github.com/resemble-ai/Resemblyzer>

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

Table 3: TTS performance on LibriSpeech (PC) test-clean and SeedTTS English test set.

Model	#Params	Training Data	LibriSpeech-PC			SeedTTS English		
			WER(%)↓	SIM-o↑	UTMOS↑	WER(%)↓	SIM-o↑	UTMOS↑
Ground Truth	-	-	2.47	0.69	4.09	2.14	0.73	-
CosyVoice (Du et al., 2024a)	300M	Multi-170k	3.59	0.66	-	4.08	0.64	-
CosyVoice 2 (Du et al., 2024b)	500M	Multi-170k	2.47	0.65	4.35	2.57	0.65	-
FireRedTTS (Guo et al., 2024)	580M	Multi-248k	2.69	0.47	-	3.82	0.46	-
MaskGCT (Wang et al., 2025c)	1048M	Emilia-100k	2.72	0.69	3.90	2.62	0.71	-
F5-TTS (Chen et al., 2024)	300M	Emilia-100k	2.42	0.66	3.88	1.83	0.65	-
DiTAR (Jia et al., 2025)	600M	Emilia-100k	2.39	0.67	4.22	1.69	0.74	-
SparkTTS (Wang et al., 2025b)	500M	Multi-100k	-	-	4.35	1.98	0.58	-
CLEAR-Base (Wu et al., 2025)	439M	Libri-50k	2.21	0.59	4.22	-	-	-
CLEAR-Large (Wu et al., 2025)	686M	Libri-50k	1.88	0.59	4.22	-	-	-
SylFlow (Ours)	72M +Emilia-47k	LibriTTS-0.6k	3.10 2.35	0.31 0.36	4.27 4.33	2.62 1.92	0.31 0.35	4.19 4.31
<i>Ablation</i> —Replacing Sylber 2.0								
with Mel	109M	LibriTTS-0.6k	5.73	0.18	3.28	4.48	0.18	3.38
with Mimi	74M	LibriTTS-0.6k	10.36	0.30	2.38	8.21	0.31	2.49

segments. For singing voice reconstruction, Sylber 2.0 shows F0 correlations comparable to high-frequency tokens, with R^2 values even surpassing some of them. This high level of reconstruction quality is achieved with a very low token frequency. While it can vary across languages and styles, Sylber 2.0 averages around 5 Hz: 4.8 Hz across 102 languages in FLEURS-R (Figure 1, left; a full report is in Table 12). Interestingly, Sylber 2.0 can be even more efficient in low-resource languages, where text BPE token frequencies (Conneau et al., 2020; Xue et al., 2021; Chung et al., 2023; Srivastava et al., 2025; Radford et al., 2023) are significantly higher (Figure 1, right).

Sylber 2.0 may adopt a universal rule applicable to many languages, even if it does not align precisely with language-specific syllabification rules defined by linguists. Given the lack of consensus on syllabification rules in linguistics (Anderson, 1985; Goldsmith et al., 2011; Treiman & Danis, 1988), our method provides *a universal syllabification that is consistent across languages* that is naturally emerging from machine speech perception. The extensive analysis on multiple languages and styles supports this idea.

6 DOWNSTREAM APPLICATIONS

6.1 TEXT-TO-SPEECH THROUGH SYLLABLE EMBEDDING

To further demonstrate downstream utility, we train a small text-to-speech (TTS) model using Sylber 2.0 embeddings. Since the embedding conveys full speech information, our goal is to generate these embeddings directly from text. As Sylber 2.0 tokenizes speech in a continuous space, we adopt a continuous-value autoregressive (AR) model (Liu et al., 2025; 2024; Wang et al., 2025a; Turetzky et al., 2024; Wu et al., 2025). Inspired by Wu et al. (2025), we use rectified flow (RF) (Liu et al., 2022a) with AR backbone, which we call *SylFlow*. We conduct a controlled experiments using relatively small amount of data (LibriTTS; 560 hours). We train small models with 72-109M parameters for prompting and generating Sylber 2.0, and Mel spectrogram (Mel) and Mimi for the baselines. We specifically choose these two baselines as Mimi has the shortest token length (12.5 Hz) among the baseline tokens, and Mel spectrogram can set a reference performance without any learned linguistic feature. Additionally, we train the same model with additional 47k hours of training data from Emilia (He et al., 2024). We evaluate on the LibriSpeech (PC) test-clean subset (Chen et al., 2024) and SeedTTS English test set (Anastassiou et al., 2024), where we measured WER, speaker similarity (Sim-o) and UTMOS. See Appendix A.2 for details.

As shown in Table 3, Sylber 2.0 outperforms the baseline speech representations, Mel and Mimi, in all metrics and test sets. This indicates that Sylber 2.0 may encode information in a better abstract format than dense tokens or raw acoustics, especially for generative modeling. This is well-aligned with the Sylber 2.0’s correspondence to the syllables which are by definition the units of speech production. Therefore, Sylber 2.0 can serve as a more natural medium for generative speech modeling. Moreover, by scaling the amount of training data, our model can close the performance gap from

the SOTA TTS model especially on the WER (1.92-2.35 %) and UTMOS (4.31-4.33) scores, while being $5\text{-}10 \times$ smaller in size. This suggests that Sylber 2.0 provides a more efficient and effective alternative to previous speech tokens. However, the gap in speaker similarity still remains large, which could potentially be resolved by scaling model size. As our main focus is more on syllable embeddings, we leave this as a future direction.

6.2 LOW-RESOURCE ASR

To further assess Sylber 2.0 embeddings, we train shallow ASR models for four different languages—English, Korean, Bemba, and Quecha—in a low-resource setting. The former two are chosen as representative languages as English is a dominant proportion in the training set, and Korean is highly syllabic, thus it would be interesting to see the link to the syllabic speech embedding. We use the 100 hour subset of LibriSpeech for training and test-clean for evaluation. For Korean we use Zeroth corpus (Jo & Lee, 2018) that contains 51.6 hours for training and 1.2 hours for testing. Bemba and Quecha are the actual low-resource languages, which are spoken only by 10 and 8 million people, respectively. These two languages are not involved in any training stage, including mHuBERT pretraining. For Bemba, we use 20 hours and 2 hours of train and test data released by (Sikasote & Anastasopoulos, 2022). For Quecha, we use the data by Sicherman & Adi (2023), where we use 48 hours for training and 1 hour for testing. For the ASR architecture, we adopt RNN-T (Graves, 2012b) as it offers more flexibility in input token length.³ See Appendix A.3 for details.

Table 4: Performance on low-resource ASR.

Model	en		ko		bem		que	
	CER↓	WER↓	CER↓	WER↓	CER↓	WER↓	CER↓	WER↓
Mel	8.7	20.6	10.6	16.0	19.4	61.3	31.4	66.8
DAC	36.2	59.3	100.3	125.3	30.4	79.5	51.1	87.3
Mimi	17.1	32.8	20.9	31.6	29.6	80.1	39.9	76.8
Sylber	7.8	16.2	22.0	28.5	23.6	67.4	44.2	83.6
Sylber 2.0	11.7	24.2	7.2	9.4	12.1	47.4	30.1	66.4
Sylber 2.0-Content only	12.1	24.7	7.3	9.6	12.7	48.5	32.1	69.8
Sylber 2.0-Acoustic only	31.5	52.9	22.3	32.4	39.5	86.6	48.8	86.1

As shown in Table 4, Sylber 2.0 enables more accurate recognition in Korean, Bemba, and Quecha. For English, the previous Sylber demonstrates lower error rates, which could be natural as it is only trained on LibriSpeech, thus potentially more fine-tuned to the domain. In fact, the performance leaps are significant in other three languages. In particular, Korean shows the lowest error rates, which may be benefitted by the the syllabic nature of the language. Sylber 2.0 shows better performance than previous tokens, DAC and Mimi, in all languages which indicates Sylber 2.0 embeddings are closer to text than dense tokens. We also train models using the content feature or acoustic feature only to show the source of information in our decomposed embeddings. The models show minimal degradation in performance when using content feature, while using acoustic feature induces severe increases in errors, suggesting that the content feature is major information source. In fact, the content feature is phonetically organized in the embedding space (Appendix Figure 5). See Appendix B.1 for additional downstream evaluation on SUPERB benchmark.

