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ABSTRACT

Being able to successfully determine whether the testing samples has similar dis-
tribution as the training samples is a fundamental question to address before we
can safely deploy most of the machine learning models into practice. In this paper,
we propose TOOD detection, a simple yet effective tree-based out-of-distribution
(TOOD) detection mechanism to determine if a set of unseen samples will have
similar distribution as of the training samples. The TOOD detection mechanism
is based on computing pairwise hamming distance of testing samples’ tree em-
beddings, which are obtained by fitting a tree-based ensemble model through
in-distribution training samples. Our approach is interpretable and robust for
its tree-based nature. Furthermore, our approach is efficient, flexible to various
machine learning tasks, and can be easily generalized to unsupervised setting.
Extensive experiments are conducted to show the proposed method outperforms
other state-of-the-art out-of-distribution detection methods in distinguishing the
in-distribution from out-of-distribution on various tabular, image, and text data.

1 INTRODUCTION

A fundamental assumption which assures any machine learning model associated with a training
and testing phase to succeed is that the training and testing data should follow a similar distribution.
However, this assumption may not be valid in practice, in which case, it is called out-of-distribution
(OOD). Out-of-distribution detection is a fundamental and crucial task in many disciplines such as
health science, engineering, geophysics, etc,. For example, if we need to make drug recommendation
to new patients, it is critical to make sure the features of new patients are similar to the patients whose
consequences of taking the drug are known.

There has been a plethora of research so far which address on OOD detection (Hendrycks & Gim-
pel, 2017; Hendrycks et al., 2019; Hsu et al., 2020; Lee et al., 2018; Liang et al., 2018; Lakshmi-
narayanan et al., 2017; Mohseni et al., 2020). Starting from (Hendrycks & Gimpel, 2017), which
introduces a common baseline for OOD detection based on softmax probability, followed by more
recent works such as energy based approach (Liu et al., 2020; Grathwohl et al., 2020), likelihood ra-
tio based approach (Ren et al., 2019; Serrà et al., 2020), and generative model based approach (Choi
& Jang, 2018), just to name a few. More recently, a comprehensive survey about OOD detection is
given in (Yang & Liu, 2021).

As artificial neural network has so far been the most popular model for various types of tasks,
almost all of the aforementioned OOD detection methods are neural network based, which generally
means that a set of neural network parameters are learned in the training phase by using the training
samples, and then a score or metric will be imposed on the unseen testing samples to determine
whether the testing samples are similar or not to the distribution of training samples. Despite its
partial success in achieving such a goal, due to the neural network’s black-box feature, the rationale
behind such approaches are not very intuitive.

In addition, the neural network based models are often vulnerable to adversarial attack (Carlini
& Wagner, 2017; Goodfellow et al., 2015; Kurakin et al., 2018; Moosavi-Dezfooli et al., 2016),
which makes such model less reliable in practice. Researchers have also been studying on using
different metrics such as ODIN score (Liang et al., 2018), generalized ODIN score (Hsu et al., 2020),
Mahalanobis distance (Lee et al., 2018) to improve the OOD detection performance. However, these
approaches are often computationally expensive therefore can not be easily applied in practice.
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Furthermore, neural network based models are usually restricted to the supervised setting and of-
ten require fine-tuning in order to make it works well for specific tasks and datasets. For example,
previous methods have used synthetic data or unlabeled data (Hendrycks et al., 2019; Lee et al.,
2017) as auxiliary OOD training data, which enables explicitly regularization of the model through
fine-tuning and leads to low confidence scores on anomalous examples. The work (Mohseni et al.,
2020) investigated training methods involving the inclusion of extra background classes to improve
OOD scoring. The work (Chen et al., 2021) proposed informative outlier mining by selectively train-
ing on auxiliary OOD data that induces uncertain OOD scores, which improves the OOD detection
performance on both clean and perturbed adversarial OOD inputs.

In order to deal with these disadvantages, we propose TOOD detection, a simple yet effective tree-
based OOD detection method. Inherited from the characteristics of tree-based machine learning
models, the main advantages of TOOD detection are the following four aspects: Interpretability,
Robustness, Flexibility, and Efficiency. It is interpretable in that there is no black-box feature in-
volved in the proposed method and it can be easily interpreted just like a decision tree or random
forest. It is robust in that the method will give stable outputs for perturbed inputs, e.g., an adversar-
ial attack for images. It is efficient in that the method is easy to train and is often faster than neural
network based methods. It is flexible in that the model requires little or no fine-tuning of the model’s
parameters, can handle various machine learning tasks with different types of input data, and can be
easily generalized in an unsupervised way.

The rest of paper is structured as follows. Section 2 gives a general overview of the tree-based
ensemble learning methods. Section 3 proposes a specific tree-based learning procedure for out-
of-distribution detection and provides its intuition and rationale. We give a detailed analysis of
the correctness for the proposed method in Section 4 and present extensive experimental results in
Section 5. In Section 6, we discuss several factors which may have impact on the results of our
method and how to generalize our method to the unsupervised setting. Finally, we conclude the
paper and point out some potential future research directions in Section 7.

2 BACKGROUND

Tree-based ensemble learning is a traditional but popular machine learning model for classification
and regression tasks. It has merits in handling different types of input features, requiring little or
no data preprocessing, and being easy to train and interpret. Decision tree (Quinlan, 1979; Breiman
et al., 1984) and random forest (Ho, 1995; 1998; Breiman, 2001) are two classic examples of tree-
based learning models. There are also other types of tree-based learning models such as extremely
randomized tree (Geurts et al., 2006) and isolation forest (Liu et al., 2008).

2.1 DECISION TREE AND RANDOM FOREST

A decision tree is a graphical representation of a decision-making process. It is one of the most
popular supervised learning models in machine learning. It is a tree-like structure consisting of
nodes and branches which represent decisions and their possible consequences. In a decision tree,
each internal node represents a test on an attribute, each branch represents the outcome of the test,
and each leaf node represents a class label or a decision. It starts with a root node that represents the
entire dataset and recursively partitions the dataset into smaller subsets based on the values of the
input attributes, until a stopping criterion is met or a decision is made.

