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ABSTRACT

Quantum machine learning (QML) holds the promise to solve classically in-
tractable problems, but, as critical data can be fragmented across private clients,
there is a need for distributed QML in a quantum federated learning (QFL) for-
mat. However, the quantum computers that different clients have access to can be
error-prone and have heterogeneous error properties, requiring them to run circuits
of different depths. We propose a novel solution to this QFL problem, Quorus,
that utilizes a layerwise loss function for effective training of varying-depth quan-
tum models, which allows clients to choose models for high-fidelity output based
on their individual capacity. Quorus also presents various model designs based
on client needs that optimize for shot budget, qubit count, midcircuit measure-
ment, and optimization space. Our simulation and real-hardware results show the
promise of Quorus: it increases the magnitude of gradients of higher depth clients
and improves testing accuracy by 12.4% on average over the state-of-the-art.

1 INTRODUCTION

Quantum machine learning (QML) holds the potential to solve classically difficult problems with
high efficiency. Existing methods using quantum ML have been applied to a variety of industrial
and scientific applications, including portfolio optimization, drug discovery, and weather forecast-
ing (Peral-Garcia et al., [2024; |Smaldone et al., [2025} |Liu et al., [2025). Quantum ML has also been
used to solve classical ML problems with significant reductions in parameters (Kashif et al., 2025}
DiBrita et al.| [2025; [Leither et al.l [2025). Given the success of quantum ML, a natural consider-
ation, like in classical ML, is to consider the real-world case of fragmented data across multiple
private clients. How can clients with quantum computers train together, without revealing data to
other parties? The classical analog of solving this problem has also been proposed, called Quantum
Federated Learning (QFL) (Chen & Yoo, [2021]).

However, existing QFL techniques do not consider the heterogeneity of quantum devices. All quan-
tum computers are subject to hardware error that varies from computer to computer, which has con-
tinued to be a critical challenge in quantum computing (Tannu & Qureshi, 2019; Montanez-Barrera
et al.| [2025). The quantum computing research community has proposed Quantum Error Correction
(QEC) as a solution to quantum hardware error (Calderbank & Shorl, |1996; |Acharya et al., [2024);
however, QEC techniques require millions of qubits, which will not exist for many years (Gidney &
Ekeral, 2021} |Sevilla & Riedel, 2020). Thus, in our current day, to use error-prone devices for QML
tasks, one strategy is to limit the depth of the circuit (quantum code) that is executed on the hardware,
as the error manifested in the output of the circuit is proportional to its depth. Reducing the depth
of the circuit is particularly important, as a major source of quantum errors is decoherence, where a
qubit loses its important amplitude and phase information with respect to time (Schlosshauer} 2019
Zurek, 2003 Preskill, 2018). By keeping the circuit to a reasonably shallow depth, researchers
attempt to utilize existing quantum computers to achieve practical quantum utility today.

Another challenge in QML is the barren plateaus problem, where gradients vanish as the circuit
depth grows (Anschuetz, 2025} |Yan et al., |2024; [Patel et al., 2024). In the worst case, gradients
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Figure 1: Depiction of the overall setup of our depth-heterogeneous quantum FL framework. Our
setup utilizes the realistic scenario of a classical network for sending and receiving parameters, and
each client has a quantum computer that can run circuits of varying depths.

decay exponentially, making it practically impossible to train deep circuits, even when noise is
not the dominating factor (Cerezo et al., 2021). This significantly restricts the scalability of QML
circuits, as optimization becomes infeasible beyond moderate depths. A further obstacle is resource
efficiency. Unlike classical training, which can rely on inexpensive iterations, every quantum training
step requires repeated circuit executions (shots) to estimate observables (McClean et al.| 2016). As
a result, algorithms must be designed to minimize the number of shots needed for accurate training
to ascertain the economic viability for real-world QML.

To address the above challenges, in this work, we design an error-aware QFL technique, Quorus,
by considering that clients can only run quantum circuits of particular depths, based on the depth at
which they can achieve reasonably high accuracy to participate in FL. We illustrate our overall setup
in Fig. |1} While existing QFL works have shown that if training is done in the presence of noise that
corrupts the output, then the final training accuracy degrades with depth (Rahman et al.| 20255 Sahu
& Gupta, [2024), our goal is to enable clients to run as many layers as possible, to allow for higher
expressive power and thus, higher accuracy (Sim et al., 2019). Quorus is the first-of-its-kind work
that utilizes layerwise loss functions and knowledge distillation for synchronized objectives across
heterogeneous-depth clients. We propose novel shot-efficient designs for varying quantum hardware
capabilities and demonstrate both higher gradient magnitudes as well as implementations on all of
IBM’s state-of-the-art superconducting quantum computers.

The contributions of this work are as follows:

* The first structured quantum federated learning framework (Quorus) that utilizes layerwise
losses and reverse distillation for improved accuracy (to the best of our knowledge).

* A quantum model architecture whereby an ensemble of layerwise quantum classifiers can be
obtained with no shot overhead, leading to both higher accuracy and resource efficiency.

* A design that improves testing accuracy by up to 12.4% over Q-HeteroFL (Diao et al.,
2021)while being shot-efficient for different binary classification tasks.

* A model that yields higher gradient norms, reducing barren plateau effect, and achieves accuracy
within 3% of ideal simulation on IBM superconducting QPUs, showing real-world viability.

2 PRELIMINARIES

Quantum Computing Basics. Quantum computers process information by manipulating qubits
with quantum circuits. The state of a qubit is represented as a vector: [¢)) = [y [0) + 51 |1), where
Bo,B1 € Cand |Bo|> + |B1]? = 1. The state |t)) exists in a superposition of the states |0) and |1),
which encodes the quantum data we process. The probability of measuring the qubit to be in state
|4) is p(i) = |B;|%, meaning we must have |3p|? + |B1]? = 1. A statevector of a system of n qubits
is a complex vector in the Hilbert space [1)) € C*" = H,,, that is normalized (1)) = 1. We can
write our state in the computational basis: defining by as the bitstring corresponding to the integer
k, the computational basis is the set {|bx) Vk € Z,0 < k < 2"~1}. Our state can be expressed as

n—1
|v) = Ei:o Bk |k). The quantum data |4/} is processed by a quantum circuit U, a unitary operator
taking U |1)1) = [12). Because U is unitary, it is reversible (UUT = UTU = I).
Parameterized Quantum Circuits. To frame a learning problem on quantum computers, we pa-

rameterize the operation U with parameters 6, which are typically rotation angles on the Bloch
sphere. Then, U(0) is a parameterized quantum circuit (PQC) with trainable gate parameters, and
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the structure of U(#) is referred to as an ansatz. These variational quantum circuits are often com-
posed of repeated circuit structures called layers, and can be written as U(6) = Uy.(6o..) =
Ur(0)Ur—1(01-1)...Uo(80), where U, is the parameterized circuit for layer 4, with parameters 6;.
Deeper circuits are more expressive, but also suffer from decoherence and errors when evaluated
on real hardware. Quantum machine learning generally aims to solve the following problem for an
objective L and input data z: 6* = argming.g L(U,x;0). To evaluate L(U, z;6) on a quantum
computer, it is performed by estimating p(b), the probability of measuring state |b) via running the
circuit U (6) multiple times, and tracking how many times the outcome b was observed. Each run of
the quantum circuit is called a shot, and shots are expensive on current-day quantum hardware.

Quantum Measurements. The objective L of a parameterized circuit is extracted via projective
measurement, which is irreversible in general. For a particular outcome b € {0, 1}, if the first qubit
in state |1) is measured to be b, then the resulting state is collapsed to |1)},) = \/ﬁ > kiky—b Bk [K).
This fundamental quantum property poses a unique challenge when the objective L; is defined for
each layer, so L; = L(Up;; 6o.;), where Uy, 0. ; represents the layers and parameters up to layer j.
Because measuring a qubit collapses the superposition and removes information from the quantum
state, it poses a challenge for simultaneously collapsing information via measurement and retaining
sufficient information for subsequent quantum layers and operations (Gyawali et al., [2024)).

Heterogeneous Federated Learning. Federated learning (FL) is a distributed machine learning
technique widely used in classical ML where each client’s data is private to themselves (McMahan
et al.,2023). The overall objective function in federated learning for m clients is L(x1, X2, ..., Typ) =
— > i1 Li(x;), where x; represents the data of client j and L; is the loss function for client
7 (McMahan et al.| |2023). In centralized federated learning, training is done locally by clients,
and parameters are aggregated in a centralized server and broadcast back to clients. An intuition
may be gained for why parameter aggregation works by observing that, in the special case where
stochastic gradient descent (SGD) is used, parameters are aggregated every epoch, and the batch
size is equal to the amount of data a client has, it is equivalent in expectation to performing SGD on
the centralized objective L (McMahan et al.| 2023).

Heterogeneous Federated Learning adds a layer of complexity to FL by allowing for clients to
have different local model architectures (Diao et al., [2021). This scenario accounts for the case
where some clients have differential computational abilities, but still want to take advantage of
FL to obtain a shared model. Because the parameter spaces of models are now different, special
considerations need to be made as the differing model architectures lead to parameter mismatches
that can negatively affect training (Kim et al., [2023). Refer to Appendix [A]for further details.

3 RELATED WORK

Classical Federated Learning. The problem of depth-heterogeneous quantum federated learning,
where clients have classical models, has a large body of work in the literature, but many state-of-the-
art techniques in classical FL cannot be directly applied to the case where the model is a PQC. The
classical model-heterogeneous FL technique, HeteroFL (Diao et al., 2021), aggregates parameters
in shared submodels across clients. Since this original work, some newer techniques have been
proposed, namely FEDepth and ScaleFL (Zhang et al., 2025; Ilhan et al., 2023)), which assume that
intermediate layers can be trained; however, this is not applicable to PQC'’s as training these layers
requires a client to run circuits to that depth, which precisely is the bottleneck in quantum circuits.

Another work, ReeFL, uses a transformer to fuse features between layers; however, features are not
directly accessible in quantum ML unless via state tomography (Lee et al.,|2024). The classical work
most closely related to Quorus, DepthFL (Kim et al. 2023), is amenable to the setup of quantum
clients with models of varying depths as it is a layerwise FL technique; however, evaluating the
layerwise loss function on quantum computers is nontrivial due to measurement collapse, which we
discuss further in Sec.[4.3] Overall, these classical works cannot be directly applied to the quantum
FL setup and highlight the importance of quantum-centric design, which we propose in this work.