7 CONCLUSION

We propose a novel speech embedding model, Sylber 2.0, that learns a universal syllabification of raw speech audio. Sylber 2.0 can compress speech from any language, style, or even singing into a linguistically grounded token sequence at around 5 Hz. Its decoder can reconstruct the original audio nearly perfectly from this short sequence, surpassing the original Sylber. Sylber 2.0 offers strong potential for transparent and efficient speech tokenization, as well as for scalable and effective spoken language modeling.

³The common practice of using CTC (Graves, 2012a) is not applicable as Sylber 2.0 often produces shorter tokens than the target character length.

540 ETHICS STATEMENT
541542 We view our model as a significant advancement in speech modeling and spoken language under-
543 standing. Our approach provides efficient and effective speech tokenization, though it also carries
544 the potential for misuse. Therefore, it is essential that users, researchers, and developers apply this
545 model and framework with ethical care and responsibility.
546547 REPRODUCIBILITY STATEMENT
548549 In keeping with the principles of open research, we will make all code related publicly available.
550 This includes both the pretrained model weights and the resources needed to retrain the model.
551552 USE OF LLM TECHNOLOGY
553554 In this research project, standard LLMs were used for general assistance such as for formatting and
555 styling tables or with basic tab-completion for coding.
556557 REFERENCES
558559 Robin Algayres, Yossi Adi, Tu Anh Nguyen, Jade Copet, Gabriel Synnaeve, Benoit Sagot, and
560 Emmanuel Dupoux. Generative spoken language model based on continuous word-sized audio
561 tokens. *arXiv preprint arXiv:2310.05224*, 2023.562 Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong,
563 Lelai Deng, Chuang Ding, Lu Gao, et al. Seed-tts: A family of high-quality versatile speech
564 generation models. *arXiv preprint arXiv:2406.02430*, 2024.565 Stephen R Anderson. *Phonology in the twentieth century: Theories of rules and theories of repre-
566 sentations*. University of Chicago Press, 1985.567 Alan Baade, Puyuan Peng, and David Harwath. SyllableLM: Learning coarse semantic units for
568 speech language models. In *The Thirteenth International Conference on Learning Representa-
569 tions*, 2025. URL <https://openreview.net/forum?id=dGSO7sdWg>.570 Marceley Zanon Boito, Vivek Iyer, Nikolaos Lagos, Laurent Besacier, and Ioan Calapodescu.
571 mhubert-147: A compact multilingual hubert model. *arXiv preprint arXiv:2406.06371*, 2024.572 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
573 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of
574 the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.575 Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
576 Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-training for
577 full stack speech processing. *IEEE Journal of Selected Topics in Signal Processing*, 16(6):1505–
578 1518, 2022.579 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
580 contrastive learning of visual representations. In *International conference on machine learning*,
581 pp. 1597–1607. PMLR, 2020.582 Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, and Xie
583 Chen. F5-tts: A fairytaler that fakes fluent and faithful speech with flow matching. *arXiv preprint
584 arXiv:2410.06885*, 2024.585 Cheol Jun Cho, Peter Wu, Abdelrahman Mohamed, and Gopala K Anumanchipalli. Evidence of
586 vocal tract articulation in self-supervised learning of speech. In *ICASSP 2023-2023 IEEE In-
587 ternational Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE,
588 2023.

- 594 Cheol Jun Cho, Abdelrahman Mohamed, Alan W Black, and Gopala K Anumanchipalli. Self-
 595 supervised models of speech infer universal articulatory kinematics. In *ICASSP 2024-2024 IEEE*
 596 *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 12061–
 597 12065. IEEE, 2024a.
- 598 Cheol Jun Cho, Abdelrahman Mohamed, Shang-Wen Li, Alan W Black, and Gopala K Anu-
 599 manchipalli. Sd-hubert: Sentence-level self-distillation induces syllabic organization in hubert. In
 600 *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing*
 601 (*ICASSP*), pp. 12076–12080. IEEE, 2024b.
- 602 Cheol Jun Cho, Peter Wu, Tejas S. Prabhune, Dhruv Agarwal, and Gopala K. Anumanchipalli. Cod-
 603 ing speech through vocal tract kinematics. *IEEE Journal of Selected Topics in Signal Processing*,
 604 18(8):1427–1440, 2024c. doi: 10.1109/JSTSP.2024.3497655.
- 605 Cheol Jun Cho, Nicholas Lee, Akshat Gupta, Dhruv Agarwal, Ethan Chen, Alan Black, and
 606 Gopala Anumanchipalli. Sylber: Syllabic embedding representation of speech from raw au-
 607 dio. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 608 <https://openreview.net/forum?id=FyMjfDQ9RO>.
- 609 Kwanghee Choi, Ankita Pasad, Tomohiko Nakamura, Satoru Fukayama, Karen Livescu, and Shinji
 610 Watanabe. Self-supervised speech representations are more phonetic than semantic. *arXiv*
 611 preprint *arXiv:2406.08619*, 2024.
- 612 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, and Noah
 613 Constant. Unimax: Fairer and more effective language sampling for large-scale multilingual
 614 pretraining. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 615 <https://openreview.net/forum?id=kXwdL1cWOAi>.
- 616 Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
 617 Francisco Guzmán, Édouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsuper-
 618 vised cross-lingual representation learning at scale. In *Proceedings of the 58th Annual Meeting*
 619 of the Association for Computational Linguistics
- 620 , pp. 8440–8451, 2020.
- 621 Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason
 622 Riesa, Clara Rivera, and Ankur Bapna. Fleurs: Few-shot learning evaluation of universal repre-
 623 sentations of speech. In *2022 IEEE Spoken Language Technology Workshop (SLT)*, pp. 798–805.
 624 IEEE, 2023.
- 625 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
 626 compression. *arXiv preprint arXiv:2210.13438*, 2022.
- 627 Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
 628 Édouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dia-
 629 logue. Technical report, Kyutai, September 2024. URL <http://kyutai.org/Moshi.pdf>.
- 630 Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue
 631 Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer
 632 based on supervised semantic tokens. *arXiv preprint arXiv:2407.05407*, 2024a.
- 633 Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang,
 634 Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with large
 635 language models. *arXiv preprint arXiv:2412.10117*, 2024b.
- 636 Zhiflu Gao, Zerui Li, Jiaming Wang, Haoneng Luo, Xian Shi, Mengzhe Chen, Yabin Li, Lingyun
 637 Zuo, Zhihao Du, Zhangyu Xiao, et al. Funasr: A fundamental end-to-end speech recognition
 638 toolkit. *arXiv preprint arXiv:2305.11013*, 2023.
- 639 John A Goldsmith, Jason Riggle, and CL Alan. *The handbook of phonological theory*. John Wiley
 640 & Sons, 2011.
- 641 Alex Graves. Connectionist temporal classification. In *Supervised sequence labelling with recurrent*
 642 *neural networks*, pp. 61–93. Springer, 2012a.