Random forest is an ensemble of multiple decision trees. It builds many decision trees and combines
the output of all the trees as weaker learners to form a strong learner. In a random forest, each
decision tree is usually fitted on a boostrapped subsampled data and subsampled input features. The
way to find the best split point among these features is based on some criterion such as Gini impurity
or information gain. Once the model is fitted, the outputs of the individual trees are combined
through a voting system to make a final prediction.

2.2 EXTREMELY RANDOMIZED TREE

Extremely randomized tree has a similar theme as random forest. However, instead of finding the
best split point of each feature such as in random forest, it picks a random threshold to make each
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split. The extra randomness from the random thresholds can lead to trees with higher bias but
usually with reduced variance when compared to random forest. Given the randomness in picking
thresholds, the training process can often be faster than random forest, as it avoids the exhaustive
search for the best split point. We refer to (Geurts et al., 2006) for a more detailed discussion of
extremely randomized tree.

3 TREE-BASED OUT-OF-DISTRIBUTION DETECTION

Despite the success of tree-based ensemble models in tackling tasks such as classification and regres-
sion, their power for other tasks are still under-explored. Recall that OOD detection is the process
of identifying data samples that belong to a different distribution than the one used to train a ma-
chine learning model. Let us explain the intuition of our method for OOD detection in the following
subsections.

3.1 TREE EMBEDDING

Our idea is based on the following observation. On the left side of Figure 1, there are four training
samples and they are separated by a horizontal line y = y1 and a vertical line x = x1. In the
training phase, a tree-based ensemble learning model, e.g., random forest, is learned. By choosing
appropriate hyperparameters, the model will build some classification trees. For convenience, let us
assume there are two trees being built during training, as shown on the right side of Figure 1.

Figure 1: Training samples for tree-based ensemble learning

Using these two trees as references, the lower left sample corresponds to the fourth leaf node in the
first tree and fourth leaf node in the second tree, the upper left sample corresponds to the third leaf in
the first tree and second leaf node in the second tree, the upper right sample corresponds to the first
leaf node in the first tree and first leaf node in the second tree, the lower right sample corresponds to
the second leaf node in the first tree and third leaf node in the second tree. In other words, for each
sample, we use a vector to indicate which leaf node the sample will reach for all trees. This gives us
a tree embedding in the feature space.

So far, we have obtained row vectors [4, 4], [3, 2], [1, 1], [2, 3] as the tree embedding for the lower
left sample, upper left sample, upper right sample, lower right sample, respectively. Let us call
them the first, second, third, fourth samples. More conveniently, we can put these vectors into a tree
embedding matrix as 4 4

3 2
1 1
2 3

 . (1)

Recall that the hamming distance d between two vectors x1,x2 ∈ Rn is defined as the normalized
number of components where these two vectors differ, i.e., d(x1,x2) := 1

n∥x1 − x2∥ℓ0 . We
calculate the average pairwise hamming distance (APHD) for each fixed training sample (each row
of the embedding matrix) against other training samples. For example, for the first sample in our
case, we have d([4, 4], [3, 2]) = 1, d([4, 4], [1, 1]) = 1, d([4, 4], [2, 3]) = 1. The APHD for the first
sample is defined as the average of these three values, which equals to 1. Similarly, the APHD of
the second, third, and fourth samples are all equal to 1.
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3.2 OUT-OF-DISTRIBUTION DETECTION

Once we have the fitted tree-based ensemble model, the unlabeled testing samples will be feed into
the model and generate a tree embedding for each individual testing sample.

Figure 2: Tree-based ensemble learning for in-distribution (left panel) and out-of-distribution (right
panel)

We can calculate the APHD for each testing sample against other testing samples the same way as we
did for the training samples. These AHPD values can be used as an indicator to determine whether
the whole testing data is more likely from an in-distribution or out-of-distribution data. For example,
in the left panel of Figure 2, the APHD values for the four testing samples equal to 1, 1, 1, 1, in the
right panel of Figure 2, the APHD values for the four testing samples equal to 0, 0, 0, 0. Therefore,
we can choose some threshold value, say 0.5, to separate the in-distribution from out-of-distribution
data. Let us summarize the idea into Algorithm 1.

Algorithm 1 Tree-based Out-of-distribution Detection (TOOD Detection)
1: Input: Training samples {xtrain

i }Ni=1 ⊂ Dtrain, testing samples {xtest
i }Mi=1 ⊂ Dtest, class

labels ytraini ∈ {1, 2, · · · ,K} for i = 1, · · · , N .
2: Fit a random forest or extremely randomized tree model based on {xtrain

i }Ni=1 and {ytraini }Ni=1
to obtain the tree embedding feature map.

3: Feed testing samples {xtest
i }Mi=1 ⊂ Dtest into the model to obtain their tree embedding vectors

and form the tree embedding matrix.
4: For each testing sample (a row in the embedding matrix), calculate its APHD against all the

other testing samples.
5: Output: The APHD values for all testing samples.

Intuitively, in-distribution samples will have larger APHD values since samples from in-distribution
are more likely to be separated by the decision boundaries obtained from training if the samples on
the opposite sides of each decision boundary have different labels, which results in a larger pairwise
hamming distance. On the other hand, out-of-distribution samples will have smaller APHD values
since they are more likely to appear only on one side of each decision boundary and hence are less
likely to be separated by the those decision boundaries. Therefore, we can use APHD values to
distinguish in-distribution data from out-of-distribution data. Let us give a more detailed analysis in
the next section.

4 ANALYSIS

For convenience, let us assume all the decision trees considered from now on are binary, the number
of samples for each leaf node equals to 1, and all the trees are pruned to be minimal. Let us also
assume all the constraints in the decision nodes are hyperplanes which are orthogonal to some axes
(e.g., x > x1 or y > y1, but not x+y > x1+y1). Suppose our data of interest lies in some underlying
manifold M of certain dimension. From the tree-based ensemble learning model which is obtained
through training samples, we can define the tree embedding as T = (T1, · · · , TL) : M → RL,
where Tℓ, ℓ = 1, · · · , L, is the tree embedding for the ℓ-th tree, L is the total number of trees.

