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Abstract

Understanding who communicates with whom, when, and how is central to the
ecology of group-living animals, yet individual-level acoustic identification of
animals in their natural environment remains challenging. Zebra finches are a
model species whose vocal behaviour has been predominantly studied indoors;
here we address the outdoor setting and investigate bioacoustic deep learning for
individual identification at scale as a key step to build communication networks
from field recordings. We fine-tune BirdAVES for recognizing 173 zebra finch indi-
viduals from short (1-3 s) clips using a concise training recipe: two-phase training,
weighted sampling and class-weighted cross-entropy for long-tailed counts, and a
supervised contrastive term to pull same-individual embeddings together. On a real-
world dataset (2,915 clips, 173 individuals), the selected model achieved macro-F1
= 0.733 (val) / 0.726 (test) and steep retrieval gains (Top-5 = 0.868, Top-10 =
0.893 on test set). This enables conversion of hours of audio into “who-sang-when”
timelines. We deliberately report top-k performance because it quantifies review
effort and supports human-in-the-loop workflows by shrinking the number of clips
an expert must audit. While a train–val/test gap reflects short windows and class
imbalance, the embeddings are discriminative and immediately useful. Key next
steps are to address the imbalance in our data and scaling towards a significantly
larger set of individuals, and to translate individual recognition into communication
or social networks.

1 Introduction

The zebra finch (Taeniopygia castanotis) is one of the most-studied songbird in the lab [5], but
it remains challenging to ecologically contextualise the resulting wealth of lab-based knowledge.
In the wild, zebra finches are non-territorial songbirds, living in dynamic fission–fusion groups
[19]. Their vocalisations are very short-distance signals, with an average detection range of less
than 14 meters [11]. Thus, vocalisations are not efficient in locating and attracting conspecifics in
the open, arid habitat zebra finches live in. Instead, zebra finches use temporally stable gathering
locations, so-called ‘social hotspots’ to interact with conspecifics [12]. It has been hypothesized that
their individually distinct vocalisations [4] might facilitate the individual recognition necessary to
establish and maintain social connections [13]. Proximity-based social networks can be obtained
using passive [3] and active [16] tags, but these tags cannot measure how and how much individuals
are actually interacting. Using acoustic data to recover so-called communication networks at the
level of individuals would enable a significantly better understanding about social organization,
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information flow, and coordination of this model species. However, the key prerequisite - robust,
scalable identification of individuals from acoustic data - remains challenging.

Large-scale bioacoustic deep learning is evolving along two complementary tracks [9]: (i) supervised
species-level classifiers (e.g., BirdNET [8]; Perch[17]) trained on large-scale labeled data, and
(ii) label-efficient representation learners, like self-supervised foundation models (e.g., BirdAVES
[6], Animal2Vec [15]) that learn without annotations and often transfer better with limited labels.
Supervised models excel where dense species labels exist (common birds), but their coverage degrades
for rare/endangered taxa and non-avian groups with limited data. In these low-label scenarios,
self-supervised pretraining provides stronger initializations and more generalizable embeddings.
Motivated by this, we adopt pretrained BirdAVES model as the choice for zebra finch individual
identification.

Our approach builds on progress in bioacoustic modelling, in particular a combination of BirdAves
and supervised contrastive learning [10] and is complementary to prototype-based contrastive learning
[14]. Our dataset comprises 173 individuals, each with multiple recordings. The class distribution is
highly imbalanced, ranging from a single recording to 177 recordings for an individual. Furthermore,
besides noise, field audio from non-territorial species, like the zebra finch, introduces specific hurdles:
short-range signals with overlapping callers yield sparse, local views; data are imbalanced across
individuals and contexts. We leverage BirdAVES and adapt it into a multi-class classifier. We train
the classifier using a concise recipe: two-phase training, weighted sampling and class-weighted cross-
entropy to address the data imbalance, and a supervised contrastive loss [10] to pull same-individual
embeddings together while preserving class separation.