- 648 Alex Graves. Sequence transduction with recurrent neural networks. *arXiv preprint*
 649 *arXiv:1211.3711*, 2012b.
- 650
- 651 Steven Greenberg. A syllable-centric framework for the evolution of spoken language. *Behavioral*
 652 *and brain sciences*, 21(4):518–518, 1998.
- 653
- 654 Hao-Han Guo, Yao Hu, Kun Liu, Fei-Yu Shen, Xu Tang, Yi-Chen Wu, Feng-Long Xie, Kun Xie,
 655 and Kai-Tuo Xu. Fireredtts: A foundation text-to-speech framework for industry-level generative
 656 speech applications. *arXiv preprint arXiv:2409.03283*, 2024.
- 657
- 658 Yiwei Guo, Zhihan Li, Hankun Wang, Bohan Li, Chongtian Shao, Hanglei Zhang, Chenpeng Du,
 659 Xie Chen, Shujie Liu, and Kai Yu. Recent advances in discrete speech tokens: A review. *arXiv*
 660 *preprint arXiv:2502.06490*, 2025.
- 661
- 662 Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen
 663 Yang, Jiaqi Li, Peiyang Shi, et al. Emilia: An extensive, multilingual, and diverse speech dataset
 664 for large-scale speech generation. In *2024 IEEE Spoken Language Technology Workshop (SLT)*,
 pp. 885–890. IEEE, 2024.
- 665
- 666 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
 667 and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
 668 prediction of hidden units. *IEEE/ACM transactions on audio, speech, and language processing*,
 29:3451–3460, 2021.
- 669
- 670 Shengpeng Ji, Ziyue Jiang, Wen Wang, Yifu Chen, Minghui Fang, Jialong Zuo, Qian Yang, Xize
 671 Cheng, Zehan Wang, Ruiqi Li, et al. Wavtokenizer: an efficient acoustic discrete codec tokenizer
 672 for audio language modeling. *arXiv preprint arXiv:2408.16532*, 2024.
- 673
- 674 Dongya Jia, Zhuo Chen, Jiawei Chen, Chenpeng Du, Jian Wu, Jian Cong, Xiaobin Zhuang, Chumin
 675 Li, Zhen Wei, Yuping Wang, and Yuxuan Wang. DiTAR: Diffusion transformer autoregressive
 676 modeling for speech generation. In *Forty-second International Conference on Machine Learning*,
 2025. URL <https://openreview.net/forum?id=8tRtweTTwv>.
- 677
- 678 Lucas Jo and Wonkyum Lee. Zeroth-korean: Korean open-source speech corpus. <https://openslr.org/40/>, 2018. License: CC BY 4.0; 51.6h train, 1.2h test; 105 speakers in train,
 679 10 in test.
- 680
- 681 Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Yanqing Liu, Yichong
 682 Leng, Kaitao Song, Siliang Tang, et al. Naturalspeech 3: Zero-shot speech synthesis with factor-
 683 ized codec and diffusion models. *arXiv preprint arXiv:2403.03100*, 2024.
- 684
- 685 Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. Crepe: A convolutional repre-
 686 sentation for pitch estimation. In *2018 IEEE international conference on acoustics, speech and*
 687 *signal processing (ICASSP)*, pp. 161–165. IEEE, 2018.
- 688
- 689 Ryota Komatsu and Takahiro Shinozaki. Self-supervised syllable discovery based on speaker-
 690 disentangled hubert. pp. 1131–1136, 2024. doi: 10.1109/SLT61566.2024.10832325.
- 691
- 692 Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-
 693 fidelity audio compression with improved rvqgan. *Advances in Neural Information Processing*
 694 *Systems*, 36:27980–27993, 2023.
- 695
- 696 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 697 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022a.
- 698
- 699 Yanqing Liu, Ruiqing Xue, Chong Zhang, Yufei Liu, Gang Wang, Bohan Li, Yao Qian, Lei He,
 700 Shujie Liu, and Sheng Zhao. Next tokens denoising for speech synthesis. *arXiv preprint*
 701 *arXiv:2507.22746*, 2025.
- 702
- 703 Zhijun Liu, Shuai Wang, Sho Inoue, Qibing Bai, and Haizhou Li. Autoregressive diffusion trans-
 704 former for text-to-speech synthesis. *arXiv preprint arXiv:2406.05551*, 2024.

- 702 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 703 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and*
 704 *pattern recognition*, pp. 11976–11986, 2022b.
- 705
- 706 Min Ma, Yuma Koizumi, Shigeki Karita, Heiga Zen, Jason Riesa, Haruko Ishikawa, and Michiel
 707 Bacchiani. Fleurs-r: A restored multilingual speech corpus for generation tasks. In *Proc. Inter-*
 708 *speech 2024*, pp. 1835–1839, 2024.
- 709 Peter F MacNeilage. The frame/content theory of evolution of speech production. *Behavioral and*
 710 *brain sciences*, 21(4):499–511, 1998.
- 711
- 712 Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt, Jakob D Havtorn, Joakim Edin, Christian
 713 Igel, Katrin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars Maaløe, et al. Self-supervised speech
 714 representation learning: A review. *IEEE Journal of Selected Topics in Signal Processing*, 16(6):
 715 1179–1210, 2022.
- 716 Tu Anh Nguyen, Wei-Ning Hsu, Antony d’Avirro, Bowen Shi, Itai Gat, Maryam Fazel-Zarani,
 717 Tal Remez, Jade Copet, Gabriel Synnaeve, Michael Hassid, et al. Expresso: A benchmark and
 718 analysis of discrete expressive speech resynthesis. *arXiv preprint arXiv:2308.05725*, 2023.
- 719
- 720 Yulia Oganian and Edward F Chang. A speech envelope landmark for syllable encoding in human
 721 superior temporal gyrus. *Science advances*, 5(11):eaay6279, 2019.
- 722
- 723 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 724 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 725 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
- 726
- 727 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
 728 based on public domain audio books. In *2015 IEEE international conference on acoustics, speech*
 729 *and signal processing (ICASSP)*, pp. 5206–5210. IEEE, 2015.
- 730
- 731 Julian D Parker, Anton Smirnov, Jordi Pons, CJ Carr, Zack Zukowski, Zach Evans, and Xubo Liu.
 732 Scaling transformers for low-bitrate high-quality speech coding. In *The Thirteenth International*
 733 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=4YpMrGf1dX>.
- 734
- 735 Ankita Pasad, Ju-Chieh Chou, and Karen Livescu. Layer-wise analysis of a self-supervised speech
 736 representation model. In *2021 IEEE Automatic Speech Recognition and Understanding Workshop*
 737 (*ASRU*), pp. 914–921. IEEE, 2021.
- 738
- 739 Ankita Pasad, Bowen Shi, and Karen Livescu. Comparative layer-wise analysis of self-supervised
 740 speech models. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and*
 741 *Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.
- 742
- 743 Mehmet Pekmezci. GTU-RIR: Room Impulse Response (RIR) Data Collection and Generation
 744 Project. <https://github.com/mehmetpekmezci/gtu-rir>, 2025.
- 745
- 746 Zhiliang Peng, Jianwei Yu, Wenhui Wang, Yaoyao Chang, Yutao Sun, Li Dong, Yi Zhu, Wei-
 747 jiang Xu, Hangbo Bao, Zehua Wang, et al. Vibevoice technical report. *arXiv preprint*
 748 *arXiv:2508.19205*, 2025.
- 749
- 750 Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert. Mls: A
 751 large-scale multilingual dataset for speech research. *Interspeech*, 2020.
- 752
- 753 Kaizhi Qian, Yang Zhang, Heting Gao, Junrui Ni, Cheng-I Lai, David Cox, Mark Hasegawa-
 754 Johnson, and Shiyu Chang. Contentvec: An improved self-supervised speech representation
 755 by disentangling speakers. In *International conference on machine learning*, pp. 18003–18017.
 PMLR, 2022.
- Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 Robust speech recognition via large-scale weak supervision. In *International conference on ma-*
chine learning, pp. 28492–28518. PMLR, 2023.