Quantum Federated Learning. The overall setup of QFL, where clients use the same architecture
PQC and use a centralized server for parameter aggregation, has been studied (Chen & Yoo, [2021));
however, the problem of depth-heterogeneous FL is not well studied in the quantum case. One work
that tackles the problem of parameters being lost in communication, named eSQFL (Yun et al.,
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2022), uses a layerwise loss function by computing the inner product of states between each layer;
however, computing inner products requires long-distance connectivity and is not applicable to run
on real hardware (5S4 et al., [2023). There is a gap in the literature related to quantum federated
learning for clients with heterogeneous needs, which we propose a solution for in this work.

4 DESIGN AND APPROACH

The overall workflow of our technique is illustrated in Fig. |1} Each client is able to train a PQC of a
different depth based on its hardware capability. After local training, clients send their parameters to
a server over a classical network, where parameters are aggregated and sent back to clients. Clients
then continue to train locally, repeating the process for a set number of rounds.

Algorithm 1: Quorus

Initialization : 6°

Server Executes: Client_Update(k, 0%):
P < All Clients Git1 gt
k
forroufjrilt =0,1,...,T~1do for local epoche = 1,2, ..., E do
f.' I ITEOP p el for each mini-batch by, do
orall k in parallel) do d dj d
éteat[:I:ik] Lk:iL’ PR iiDKL(pj Il ps)
gt+1 : gt e e dp — 1 —~ “=
0,7 < Client_Update(k, 0") i=1 i=1 ]‘;1.
St _ _ A7
0" [: dg] = 0 [ dy] + €'k i1 §rT1 — Adam(V Ly, (0515 b1),m, b)

foreach resource capability d; do Sea1
01+ [d,] « angle(——— 6+1[d,]) return 0
i g [Parz ] i

4.1 QUORUS WORKFLOW

A detailed description of our workflow is depicted in Algorithm [I] (Kim et all [2023). Because
PQC’s have heterogeneous depths, parameters are aggregated only among the clients that share each
parameter. We also perform aggregation of parameters with circular averaging because the quantum
circuit parameters in our implementation are rotation angles, where the angle function is defined as
angle(z) = atan2(imag(z), real(z)). The layerwise loss function for client k is

dy, 4 dy, d
L/f = Zzil Lce + dklfl Zzil jil, YE) DKL(pj ||pi)7 (1)

where Lf:e is the Binary Cross Entropy loss for the classifier at depth . Note, then, that this loss
function assumes that there is a means to extract classifier outputs at each layer — an important
problem with a unique quantum design (addressed in Sec. [4.3). dj, is the depth of client & and
Dx1(p; || p;) is the KL divergence between logits p; and p;. We use the same loss function as
in DepthFL (Kim et al., [2023)), because a similar intuition applies: we want a loss function that
clients share to address parameter mismatching, where parameters are different across clients due
to varying local parameter spaces. In addition, we want to use the KL divergence for “reverse
distillation”, whereby deeper classifiers are helped by shallower ones. These nuances are explored
and justified in (Kim et al.l 2023)), so we do not repeat the discussion for the quantum case.

The unique challenge in the quantum case is how exactly to evaluate the loss in Eq. |1} In our setup
for Quorus, the loss L, is computed via the probability of measuring a qubit to be 0 or 1 for our
binary classification tasks. This poses unique quantum-specific design considerations for Quorus,
which the following sections will be devoted to solving.

4.2 ANSATZ DESIGNS AND SELECTION

For any quantum computing problem, it is well-known that deciding the ansatz is essential (Sug-
isaki et al., |2022), for two main reasons. Firstly, it determines the expressibility and the space of
solution states that are explored, and because of the exponentially-sized Hilbert space that quantum
computers operate in, operating in a relevant subspace is essential (Sim et al., 2019; Yan et al., 2024;
Holmes et al.l 2022). Secondly, it is entirely possible to find an ansatz that is well-suited for the
problem of interest, but is very inefficient when implemented on hardware architectures with lim-
ited connectivity due to its use of long-distance two-qubit or multi-qubit gates, causing high levels



Published as a conference paper at ICLR 2026

Features I— Parameters

Features |—Parameters
@ [0} Rot

[0) Rot

=
2
&
=
(=}
=
o\

D 595 Ry Op® .
1o} {Ry}{Rot ® {Ry}{Ro] ®
Layer 1 Layer 2

(a) Staircase Ansatz (b) V-shaped Ansatz

Figure 2: We evaluate three ansitze for Quorus: (1) The staircase ansatz, (2) the V-shaped ansatz,
and (3) the alternating ansatz, which switches between staircase and V-shaped layers (not shown).

of output error (Kivlichan et al.;|2018; Romero et al.| [2018]). We address these problems by system-
atically exploring relevant ansitze for our problem, depicted in Fig.[2] In each layer of our ansatz,
we perform data reuploading as it has been shown in multiple quantum ML experiments to yield
improved accuracy and nonlinearities with respect to the input (Vidal & Theis, [2020; /Aminpour,
et al.| [2024). We use the Ry gate to achieve this. We use layers of generalized single-qubit gates Rot
as tunable parameters. The ansatzes we design are centered around two main principles:

(1) The ansatz must be hardware ef-
ficient, so we assume only nearest-
neighbor connectivity as observed
in quantum hardware |Huo et al. /

(0025): [Han et al] (2025). and (2) ‘\”J««. SR
only the first qubit is measured to
obtain the output statistic. The
latter choice is because we focus

Classifier

Classifier
Output

. . . . Inpu Partial
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this work, so measuring a single Layer 1 State  Layer2 Layer 1 Collapse Layer 2
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two relevant ansitze: the first is Figure 3: The difference between classical and quantum lay-
the Staircase ansatz, depicted in erwise classifiers. Measurements collapse quantum data, and
Fig. a) (Schuld et all [2020; [Sim| thus an altered state is passed to the next layer.

et al., 2019), which has a staircase

of CNOTs from the last qubit up to the first one. The second is the V-shaped ansatz, which has a
staircase of CNOTs going down from the first to the last qubit, which then go back up to the first
qubit, and the third is an alternating combination of the two. Based on our experimental evalua-
tion on various datasets in (Appendix [D)), we observe that the V-shaped ansatz performs the best in
a majority of the evaluations, and so we use it as the default ansatz. The reason that the V-shaped
ansatz performs well is its ability to broadcast information throughout qubits with more CNOT gates
traversing up and down the qubits (Sim et al., 2019).

— Features Parameters
4.3 QUANTUM CLASSIFIER DESIGN |0} Rot

When one attempts to implement the layerwise loss func-
tion in Eq. [I] there is an immediate problem: if we mea- |0 [T
sure the qubit, then how can we pass on the same state to

the next layer? An illustration of this dilemma is in Fig.[J} ~ i]o) oY Yo o
In DepthFL and other classical works that assume an in- o) o

termediate classifier, depicted in Fig. a), the data after : "
the first layer is somehow converted to a scalar, and im- Repeat L times

plicitly, the data is passed, unchanged, to the next layer ~ Run L times: once for each # of layers
(and this “copy” operation has minimal classical over- Figure 4: The Quorus-Layerwise de-
head). Fundamentally, a direct analog does not exist in sign. The circuit must be run L times,
quantum computation. In quantum computing, if we mea- where L is the number of layers.

sure one of the qubits mid-computation, this collapses the
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Figure 6: (a) The Blocking design (logically = to the Ancilla design), and (b) the Funnel design.
Blocking requires a midcircuit measurement, and Funnel restricts the size of unitary operations.

superposition on the first state and changes the state that is later used in computation (as represented
in Fig. 3[b)). Passing the state unchanged thus requires you to prepare another copy of it, which
induces additional shot overhead that is linear in the number of layers and is a nontrivial cost, given
the expense of running quantum computers. For example, running quantum circuits for just one
minute on an IBM quantum computer costs $96 (can run ~ 4 circuits in this time with 1k shots
each) ibm| Thus, we are posed with an important question: How do we implement this measurement
between layers in a quantum ML model, in a shot-efficient manner?

Solution 1: Layerwise. The most straightforward solu-
tion to the classical case is to “copy” the quantum state,
because we know exactly the circuit that prepared it. This
solution is depicted in Fig. d] However, this requires a
shot budget that scales linearly with the number of lay-
ers. For deep circuits, the required shot budget quickly
becomes infeasible for budget-constrained clients.

o) 03 20 o
Solution 2: Ancilla/Blocking. To address the case where o) °
a client does not have a high-shot budget, we design an & i
ansatz where it is possible to obtain predictions from each
layer with shots independent of the layer count. In partic-
ular, with reference to Figure[3(b), we propose continuing ~ Figure 5: The Quorus-Ancilla design.
to operate on the collapsed state in our PQC. This design The circuit is only run once, but requires
is depicted in Fig.[5] In particular, we entangle the first an ancilla qubit per layer, and also de-
qubit with an ancilla in the |0) state after each layer. We Pphases the first qubit.
evaluate each layer’s outputs by computing the marginal distribution on its ancilla. For the first
layer, the statistics match the Layerwise model; for later layers, they differ because entangling the
first qubit with an ancilla “dephases” it (Gyawali et al., [2024).

Repeat L times: one ancilla qubit
for each of the L layers

Since dephasing is limited to that qubit, we Table 1: Unique requirements of different quantum
hypothesize, and confirm on IBM hardware models of Quorus, highlighting their usecases.
(Sec. E]), that our quantum ML model can

still train effectively under this alternative Model ‘ 1Shot | 1 Qubit | Midcirc. | | Hilbert
model. Implementing this requires the first Budget | Count | Meas. Space
qubit to entangle with a new ancilla at each Layerwise ‘ v/ ‘ X ‘ X ‘ X
layer, which in turn demands long-distance X

CNOTs. Thus, while our Layerwise ansatz Ancila | x| v | x| il
assumes nearest-neighbor connectivity, sys-  Blocking | x| x| v | x
tems with larger qubit counts and richer con- Funel | x| x| x| v

nectivity can benefit from this Ancilla ap-
proach. In principle, ancillae are not required — one can simply just measure the first qubit, not
reset it, and continue in computation. This logically equivalent (proof provided in Appendix[B), but
physically distinct model of computation is depicted in Fig. [f[a), where a midcircuit measurement
is performed on the first qubit. This model would be feasible for clients who can do fast midcircuit
measurements, but existing midcircuit measurements are lengthy and error-prone (Deist et al., 2022
Rudinger et al., 2021).