2 Methodology

2.1 Dataset

Data collection and annotation Primary fieldwork took place at Fowlers Gap (NSW, Australia)
from 4 Sep. to 28 Oct. 2023. We placed SM3 song meters (Wildlife Acoustics) in hotspot trees,
recording 16 kHz/16-bit mono WAV continuously from sunrise to sunset. We analyzed four hotspots:
five days per site for three hotspots ( 65 h per tree) and three days for a fourth, highly active hotspot
(198 h total). Audio files were screened in Audacity (v3.4.2) via spectrograms (1024-sample Hann,
0–8 kHz). Annotation proceeded in two stages: (1) detect song bouts (vs. calls); (2) label song
bouts to individuals (only males sing and songs are individually distinctive). Zebra finch songs were
identified by introductory notes followed by one or more motifs. An expert then assigned song bouts
to individuals using reference exemplars; a second expert reviewer was consulted for uncertain cases.
Disagreements remained unlabeled. We expanded this dataset corpus with prior (2018) handheld
recordings from the same site , adding measured song motifs (which may be shorter than full bouts).
For preprocessing, segments >6 s were trimmed to the first and last 3 s; segments ≤ 3s were left
unchanged.

Dataset composition Our dataset comprises 2,915 audio segments (clips) from 173 individuals.
Segments are short and largely fixed-length (median 3 s, min 0.7 s, max 3 s). Per-individual counts
are highly imbalanced (median 8 clips; max 177), with 14 individuals represented by a single clip. We
split the dataset by clip (identities may appear in multiple partitions; some do not appear in val/test
due to low counts) and ensure no identical recording is reused across splits. Composition by clips:
train 69.9% (2,038), val 17.6% (513), test 12.5% (364). Identity coverage: 173/173 in train, 116/173
(67.1%) in val, 100/173 (57.8%) in test.

2.2 Modelling approach

We define individual identification as a 173-way multi-class classification problem from short zebra
finch audio clips.

Architecture: A pretrained BirdAVES [6] (Wav2Vec2 [2] / HuBERT-based [7]) encoder produces
frame-level features; we mean-pool them into a 1024-D embedding and add a linear head to produce
173 logits. This converts BirdAVES into a 173-class classifier that outputs raw logits.
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Input data preprocessing: Waveforms are mono, resampled to 16 kHz, and windowed to 3.0 s by
zero-padding. Because HuBERT-style encoder (as used in the BirdAVES) is sensitive to padding,
validation uses batch size 1 (no cross-sample padding).

Handling class imbalance: We combine (i) oversampling via a WeightedRandomSampler,
PyTorch with sampling s(i) ∝ 1/nc, where nc is the number of training clips for individual c;
and (ii) class-weighted cross-entropy with

wc =
N

K nc
,

where N is the number of training clips and K the number of individuals in the training data.

Objective and optimization: We optimise over two loss functions. (i) LCE, class-weighted cross-
entropy, and (ii) LSupCon, supervised contrastive loss [10] on l2 − normalised embeddings. Our
implementation scales the averaged log-probability by temperature τ = 0.07, rescaling LSupCon

and is absorbed by the contrastive weighting λ below. When a batch contains only one sample (e.g.,
validation with batch size 1), the contrastive term is disabled. We minimise the combined loss

L = LCE + λLSupCon,

using Adam optimizer with separate learning rates for the encoder and the classifier head and use
gradient accumulation (ACCUM_STEPS = 8).

Training is divided into two pahses. Phase 1 minimises LCE with the encoder frozen; Phase 2
minimises L with the encoder unfrozen. Here, λ balances classification and contrastive representation
learning, while τ controls the sharpness of contrastive softmax (smaller τ enforces tighter positive
clusters and larger angular margins).

Hyperparameter search: We tune for batch size [4, 20], head/encoder learning rates [10−7, 10−4] (log
scale), epochs1 [5, 30], epochs2 [30, 200], and λ [0.1, 0.9] using Optuna [1](median pruning). Runs
are tracked with MLflow [18]; models and configurations are saved per trial.

Training infrastructure: All experiments were conducted on an NVIDIA GeForce RTX 3090 GPU
(24 GB) with PyTorch 2.3.1 (CUDA 11.8).

Evaluation protocol and metric Data are split by clip (individuals will appear across splits but no
clip is duplicated). Given our highly imbalanced data, we report by macro-F1, which averages per-
class F1 and therefore reflects performance on both rare and frequent individuals. We use macro-F1
as the objective to be maximized for the Optuna runs.

3 Results

From the Optuna runs, we select the model with the best macro-F1 on the validation set. The best
model had the following training parameters: batch size = 14, epochs = 21 (Phase 1), 62 (Phase 2),
learning rates: head lrhead = 1.02 × 10−7, encoder lrenc = 9.14 × 10−5 (Phase 2), contrastive
weight λ = 0.513.