- 756 Chandan KA Reddy, Harishchandra Dubey, Vishak Gopal, Ross Cutler, Sebastian Braun, Hannes
 757 Gamper, Robert Aichner, and Sriram Srinivasan. Icassp 2021 deep noise suppression challenge. In
 758 *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing*
 759 (*ICASSP*), pp. 6623–6627. IEEE, 2021.
- 760 Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and Hi-
 761 roshi Saruwatari. Utmos: Utokyo-sarulab system for voicemos challenge 2022. *arXiv preprint*
 762 *arXiv:2204.02152*, 2022.
- 763 Yao Shi, Hui Bu, Xin Xu, Shaoji Zhang, and Ming Li. Aishell-3: A multi-speaker mandarin tts
 764 corpus and the baselines. *Interspeech*, 2021.
- 765 Amitay Sicherman and Yossi Adi. Analysing discrete self supervised speech representation for
 766 spoken language modeling. In *ICASSP 2023-2023 IEEE International Conference on Acoustics,*
 767 *Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.
- 768 Clayton Sikasote and Antonios Anastasopoulos. Bembaspeech: A speech recognition corpus for
 769 the bemba language. In *Proceedings of the Language Resources and Evaluation Conference*,
 770 pp. 7277–7283, Marseille, France, June 2022. European Language Resources Association. URL
 771 <https://aclanthology.org/2022.lrec-1.790>.
- 772 Hubert Siuzdak. Vocos: Closing the gap between time-domain and fourier-based neural vocoders
 773 for high-quality audio synthesis. In *The Twelfth International Conference on Learning Representa-*
 774 *tions*, 2024. URL <https://openreview.net/forum?id=vY9nzQmQBw>.
- 775 Nikit Srivastava, Denis Kuchelev, Tatiana Motteu Ngoli, Kshitij Shetty, Michael Roeder, Hamada
 776 Zahera, Diego Moussallem, and Axel-Cyrille Ngonga Ngomo. Lola—an open-source massively
 777 multilingual large language model. In *Proceedings of the 31st International Conference on Com-*
 778 *putational Linguistics*, pp. 6420–6446, 2025.
- 779 Cees H. Taal, Richard C. Hendriks, Richard Heusdens, and Jesper Jensen. A short-time objective
 780 intelligibility measure for time-frequency weighted noisy speech. In *2010 IEEE International*
 781 *Conference on Acoustics, Speech and Signal Processing*, pp. 4214–4217, 2010. doi: 10.1109/
 782 ICASSP.2010.5495701.
- 783 Rebecca Treiman and Catalina Danis. Syllabification of intervocalic consonants. *Journal of memory*
 784 *and language*, 27(1):87–104, 1988.
- 785 Arnon Turetzky, Nimrod Shabtay, Slava Shechtman, Hagai Aronowitz, David Haws, Ron Hoory,
 786 and Avihu Dekel. Continuous speech synthesis using per-token latent diffusion. *arXiv preprint*
 787 *arXiv:2410.16048*, 2024.
- 788 Hui Wang, Shujie Liu, Lingwei Meng, Jinyu Li, Yifan Yang, Shiwan Zhao, Haiyang Sun, Yanqing
 789 Liu, Haoqin Sun, Jiaming Zhou, et al. Felle: Autoregressive speech synthesis with token-wise
 790 coarse-to-fine flow matching. *arXiv preprint arXiv:2502.11128*, 2025a.
- 791 Wenbin Wang, Yang Song, and Sanjay Jha. Globe: A high-quality english corpus with global accents
 792 for zero-shot speaker adaptive text-to-speech. *arXiv preprint arXiv:2406.14875*, 2024.
- 793 Xinsheng Wang, Mingqi Jiang, Ziyang Ma, Ziyu Zhang, Songxiang Liu, Linqin Li, Zheng Liang,
 794 Qixi Zheng, Rui Wang, Xiaoqin Feng, et al. Spark-tts: An efficient llm-based text-to-speech
 795 model with single-stream decoupled speech tokens. *arXiv preprint arXiv:2503.01710*, 2025b.
- 796 Yuancheng Wang, Haoyue Zhan, Liwei Liu, Ruihong Zeng, Haotian Guo, Jiachen Zheng, Qiang
 797 Zhang, Xueyao Zhang, Shunsi Zhang, and Zhizheng Wu. MaskGCT: Zero-shot text-to-
 798 speech with masked generative codec transformer. In *The Thirteenth International Confer-*
 799 *ence on Learning Representations*, 2025c. URL <https://openreview.net/forum?id=ExuBFYtCQU>.
- 800 Chun Yat Wu, Jiajun Deng, Guinan Li, Qiuqiang Kong, and Simon Lui. Clear: Continuous la-
 801 tent autoregressive modeling for high-quality and low-latency speech synthesis. *arXiv preprint*
 802 *arXiv:2508.19098*, 2025.

810 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
 811 Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer.
 812 In *Proceedings of the 2021 Conference of the North American Chapter of the Association for*
 813 *Computational Linguistics: Human Language Technologies*, pp. 483–498, 2021.

814 Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhota, Yist Y Lin,
 815 Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb: Speech processing
 816 universal performance benchmark. *arXiv preprint arXiv:2105.01051*, 2021.

817 Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu.
 818 Libritts: A corpus derived from librispeech for text-to-speech. *arXiv preprint arXiv:1904.02882*,
 819 2019.

820 Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified
 821 speech tokenizer for speech large language models. *arXiv preprint arXiv:2308.16692*, 2023.

822 Yu Zhang, Changhao Pan, Wenxiang Guo, Ruiqi Li, Zhiyuan Zhu, Jialei Wang, Wenhao Xu, Jingyu
 823 Lu, Zhiqing Hong, Chuxin Wang, et al. Gtsinger: A global multi-technique singing corpus with
 824 realistic music scores for all singing tasks. *Advances in Neural Information Processing Systems*,
 825 37:1117–1140, 2024.

826 A APPENDIX

827 A.1 ADDITIONAL IMPLEMENTATION DETAILS

828 A.1.1 GREEDY SEGMENTATION WITH REFINEMENT FOR STAGE-2 AND -3 TRAINING

829 The greedy algorithm for unsupervised segmentation proposed by Cho et al. (2025) segments frames
 830 by grouping adjacent frames with cosine similarity above a threshold (“merge threshold”) in a sin-
 831 gle sweep. However, this requires embeddings with clean boundaries, which are not available in
 832 the early stages of training. To address this, Cho et al. (2025) used pre-extracted segments from a
 833 clustering-based algorithm for the first stage of training. At the same time, the authors reported that
 834 boundary errors are not critical for syllable learning; rather, the granularity of the initial segments
 835 is more important (see Appendix A.2.6 of Cho et al. (2025)). Therefore, we merge segments shorter
 836 than 80 ms that have cosine similarity with adjacent segments higher than a “refinement threshold.”
 837 This preserves syllable-level token frequency while maintaining the linear computational complex-
 838 ity. Figure 3 illustrates the effectiveness of refinement (right and middle plots).

839 A.1.2 THRESHOLD SETTING

840 The merge threshold is sampled from [0.5, 0.7] in the first stage and [0.7, 0.9] in the second stage,
 841 increasing sensitivity over time. Similarly, the refinement threshold is set to 0.5 for the first stage
 842 and 0.7 for the second.

843 For the peak detection in the boundary detection, we set a minimum peak value of 0.2, filtering
 844 boundaries with either prominence > 0.05 or probability > 0.8 (prominence of 0.1 during inference
 845 yields minimal difference).

846 A.1.3 OPTIMIZER CONFIGURATIONS USED IN CONTENT ENCODER

847 The content encoder training is comprised of four stages. Table 5 denotes the hyperparameters used
 848 in the AdamW optimizer for each training stage.

849 A.1.4 OPTIMIZER CONFIGURATIONS USED IN ACOUSTIC ENCODER AND SYNTHESIS 850 MODEL

851 The acoustic encoder and synthesis model are trained jointly through multiple cycles of cosine learn-
 852 ing rate schedule. All cycles use a batch size of 12 with $\beta_1 = 0.8$ and $\beta_2 = 0.9$ with weight decay
 853 of 0.01 for the AdamW optimizer. The number of iterations and the training strategies described in
 854 §3.4 are differentially applied to each cycle. Table 6 denotes the information.

864

865

866

Table 5: Hyperparameters used in each training stage.

867

Stage	Batch size	Learning rate	Warmup steps	β_1	β_2	Weight decay	Iterations
Stage-1	72	1e-4	2000	0.9	0.999	1e-3	100K
Stage-2	50	1e-4	1000	0.9	0.95	1e-2	100K
Stage-3	50	1e-4	1000	0.9	0.95	1e-2	100K
Stage-4	50	1e-5	1000	0.9	0.95	1e-2	200K

872

873

874

875

876

Table 6: Hyperparameters used in each cycle.