Let Hℓ := {H1, H2, · · · , Hm} be the set of all decision regions when growing the ℓ-th tree. For
example in Figure 1, we have H1 = H2 = {H1, H2, H3, H4} where H1 = {(x, y) : x > x1, y >
y1}, H2 = {(x, y) : x > x1, y < y1}, H3 = {(x, y) : x < x1, y > y1}, H4 = {(x, y) : x <
x1, y < y1}. It is worthwhile to note the decision regions from a same tree are mutually exclusive.
The following results can be established and we defer all the proofs to the appendix.
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Lemma 1 Let Hℓ be the set of all decision regions obtained from the training samples when growing
the ℓ-th tree. For any x1,x2 ∈ M, we have

d(Tℓ(x1), Tℓ(x2)) =

{
0 if x1,x2 ∈ H for some H ∈ Hℓ,

1 otherwise.
(2)

Now we are ready to show the correctness of our approach. In other words, we want to show the
APHD values will be significant different for data coming from in-distribution versus data coming
from out-of-distribution. Suppose all the training and testing samples are of dimension n, let us
first show a simple case when Dtrain and Dtest are easily separated. Here we use the notation
Conv(supp(A)) to indicate the convex hull of the support of set A.

Theorem 1 Suppose Conv(supp(Dtest)) ∩ Conv(supp(Dtrain)) = ∅. Then for any pair of sam-
ples xi,xj ∈ Dtest, we have

d(Tℓ(xi), Tℓ(xj)) = 0. (3)

Next, let us see the expected hamming distance for any pair of samples from a distribution that is
same as Dtrain is away from 0, and hence the expected AHPD values are away from 0. Therefore,
it is reasonable to choose some threshold in order to distinguish in-distribution data from out-of-
distribution data.

Theorem 2 Suppose Hℓ divides the data manifold in Rn into K = O(kn) different decision regions
(where k is roughly the number divided pieces for each dimension) based on training samples. If
Dtest follows the same distribution as Dtrain and suppose all testing samples have equal probability
to occur across all K decision regions. Then for any xi,xj ∈ Dtest, their expected tree embedded
hamming distance is

E[d(Tℓ(xi), Tℓ(xj))] =
K − 1

K
. (4)

In particular, we have E[d(Tℓ(xi), Tℓ(xj))] → 1 as K → ∞.

Remark 1 As we will see in Figure 3 from the experiments, the AHPD values for real image datasets
are usually close to 1, that is because the distribution of images are so complicated that the tree-
based model divides the entire spaces into enormous decision regions. It is also intuitive that K will
grow as the number of training samples increases, this agrees with our observation in the top row
of Figure 4.

However, data in reality can be complicated and it is often not the case that Conv(supp(Dtest)) ∩
Conv(supp(Dtrain)) = ∅. In general, it is not easy to estimate the expected tree embedded ham-
ming distance unless the data has certain nice distribution. For data with uniform distribution, we
can establish the following result.

Theorem 3 Suppose Dtrain follows uniform distribution on [a1, b1]
n and Dtest follows uniform

distribution on [a2, b1 + a2 − a1]
n where a1 ≤ a2 ≤ b1. If for all ℓ = 1, · · · , L, Hℓ divides the

data manifold in Rn into exponentially many (k ≫ 1 for each dimension) decision regions based on
training samples from Dtrain. Then for any pair of testing samples xi,xj ∈ Dtest, we have

E[d(Tℓ(xi), Tℓ(xj))] = 1−
(a2 − a1
b1 − a1

)2n

. (5)

In particular, if a2 = b1, then E[d(Tℓ(xi), Tℓ(xj))] = 0. If a2 = a1, then E[d(Tℓ(xi), Tℓ(xj))] = 1.
These agree with the results in Theorem 1 and 2.

Remark 2 We can see that as data dimension increases, the expected pairwise hamming distance
also increases. This agrees with our observation in Figure 7 that the distribution becomes more
indistinguishable as the dimension increases. This phenomenon also reflects the issue of curse of
dimensionality. However, in practice, we can reduce the data dimension by extracting the latent
features via autoencoders, as demonstrated in our experiments for image data.

Now we can establish the consistency result of pairwise hamming distance for ensemble of multiple
trees by using Hoeffding’s inequality.
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Theorem 4 Suppose the total number of trees being built in the ensemble model equals to L. Under
the same assumptions as Theorem 3, the tree embedded pairwise hamming distance for any pair of
testing samples xi,xj ∈ Dtest satisfies

E[d(T (xi), T (xj))] = 1−
(a2 − a1
b1 − a1

)2n

, (6)

and
P
(∣∣∣d(T (xi), T (xj))− E[d(T (xi), T (xj))]

∣∣∣ ≥ t
)
≤ 2 exp(−2t2L). (7)

Remark 3 The significance of Theorem 4 is that it is an instance-based result, which is more de-
sirable than sample-based result, and can be applied to a more general scenarios in practice. In
the case of there are only very few testing samples, it is still applicable as long as there are enough
training samples.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of TOOD detection method by evaluating it on
several benchmark datasets and comparing it with other state-of-the-art OOD detection methods. We
choose to only show the sample-based OOD detection results for making the comparison easier with
other methods. To show that our approach is broadly applicable to various machine learning tasks,
we perform experiments on tabular data analysis, computer vision, and natural language processing
tasks. We present the mean values for all the experiments. The full results in the mean ± std form
are provided in the appendix. For all the means and standard deviations presented in this section and
in appendix, values are percentages, and are rounded so that 99.95% rounds to 100% and 0.049%
rounds to 0%.

For simulated and tabular data, we directly use the original training samples as input for the tree-
based model. For image or text data, we impose an autoencoder or word embedding to extract
latent features and use latent features as input for our tree-based model. More details of the datasets
usage, experimental procedures, hyperparameters, and evaluation are provided in the appendix. For
reproducibility purpose, we make our code available in the supplementary material.

5.1 PRELIMINARY RESULTS

Table 1: AUROC values of TOOD detection results. Rows are in-distribution datasets, columns are
out-of-distribution datasets.

BankMarketing Diabetes130US Electricity Gaussian Uniform

BankMarketing - 100 100 100 99.9
Diabetes130US 100 - 100 100 100
Electricity 99.9 100 - 99.9 97.4

Table 2: AUROC values of TOOD detection results. Rows are in-distribution datasets, columns are
out-of-distribution datasets.