Table 1 reports the results corresponding to this model. We observe a clear train–val/test gap (macro-
F1 ≈ 0.99 vs. 0.73). This indicates some level of overfitting, but is also consistent with (i) severe
per-individual data imbalance and (ii) distributional differences across splits (e.g., many individuals
with few clips in val/test). Macro-F1, which weighs each identity equally, amplifies this effect.
However, the top-k curves rise steeply (e.g., test Top-5 = 0.868, Top-10 = 0.893), suggesting the
representation is discriminative but the Top-1 decision is brittle for low-support identities.

Top-k accuracies measure how far down the model’s ranking the correct individual appears. This is
useful when a small shortlist enables fast human verification. Top-k counts a prediction correct if the
true class is among the top k logits. In our results the curves rise quickly, so the correct identity is
usually within a short shortlist.

Per-class Top-k accuracy statistics on the test set are reported in Table 2, with the corresponding
distributions shown in Figure 1. The median Top-1 accuracy is 1.0, indicating that for at least half of
the classes the model consistently predicts the correct label on the first attempt. This trend persists
across all k, reflecting a substantial subset of “easier” classes that are reliably recognized. In contrast,
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Split Macro-F1 Top-1 Top-3 Top-5 Top-10 Top-20 Top-30 Top-50

Train 0.9919 0.9818 0.9975 0.9985 0.9990 0.9990 0.9995 0.9995
Val 0.7332 0.7485 0.8577 0.8850 0.9181 0.9376 0.9454 0.9513
Test 0.7255 0.7445 0.8434 0.8681 0.8929 0.9258 0.9341 0.9451

Table 1: Overall performance of the selected checkpoint. Macro-F1 is computed over classes present
in each split. We report Top-k accuracies to quantify how far down the ranked list the correct identity
appears - useful for shortlist-based verification (human-in-the-loop).

Top-k Mean Median Std Min

Top-1 0.739 1.0 0.358 0.0
Top-3 0.826 1.0 0.306 0.0
Top-5 0.844 1.0 0.298 0.0
Top-10 0.856 1.0 0.296 0.0
Top-20 0.905 1.0 0.248 0.0
Top-30 0.917 1.0 0.230 0.0
Top-50 0.934 1.0 0.208 0.0

Table 2: Per-class Top-k summary (test
set).

Figure 1: Distribution of per-class Top-k accuracies
(test set).

the relatively large standard deviation at Top-1 (≈ 0.36) highlights considerable variability across
classes, with some classes rarely or never identified correctly. As k increases, the deviation decreases
(reaching 0.21 at Top-50), suggesting that harder classes benefit from more permissive evaluation
while easier classes remain saturated at perfect accuracy.

Overall, the results demonstrate that while strict Top-1 recognition remains challenging under severe
class imbalance, the model achieves strong shortlist retrieval performance, making it practical for
downstream ecological analyses, from supporting individual-level inference to communication or
social network reconstruction in wild zebra finch populations.

4 Conclusions

Bioacoustic deep learning can play an important role in studying zebra finch communication networks
at scale, and in the wild. Zebra-finches have predominantly (historically) been studied indoors under
controlled conditions, here we tackle outdoor field audio from wild birds in their natural habitat.
Individual recogntion in the wild will allow us to quantify zebra finch song bouts across multiple
contexts - e.g., hotspots vs. breeding sub-colonies - and to compare the resulting communication
networks. While songs are short-range signals and thus provide local snapshots, those snapshots are
precisely what is needed to connect vocal behaviour to proximity-based social structure.

Here we show that a concise fine-tuning recipe: BirdAVES encoder with a 173-way head, two-phase
training, weighted sampling + class-weighted cross-entropy, and a supervised contrastive term - can
deliver actionable individual recogntion performance. Our best model achieves macro-F1 = 0.733
(val) / 0.726 (test) with steep retrieval gains (Top-5 = 0.868, Top-10 = 0.893 on the test set). This
can enable long recordings to be converted into who-sang-when timelines. Reporting top-k is also
deliberate: it supports human-in-the-loop workflows by shrinking the number of clips an expert must
review per decision. This moves individual-level inference beyond the lab and toward constructing
communication networks in natural settings.

A measurable train–val/test gap (∼0.99 vs. ∼0.73 macro-F1) indicates some overfitting which is
largely amplified by long-tailed per-individual counts (highly imbalanced data per individual, ranging
anywhere from 1 clip to 177, with a median of 8 per individual). A practical approach is to create more
balanced datasets, which is a work in progress for us as we record and annotate new data. However,
the most important open problem is identifying new (unseen) individuals in the wild. Solving this will
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make individual recognition robust at population scale and can help create automated communication
and social networks as a standard ecological tool. This problem is not limited to our research, but
broadly applicable to bioacoustic deep learning research.
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