877

Cycle	Max learning rate	Iterations	Perceptual Loss	Freeze Content Encoder	Freeze Acoustic Encoder
Cycle-1	5e-5	2000K	no	yes	no
Cycle-2	1e-5	2000K	yes	yes	no
Cycle-3	1e-5	100K	yes	yes	no
Cycle-4	1e-5	100K	yes	yes	yes

Cycle	Perturbing Voice Prob.	Perturbing Audio Prob.	Mean-pooling Acoustics Prob.	Shuffling Acoustics Prob.
Cycle-1	0.2	0.2	0.2	0.0
Cycle-2	0.2	0.2	0.1	0.0
Cycle-3	0.2	0.2	0.1	0.5
Cycle-4	0.0	0.0	0.0	0.0

882

883

884

885

886

A.2 TTS EXPERIMENT DETAILS

891

A.2.1 IMPLEMENTATION DETAILS OF SYLFLOW

894

The AR backbone consists of 12 causal Transformer layers with 12 heads and hidden dimension of 512, a relatively small model size. The RF head comprises 6 residual fully-connected layers with hidden dimension of 512.

897

Following recent zero-shot AR TTS approaches, the TTS input consists of Sylber 2.0 tokens for style prompts and phoneme tokens from text, wrapped with special tokens at each end. The model is trained to generate the next Sylber 2.0 tokens. During training, style tokens are randomly selected from other clips of the same speaker, cropped at random with a length ratio in [0.1, 1.0]. We use the noise schedule from (Wu et al., 2025), which samples more time points in the middle. We also adopt the auxiliary velocity direction loss based on cosine distance (Wu et al., 2025). Finally, a separate end predictor is trained as a binary classifier to predict whether a given token is the last in the sequence.

898

899

900

901

902

903

904

905

906

907

A.2.2 IMPLEMENTATION DETAILS OF MEL AND MIMI BASELINES

908

909

910

We use the encoder and decoder of Mimi and trained the same TTS model switching the Sylber 2.0 embedding with Mimi embedding. For the Mel spectrogram, simply switching target embedding with a dense frame rate (50Hz) was not successful. Thus, we have slightly modified the architecture. In particular, we chunk every 10 frames which are weighted averaged using a convolutional layer before fed to the LM backbone. The rectified flow is then generating the whole 10 frames at once from the next token embedding from the LM. This chunking also makes the unit of LM operation at 5Hz, matching the temporal resolution of Sylber 2.0, thus providing a more fair comparison. We use a pretrained Mel vocoder by Du et al. (2024b). All models are trained for 1M iterations and each iteration includes 2000 tokens. All models use 10 steps for generating each token at RF head.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
Table 7: Real-time factor

Batchsize	Model	Encoding RTF			Total \downarrow	Decoding RTF \downarrow	E2E RTF \downarrow
		Content \downarrow	Segmentation \downarrow	Acoustic \downarrow			
1	mHuBERT	–	–	–	0.00213	–	–
	WavLM-Large	–	–	–	0.00404	–	–
	DAC	–	–	–	0.00540	0.00212	0.00752
	Mimi	–	–	–	0.00441	0.00202	0.00643
	Sylber	0.00184	0.00344	0.01290	0.01818	0.01800	0.03618
	Sylber 2.0	0.00211	0.00290	0.00269	0.00769	0.00165	0.00935
32	mHuBERT	–	–	–	0.00027	–	–
	WavLM-Large	–	–	–	0.00056	–	–
	DAC	–	–	–	0.00379	0.00635	0.01014
	Mimi	–	–	–	0.00076	0.00128	0.00204
	Sylber	0.00027	0.00204	0.09979	0.10210	0.01089	0.11299
	Sylber 2.0	0.00029	0.00142	0.00144	0.00315	0.00158	0.00473

936
937
938 A.2.3 EVALUATION METRICS OF TTS939
940 We measure WER using Faster-Whisper-Large-v3 (Radford et al., 2023) for English and Paraformer-
941 zh (Gao et al., 2023) for Mandarin, speaker similarity (SIM-o) using WavLM-TDNN Chen et al.
942 (2022), and UTMOS Saeki et al. (2022).943
944
945 A.3 ASR EXPERIMENT DETAILS946
947 The RNN-T (Graves, 2012b) is comprised with an encoder (transcriber), autoregressive language
948 model (predictor), and joiner. For transcriber, We use 4 layers of bidirectional LSTM with 1024
949 hidden dims for each direction with dropout rate of 0.05 for feed-forward processing of given speech
950 embedding. For the RNN-T predictor, we use 3 layers of unidirectional LSTM with 1024 hidden
951 dims with dropout rate of 0.05. We use Torch implementation of RNNTLoss and RNNTBeamSearch
952 for training and decoding speech. The model is trained with AdamW optimizer with learning rate
953 linearly ramped up to 0.001 for first 500 steps and annealed to 0 using cosine schedule through 100k
954 steps. The batch size varies from 3 to 8 to fit the training in 49GB GPU memory.955
956 B ADDITIONAL ANALYSES957
958 B.1 RTF COMPUTATION959
960 Table 7 shows a detailed decomposition of real-time factor (RTF). In addition to Sylber, we included
961 DAC and Mimi for dense tokenizations and mHuBERT and WavLM-Large for as reference of general
962 speech encoding models. Compared to Sylber, Sylber 2.0 outperforms in both encoding and
963 decoding since Sylber leverages a slow off-the-shelf speaker model and generates through multiple
964 iterations of conditional flow-matching model. As our model has an ad hoc segmentation algorithm
965 and non-uniform averaging/expanding mechanisms, Sylber 2.0 is slower in encoding than the
966 straight feed-forward models, mHuBERT and WavLM-Large. However, the gap is narrower compared
967 to Mimi or DAC, except in the batch case of DAC which is slower than Sylber 2.0. Moreover,
968 the speed of decoding is faster or compatible with Mimi or DAC. This indicates that Sylber 2.0 can
969 be utilized without heavy computations despite the complicated architecture.970
971

972 **B.2 SUPERB BENCHMARK**
973

974 We evaluate Sylber 2.0 on the tasks from SUPERB benchmark (Yang et al., 2021). It is not common
975 practice for speech tokenization model but we provide this evaluation to provide a broader sense
976 of information encoded by Sylber 2.0. We specifically compare performance against Mimi and
977 Sylber (Table 8). Sylber 2.0 shows similar performance as Sylber but shows significantly better
978 performance in speaker-related tasks: SID, ASV, and SD. Being language universal is a potential
979 source of performance degradation in other tasks as they are all in English, though the degree is
980 marginal. In all metrics, Sylber 2.0 outperforms Mimi.

981

982

983 **Table 8: SUPERB Benchmark**

984

Model	PR PER↓	KS Acc↑	IC Acc↑	SID Acc↑	ER Acc↑	ASR WER↓	ASR (w/ LM) WER↓	QbE MTWV↑	SF F1↑	ASV CER↓	SD EER↓	DER↓
Mimi	39.79	93.12	90.61	34.23	56.05	91.04	88.65	0.0108	6.72	98.86	12.17	13.37
Sylber	88.79	97.11	99.08	51.25	65.25	12.04	8.88	0.0591	85.66	29.49	8.75	15.55
Sylber 2.0	14.74	96.85	98.05	72.03	62.37	14.23	10.04	0.0471	85.94	30.09	5.69	6.10

987
988
989
990 **B.3 ABLATION EXPERIMENT**

991 To investigate the contribution of each component, we trained following ablation conditions for
992 training decoder: 1) without wSegPE, 2) without Acoustic Encoder, and 3) replacing Sylber 2.0
993 content encoder with Sylber 1’s segments/embedding. When using Sylber 1, we also trained the
994 same Acoustic Encoder and wSegPE for its own decoder. Due to the limited time line, we limit the
995 training data to be only FLEURS-R. For a fair comparison, we also retrained the main full model as
996 well. Similar to the main analysis, we evaluated the reconstruction performance on FLEURS-R and
997 also on the singing data corpus, GTsinger. This dataset is suitable to see the capability of out-of-
998 distribution (OOD) generalization since the syllable durations in singing are significantly different
999 from regular speech.