IMDB AGNEWS Amazon YahooAnswers Yelp

IMDB - 100 96.2 99.4 99.8
AGNEWS 100 - 99.7 98.8 100
Amazon 98.3 99.5 - 97.4 98.6
YahooAnswers 99.6 98.9 93.7 - 98.0
Yelp 99.8 100 98.6 99.5 -

For computer vision tasks, we can see in Table 3 that TOOD detection performs very well on
MNIST-like datasets. It is worth noting that QMNIST is also a hand-written digits dataset and
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is very similar to MNIST. This can be seen through its AUROC, AUPR, FPR95 value that QMNIST
is indistinguishable from MNIST but can easily be distinguished from FashionMNIST, while other
MNIST-like data are both distinguishable from MNIST and FashionMNIST. This shows that TOOD
detection is indeed able to tell whether there are intrinsic differences between images.

Table 3: TOOD detection results for MNIST and FashionMNIST datasets. Expanded results are
provided in the appendix.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

MNIST / FashionMNIST
MedMNIST 99.9 / 99.9 99.9 / 99.8 0.23 / 0.37
KMNIST 95.8 / 99.2 96.7 / 99.1 20.2 / 4.20
QMNIST 48.7 / 100 49.6 / 100 96.4 / 0

5.2 COMPARISON WITH STATE-OF-THE-ARTS

Table 4: Comparison with the basline
MSP (Hendrycks & Gimpel, 2017).
The in-distribution dataset is MNIST.

Dout
AUROC AUPR

↑ ↑
MSP / TOOD (ours)

Omniglot 96 / 100 97 / 100
NotMNIST 87 / 100 88 / 100
CIFAR10-bw 98 / 100 98 / 100
Gaussian 90 / 100 90 / 100
Uniform 99 / 100 99 / 100

We also summarize the results of TOOD detection and
several other state-the-of-art OOD detection for computer
vision and natural language tasks in Table 4, 5, and 6. Our
method is shown to have comparable or favorable perfor-
mance to the state-of-the-art results. Especially for the
20Newsgroups dataset, it outperforms other methods by a
quite large margin.

To gain some further insights, we perform an extra exper-
iment on STL-10 (a dataset somewhat similar to CIFAR-
10) as the testing data while using CIFAR-10 as the in-
distribution training data. The AUROC, AUPR, FPR95
for this experiment equals to 83.2%, 78.6%, 46.2%, re-
spectively. This again shows that our method is indeed
able to tell whether there are intrinsic differences between
images. The expanded experimental results on each indi-
vidual OOD dataset are provided in the appendix.

Table 5: Comparison with other methods whose results are based on WideResNet. The results are
averaged over six OOD datasets: SVHN, Texture, Places365, iSUN, LSUN-Crop, LSUN-Resize.

Din OOD detection Methods AUROC AUPR PFR95
↑ ↑ ↓

CIFAR-10

MSP (Hendrycks & Gimpel, 2017) 90.1 97.9 51.0
ODIN (Liang et al., 2018) 91.1 97.6 35.7
Mahalanobis (Lee et al., 2018) 93.3 98.5 37.1
OE (Hendrycks et al., 2019) 98.3 99.6 8.53
Energy score (Liu et al., 2020) 91.9 97.8 33.0
Energy fine tuning (Liu et al., 2020) 98.9 99.8 3.32
TOOD (ours) 99.1 98.8 3.93

CIFAR-100

MSP (Hendrycks & Gimpel, 2017) 75.5 93.9 80.4
ODIN (Liang et al., 2018) 77.4 94.2 74.6
Mahalanobis (Lee et al., 2018) 84.1 95.9 54.0
OE (Hendrycks et al., 2019) 85.2 96.4 58.1
Energy score (Liu et al., 2020) 79.6 94.9 73.5
Energy fine tuning (Liu et al., 2020) 88.5 97.1 47.6
TOOD (ours) 94.2 94.4 33.4
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Table 6: Comparison with other out-of-distribution detection methods MSP (Hendrycks & Gimpel,
2017), OE (Hendrycks et al., 2019), PnPOOD (Rawat et al., 2021) on 20Newsgroups dataset.

Din Dout
AUROC AUPR FPR90

↑ ↑ ↓
MSP / OE / PnPOOD / TOOD (ours)

Computer Sports 62 / 90 / 92 / 99.7 23 / 64 / 65 / 98.9 72 / 26 / 18 / 0.4
Politics 63 / 92 / 93 / 99.2 24 / 67 / 68 / 97.2 72 / 15 / 11 / 1.1

Sports Computer 63 / 82 / 89 / 99.8 23 / 35 / 51 / 99.7 71 / 32 / 22 / 0.3
Politics 61 / 82 / 87 / 98.8 21 / 36 / 51 / 97.0 76 / 30 / 24 / 2.3

Politics Computer 67 / 91 / 92 / 99.8 25 / 64 / 60 / 99.7 61 / 24 / 20 / 0.6
Sports 67 / 85 / 88 / 99.6 25 / 53 / 56 / 99.5 63 / 42 / 34 / 0.9

6 DISCUSSIONS

Let us have a more detailed discussion on how the data size and dimension will affect the APHD
values of the in-distribution and out-of-distribution samples. We will also see that our method is
robust to adversarial attack such as FGSM (Goodfellow et al., 2015) and can be generalized to the
unsupervised setting.

Figure 3: Boxplot of AHPD values when
CIFAR-10 is the in-distribution dataset.

Effect of data size on APHD values and TOOD de-
tection results We have shown in Theorem 2 that the
APHD values for in-distribution dataset increases as the
number of decision regions increases. This can also
be seen through Figure 3 that the decision boundaries
of an in-distribution data such as CIFAR-10 are com-
plicated enough so that its APHD values are close to
1. Meanwhile, as the number of decision regions in-
crease, the APHD values for out-of-distribution data
will also increase. For fixed dataset, one way to in-
crease the APHD values is to increase the number of
training samples, hence potentially increase the num-
ber of decision regions. Top row of Figure 4 shows that
the more in-distribution training samples there are, the
larger APHD values we get for both in-distribution and
out-of-distribution data.