Solution 3: Funnel. Finally, for clients that may not have a high-shot budget, no ancillas, and no
midcircuit measurement capability, we design a model that layer-by-layer drops operations that act
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Table 2: Capacity-wise Comparison (V-Shape) — Baselines + Quorus-Layerwise with A to the Best
(bolded). The means and standard deviations are shown for five different samples of data. We see
that Quorus-Layerwise consistently outperforms the baselines across client capacities.

Capacity Technique MNIST Fashion-MNIST
0/1 3/4 4/9 Trouser/Boot Bag/Sandal Pullover/Coat
Q-HeteroFL 90.3+5.2 (| 7.9) 58.8+12.6 (1 37.3) 59.3+7.3 (}20.7) 6244335 (1 36.4) 67.1414.6 (L 24.8)  58.9+6.1 (| 18.0)
oL Vanilla QFL (2L) 98.24 0.4 (] 0.0) 96.0+£1.2 (L 0.1) 80.0+0.9 98.5+ 1.1 (1 0.3) 91.9+1.2 76.9 + 0.4
Standalone 98.2+0.3 96.1 +1.2 78.5£2.5 (L 1.5) 98.34+0.9 (1 0.5) 91.2+1.0 (L 0.7) 74.9+1.8 (1 2.0)
Quorus-Layerwise 97.04+1.4 (] 1.2) 95.0£1.2 ([ 1.1) 78.2+£0.6 (1 1.8) 98.8+0.9 86.1£8.1 (1 5.8) 76.3+1.4 (] 0.6)
Q-HeteroFL 79.6 £14.8 (1 18.7) 85.0 + 3.8 (| 11.9) 68.5+4.7 (] 11.9) 76.9 +£15.0 (| 22.3) 79.1+12.0 (J 13.0) 59.5+10.5 ({ 19.1)
3L Vanilla QFL (2L) 98.24 0.4 (1 0.1) 96.0 £ 1.2 (1 0.9) 80.0£0.9 (L 0.4) 98.5+ 1.1 (L 0.7) 91.9+1.2 (1 0.2) 76.9+04 (] 1.7)
) Standalone 98.3 +1.2 95.5+ 1.7 ([ 1.4) 79.6 £3.4 (1 0.8) 99.14+0.6 (L 0.1) 92.1+24 76.5+2.5 (] 2.1)
Quorus-Layerwise 98.04 1.0 (1 0.3) 96.9 £ 0.7 80.4+24 99.2+ 0.4 89.2+5.9 (1 2.9) 78.6 + 1.0
Q-HeteroFL 80.4+7.6 (1 17.9) 88.0£7.3 (1 9.5) 68.8+5.0 (] 13.1) 90.5+6.6 (| 8.8) 88.6 £2.0 (1 5.1) 72.8+3.2 (1 5.9)
aL Vanilla QFL (2L) 98.24 0.4 (] 0.1) 96.0 £ 1.2 (} 1.5) 80.0£0.9 ( 1.9) 98.5+ 1.1 (1 0.8) 91.9+1.2 (] 1.8) 76.9+0.4 (] 1.8)
Standalone 98.042.5 (1 0.3) 97.4£0.5 (1 0.1) 81.2£3.7 (1L 0.7) 98.9+£ 1.1 (L 0.4) 93.7+1.1 T71+1.0 (] 1.6)
Quorus-Layerwise 98.3+0.9 97.5+ 0.6 81.9+2.2 99.3+0.3 91.5+4.0 (1 2.2) 78.7+ 1.0
Q-HeteroFL 89.9 4 3.7 (] 8.6) 88.5£5.3 (1 9.0) 71.0+4.4 (] 11.5) 94.6 £4.3 (1 4.7) 88.4£3.8 (1 5.9) 72.8+1.2 (] 6.0)
sL Vanilla QFL (2L) 98.24 0.4 (1 0.3) 96.0 £ 1.2 (| 1.5) 80.0£0.9 (| 2.5) 98.5+£1.1 (L 0.8) 91.9+1.2 ([ 2.4) 76.9+£0.4 (1 1.9
: Standalone 97.24+ 1.7 (] 1.3) 96.4+1.9 (l 1.1) 80.3£3.2 (1 22) 98.5£0.5 (1 0.8) 94.3+0.6 T7.6+£1.6 (1 1.2)
Quorus-Layerwise 98.5 + 0.8 97.5+0.4 82.5+2.5 99.3 +0.2 924426 (1 1.9) 78.8 +1.1
Q-HeteroFL 88.6 6.2 (] 10.0) 85.145.9 (] 12.7) 73.9+44 (1 9.2) 95.3£0.8 (L 4.1) 92.1+1.3 (13.2) 744+£09 (1 44)
6L Vanilla QFL (2L) 98.240.4 (] 0.4) 96.0£1.2 (} 1.8) 80.0£0.9 (| 3.1) 98.5+£1.1 (1 0.9) 91.9+1.2 (1 3.4) 76.9+£0.4 (1 1.9
Standalone 98.34 1.0 (1 0.3) 96.5+0.8 (| 1.3) 80.4£3.4 (127 98.3£0.8 (L 1.1) 95.3+ 1.0 75.4+£1.5 (1 3.4)
Quorus-Layerwise 98.6 + 0.8 97.8+0.2 83.1+24 99.4+0.3 92.7+2.5 (| 2.6) 78.8 +0.8

on the first qubit, allowing all measurements to be at the end (Killoran et al.,|2019). This model is
depicted in Fig. [f[b), where we gradually “funnel” down the size of the deeper unitaries by dropping
a qubit after each measurement, hence the name of this technique. The cost of this model is that the
user must have a problem that is amenable to operating on fewer and fewer qubits.

Ansatz Use Case. We summarize the costs associated with each ansatz design in Table[T]to highlight
their unique usecases. Note that each model has disjoint requirements — that is, each model has
exactly one cost, thus highlighting the versatility of our design choices to clients’ unique scenarios.
We evaluate each design in Sec.[5|to compare their accuracy performance.

5 EXPERIMENTAL EVALUATION

Here, we evaluate Quorus on different binary classification tasks. A comprehensive description of
the experimental setup is in Appendix[C] We evaluate with 128 datapoints per client, consistent with
existing QFL literature; to account for the random sampling of the data, we evaluate each of our
comparisons with five different runs with five different samples of data allocations for clients. Data
is reduced to 10 features using Principal Component Analysis (PCA), the 10-dimensional data is
angle-encoded with RY gates, and the data is reuploaded using RY gates for each layer.

Quorus outperforms state-of-the-art techniques in terms of classification accuracy. The state-
of-the-art baselines that compare Quorus against are informed by what setups clients could run given
that each has a different depth model, based on existing techniques described in Sec. [3] We com-
pare against: (1) Q-HeteroFL, our quantum version of a classical technique called HeteroFL (Diao
et al., 2021). Here, all clients run the maximum depth model they can, and the parameters are av-
eraged only over the clients that contain those parameters. This work does not explicitly consider
heterogeneous-model federated learning using PQC. Thus, our design of the quantum version of
HeteroFL itself is novel and described in Appendix [C| (2) Vanilla QFL, where all clients use the
same depth model as the shallowest-depth client. For clients that are able to run deeper models, they
are unable to fully utilize their quantum resources. (3) Standalone, where clients do not participate
in the FL process and train the data on their own. This approach has the clear disadvantage that
clients do not get the benefit of training an improved model from other clients’ data.

We present our results in Table 2} comparing the baselines above to Quorus-Layerwise, because it
uses the same model architecture as the baselines. We present our results from the perspective of the
client of different capacities in the leftmost “Capacity” column — for that capacity, what is the best
performing technique for the various class comparisons? We see that, across client capacities, for
most comparisons, Quorus-Layerwise has the highest mean testing accuracy (12.4% over Q-Hetero-
FL). Notably, for clients of the smallest capacity, Quorus-Layerwise does not have the highest testing
accuracy, but this is likely due to its modified loss function, which penalizes the first layer param-
eters, along with the loss values for clients with later layers. Another important observation is that
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Table 3: Capacity-wise Comparison (V-Shape) — Quorus Variants Only with A to the Best
(bolded). The means and standard deviations are calculated over five runs: Quorus-Layerwise and
Quorus-Funnel have the highest testing accuracy (we use them for subsequent experiments).