1000
1001 **Table 9: Resynthesis performance on different ablation conditions.**

Input	FLEURS-R (20 languages)					GTsinger (OOD)					
	WER↓	STOI↑	PESQ↑	UTMOS↑	SSIM↑	F0-PCC(r)↑	F0-R ² ↑	PESQ↑	STOI↑	UTMOS↑	SSIM↑
Sylber	12.343	0.822	1.287	2.793	0.928	0.835	0.355	0.556	1.200	2.097	0.890
Sylber 2.0	6.875	0.929	2.493	2.748	0.979	0.936	0.414	0.687	1.907	2.122	0.948
- w/o wSegPE	6.982	0.926	2.485	2.741	0.977	0.928	0.389	0.675	1.841	2.053	0.945
- w/o Acoustic	10.114	0.765	1.165	2.570	0.819	0.810	-2.558	0.510	1.085	2.120	0.761

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
As shown in Table 9, the original Sylber embeddings show degraded results in all metrics. This
suggests that the original Sylber produces incomplete embeddings or segments that are not univer-
sally compatible. While ablating wSegPE has minimal influence in the in-domain test, it shows
degraded performance in OOD settings, especially in a lower $F0 - R^2$ and UTMOS. This UTMOS
is even lower than the one without acoustic encoder, thus informing positions within the segments by
wSegPE is crucial for reconstructing high quality prosody. Dropping acoustic encoder yields drops
in performance in all aspects, especially $F0 - R^2$ in OOD setting, having the pitch level is entirely
off. However, the intelligibility score is still higher than the original Sylber with acoustic encoder.
These results imply a disentanglement of contents and acoustic characteristics in Sylber 2.0.

1026 **B.4 EMBEDDING VISUALIZATION**

1027 We select the top 50 English syllables in LibriSpeech that have most overlapping intervals with
1028 Sylber 2.0 segments. For each syllable, we extract Sylber 2.0 content and acoustic features for 1k
1029 samples found from the dataset. Then, we separately fit tSNE on content and acoustic embedding.
1030 Figure 5 shows content features are phonetically organized in the embedding showing clusters being
1031 located by phonetic properties. However, none of phonetic pattern of syllables is aligned with tSNE

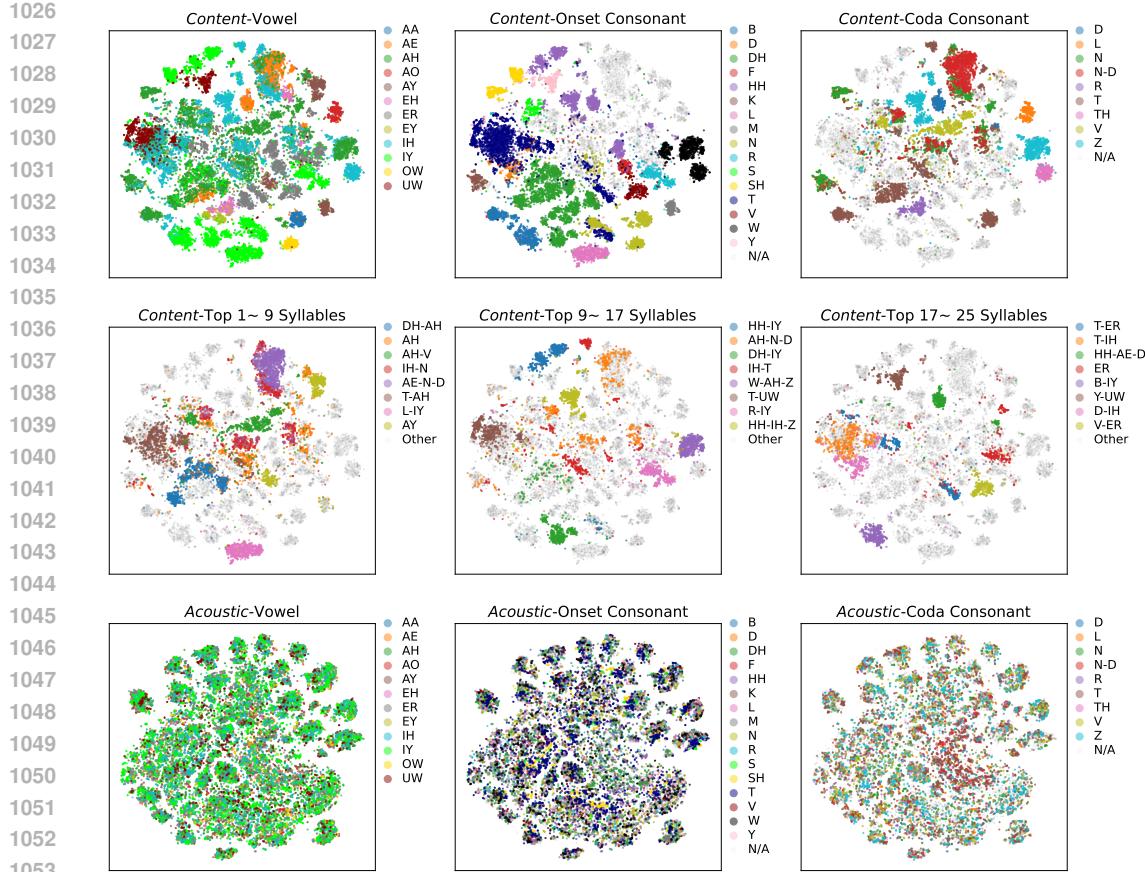


Figure 5: Visualization of Sylber 2.0 embeddings through tSNE. The top 50 syllables that are most corresponding to Sylber 2.0 are chosen and for each syllable 1K samples are retrieved from LibriSpeech. The top two rows use the content feature, with different colorization schemes for phonetic categories. The bottom uses the acoustic feature. While the manifold of the content features are phonetically structured, the acoustic feature shows no such structure.

layout of acoustic features, suggesting the successful disentanglement of the intelligible contents and acoustic information. This qualitatively shows that Sylber 2.0 learns phonetically meaningful speech embeddings, which corroborates with the results in downstream tasks.

B.5 INDIVIDUAL RESYNTHESIS RESULTS FOR LANGUAGES IN FLEURS-R

The scores for resynthesis are denoted for each language in Table 10 and 11. Also, we denote the token frequency of all 102 languages in Table 12.

1080
1081
1082
1083 Table 10: Resynthesis performance on different languages in FLEURS-R (Part A). \downarrow and \uparrow represent
1084 that lower or higher values are better.
1085