Effect of data dimension on APHD values and TOOD detection results To further investigate
on how the data dimension will affect the APHD values and TOOD detection results, we design an
auxiliary experiment with three simulated datasets which consist of point clouds in Rn whose two
dimensional projection look like three particular geometric shapes: circles, lines, squares. Their two
dimensional projections are shown in Figure 6 in the appendix. We use circles as in-distribution data
and the other two as out-of-distribution data, the dimensions are increased as n = 5, 10, 30, 100. The
APHD values for each dimension is shown in Figure 7. We can see that higher dimension compli-
cates the data distribution and makes in-distribution and out-of-distribution data indistinguishable.

Robustness The tree-based ensemble learning method is known for its robustness against noise.
We conduct another experiment to validate this point. We apply FGSM attack on several testing
image data while using CIFAR-10 and CIFAR-100 as the training (in-distribution) data respectively.
Figure 5 shows that the TOOD detection results under FGSM attack do not compromise too much
compared with the case without attack.

Towards unsupervised learning One notable feature of the TOOD detection method is that it
uses information from training labels to divide the space into separate decision regions. It turns out
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Figure 4: APHD values for different training sample sizes (Top row: with original labels. Bottom
row: with randomly shuffled labels). From left to right: Electricity (in-distribution) vs Others (out-
of-distribution); FashionMNIST (in-distribution) vs Others (out-of-distribution); CIFAR-100 (in-
distribution) vs Others (out-of-distribution); IMDB (in-distribution) vs Others (out-of-distribution)

Figure 5: AUROC and AUPR scores of original images and images under FGSM attack for CIFAR-
10 (first and second subplots) and CIFAR-100 (third and fourth subplots) as in-distribution data

that the labels themselves do not carry too much information for the purpose of out-of-distrituion
detection. In other words, we can randomly shuffle the training labels and then fit a tree-based
ensemble model in the same fashion. In this way, the classification results are not as good as original
but the TOOD detection results are as good as if without shuffling the labels. This is likely because
TOOD detection uses pairwise hamming distance as the criterion to determine the OOD samples.
Intuitively speaking, even though the labels are randomly shuffled, as long as each sample itself
and its neighbours are of different labels, the tree-based model will still be able to divide the space
into different decision regions as if without randomly shuffling the labels, and hence the pairwise
hamming distance will not be affected. This can be seen through the bottom row of Figure 4, where
each of the subplots looks similar to its top counterpart.

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we proposed TOOD detection, an interpretable, robust, efficient, and flexible tree-based
ensemble learning approach for out-of-distribution detection. The proposed method works well on
various datasets and achieves comparable and favorable results than other state-of-the-art out-of-
distribution detection methods. TOOD detection is easy to train, requires little or no parameters fine-
tuning and is shown to be robust to adversarial attack, which most of the neural network approaches
are lack of. One potential future research direction can be developed on investigating how to use
feature engineering and dimension reduction techniques to find a better embedding space so that the
tree-based method for out-of-distribution detection will be more effective. Another direction is about
how to learn the inverse map of the proposed tree embedding. If we were able to learn its inverse
map, then we can use the inverse map to easily generate data which is likely to be the data coming
from the same distribution as original data. This perspective can be useful in potentially developing
a new scheme for generative model. In summary, we hope this work will bring people’s interests
into this new perspective of out-of-distribution detection mechanism and potentially stimulate more
research towards this direction in the future.
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A DATASETS

The experimental datasets are divided into four different categories: simulated data, tabular data,
image data, and text data. For all in-distribution datasets, we make use of both the training and
testing part of the datasets. For all out-of-distribution (OOD) datasts, we only use the testing part
of the datasets. If the size of testing part of an OOD dataset is too small, we will use its training
part to substitute the testing part. If a dataset only contains a single part as a whole, we will apply
standard training and testing split to seperate it into two parts. A brief summary of the datasets are
given below.

Simulated data We perform evaluation on three simulated high dimensional point clouds whose
2D projections look like circles, lines, squares. Their projections are shown in Figure 6.

Figure 6: 2D projection of simulated high dimensional point clouds with three particular shapes

Tabular data We perform evaluation on three tabular datasets: BankMarketing, Diabetes130US,
Electricity. These datasets can be download from here 1. For each dataset, we use it as in-distribution
data while all the other datasets are treated as out-of-distribution data. We also generate random
samples by using standard Gaussian and uniform distribution for each feature value in the tabular as
out-of-distribution datasets. All the feature values of these datasets are rescaled into the range [0, 1]
for experiments.

Image data We perform evaluation on two different types of images: gray-scale images and
colored images. For the former, we use MNIST 2 and FashionMNIST (Xiao et al., 2017) as in-
distribution data, use MedMNIST (Yang et al., 2023) (which is a collection of MNIST-like med-
ical image datasets), KMNIST (Clanuwat et al., 2018), QMNIST (Yadav & Bottou, 2019), Om-
niglot (Lake et al., 2015), NotMNIST 3, CIFAR-10bw (Krizhevsky, 2009) as out-of-distribution
data. For the latter, we use CIFAR-10 (Krizhevsky, 2009) and CIFAR-100 (Krizhevsky, 2009) as
in-distribution data, SVHN (Netzer et al., 2011), Texture (Cimpoi et al., 2014), Places365 (Zhou

1https://huggingface.co/datasets/inria-soda/tabular-benchmark
2https://yann.lecun.com/exdb/mnist/
3https://www.kaggle.com/datasets/lubaroli/notmnist
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et al., 2018), iSUN (Xu et al., 2015), LSUN-Crop (Yu et al., 2016), LSUN-Resize (Yu et al., 2016),
STL-10 (Coates et al., 2011) as out-of-distribution data. In both cases, we also generate random
images using standard Gaussian and uniform distribution for each pixel value as out-of-distribution
datasets. The pixel values generated from Gaussian distribution are clipped into the range [0, 1].