Capacity Technique MNIST Fashion-MNIST
0/1 3/4 4/9 Trouser/Boot Bag/Sandal Pullover/Coat
Quorus-Layerwise 97.0+1.4 (L 04) 95.0£12(10.3) 782+£0.6 (] 1.5) 98.8 £ 0.9 86.1+81 (1 0.3) 763+14 (0.2
2L Quorus-Ancilla/Blocking ~ 97.04+ 1.0 (L 0.4) 948+15 (1 0.5) 783+£12( 14 986+09 (02 86.2+84 (0.2 76.5 + 1.3
Quorus-Funnel 97.4+1.2 95.3+ 1.5 79.7 + 2.0 98.1+1.1 (L 0.7) 86.4 £ 6.8 76.4+1.2 (L0.1)
Quorus-Layerwise 98.0+£1.0 (L 0.1) 96.9+0.7 (L 0.0) 80.4£24(]19) 99.2 +0.4 892459 (L 1.0) 786+1.0 (L0.1)
3L Quorus-Ancilla/Blocking ~ 97.9+ 1.2 (| 0.2) 96.9 + 0.6 814420 (L 0.9 992+05 (1 0.0) 8.7£75 (15 785+£1.2(0.2)
Quorus-Funnel 98.1+0.5 96.9+ 0.6 (| 0.0) 82.3+1.8 98.9+0.6 (1 0.3) 90.2 £ 3.3 78.7 £ 1.1
Quorus-Layerwise 98.3+0.9 (4 0.0) 97.5 £ 0.6 81.9+£2.2 (| 1.3) 99.3 £0.3 91.5+4.0 (L 0.8) 787£1.0 ({07
4L Quorus-Ancilla/Blocking ~ 98.14+1.2 (L 0.2) 97.3+£0.5 (1 0.2) 81519 (1.7 992+£05 (0.1) 903+55(20) 789£1.0 (0.5
Quorus-Funnel 98.3 + 0.7 97.1+0.6 (| 0.4) 83.2+2.4 99.0+0.6 (1 0.3) 92.3 £ 1.7 79.4+1.0
Quorus-Layerwise 98.5+ 0.8 (1 0.0) 97.5+ 0.4 82.5£2.5 ([ 2.1) 99.3+0.2 924426 (1 03) 788+1.1 ({15
SL Quorus-Ancilla/Blocking ~ 98.3+0.7 (L 0.2)  97.4+£0.5 (1 0.1) 81.9£25 (27 993+£03 (0.0 91.1+£43 {1.6) 79.0+£14 (1.4
Quorus-Funnel 98.5 + 0.7 97.1+0.5 (1 0.4) 84.6 £ 2.1 99.1+0.4 (1 0.2) 92.7+1.2 80.4+1.0
Quorus-Layerwise 98.6 +0.8 97.8 +0.2 83.1+24 (21 99.4+0.3 927425 (L0.7) 78808 (| 1.5)
6L Quorus-Ancilla/Blocking ~ 98.44+0.6 (L 0.2)  97.5+£0.5 (1 0.3) 822+20(}3.00 993+03 (0.1 91.4+40{20) 788+11( 1.5
Quorus-Funnel 98.0+0.7 (L 0.6) 97.1£04 (1 0.7) 85.2 £ 0.7 99.1+0.4 (1 0.3) 93.4+0.9 80.3 +0.9
0.5 0.5 0.5 0.5
S J— . S J— - i S L ] i S - ] i
f 03 Quorus - Layerwise E 03 Quorus - Layerwise f 03 Quorus - Layerwise E 03 Quorus - Layerwise
€ = = =
o2l — ] ||&2 902 902
2 ®o1l K H
501 501 501 501
0.0 0.0 0.0 0.0
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Number Epoch Number Epoch Number Epoch Number
loy
10) {Re}{Rot)>
-y >—G o g
D E—e0 S0 Se® Seos—
[o}-{Ry}{Rot —Ry}{(Rot —Ry}{Rot —(Ry}{Rot —0
Layer 1 Layer 2 Layer 3 Layer 4

Figure 7: We show the per-layer magnitude of the gradients for Quorus-Layerwise by plotting the
mean and standard deviation of the gradient norms for each epoch (smoothed for readability). Com-
pared to Q-HeteroFL, we see that our modified loss function has larger gradient norms throughout
training for parameters earlier in the circuit, due to earlier measurements.

Q-HeteroFL performs substantially worse compared to Quorus-Layerwise, sometimes nearly 40%
worse, as in MNIST 3/4 classification. This is due to the parameter mismatching challenge: differ-
ent, conflicting loss functions lead to suboptimal models. This highlights the importance of having
a shared loss function between clients that can be optimized (Quorus-Layerwise).

The performance of the different variants of Quorus. We now evaluate the performance of the
variants of Quorus in Table 3] Note that, because the Quorus-Ancilla and Quorus-Blocking designs
are logically equivalent, their accuracies are displayed together. We see that Quorus-Layerwise and
Quorus-Funnel have the best testing accuracy, although for many class comparisons, the difference
between the techniques is within a single percentage point. This suggests that all of the Quorus
have high testing accuracy, and that the decision of which model to use depends on the resource
constraints of the client, as mentioned in Table m In particular, for the Quorus-Funnel model, we
observe that, even though later unitaries operate in a smaller Hilbert space, the testing accuracy
is always within 1% of the best performing Quorus design, indicating its comparable accuracy.
Importantly, the Quorus-Funnel model is also shot-efficient, and for the hardest classes (MNIST
4/9, Fashion-MNIST Pullover/Coat), it performs the best compared to the other models. Thus, we
use the Quorus-Funnel model for subsequent noise analysis on real hardware evaluations.

6 ANALYSIS OF QUORUS’S FUNCTIONALITY

We split our analysis into two types: (1) gradient norms analysis and (2) analysis on real IBM
superconducting hardware. Due to the extensive amount of runs required and the prohibitive cost of
real-hardware runs, we only provide this analysis for the Pullover/Coat classification task from the
Fashion-MNIST dataset as this is the most challenging task.
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Figure 8: With the Quorus-Funnel model, we show (a) how the same model has varying testing
accuracy based on the real machine used, and (b) how using smaller depths leads to higher testing
accuracy on a machine. This highlights the importance of clients using depths that they can accu-
rately evaluate the model on, as well as the practical hardware relevance of our experimental setup.

Table 4: Capacity-wise Comparison (V-Shape) — Q-HeteroFL vs Quorus variants on CIFAR-10
with A to the Best (Bolded). The means and standard deviations are calculated over five runs:

Quorus-Layerwise and Quorus-Funnel outperform Q-HeteroFL on all comparisons.

Capacity Technique CIFAR-10
Deer/Truck Automobile/Truck Cat/Dog
Q-HeteroFL 65.0£5.8 (] 11.7)  55.8+3.1 (| 5.9) 50.5 £ 1.0 ({ 4.9)
2L Quorus-Layerwise 76.7 £ 1.8 61.0+29 (L 0.7) 55.4+ 1.5
Quorus-Funnel 76.5+£1.9 (L 0.2) 61.7+1.9 54.7£0.8 (L 0.7)
Q-HeteroFL 63.7+8.2 (L 13.5) 53.8+2.8 (] 8.3) 528 +£1.3 (2.9
3L Quorus-Layerwise 76.9+ 1.6 (4 0.3) 61.7+ 1.5 (J 0.4) 55.7+ 1.5
Quorus-Funnel 77.2+1.7 62.1 +£1.3 55.6 £1.0 (L 0.1)
Q-HeteroFL 72.1+2.6 (] 6.2) 56.5+4.2 (] 6.0) 51.6 £2.2 (| 3.9)
4L Quorus-Layerwise ~ 77.54+1.3 (1 0.8)  62.4+1.0 ([ 0.1) 55.5 + 1.4
Quorus-Funnel 783+14 62.5+ 1.5 55.1£0.8 (L 0.4)
Q-HeteroFL 68.0£5.1 (| 10.4) 55.8+1.2 (] 6.9) 528+ 1.7 (] 2.9)
SL Quorus-Layerwise 771.7+1.3 (1 0.7) 62.6 £1.0 (} 0.1) 55.7 £ 1.2
Quorus-Funnel 784+ 1.7 62.7+1.4 55.4+£1.6 (J0.3)
Q-HeteroFL. 70.6 2.6 ({4 7.8) 57.3+1.6 (4 5.3) 51.5+1.4 (} 4.1)
6L Quorus-Layerwise 779+ 1.3 (4 0.6) 62.6 1.0 55.6 = 1.1

Quorus-Funnel

784+ 2.1

62.3+1.5 (1 0.3)

55.24+ 1.1 (} 0.4)

Higher Gradient Norms with Quorus. Typically, the deeper the circuit, the smaller the magnitudes
of the gradients become (Cerezo et all [2021). We verify this empirically in our setup as well,
plotting the gradient norms of Quorus-Layerwise and Q-HeteroFL in Fig. [/ We see that for the
Q-HeteroFL model, the gradient norms are small for each layer in the quantum circuit, as the loss
for all parameters is defined on the output measurement at the end of the circuit. Interestingly, for
Quorus, this is not the case. Because we have loss functions that are defined after each layer, for
deep models, earlier layers maintain a high gradient norm due to these layerwise loss functions.
Note that for parameters in later layers, the gradient norms remain small because the gradients for
these parameters only depend on measurements deep in the circuit. However, the overall magnitudes
of the gradients for Quorus are higher, and in addition, Quorus also obtains a higher testing accuracy
than Q-HeteroFL, making it implausible that the reasons for the larger gradient norms are due to a
lack of convergence for Quorus. This result suggests how the layerwise loss function in Quorus can
be used for improved and scalable trainability for deep quantum circuits.

Evaluation of Quorus on Real Quantum Hardware. We evaluate our trained models on all of
IBM’s superconducting quantum processing units or QPUs to demonstrate the practical relevance
of our experimental setup, as well as the very real impact that noise has on our trained models.
In particular, we perform our hardware analysis using the Quorus-Funnel design, because it allows
for evaluating the ensembled model with no shot overhead. Due to the high error of midcircuit
measurements on current hardware, we measure all qubits at the end (Rudinger et al., 2021; |Gao
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Table 5: Capacity-wise Comparison (V-Shape) — Q-HeteroFL vs Quorus variants on 4-class
MNIST/Fashion-MNIST with A to the Best (Bolded). The means and standard deviations are cal-
culated over five runs: Quorus-Layerwise and Quorus-Funnel outperform Q-HeteroFL on all tasks.