Model	ca					cmn				
	WER \downarrow	STOI \uparrow	PESQ \uparrow	UTMOS \uparrow	SSIM \uparrow	WER \downarrow	PESQ \uparrow	STOI \uparrow	UTMOS \uparrow	SSIM \uparrow
DAC	5.27	1.00	4.49	3.31	1.00	6.93	1.00	4.53	3.16	1.00
FACodec	5.94	0.96	3.16	3.39	0.98	8.65	0.95	3.02	3.19	0.98
SpeechTokenizer	6.34	0.94	2.69	2.98	0.97	8.48	0.93	2.80	2.91	0.97
WavTokenizer	34.20	0.87	1.72	2.60	0.90	38.97	0.86	1.80	2.70	0.89
Mimi	5.45	0.98	3.70	3.16	0.98	7.39	0.97	3.67	3.00	0.98
Sylber	25.73	0.77	1.15	3.86	0.84	38.10	0.75	1.21	3.62	0.83
Sylber 2.0 (Ours)	6.37	0.93	2.35	2.94	0.97	8.21	0.91	2.29	2.96	0.97
de										
Model	de					en				
	WER \downarrow	STOI \uparrow	PESQ \uparrow	UTMOS \uparrow	SSIM \uparrow	WER \downarrow	PESQ \uparrow	STOI \uparrow	UTMOS \uparrow	SSIM \uparrow
DAC	4.25	1.00	4.55	3.29	1.00	5.45	1.00	4.54	4.04	1.00
FACodec	5.20	0.95	3.09	3.35	0.98	6.38	0.94	2.90	4.11	0.98
SpeechTokenizer	5.53	0.93	2.88	3.15	0.98	10.13	0.92	2.85	3.89	0.98
WavTokenizer	26.06	0.87	1.88	2.96	0.91	15.47	0.86	1.87	3.75	0.92
Mimi	4.47	0.97	3.76	3.18	0.99	6.14	0.96	3.72	3.95	0.98
Sylber	19.21	0.78	1.21	3.58	0.83	10.84	0.77	1.22	3.91	0.86
Sylber 2.0 (Ours)	5.34	0.92	2.29	3.21	0.98	6.46	0.90	2.20	3.94	0.97
es										
Model	es					fi				
	WER \downarrow	STOI \uparrow	PESQ \uparrow	UTMOS \uparrow	SSIM \uparrow	WER \downarrow	PESQ \uparrow	STOI \uparrow	UTMOS \uparrow	SSIM \uparrow
DAC	2.91	1.00	4.53	3.29	1.00	9.28	1.00	4.51	3.02	1.00
FACodec	3.21	0.96	3.34	3.32	0.98	11.38	0.95	3.00	3.09	0.98
SpeechTokenizer	3.13	0.94	3.06	2.96	0.97	12.71	0.92	2.66	2.75	0.97
WavTokenizer	14.57	0.87	1.98	2.73	0.92	49.28	0.84	1.75	2.39	0.91
Mimi	2.93	0.98	3.91	3.14	0.98	9.93	0.97	3.57	2.89	0.98
Sylber	10.66	0.77	1.18	3.37	0.84	32.73	0.73	1.18	3.30	0.81
Sylber 2.0 (Ours)	3.18	0.93	2.56	2.91	0.98	11.80	0.91	2.31	2.82	0.98
fr										
Model	fr					id				
	WER \downarrow	STOI \uparrow	PESQ \uparrow	UTMOS \uparrow	SSIM \uparrow	WER \downarrow	PESQ \uparrow	STOI \uparrow	UTMOS \uparrow	SSIM \uparrow
DAC	6.34	1.00	4.52	3.08	1.00	8.32	1.00	4.54	3.01	1.00
FACodec	8.90	0.95	2.90	3.21	0.98	9.90	0.94	2.91	3.08	0.98
SpeechTokenizer	8.71	0.92	2.72	2.91	0.97	10.11	0.93	2.78	2.86	0.98
WavTokenizer	53.89	0.85	1.81	2.89	0.90	32.91	0.85	1.75	2.52	0.90
Mimi	6.66	0.96	3.64	2.98	0.98	8.75	0.97	3.75	2.90	0.99
Sylber	59.03	0.74	1.22	3.61	0.82	33.80	0.74	1.16	3.38	0.82
Sylber 2.0 (Ours)	8.92	0.91	2.28	2.99	0.97	10.77	0.92	2.33	2.88	0.98
it										
Model	it					ja				
	WER \downarrow	STOI \uparrow	PESQ \uparrow	UTMOS \uparrow	SSIM \uparrow	WER \downarrow	PESQ \uparrow	STOI \uparrow	UTMOS \uparrow	SSIM \uparrow
DAC	2.33	1.00	4.50	3.56	1.00	4.81	1.00	4.54	3.51	1.00
FACodec	2.71	0.96	3.26	3.59	0.99	5.44	0.96	3.25	3.61	0.98
SpeechTokenizer	2.84	0.94	2.90	3.18	0.97	5.70	0.94	3.00	3.32	0.97
WavTokenizer	12.83	0.87	1.99	2.88	0.92	21.73	0.89	1.98	2.97	0.91
Mimi	2.38	0.97	3.78	3.39	0.98	4.97	0.98	3.86	3.42	0.98
Sylber	7.77	0.76	1.17	3.63	0.81	15.54	0.80	1.18	3.45	0.83
Sylber 2.0 (Ours)	2.92	0.92	2.57	3.32	0.98	5.64	0.94	2.61	3.16	0.98

1134
 1135
 1136
 1137
 1138 Table 11: Resynthesis performance on different languages in FLEURS-R (Part B). \downarrow and \uparrow represent
 1139 that lower or higher values are better.

Model	ko					ms				
	WER \downarrow	STOI \uparrow	PESQ \uparrow	UTMOS \uparrow	SSIM \uparrow	WER \downarrow	PESQ \uparrow	STOI \uparrow	UTMOS \uparrow	SSIM \uparrow
DAC	4.30	1.00	4.52	3.51	1.00	9.15	1.00	4.51	2.96	1.00
FACodec	5.36	0.96	3.24	3.63	0.98	11.07	0.95	2.69	3.00	0.98
SpeechTokenizer	4.96	0.94	2.96	3.25	0.97	11.85	0.92	2.50	2.76	0.98
WavTokenizer	24.42	0.88	1.97	2.97	0.90	48.39	0.84	1.54	2.39	0.90
Mimi	4.69	0.98	3.78	3.38	0.98	9.76	0.97	3.50	2.87	0.98
Sylber	17.96	0.80	1.22	3.61	0.82	36.17	0.73	1.13	3.37	0.81
Sylber 2.0 (Ours)	5.05	0.94	2.60	3.30	0.97	11.38	0.91	2.04	2.78	0.98
nb										
Model	nb					nl				
	WER \downarrow	STOI \uparrow	PESQ \uparrow	UTMOS \uparrow	SSIM \uparrow	WER \downarrow	PESQ \uparrow	STOI \uparrow	UTMOS \uparrow	SSIM \uparrow
DAC	9.46	1.00	4.50	3.53	1.00	6.01	1.00	4.54	3.31	1.00
FACodec	10.38	0.96	3.18	3.62	0.98	7.54	0.95	3.03	3.41	0.97
SpeechTokenizer	10.51	0.94	2.81	3.14	0.97	8.28	0.93	2.77	3.15	0.97
WavTokenizer	34.07	0.89	1.92	2.81	0.92	49.84	0.86	1.72	2.95	0.88
Mimi	9.87	0.98	3.69	3.37	0.97	6.31	0.97	3.67	3.22	0.98
Sylber	20.98	0.80	1.23	3.58	0.81	40.40	0.77	1.15	3.70	0.81
Sylber 2.0 (Ours)	10.87	0.94	2.59	3.26	0.98	8.21	0.92	2.19	3.21	0.97
pl										
Model	pl					pt				
	WER \downarrow	STOI \uparrow	PESQ \uparrow	UTMOS \uparrow	SSIM \uparrow	WER \downarrow	PESQ \uparrow	STOI \uparrow	UTMOS \uparrow	SSIM \uparrow
DAC	5.97	1.00	4.51	3.02	1.00	3.93	1.00	4.53	3.49	1.00
FACodec	7.51	0.95	2.91	3.07	0.98	4.28	0.95	3.08	3.53	0.98
SpeechTokenizer	8.42	0.93	2.61	2.85	0.97	4.43	0.93	2.96	3.32	0.98
WavTokenizer	55.72	0.85	1.66	2.69	0.90	13.32	0.87	1.83	2.95	0.90
Mimi	6.31	0.97	3.60	2.93	0.98	3.97	0.97	3.85	3.37	0.98
Sylber	55.33	0.77	1.15	3.47	0.80	15.23	0.77	1.18	3.67	0.84
Sylber 2.0 (Ours)	8.45	0.91	2.20	3.01	0.97	4.43	0.92	2.32	3.25	0.98
ru										
Model	ru					sv				
	WER \downarrow	STOI \uparrow	PESQ \uparrow	UTMOS \uparrow	SSIM \uparrow	WER \downarrow	PESQ \uparrow	STOI \uparrow	UTMOS \uparrow	SSIM \uparrow
DAC	5.26	1.00	4.51	3.32	1.00	8.56	1.00	4.54	3.49	1.00
FACodec	5.88	0.95	2.86	3.34	0.98	10.44	0.96	3.15	3.55	0.98
SpeechTokenizer	6.02	0.93	2.63	3.04	0.98	10.31	0.94	2.93	3.32	0.97
WavTokenizer	27.58	0.85	1.72	2.73	0.90	44.40	0.87	1.92	3.05	0.90
Mimi	5.45	0.97	3.56	3.15	0.98	9.08	0.97	3.81	3.34	0.98
Sylber	24.13	0.75	1.19	3.56	0.80	29.91	0.78	1.16	3.54	0.83
Sylber 2.0 (Ours)	6.57	0.91	2.23	3.16	0.98	10.90	0.92	2.38	3.31	0.98
tr										
Model	tr					uk				
	WER \downarrow	STOI \uparrow	PESQ \uparrow	UTMOS \uparrow	SSIM \uparrow	WER \downarrow	PESQ \uparrow	STOI \uparrow	UTMOS \uparrow	SSIM \uparrow
DAC	6.64	1.00	4.54	3.40	1.00	7.33	1.00	4.54	3.28	1.00
FACodec	8.17	0.95	3.20	3.40	0.98	9.61	0.95	3.00	3.33	0.98
SpeechTokenizer	7.94	0.93	2.99	3.19	0.97	9.72	0.93	2.83	3.13	0.97
WavTokenizer	36.87	0.86	1.90	2.86	0.89	44.76	0.86	1.82	2.97	0.92
Mimi	6.99	0.97	3.87	3.31	0.98	7.80	0.97	3.76	3.16	0.98
Sylber	27.80	0.76	1.20	3.53	0.82	44.59	0.77	1.16	3.59	0.81
Sylber 2.0 (Ours)	8.23	0.92	2.44	3.08	0.98	9.93	0.92	2.29	3.18	0.98

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198 Table 12: Token frequency of individual languages in FLEURS-R (total 102 languages). Other text
1199 BPE tokenization from multilingual models are also denoted.