Text data We perform evaluation on text data such as IMDB, AGNEWS, Amazon, YahooAn-
swers, Yelp, which can be downloaded here 4. Each time, we use one of the text datasets as in-
distribution data while all the other datasets are treated as out-of-distribution data. We also use the
three categories ‘Computer’, ‘Sports’, ‘Politics’ from 20Newsgroups (Lang, 1995) dataset.

B BASELINES AND EVALUATION

Figure 7: APHD for simulated data with
different dimensions.

We compare the model performance with the state-of-
the-art OOD detection methods such as MSP (Hendrycks
& Gimpel, 2017), ODIN (Liang et al., 2018), Maha-
lanobis (Lee et al., 2018),OE (Hendrycks et al., 2019),
Energy score (Liu et al., 2020), and PnPOOD (Rawat
et al., 2021).

We choose false positive rates of out-of-distribution sam-
ples when the true positive rate of in-distribution samples
are at 90% and 95% (FPR90 and FPR95), the area un-
der the receiver operating characteristic curve (AUROC),
the area under the precision-recall curve (AUPR) as the
evaluation metrics for model performance. For these met-
rics, ↑ indicates larger value is better, ↓ indicates smaller
valuer is better. For all experiments, we use in-distribution data as positive samples and out-of-
distribution data as negative samples. All experimental results shown are percentage and are aver-
aged over 10 individual runs.

C FURTHER DETAILS OF EXPERIMENTAL PROCEDURE AND
HYPERPARAMETERS

As summarized in Algorithm 1, we first fit a tree-based model, e.g., random forest or extremely
randomized tree, by using the training part of an in-distribution dataset and then compute the APHD
by feeding both the testing part of in-distribution and out-of-distribution datasets. It is worth noting
that the out-of-distribution data is not used during the tree-based model fitting phase for most cases,
the tree-based model is only fitted by using the training part of each individual in-distribution dataset
except for the cases with CIFAR-10 and CIFAR-100.

For all experiments, we randomly choose 500 samples from in-distribution and out-of-distribution
testing data each time to calculate their average pairwise hamming distance (AHPD) values, and we
repeat each experiment 10 times to get 5000 APHD values. These values are used for determining
the AUROC, ARPR, and FPR90 or FPR95 scores.

Our code in the supplementary material can be run by putting the code in each cell of the ‘.py’
file sequentially into google colab. The ‘TOOD’ folder should be under the directory ‘/con-
tent/gdrive/MyDrive’. Unfortunately, we couldn’t include all the datasets because of the file size
limit for the submission system, but we are happy to provide all the datasets later on during the
review to verify that our results are genuine.

C.1 DATA PREPROCESSING

For tabular data, we directly use the original training samples as input for fitting the tree-based
ensemble model. For image data, we apply an autoencoder with certain structure to extract latent
features in the training images and use the latent features as input for tree-based model learning. For

4https://pytorch.org/text/stable/datasets.html
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text data, we apply GloVe (Pennington et al., 2014) with 6B tokens and 300d. We take average over
all the words embedding in each sentence and use the average embedding as the input for tree-based
ensemble model.

For all experiments involved in MNIST and FashionMNIST, we use a convolutional autoencoder
whose first layer of its encoder contains 1 in-channel and 16 out-channels, the kernel and padding
sizes are set to be 3 and 1 respectively. The second layer contains 16 in-channel and 4 out-channels,
the kernel and padding size are set to be 3 and 1 respectively. Then we apply a maximum pooling
with kernel and stride size both equal to 2. For the decoder part, the first layer contains 4 in-
channels and 16 out-channels, the kernel and stride size are set to be 2. The second layer contains
16 in-channels and 1 out-channel, the kernel and stride size are set to be 2. The ReLU activations
are added between inner layers and sigmoid activation is added after the last layer of autoencoder.
All other hyperparameters are the default values in pytorch.

For all experiments involved in CIFAR-10 and CIFAR-100, we use a convolutional autoencoder
whose first layer of its encoder contains 3 in-channels and 16 out-channels, the kernel, stride,
padding sizes are set to be 3, 2, 1 respectively. The second layer contains 16 in-channel and 32
out-channels, the kernel, stride, padding sizes are set to be 3, 2, 1 respectively. The third layer con-
tains 32 in-channel and 64 out-channels, the kernel, stride, and padding sizes are set to be 3, 2, 1
respectively. For the decoder part, the first layer contains 64 in-channels and 32 out-channels, the
kernel, stride, padding, output-padding sizes are set to be 3, 2, 1, 1 respectively. The second layer
contains 32 in-channels and 16 out-channel, the kernel, stride, padding, output-padding sizes are set
to be 3, 2, 1, 1 respectively. The third layer contains 16 in-channels and 3 out-channel, the kernel,
stride, padding sizes are set to be 4, 2, 1 respectively. The ReLU activation are added between inner
layers and sigmoid activation is added after the last layer of autoencoder. All other hyperparameters
are the default values in pytorch.

For experiments on MNIST and FashionMNIST, we train the autoencoder with 30 epochs on the
training dataset. For the experiments on CIFAR-10 and CIFAR-100, and we train the autoencoder
with 3 epochs on the training dataset and 30 epochs on each of the testing datasets.

C.2 HYPERPARAMETERS

To speed up the computation, we apply the extremely randomized tree (ExtraTree) model in all
experiments instead of random forest. However, one can apply random forest model as well to get
similar experimental results.

For simulated data and tabular data tasks, we set the hyperparameter min samples leaf =
1 in the python sklearn.ensemble.ExtraTreesClassifier model, while in other tasks, we fix
min samples leaf = 100. For computer vision and natural language taskes, we set
n estimators = 500, while in other tasks, we fix n estimators = 100. In all experiments, we fix
max features =′ sqrt′, bootstrap = True, class weight =′ balance′. All other hyperparame-
ters are the model’s default values.

From our experience, the hyperparameters used in training the tree models do not have much effect
on the OOD detection results, as long as the parameters not chosen too extreme.

D DEFERRED PROOFS

Let us show the missing proofs of lemma and theorems in Section 4.

D.1 PROOF OF LEMMA 1

Proof. We would like to show that d(Tℓ(x1), Tℓ(x2)) = 0 if and only if x1,x2 ∈ H for some
H ∈ Hℓ.