Capacity Technique MNIST Fashion-MNIST
0/1/6/7 0/2/417 3/5/819 Trouser/Sandal/Sneaker/Bag ~ Pullover/Dress/Coat/Boot  Top/Pullover/Coat/Shirt
Q-HeteroFL 30.7 4 15.0 (] 46.0) 33.9417.5 (] 31.3) 35.54+9.6 (1 20.4) 32.24+82 (] 46.4) 43.4412.8 (] 27.0) 36.446.0 (1 12.5)
2L Quorus-Layerwise 73.24+5.2 (1 3.5) 64.6 £ 7.4 (1 0.6) 55.9 + 3.8 65.5+9.3 (] 13.1) 65.6 = 4.2 (| 4.8) 44.7+£4.6 (1 4.2)
Quorus-Funnel 76.7 £ 3.7 65.2 + 10.1 55.0+5.9 (1 0.9) 78.6 + 3.5 70.4 + 1.6 48.9 £ 3.4
Q-HeteroFL. 39.5412.9 (] 41.4) 46.3 £ 8.7 (1 32.9) 35.44+5.0 (| 25.6) 50.3 +10.4 (] 30.5) 38.84+12.6 (] 35.3) 36.0 4+ 5.2 (1 20.1)
3L Quorus-Layerwise 80.9 £ 2.7 71.1£6.2 (1 8.1) 61.0 +£4.7 71.4+6.4 (L 9.4) 69.1+3.8 (1 5.0) 52.242.6 (13.9)
Quorus-Funnel 80.1+4.6 (1 0.8) 79.2 £ 6.7 60.6 £5.4 (1 0.4) 80.8 + 4.8 741+ 1.2 56.1 & 3.0
Q-HeteroFL 53.9+13.9 (129.4)  50.6+9.4 (J27.7)  48.1+4.7 (| 17.6) 56.4 +10.4 (| 25.5) 55.1+6.9 (] 19.0) 40.1+5.7 (1 17.0)
4L Quorus-Layerwise 83.3+4.2 76.5+5.3 (| 1.8) 65.7 + 2.4 75.5+5.8 (| 6.4) 721+ 3.8 (/. 2.0) 54.140.8 (1 3.0)
Quorus-Funnel 81.1+4.0 (2.2) 78.3+ 7.2 63.6 + 4.4 (2.1 81.9+4.5 74.1+ 2.8 57.1+2.4
Q-HeteroFL 58.0+20.7 ([ 27.0) 54.4+13.8 (] 24.2) 428+3.5 (| 24.6) 54.6+11.0 (. 27.7) 47.3+5.5 (] 27.6) 49.1+4.1 (1 9.0)
5L Quorus-Layerwise 85.0 + 3.3 78.0 £ 3.8 (| 0.6) 66.2+2.7 (1 1.2) 78.5+4.6 (| 3.8) 73.54+2.9 (| 1.4) 5544+ 0.8 (| 2.7)
Quorus-Funnel 80.4+3.9 (| 4.6) 78.6 + 6.8 67.4+ 3.1 82.3+3.3 74.9 + 3.2 58.1+ 2.9
Q-HeteroFL TL7+6.3 (| 14.5) 714428 (1 8.1) 53.3+2.5 (| 14.3) T1.3+25 (L 11.2) 60.6 + 7.5 (| 14.6) 46.9+ 3.7 (1 10.5)
6L Quorus-Layerwise 86.2 +2.9 79.5+ 3.3 67.6 +2.9 80.1+£4.2 (L 24) 74.3+£2.2 (1 0.9) 56.0+ 1.1 (L 1.4)
Quorus-Funnel 783£5.2 (179 TT0£7.7 (1 2.5) 66.6 £3.3 (1 1.0) 82.5+24 75.2 + 3.8 57.4+ 3.2

et al.,[2025). The depth of the Quorus-Funnel models therefore matters, as for deeper models, more
decoherence will accumulate on the qubits that are unused or carry information from earlier layers.

(A) Same Model, Different QPUs. We evaluate Quorus with a depth of 5 on different IBM QPUs to
validate the heterogeneity of quantum systems. We restricted our testing set to only 100 datapoints
due to the prohibitive cost of each shot. Our results in Fig. [§fa) show that across six different
QPUs, the noise varies substantially: from 48% for IBM Brisbane to 76% for IBM Torino, 3%
off from the ideal simulation accuracy. If a client has access to a machine with similar hardware
noise characteristics to IBM Torino, they should go with a deep circuit. Thus, we observe a diverse
spectrum of error on IBM’s QPUs, validating the practical relevance of our experimental setup.

(B) Different Depth Model, Same QPU. In Fig.[§[a), we notice that the QPU with the lowest testing
accuracy (aside from IBM Brisbane, which suffered from decoherence to 48% testing accuracy with
just two layers of our model) is IBM Kingston. Thus, we performed an analysis on IBM Kingston
to verify the impact of decreasing the depth of the quantum circuit on the testing accuracy; we
expect that as we reduce the number of layers, the testing accuracy should increase. Our hypothesis
is empirically validated in Fig. [§[b). We see that the separation, indicated by a dashed red line,
between the ideal simulation results and the testing accuracy on IBM Kingston gets wider with a
deeper circuit. This highlights that, for a client with access to a computer similar to IBM Kingston
in terms of hardware noise, it is advantageous for them to train a shallow-depth quantum classifier,
because these classifiers have lower-error outputs and can more meaningfully contribute to FL.

7 ABLATION: ADDITIONAL CLASSIFICATION TASKS

To evaluate Quorus on more complex classification tasks, we additionally run Quorus-Layerwise
and Quorus-Funnel for binary classification on CIFAR-10 in Table[d]and four-class classification for
MNIST/Fashion-MNIST data in Table [5] (categorical cross-entropy loss is used; further details are
in Appendix [[.2). We see an average improvement of 6.7% in CIFAR-10 binary classification and
24.0% in MNIST/Fashion-MNIST four-class classification of the best performing variant of Quorus
over Q-HeteroFL, highlighting Quorus’s robustness to more challenging classification tasks.

8 CONCLUSION

In this work, we introduced Quorus, a QFL framework tailored for heterogeneous-depth clients.
Our contributions include: (1) a layerwise loss with high gradient norms to align objectives across
clients of varying circuit depths, (2) multiple circuit designs, Layerwise, Ancilla/Blocking, and
Funnel, that balance accuracy with resource constraints, and (3) extensive evaluation showing up
to 12.4% accuracy improvements over Q-HeteroFL and consistently higher gradient magnitudes for
deeper clients. Crucially, we validated Quorus on all of IBM’s superconducting quantum processors,
demonstrating that our method is not only effective in simulation but also practical on today’s error-
prone hardware. Together, these results establish Quorus as the first implementable framework for
QFL in realistic multi-client settings, paving the way for scalable and resource-aware QML.
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A FURTHER PRELIMINARIES

Quantum Gates. Quantum gates are unitary operators that
manipulate qubits in a quantum circuit, analogous to logic
gates in classical circuits. The rotation gates apply continu-
ous rotations of a qubit’s state on the Bloch sphere (Fig. [9).
For example, the R, (6) gate performs a rotation around the
y-axis by angle 0:

sin(g) cos(g)

More generally, the three-axis rotation operator Rot(«, 3,7)
applies successive rotations about the x, y, and z axes by an-

gles «, 3, and ~: 1)
Rot(a, B,7) = R.(a)R,(B) R.(7), Figure 9: Visualization of rotation
gates on a quantum Bloch sphere.
where
92 g
R.(¢p) =
@=L

Entangling gates act on two or more qubits. A key example is the controlled-NOT (CNOT) gate,
which flips the target qubit if the control qubit is in state |1). Its 4 X 4 unitary matrix is:

10 0 0
CNOT — 01 00
0 0 01
00 10

The gate representation in a circuit diagram has the target qubit and the control qubit connected with
a vertical line, with the control qubit indicated by a filled-in circle and the target qubit indicated by
the & symbol. Together, single-qubit rotation gates and entangling gates like CNOT form a universal
gate set, capable of approximating any quantum operation.

B PROOF THAT THE QUORUS-ANCILLA CIRCUIT IS EQUIVALENT TO THE
QUORUS-BLOCKING CIRCUIT

In this section, we prove that the circuits in Fig. 5] and Fig. [f[a), namely, the Ancilla technique
and the blocking technique, are equivalent. To do so, we will consider the state of both circuits
immediately after the measurement operation.

We first note that both circuits apply the same unitary U [0)*"™ = |¢)). We note that the same logic
applies for subsequent layers (replacing 1) with the resulting input state will suffice), so analyzing
this single-layer setup is sufficient.

Additionally, we assume that, in the Ancilla circuit, the ancilla qubit is immediately measured af-
ter the CNOT gate. This simplifies the analysis and is equivalent to the case where the ancilla is
measured later, as no other operations are performed on the ancilla qubit, so we apply the deferred
measurement principle (Gurevich & Blass), [2021)).

Proposition 1 (Ancilla-measurement equals measuring the control). Let U be an n-qubit unitary
and let 1) = U |0)®™. Write |4)) as

1) = a [0) |do) + B [1) [¢1) ,

where the first ket is qubit 0, |¢y) are normalized states of the remaining n — 1 qubits, and |a|* +
|82 = 1. Consider two procedures:
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Table 6: Experimental details, specification, and hyperparameters used to evaluate Quorus.

Parameter Value
Dataset MNIST; Fashion-MNIST
Classes 0/1, 3/4, 4/9 for MNIST; Trouser/Boot,

Number of clients K
Datapoints per Client
Testing set size

Data Distribution
Number of different data splits per class comparison
Data encoding scheme
Client sampling per round
Communication rounds 7'
Local epochs per round £
Batch size

Optimizer

Learning rate n

LR schedule

Loss type

Aggregation Method
Qubits ¢

Depth levels L
Parameters per layer
Parameter Initialization

Bag/Sandal, Pullover/Coat for Fashion-MNIST
5

128

3000; 100 for hardware runs only
11D

5

Angle Embedding

100%

1000

1

32

Adam (81=0.9, $2=0.99)

0.001

1.0 (No decay)

Binary Cross Entropy on Labels
KL Divergence between logits
Circular averaging of subnet parameters
10

2L, 3L, 4L, 5L, 6L

30

N(0,1)

(A) Direct measurement. Measure qubit O in the computational (Z) basis. The probabilities are p, =
[(6)(b] @ I) ) |* = |a|? for b = 0 and |B|? for b = 1, and the post-measurement (normalized)
states of the remaining qubits are |pp).

(B) Ancilla measurement. Prepare an ancilla a in |0),, apply a CNOT with control qubit 1 and
target a, then measure a in the computational Z basis. After the CNOT, the joint state is

a [0)10), |¢o) + B [1)[1), [¢1) -

Projecting onto |b), yields outcome b with probability p;, = |a |0)|¢o)|?forb = 0 and
1B 1) |p1) ||? for b = 1, i.e. p}y = |a|? and p) = |B|*. Conditioned on outcome b, the (normalized)
post-measurement state of the system qubits is |b) |¢p); tracing out qubit 1 leaves the remaining
qubits in |¢y).