Language	Sylber 2.0	XLM-R	MT5	UMT5	LOLA	Whisper	Language	Sylber 2.0	XLM-R	MT5	UMT5	LOLA	Whisper
af	4.62	2.83	3.10	2.97	3.15	3.67	am	5.16	3.39	4.88	6.82	17.32	17.51
ar	5.71	3.09	3.93	2.87	3.48	5.49	as	5.07	4.56	5.12	5.61	8.87	20.28
ast	5.69	4.19	4.64	4.20	4.28	4.71	az	4.75	2.76	3.57	3.33	5.31	5.27
be	4.41	2.99	3.57	3.68	5.19	5.27	bg	5.31	3.48	4.24	3.62	4.34	5.76
bn	4.90	3.10	3.89	3.60	7.14	18.67	bs	4.35	2.77	3.61	3.43	4.16	4.39
ca	4.91	3.22	3.82	3.27	3.76	3.76	ceb	3.91	3.05	3.14	3.10	3.44	3.71
ckb	4.79	5.91	4.95	6.65	9.03	10.39	cmm	4.64	2.48	2.58	3.11	2.91	4.40
cs	4.50	2.88	3.47	2.63	4.59	4.71	cy	4.11	2.94	3.83	3.61	4.06	3.99
da	4.62	2.95	3.40	2.88	3.48	4.04	de	4.65	2.75	3.07	2.59	2.67	3.21
el	5.66	4.10	5.11	3.96	5.14	7.70	en	4.43	2.65	2.93	2.56	2.49	2.44
es	5.05	2.93	3.53	2.82	2.93	3.37	et	4.93	2.78	3.06	2.95	3.93	4.22
fa	4.30	2.13	2.88	2.13	2.73	5.13	ff	4.35	3.19	3.19	3.22	3.52	3.61
fi	4.74	2.68	2.99	2.63	3.18	3.95	fil	3.66	2.46	2.77	2.69	2.94	3.26
fr	5.00	3.83	4.54	3.64	3.72	4.29	ga	3.80	3.04	3.74	3.75	4.16	4.27
gl	5.67	3.42	4.42	3.59	3.80	4.27	gu	6.07	4.13	5.51	7.58	31.26	30.56
ha	3.72	2.33	2.51	2.64	2.93	3.04	he	5.35	3.60	4.28	3.72	3.98	6.01
hi	5.38	3.14	4.45	3.57	7.41	11.35	hr	4.94	3.22	4.20	3.98	4.81	5.09
hu	4.99	2.93	3.44	2.82	3.41	4.85	hy	4.77	3.65	4.57	5.41	20.16	14.53
id	5.26	2.27	2.87	2.65	2.74	3.50	ig	3.70	3.99	3.70	3.84	4.07	4.27
is	4.68	2.93	3.45	3.44	4.44	4.67	it	4.24	2.46	3.05	2.35	2.49	3.08
ja	4.84	2.49	2.22	2.45	2.53	3.87	jv	4.91	2.49	2.89	2.96	3.15	3.46
ka	5.55	3.67	4.65	5.47	5.35	31.69	kam	3.74	3.11	3.24	3.23	3.38	3.67
kea	4.04	2.96	3.10	2.95	3.11	3.41	kk	4.16	2.16	2.49	2.54	5.28	5.34
km	4.47	3.15	3.07	6.81	19.85	19.79	kn	5.19	3.01	3.47	5.19	20.51	16.50
ko	4.74	2.67	3.25	3.11	3.17	3.42	ky	5.43	3.07	3.82	4.19	6.41	7.10
lb	5.02	4.47	4.40	4.37	4.51	4.89	lg	3.69	2.77	2.77	2.87	3.06	3.31
ln	3.36	2.24	2.22	2.24	2.40	2.54	lo	5.31	3.47	3.49	9.35	21.15	28.72
lt	4.98	3.26	3.75	3.35	5.10	5.20	luo	4.60	3.27	3.36	3.31	3.49	3.67
lv	4.56	3.06	3.56	3.32	4.92	5.14	mi	3.65	2.81	2.82	2.79	3.03	3.14
mk	4.85	2.94	3.57	3.41	4.50	5.20	ml	4.96	2.88	3.11	4.62	8.15	21.82
mn	5.10	3.37	4.53	4.64	7.67	8.47	mr	5.10	2.76	3.80	3.54	7.41	11.02
ms	5.57	2.58	3.30	3.05	3.13	4.04	mt	4.41	4.51	4.31	4.19	5.01	5.29
my	4.18	3.29	3.29	5.06	7.14	28.51	nb	4.20	2.56	2.95	2.51	3.16	3.50
ne	5.60	2.97	4.25	4.08	8.45	12.31	nl	5.86	3.61	4.09	3.42	3.78	4.62
nso	3.73	2.86	2.83	2.97	3.13	3.24	ny	3.84	2.84	2.66	2.86	3.22	3.50
oc	3.97	2.88	3.15	2.90	3.04	3.18	om	4.53	3.47	3.64	3.61	3.92	4.16
or	5.63	3.70	8.80	11.28	30.09	29.93	pa	5.17	3.82	5.65	7.05	20.58	20.52
pl	5.46	3.63	4.38	3.34	3.96	4.85	ps	5.61	3.37	4.42	4.49	5.84	7.55
pt	4.47	2.68	3.41	2.57	2.78	3.11	ro	5.49	3.64	4.39	3.41	5.27	5.14
ru	4.97	3.03	3.61	2.95	3.23	4.08	sd	5.30	3.24	4.86	4.86	6.06	7.75
sk	4.57	2.97	3.60	2.97	4.74	4.78	sl	5.43	3.46	4.04	3.72	5.05	5.28
sn	3.81	2.91	2.64	2.95	3.24	3.43	so	4.83	3.14	3.68	3.80	4.48	4.56
sr	4.61	3.13	3.82	3.54	5.32	5.81	sv	4.94	2.94	3.38	2.81	3.25	3.79
sw	4.40	2.40	2.85	2.97	3.35	3.71	ta	5.64	3.22	3.32	3.87	9.19	10.37
te	5.73	3.52	4.20	6.08	8.97	21.28	tg	4.42	4.43	3.74	3.90	5.42	5.84
th	5.57	2.76	2.78	3.54	6.03	8.82	tr	4.72	2.45	2.91	2.32	3.17	3.54
uk	5.27	3.40	4.15	3.31	5.77	5.33	umb	3.15	2.10	2.14	2.16	2.30	2.48
ur	6.42	3.88	5.26	4.70	5.30	8.00	uz	5.25	3.40	3.88	4.10	4.80	5.03
vi	4.71	2.84	5.17	2.83	3.03	4.24	wo	3.41	2.56	2.56	2.57	2.75	2.83
xh	4.74	3.43	3.43	3.85	4.16	4.44	yo	3.62	4.14	4.15	4.12	4.31	4.76
yue	5.12	2.46	2.76	3.13	2.75	3.91	zu	4.14	2.92	2.90	3.26	3.59	3.81

1233

1234

1235

1236

1237

1238

1239

1240

1241