For sufficiency, suppose we have x1,x2 ∈ H for some H ∈ Hℓ. Then x1 and x2 will follow the
same decision constraints path in ℓ-th tree until reaching the leaf node. Hence Tℓ(x1) = Tℓ(x2).

For necessity, let us proceed by contradiction. Suppose otherwise, then for any x1,x2, there is at
least an H ∈ Hℓ such that x1 ∈ H but x2 /∈ H . Then x1,x2 will be separated through a decision
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node corresponding to H in Hℓ, and hence appears on different leaves in ℓ-th tree. Therefore, we
have Tℓ(x1) ̸= Tℓ(x2) and hence d(Tℓ(x1), Tℓ(x2)) = 1. □

D.2 PROOF OF THEOREM 1

Proof. Since we have assumed that the trees are pruned to be minimal and the number of samples
for each leaf node equals to 1, it is easy to see that the decision regions will be made such that both
sides of each decision boundary will contain some samples in Dtrain. Since Conv(supp(Dtest)) ∩
Conv(supp(Dtrain)) = ∅, the samples in Dtest will not cross any of the decision boundaries which
obtained from the training phase. In other words, for any xi,xj ∈ Dtest, there is at least an H ∈ Hℓ

such that xi,xj ∈ H . By Lemma 1, we have d(Tℓ(xi), Tℓ(xj)) = 0. □

D.3 PROOF OF THEOREM 2

Proof. If Dtest is the same as Dtrain, for any pair of samples x1,x2 ∈ Dtest, they will reach at
the same leaf node if they belong to a same decision region in Hℓ, and hence have tree embedded
hamming distance 0. Otherwise, they will have tree embedded hamming distance 1. Since there are
K regions in total, the probability for any pair of samples which happen to be in the same decision
boundary equals to K(1/K)2 = 1

K . Therefore we have E[d(Tℓ(x1), Tℓ(x2))] = 1− 1
K = K−1

K . □

D.4 PROOF OF THEOREM 3

Proof. Since we have assumed the decision boundaries are orthogonal to the axes, there will be
no decision boundaries intersect with the region [b1, b1 + a2 − a1]

n. Therefore, if both xi,xj ∈
[b1, b1 + a2 − a1]

n, their hamming distance equals to d(xi,xj) = 0. The probability for this case
to happen equals to

(
(a2−a1

b1−a1
)n
)2

= (a2−a1

b1−a1
)2n.

If both xi,xj ∈ [a2, b1 + a2 − a1]
n \ [a1, b1]n, since k ≫ 1 for each dimension, they will be almost

surely lie on different sides of some decision boundary, and hence their hamming distance equals to
d(xi,xj) = 1. The probability for this case to happen equals to (1− (a2−a1

b1−a1
)n)2.

If xi ∈ [b1, b1 + a2 − a1]
n, xj ∈ [a2, b1 + a2 − a1]

n \ [b1, b1 + a2 − a1]
n, or vice versa, their

hamming distance also equals to d(xi,xj) = 1. The probability for this case to happen equals to
2 · (a2−a1

b1−a1
)n · (1− (a2−a1

b1−a1
)n).

Therefore, the expected pairwise hamming distance of xi,xj equals to the weighted average of
above cases, which is

E[d(Tℓ(xi), Tℓ(xj))] = 0 ·
(a2 − a1
b1 − a1

)2n

+ 1 ·
(
1−

(a2 − a1
b1 − a1

)2n)
= 1−

(a2 − a1
b1 − a1

)2n

. (8)

□

D.5 PROOF OF THEOREM 4

Proof. The first result follows directly since E[d(Tℓ(xi), Tℓ(xj))] = 1 − (a2−a1

b1−a1
)2n for ℓ =

1, · · · , L. The second result follows since d(T (xi), T (xj)) = 1
L

∑L
ℓ=1 d(Tℓ(xi), Tℓ(xj)), and

we can apply Hoeffding’s inequality with E[d(Tℓ(xi), Tℓ(xj))] = 1− (a2−a1

b1−a1
)2n for ℓ = 1, · · · , L.

□

E EXPANDED EXPERIMENTAL RESULTS
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Table 7: Expanded TOOD detection results for MNIST. The standard deviation values smaller than
1% are omitted.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

MNIST

BreastMNIST 100 100 0
ChestMNIST 100 100 0
OctMNIST 100 100 0
OrganaMNIST 99.9 99.9 0.4
OrgancMNIST 99.8 99.7 0.6
OrgansMNIST 99.8 99.8 0.6
PneumMNIST 100 100 0
TissueMNIST 100 100 0
KMNIST 95.8± 2.32 96.7± 2.17 20.2± 3.65
QMNIST 48.7± 9.8 49.6± 8.6 96.4± 2.98
Omniglot 100 100 0
CIFAR-10bw 100 100 0
NotMNIST 100 100 0
Gaussian 100 100 0
Uniform 100 100 0

Table 8: Expanded TOOD detection results for FashionMNIST. The standard deviation values
smaller than 1% are omitted.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

FashionMNIST

BreastMNIST 100 100 0
ChestMNIST 99.9 99.8 0.1
OctMNIST 100 100 0
OrganaMNIST 99.9 99.9 0.4
OrgancMNIST 99.6 99.2 1.1
OrgansMNIST 99.5 98.5 1.0
PneumMNIST 100 100 0
TissueMNIST 100 100 0
KMNIST 99.2 99.1 4.2± 1.12
QMNIST 100 100 0
Omniglot 100 100 0
CIFAR-10bw 99.6 98.0± 1.36 0.5
NotMNIST 100 100 0
Gaussian 100 100 0
Uniform 100 100 0
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Table 9: Expanded TOOD detection results for MNIST after random shuffling of labels. The stan-
dard deviation values smaller than 1% are omitted.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

MNIST

BreastMNIST 100 100 0
ChestMNIST 100 100 0
OctMNIST 100 100 0
OrganaMNIST 100 100 0.1
OrgancMNIST 99.8 99.7 1.2
OrgansMNIST 99.9 99.9 0.2
PneumMNIST 100 100 0
TissueMNIST 100 100 0
KMNIST 93.2± 3.32 95.0± 2.68 52.0± 10.73
QMNIST 48.7± 9.6 49.6± 8.5 97.0± 1.46
Omniglot 100 100 0
CIFAR-10bw 100 100 0
NotMNIST 100 100 0
Gaussian 100 100 0
Uniform 100 100 0