Thus, py, = p}, and the conditional post-measurement states of the non-ancilla qubits coincide in (A)
and (B). Consequently, for any subsequent (classically controlled) processing, the two procedures
are operationally equivalent. O

C DETAILS OF OUR EXPERIMENTAL METHODOLOGY

We present the experimental details and hyperparameters in Table [6| Because image data is high-
dimensional and amplitude encoding is not feasible on near-term devices due to the high depth (Han
et al.| [2025), we perform angle encoding using RY gates. For each layer of the quantum circuit,
data is reuploaded with angle encoding using RY gates. This means that we must compress the
image into a set of 10 features, and we do so using PCA. One might ask the question of how
to perform PCA on decentralized data. This problem has been solved using a technique called
Federated PCA (Grammenos et al., [2020), which provides the same PCA results as centralized
PCA. Because the implementation details of Federated PCA are not central to Quorus, we emulate
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Table 7: IBM QPUs and their performance characteristics. 2Q refers to the two-qubit gate error,
which is typically specified, as it is an order of magnitude more dominant than the 1Q gate error.

QPUname Qubits 2Q error (best) 2Q error (layered) @ CLOPS  Processor type

Pittsburgh 156 8.11E-4 3.81E-3 250K Heron r3
Kingston 156 7.82E-4 3.57E-3 250K Heron r2
Fez 156 1.45E-3 4.28E-3 195K Heron r2
Marrakesh 156 1.11E-3 3.72E-3 195K Heron r2
Torino 133 1.29E-3 7.50E-3 210K Heron rl
Brisbane 127 2.87E-3 1.74E-2 180K Eagle r3

Federated PCA with centralized PCA in our implementation and note that the PCA implementation
can be substituted as desired.

For inference on testing data, the testing data is compressed using the PCA fit on the training data.
We assume the use of Federated PCA for all of our experiments, even for Standalone training, for
both consistency and for considering the “adversarial” case where a client decides to participate in
Federated PCA to obtain better reduced features, but chooses not to participate in the FL process.
In addition, to consider the most adversarial setup for Standalone training, where a client does not
participate in the FL process, the optimizer state for Adam persists across rounds (whereas, in our
QFL setups, we reset the Adam optimizer state each round, as done in [Wang et al.| (2021))). We
evaluate on the specific classes in MNIST and Fashion-MNIST as they represent various levels of
difficulty, used in other QML works (DiBrita et al., 2025; Ranjan et al., 2024)).

The hardware specifications of the IBM QPUs are provided in Table

C.1 Q-HETEROFL FRAMEWORK

Algorithm 2: Q-HeteroFL
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We describe the Q-HeteroFL technique in Algorithm[2] an adaptation of the aggregation technique
for heterogeneous classical FL described in|Diao et al.|(2021). The loss function is defined solely on
the deepest classifier output, and aggregation is also done using circular averaging for consistency in
comparison to Quorus. HeteroFL is the standard baseline in heterogeneous FL but has not yet been
proposed in QFL; thus, we propose it here and demonstrate Quorus’s improvements over it.

D ADDITIONAL RESULTS AND ANALYSIS

D.1 ANSATZ CHOICE ANALYSIS

We perform a comprehensive analysis of what ansatz to use in our experiments for Quorus-
Layerwise by evaluating the Staircase, V-shape, and an Alternating variant of the former two across
MNIST and Fashion-MNIST classes. Note that, for L layers in our Quorus-Layerwise, we have
L — 1 different classifiers (one classifier per layer, with the first layer having two variational layers).
This means that, for a client that can run a capacity of L layers, they can ensemble the outputs of
their L — 1 classifiers for inference. That is what is shown in Table[8]and is how Quorus is evaluated
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Table 8: Best Ansatz by Client Capacity for Ensembled Submodels, Quorus. The table is sectioned
off into different capacities based on the number of layers a client can run. The best-performing
ansatz for each different class comparison is in bold. The V-shaped ansatz has the highest testing
accuracy the most times, so we use it for all of our experiments.

Capacity Ansatz MNIST Fashion-MNIST
0/1 3/4 4/9 Trouser/Boot Bag/Sandal Pullover/Coat
Staircase 979+ 1.1 95.2 + 1.9 73.5+£5.3(4.7) 97.5+£21( 1.3) 93.41+0.9 66.9+ 1.7 (] 9.4)
2L V-shape 97.0+1.4 (4 0.9) 95.0+1.2(10.2) 78.2 + 0.6 98.8 £ 0.9 86.1+£8.1()7.3) 76.3 1.4
Alternating 882+ 6.6 (1 9.7)  84.5+17.6(110.7) 655+58(L 12.7) 820+10.8(1 16.8) 82.7+£16.3(,10.7) 66.8+4.9(] 9.5
Staircase 98.2 + 1.0 96.2 4 0.8 (} 0.7) 81.0 £ 2.8 98.6 + 0.8 (| 0.6) 93.7+ 0.8 74.1+3.0 () 4.5)
3L V-shape 98.0+ 1.0} 0.2) 96.9 + 0.7 80.4+2.4 (] 0.6) 99.2 + 0.4 89.2 4 5.9 (] 4.5) 78.6 + 1.0
Alternating  92.0+£4.0(} 6.2)  94.8+1.2( 2.1) 799416 1.1)  97.1+£0.7( 2.1) 91.7409(,2.0) 735+£34(]5.1)
Staircase 98.2+0.6 (J 0.1) 96.4+0.7 (] 1.1) 82.0 2.3 98.7£0.9 (} 0.6) 93.7 £ 0.9 73.8+2.4(1 4.9
4L ‘V-shape 98.3 £0.9 97.5 £ 0.6 81.9+£2.2(40.1) 99.3 £0.3 91.5+4.0( 2.2) 78.7 £ 1.0
Alternating ~ 93.8 £2.0 (} 4.5) 952+ 1.1(12.3) 81.8+£3.0(40.2) 97.6 £0.5( 1.7) 92.5+1.3( 1.2) 74.8+£2.3 (1 3.9)
Staircase 98.1+0.6 (4 0.4) 96.3+£0.4 (] 1.2) 83.0 2.6 98.8 £0.7 (] 0.5) 93.7 £ 0.8 74.2+£2.2 (] 4.6)
5L V-shape 98.5 + 0.8 97.5+ 0.4 82.542.5(0.5) 99.3 £ 0.2 92.442.6(] 1.3) 78.8+1.1
Alternating ~ 93.8 £2.0 (. 4.7) 95.6 +£1.1(] 1.9) 82.1+2.9({0.9) 97.6 £0.7(1 1.7) 925+1.2( 1.2) 75.3+2.0({ 3.5)
Staircase 98.0 £+ 0.8 (4 0.6) 96.340.7 (] 1.5) 83.1+3.2(40.0) 98.8+0.8 (1 0.6) 93.8 £ 0.9 746 +1.9( 4.2
6L V-shape 98.6 + 0.8 97.8 £ 0.2 83.1+2.4 99.4 £ 0.3 92.7+25( 1.1) 78.8 £ 0.8

Alternating ~ 93.1 £2.7 (] 5.5) 95.3+1.1(12.5) 82.4+2.7(10.7) 97.4+£0.7 (] 2.0) 926 +1.1(11.2) 75.3+1.9( 3.5)

in the tables in the main text. We see that, across a majority of the capacities and class comparisons,
the V-shape ansatz has the highest testing accuracy, making it the better choice on average. A reason
for this is that the V-shape has the largest number of CNOT gates and circuit depth compared to
the Staircase and Alternating ansatzes, and thus it may be more expressive. From the results in this
table, we decide to use the V-shape ansatz as the default in our experiments.

D.2 ABLATION ON THE NUMBER OF LAYERS

To justify the layer count we used in our exper- 80 -
iments, we evaluate Quorus-Layerwise using ;¢ | -0 :Ednesaelnflbrré
both fewer and more layers, depicted in Table[9] s Ideal Sim
We run two additional ablations: Quorus with §70~ —®— C|assifier
the five clients having 1, 2, 3, 4, and 5 layers 5 65 Kingston
respectively; and Quorus with the five clients E 601 Ensemble
having 2, 4, 6, 8, and 10 layers, respectively Kingston
(note that the case where the 5 clients have 2, 3, 55 ) 3 4 5 6 Classifier
4, 5, and 6 layers, respectively is what is used Depth (# Layers)

by default in our work). Figure 10: Testing accuracies of the subclassifiers

We would like to point out that using 1 layer and submodels of a single Quorus - Funnel model
appears to have drastically lower testing accu- evaluated on IBM Kingston. We see that ensem-
racy, at times 40% lower than 6 or 10 ]ayers. bling outputs yields higher accuracy, similar to
This suggests that clients with 1 layer do not Wwhat we see in ideal simulation.

have enough parameters to contribute well to

the training, a result consistent with intuition. There is also a question of whether we use more
layers and whether it is helpful for clients. We see that, for our setup, using more layers (up to 8
or 10 layers) has marginal gains in testing accuracy. This result is consistent with quantum com-
puting literature, where adding more layers to solve a problem saturates in gains beyond a certain
point Nguyen et al.| (2022). Thus, we use 2 through 6 layers in our experimental setup, as more
layers lead to higher testing accuracy in this regime, as well as for the fact that quantum circuits of
this size are amenable to running on real-world hardware, as we show in our analysis section.

D.3 ROBUSTNESS OF QUORUS AMIDST REAL HARDWARE NOISE

In comparing the performance of various depth circuits used in Quorus-Funnel on real hardware,
we observe an interesting result. In Fig.[T0] we plot the testing accuracy on 100 datapoints for one
model trained on Fashion-MNIST Pullover/Coat classification, evaluated on IBM Kingston. We run
our depth 5 model on IBM Kingston, meaning that in total, we extract 5 classifier outputs (one output

19



Published as a conference paper at ICLR 2026

Table 9: Capacity-wise Comparison (V-Shape) — Quorus-Layerwise sizes with A to the Best.
Means =+ standard deviation shown over five splits; mean ties broken on standard deviation.