Table 10: Expanded TOOD detection results for FashionMNIST after random shuffling of labels.
The standard deviation values smaller than 1% are omitted.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

FashionMNIST

BreastMNIST 100 100 0
ChestMNIST 99.8 99.0 0.3
OctMNIST 100 100 0
OrganaMNIST 100 100 0.1
OrgancMNIST 99.8 99.5 1.1
OrgansMNIST 99.9 99.9 0.4
PneumMNIST 100 100 0
TissueMNIST 100 100 0
KMNIST 97.8± 1.87 98.0± 1.23 13.2± 4.38
QMNIST 100 100 0
Omniglot 100 100 0
CIFAR-10bw 99.9 99.9 0.5
NotMNIST 100 100 0
Gaussian 100 100 0
Uniform 100 100 0
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Table 11: Expanded TOOD detection results on text data. The standard deviation values smaller
than 1% are omitted.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

IMDB

AGNEWs 100 100 0
Amazon 96.2± 1.56 93.6± 2.14 8.61± 3.21
YahooAnswers 99.4 98.9 2.02
Yelp 99.8 99.5 0.61

AGNEWS

IMDB 100 100 0
Amazon 99.7 98.7 0.62
YahooAnswers 98.8 96.7± 1.82 3.98± 1.93
Yelp 100 100 0

Amazon

IMDB 98.3 94.3± 2.31 2.62± 1.42
AGNEWS 99.5 98.3 0.62
YahooAnswers 97.4± 1.54 93.6± 2.76 7.03± 3.42
Yelp 98.6 95.8± 1.65 2.41± 1.12

YahooAnswers

IMDB 99.6 98.9 1.04
AGNEWS 98.9 97.6 1.78
Amazon 93.7± 2.54 90.2± 3.62 19.4± 5.87
Yelp 98.0 95.4± 1.42 4.43± 1.92

Yelp

IMDB 99.8 99.7 0.61
AGNEWS 100 100 0
Amazon 98.6 97.7± 1.29 4.20± 1.35
YahooAnswers 99.5 99.3 1.81

Table 12: Expanded TOOD detection results for CIFAR-10. The standard deviation values smaller
than 1% are omitted.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

CIFAR-10

SVHN 99.4 98.9 2.32
Texture 99.5 98.8 1.74
Places365 97.6± 1.65 97.2± 1.34 10.9± 3.76
iSUN 98.6 98.2 5.85± 2.15
LSUN-Crop 99.9 99.8 0.74
LSUN-Resize 99.6 99.6 1.94
STL-10 83.2± 5.23 78.6± 7.82 46.2± 12.31

Table 13: Expanded TOOD detection results for CIFAR-100. The standard deviation values smaller
than 1% are omitted.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

CIFAR-100

SVHN 96.4± 1.91 95.7± 1.97 19.5± 5.27
Texture 99.1 98.7 4.30± 1.62
Places365 87.9± 3.48 90.1± 2.73 76.6± 7.93
iSUN 88.8± 4.23 88.8± 4.19 54.8± 8.92
LSUN-Crop 98.8 98.6 8.02± 2.52
LSUN-Resize 93.9± 2.32 94.2± 2.19 37.3± 5.91
STL-10 75.0± 6.37 67.9± 8.83 62.4± 9.31
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Table 14: Expanded TOOD detection results for CIFAR-10 after random shuffling of labels. The
standard deviation values smaller than 1% are omitted.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

CIFAR-10

SVHN 99.5 99.1 2.15
Texture 99.4 99.3 2.62
Places365 97.1± 1.34 97.2± 1.18 16.0± 5.61
iSUN 97.2± 1.72 95.9± 2.18 12.9± 3.71
LSUN-Crop 99.9 99.9 0.13
LSUN-Resize 99.2 98.9 3.53± 1.75
STL-10 53.9± 8.45 49.2± 11.63 76.7± 8.68

Table 15: Expanded TOOD detection results for CIFAR-100 after random shuffling of labels. The
standard deviation values smaller than 1% are omitted.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

CIFAR-100

SVHN 94.3± 2.51 94.5± 2.32 28.6± 7.62
Texture 99.8 99.8 1.05
Places365 84.2± 4.72 87.3± 4.23 71.7± 6.71
iSUN 88.3± 3.81 89.3± 3.62 41.8± 6.86
LSUN-Crop 99.1 99.1 5.00± 2.43
LSUN-Resize 90.5± 2.86 91.1± 2.59 37.8± 4.37
STL-10 68.6± 6.82 64.5± 7.47 63.3± 5.49

Table 16: Expanded TOOD detection results with FGSM attack for CIFAR-10. The standard devia-
tion values smaller than 1% are omitted.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

CIFAR-10

SVHN 96.6± 1.73 95.7± 1.98 15.2± 3.52
Texture 99.5 99.4 2.95± 1.32
Places365 91.1± 3.81 91.9± 3.65 44.4± 6.42
iSUN 89.9± 2.71 87.9± 3.21 36.1± 5.62
LSUN-Crop 99.7 99.6 1.60
LSUN-Resize 98.4 98.4 9.72± 2.31
STL-10 69.0± 7.89 66.2± 8.91 73.2± 6.36

Table 17: Expanded TOOD detection results with FGSM attack for CIFAR-100. The standard
deviation values smaller than 1% are omitted.

Din Dout
AUROC AUPR FPR95

↑ ↑ ↓

CIFAR-100

SVHN 96.5± 1.93 95.5± 2.51 12.8± 2.71
Texture 98.5± 1.07 97.9± 1.02 5.55± 2.63
Places365 83.9± 4.82 84.0± 3.92 56.2± 7.92
iSUN 82.9± 3.71 77.9± 4.31 47.2± 6.82
LSUN-Crop 97.8± 1.52 97.4± 1.53 10.0± 3.65
LSUN-Resize 86.2± 3.81 83.8± 3.91 45.1± 6.82
STL-10 68.9± 6.87 62.7± 7.12 58.2± 8.52
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