Capacity Quorus Layer Count MNIST Fashion-MNIST
0/1 3/4 4/9 Trouser/Boot Bag/Sandal Pullover/Coat
Quorus-Layerwise (1L) 59.5+ 1.2 (| 37.5) 63.8+£2.7 (1 31.2) 67.1+£5.0 (§ 11.9) 58.6 £2.9 (] 40.2) 59.7+4.5 (| 28.9) 66.9+1.2 (| 9.4)
1 Quorus-Layerwise (2L) 97.0+ 1.4 95.0+ 1.2 (/. 0.0) 782+ 0.6 (| 0.8) 98.8 + 0.9 86.1+8.1 (| 2.5) 76.3 4+ 1.4
Quorus-Layerwise (2L) 95.0 £ 3.8 (1 2.0) 95.0 £ 2.3 79.0 + 2.7 97.1+2.3 (L 1.7) 88.6 £ 1.7 75.3+ 1.7 (L 1.0)
Quorus-Layerwise (2L) 96.4+1.9 (1 1.6) 95.14+1.9 (| 1.8) T7.7£5.0 (1 4.9) 97.3+ 1.5 (L 1.9) 88.0+£4.7 (1 4.1) 75.3£2.0 (] 3.3)
2 Quorus-Layerwise (3L) 98.0 £ 1.0 96.9 + 0.7 80.4+2.4 (122 99.2+ 0.4 89.2+5.9 (2.9 78.6 + 1.0
Quorus-Layerwise (4L) 97.5+ 1.3 (1 0.5) 96.7+ 1.0 (10.2) 82.6 + 2.1 98.6 + 0.7 (} 0.6) 92.1£0.7 776+ 1.3 (1 1.0)
Quorus-Layerwise (3L) 97.5+1.4 (L 0.8) 96.6 = 1.1 (1 0.9) 80.0£4.0 (| 3.0) 97.94+1.0 (L 1.4) 91.9+23 (1 1.2) 77.1£1.6 (] 1.6)
3 Quorus-Layerwise (4L) 98.3+0.9 97.5+ 0.6 81.9+2.2 (L 1.1) 99.3+0.3 91.5+4.0 (| 1.6) 78.7+ 1.0
Quorus-Layerwise (6L) 97.5+ 1.1 (L 0.8) 97.0+ 0.6 (J 0.5) 83.0 £ 2.3 98.8+ 1.0 (J 0.5) 93.1+£0.5 783+1.6 (10.4)
Quorus-Layerwise (4L) 98.5+0.7 (1 0.0) 97.04+ 1.0 (4 0.5) 81.4+3.8 (12.3) 98.940.5 (1 0.4) 92.8+1.8 (1 0.8) 77.8+1.2 (] 1.0)
4 Quorus-Layerwise (SL) 98.5 + 0.8 97.5+ 0.4 82.5+2.5 (L 1.2) 99.3 + 0.2 92.4+2.6 (1 1.2) 78.8 +1.1
Quorus-Layerwise (8L) 97.54+0.9 (1 1.0) 97.0+ 0.7 (1 0.5) 83.7+ 2.3 98.8+0.9 (1 0.5) 93.6 £ 0.5 783+ 1.4 (1 0.5)
Quorus-Layerwise (5SL) 98.34+0.9 (1 0.3) 97.34+0.8 (1 0.5) 81.7+4.4 (122 98.8 £ 0.3 ({ 0.6) 92.9+1.8 (1 0.9) 7T7.7£1.0 (L 11
5 Quorus-Layerwise (6L) 98.6 +£ 0.8 97.8+0.2 83.1+2.4 (L0.8) 99.4+ 0.3 92.7+2.5 (L 1.1) 78.8 +0.8
Quorus-Layerwise (10L) 97.5+0.8 (L 1.1) 97.0+ 0.6 (1 0.8) 83.9 + 2.2 98.8 + 0.8 (J 0.6) 93.8 £ 0.5 781415 (L0.7)

for each layer) on IBM Kingston. We plot the accuracies of the classifiers of each layer, plotted in
red dots, as well as the accuracies of the classifier ensemble up to that layer, plotted in yellow dots.
We similarly plot the classifier accuracies from each layer in ideal simulation in dark blue dots, and
the ensemble of the classifiers up to that layer in light blue.

One interesting observation is in the separation between the individual classifier and ensemble out-
puts in ideal and hardware evaluation. Notably, on IBM Kingston, although the testing accuracy
is below 60% for individual classifiers for depth 3 and later, the ensemble of these classifiers gen-
erally increases, and maintains a nearly 20% separation at layer 5. This suggests that even though
noise can corrupt individual classifier outputs, Quorus is robust to hardware errors from its in-built
shot-efficient ensemble evaluation and is able to substantially mitigate these hardware errors.

E LLM USAGE

ChatGPT was used to help polish the writing of the work. All edits were subsequently verified by
the authors. ChatGPT search was also used to find related work. All sources found were validated
by the authors to be relevant.

F REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we have released all code, datasets, and experiment configurations
used in this work (also attached to this submission). The open-sourced repository includes detailed
documentation, environment specifications, and ready-to-use scripts to replicate the results in the
paper. By making these resources publicly available, we aim not only to guarantee transparency and
independent verification of our results but also to accelerate future research by lowering barriers for
benchmarking, extension, and adoption by the broader community.

Repository Link: https://github.com/positivetechnologylab/Quorus

G ABLATION: NON-IID DATASETS

We compare Quorus-Layerwise and Quorus-Funnel with Q-HeteroFL for Non-IID MNIST and
Fashion-MNIST datas in Table @} Similar to DepthFL (Kim et all [2023), a Dirichlet distribu-
tion p. ~ Dir(8 = 0.5) was used to assign p. j ratio of data samples of class c to client k,
with the constraint that each client has the same number of total training samples (128 samples).
On average, the best performing Quorus variant has an 22.5% improvement in testing accuracy
over Q-HeteroFL, with an 11.0% reduction in average standard deviation. In addition, Quorus-
Layerwise and Quorus-Funnel have similar mean testing accuracies (often within 1%), highlighting
their strength and interchangeability based on quantum hardware constraints. This table highlights
not only the robustness of Quorus to non-IID data, but also its stability: for different data splits for
Q-HeteroFL, the standard deviation is very high, often ranging from 10-20%. However, the standard
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Table 10: Capacity-wise Comparison (V-Shape) — Q-HeteroFL vs. Quorus variants for Non-IID
Data with A to the Best (Bolded). The means and standard deviations are calculated over five runs:
Quorus-Layerwise and Quorus-Funnel outperform Q-HeteroFL with smaller standard deviations.

Capacity Technique MNIST (Non-IID) Fashion-MNIST (Non-IID)
0/1 3/4 4/9 Trouser/Boot Bag/Sandal Pullover/Coat
Q-HeteroFL 89.1+ 8.8 (| 8.6) 52.3424.0 (L 42.4)  60.0+4.4 (L 16.0)  68.1+34.1 (1 30.2) 70.2+14.9 (L 17.7)  56.1 +6.0 (| 15.5)
2L Quorus-Layerwise 97.7+ 0.8 94.6 +3.3 (1 0.1) 742432 (L 1.8) 98.3 £ 1.0 87.9+3.1 715472 (1 0.1)
Quorus-Funnel 97.0£2.0 (L 0.7) 94.7£ 1.5 76.0 £ 4.1 98.0+£1.2 (1 0.3) 86.5+£8.8 (| 1.4) 71.6 £ 4.8
Q-HeteroFL 77.0+£11.0 (L 21.4)  77.1416.7 (L 19.1)  57.3+£4.6 (} 22.1) 67.6+£12.1 ([ 31.5)  62.1+123 (1 284)  53.0£3.6 ({ 23.1)
3L Quorus-Layerwise 98.4+ 0.5 95.1+3.5 (J 1.1) 791425 (1 0.3) 99.1+ 0.4 90.5+ 2.6 (| 0.0) 76.1+ 0.8
Quorus-Funnel 97.8 4 1.5 (. 0.6) 96.2 + 1.1 79.44 2.9 98.6+ 0.5 (| 0.5) 90.5 + 1.9 75.0+3.2 (| 1.1)
Q-HeteroFL 67.8£5.9 (J 30.6) 73.9+£17.9 (} 22.8)  56.9+8.9 (1 25.3) T4T7+£19.7 (] 24.5) 70.7+£15.8 (L 20.8) 53.64+4.2 (1 19.9)
4L Quorus-Layerwise 98.4+ 0.4 96.7 £ 1.1 80.6 + 1.7 (| 1.6) 99.2 £ 0.4 91.5 £+ 3.0 73.5 + 4.2
Quorus-Funnel 97.4+2.5 (| 1.0) 96.5+0.9 (1 0.2) 82.2+2.7 98.8+0.8 (1 0.4) 90.0+3.4 (| 1.5) 724+£52 (1D
Q-HeteroFL 80.6 +12.6 (] 17.9) 66.0 +16.2 (] 31.2) 57.7+5.8 (1 25.7) 80.3 +17.0 (] 18.9) 72.84+18.0 (1 19.3) 56.24+ 5.3 (1 17.6)
SL Quorus-Layerwise 98.5 + 0.4 97.2 £ 0.6 81.6+1.4 ([ 1.8) 99.2 £ 0.2 92.1 £ 2.7 73.8 £4.6
Quorus-Funnel 97.6£2.1 (1 0.9) 96.5+ 1.1 ([ 0.7) 83.4+2.5 98.7+£1.0 (0.5 91.2+£3.4 (1 0.9 72.6+5.4 (1 1.2)
Q-HeteroFL 82.1+£20.7 (L 16.6) 7444127 (1 225) 59.6+£7.8(}227) 79.1+£17.8 (120.3) 68.6+19.6 (|l 23.6) 57.0£7.9 (L 187)
6L Quorus-Layerwise 98.7+ 0.4 96.9 + 0.6 81.94+1.6 (L 0.4) 99.4+0.1 922+ 1.9 75.7 £ 2.7
Quorus-Funnel 98.3+1.8 (1 0.4) 96.1+1.5 (}0.8) 82.3 3.8 98.7+£0.7 (} 0.7 89.8£8.3 (] 2.4) 72.7+5.1 (1 3.0)

deviation of Quorus-Layerwise and Quorus-Funnel never exceeds 10%, reflecting its stability across
different non-IID datasets and its real-world utility.

H THEORETICAL ANALYSIS FOR ONE LAYER

Based on our results in Table[9] we provided empirical justification as to why we chose to use more
than one layer of our V-shaped ansatz in the Quorus technique (because, with just one layer, Quorus
performed significantly worse than when we used 2 layers). We provide a theoretical justification
for why one layer is ineffective due to the measurement on the first qubit only depending on the Z
expectation on exactly half of the input qubits (and thus, only depending on half of the parameters
in the first layer). Because of ineffective use of parameters, we suspect that the expressiveness of
the circuit with only one layer is limited, motivating the need for additional layers for effective
performance.

Thus, in this section, we provide a concrete theoretical analysis of the first layer behavior of our
circuit. The decision function that we seek to learn from data depends on the parameters associated
with the first qubit, which are reflected in the probability of obtaining the measurement outcomes
|0) or |1). Ideally, we would like to express these measurement probabilities directly in terms of the
amplitudes of the N-qubit product state produced after the initial single qubit rotations. This allows
us to understand exactly how information from all input amplitudes flows into the measurement
statistics of the first qubit under the given nearest neighbor CNOT architecture.

Lemma 1 (First-qubit measurement after two CNOT sweeps). Let N > 2 qubits be arranged
linearly and initialized in a product state

N
pin = X) p;-
j=1
Let U be the unitary corresponding to two layers of nearest-neighbor CNOT gates:

* a rightward sweep: CNOT(1—2), CNOT(2—3), ..., CNOT(N—1— N);
* followed by a leftward sweep: CNOT(N — N—1), CNOT(N—1—N—-2), ..., CNOT(2—
1).
Then the Heisenberg-evolved observable of the first qubit satisfies
vizio= [ %
1<G<N
Jj=N (mod 2)

In particular, if
2= Te(Z py) € [-1,1]
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denotes the Bloch Z-component of the jth input qubit, then the measurement probabilities of the
first qubit in the Z basis are

1 1
Pr(first qubit = 0) = 3 1+ H zi | s Pr(first qubit = 1) = 3 1-— H 2
1<j<N 1<j<N
J=N (mod 2) J=N (mod 2)

In other words, the first-qubit measurement statistics depend only on the Z-components of those
input qubits whose indices have the same parity as N (odd indices if N is odd, even indices if N is
even).

Proof. First consider a computational-basis input |zq2z2 ...z x) with z; € {0,1}. A CNOT with
control bit a and target bit b acts as (a,b) — (a,a @ b), where @ denotes XOR. In the rightward
sweep 1 — 2,2 — 3,...,(N — 1) = N, a straightforward induction shows that the output bits

Y1, ..., YN satisfy
Y =21 D T2D - By, k=1,...,N.

In the subsequent leftward sweep N — N—1,...,2—1, each CNOT(i + 1 — 1) updates (y;, yi+1)
as (Yi, Yi+1) = (Yi ® Yit1,Yi+1). The final first bit 2} can therefore be written as
=y DYy ® - Dyn.

Substituting yr, = 1 © --- ® x3 and counting how many times each x; appears, we find that x;
is included exactly N — j + 1 times, so only those x; with (N — j 4+ 1) mod 2 = 1 contribute.
Equivalently, 7 = N (mod 2), and hence

A .
= P
1<j<N
J=N (mod 2)

For Clifford circuits, this classical XOR mapping of computational-basis labels coincides with the
Heisenberg evolution of Pauli Z operators |Gottesman| (1998). Equivalently, one may propagate Z;
backwards through the circuit using the CNOT conjugation rules

CNOT(c—t)" Z.CNOT(c—t) = Z.,,  CNOT(c—1)' Z, CNOT(c—1t) = Z.Z;,
which yields the same expression
vizo= [ %

1<j<N
Jj=N (mod 2)

For a product input state p;, = ®§V:1 pj» the expectation of this operator factorizes:

wizvy= I ™Ze)= ][] =
1<G<SN 1<G<N
J=N (mod 2) Jj=N (mod 2)
Finally, measuring the first qubit in the Z basis uses the projectors Iy = (I + Z1)/2 and IT; =
(I — Zy)/2, giving

1+ (Ut Z,U 1—(U'Z,U
Pr(first qubit = 0) = %, Pr(first qubit = 1) = %7
which yields the claimed formulas upon substitution. O

The implications of this analysis are that, because the probability of measuring the first qubit to be 0
or 1 only depends on half of the qubits’ Z-expectation, half of the parameter information is not being
used if we measure immediately after the first layer, which may be a reason why Quorus performs
badly with just one layer — not enough parameters contribute to the loss function. This motivates the
use of additional layers in Quorus so that our loss function is dependent on more parameters.
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I CosTs OF USING QUORUS

We would like to provide a more detailed discussion of the costs of using Quorus. We will break
down our discussion into two sections: classical resource cost, and quantum resource cost. Within
the quantum resource cost, we will discuss the cost of using each of our design more explicitly.
To our knowledge, a detailed discussion of how to compute layerwise losses in QML has not been
proposed, which is what we provide below.

I.1 CLASSICAL RESOURCE COST

The classical cost of using Quorus can be characterized as follows:

1. Client storage of parameters, model output, and gradient information
2. Server parameter aggregation process

3. Parameters sent over classical channel (network)

One important observation is that model inference and gradient computation has minimal
classical overhead. The reason for this is that weight matrix multiplication and gradients can be
computed natively on quantum hardware (Wierichs et al., [2022), meaning that clients do not need
to store large weight matrices nor the intermediate activations from each layer. Typically, storing
these weight matrices as well as intermediate activations for gradient computation is a source of
significant classical memory overhead, serving as the bottleneck for why clients with little memory
cannot run large models. As this overhead does not exist in quantum models due to quantum-
native calculations, the bottleneck for clients is not limited classical memory, but rather limited
depth quantum computation.

The overhead that Quorus incurs (listed above) is small (on the order of the parameter count for each
client), which is not expected to be a classical memory overhead for our quantum clients.

1.2 QUANTUM RESOURCE COST

In contrast to the relatively small classical resource cost that Quorus incurs, the quantum resource
cost that Quorus incurs needs to be carefully analyzed. As discussed in the main text, quantum com-
puters are very expensive to run today, so minimizing the number of shots on the quantum computer
is essential for the practicality of Quorus. We will argue that, because Quorus-Layerwise incurs
a shot overhead, we propose Quorus-Ancilla, Quorus-Blocking, and Quorus-Funnel, tailored
for clients’ hardware constraints to enable practical QFL with Quorus.

1.2.1 QUORUS-LAYERWISE OVERHEAD

Quorus-Layerwise incurs a factor of L overhead in terms of shot-count because the circuit
must be re-run for each layer in order to compute the loss function, where L is the number of
layers in the circuit. To understand this, we will walk through the steps a client must take to evaluate
its loss function (which we defined in Equation . First of all, note that L%, (p;, y) and D, (p;|[p:)
both require the term p;, which are the logits output from the i-th layer. In our layerwise loss
function, we see the expressions Zj; L¢e(p;) and Z?i1 ijél,jyél Dgkr1.(pjllpi). Note that the
outer sum of these expressions is both Zfﬁ 1- This means that the client must be able to obtain p;
for each 1 < ¢ < dj, to compute its loss L. Obtaining those p;’s is precisely what we focus on.

In this Quorus-Layerwise approach, we propose simply rerunning the circuit for each depth (as
described in Subsec. d.3). To be more precise, for each depth i from 1,2, ..., dj, we have to rerun
the circuit. The reason we do this is to preserve the exact state fed into the next layer of the quantum
circuit, which is not possible with a midcircuit measurement (for detailed discussion of why this is
the case, refer to Subsec. 4.3).
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Then, if we need .S shots to obtain the probability distribution p; for our quantum model, then we
will need SL shots to obtain all p;, 1 < i < dj. This is precisely the linear factor in shot-overhead.

And the fact that this is a multiplicative factor is meaningful, once we consider how the total shot-
count scales when we do gradient computation according to the parameter-shift rule (Wierichs et al.,
2022)). To analyze this, we will employ a counting argument.

Proposition 2 (Quadratic shot count with Quorus—Layerwise). Let n be the number of qubits and
L the number of layers in the ansatz of Fig. E] Assume that, for each layer index i € {1,..., L}, the
scalar quantity p; can be estimated with S shots, independently of © and of the parameters.

Then, using Quorus—Layerwise and the parameter-shift rule, the total number of shots needed to
compute the gradient of Ly, with respect to all parameters of the ansatz is

L
Tayerwise = 651 Y (L —€+1) = 3SnL(L + 1),
=1

which scales quadratically in L.

Moreover, if the loss Ly, for client k can be evaluated with S shots (i.e., independently of the layer in-
dex (), then the total number of shots needed to compute the gradients with respect to all parameters
is

Tconst = GSTLL,

which scales linearly in L.

Proof. For the ansatz in Fig. |2} we index the parameters as
0 = (0g,e,r)q.er € R”XLXBa
where
* g € {1,...,n} denotes the qubit,
* L e{1,..., L} denotes the layer,

» r € {1,2,3} denotes the position of the parameter in the single-qubit rotation gate.

On each qubit ¢ in each layer ¢ we apply a three-parameter gate
Rot(0g,0,1,0q,02,0q,,3) = R:(0q,03) Ry(0g,0.2) Rz(0g,e,1),
as defined in Appendix[A] Thus, each layer contains n such gates and therefore 3n parameters.

We analyze the cost of computing the gradient with respect to a fixed parameter 6, ., € R, i.e.,

agL e By the parameter-shift rule Wierichs et al.|(2022), this gradient can be written as
q,€,r
0Ly
ko« Ly (0 @60y — (9~ (@6,
0,00

where, for some fixed shift ¢ € R,
OF(@ET) = g 4 g e(@b)

and (@67 € R"*L*3 i the basis tensor with entries

(‘L‘gﬂ') — 17 lf (a7b7 C) = (qa€7 ’f‘),
abye 0, otherwise.

Thus, it suffices to count the number of shots required to evaluate Ly, (8%(9-4")) for this parameter.
Recall that Ly (Eq.[I) is defined in terms of the layerwise quantities p;. For a parameter in layer /,
the corresponding circuit only affects the outputs p; with ¢ > ¢. Therefore:

* for j < {, the parameter 6, ¢, does not appear in the circuit used to compute p;, so p; is

dL?
ce — O;

independent of 0, ¢, and Z5—=
q,£,m
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» for all 7 with £ <4 < d, (or up to L in the worst case), the parameter ¢, ¢, may influence
s, SO We must run the circuit to estimate p;.

Under the assumption of the proposition, evaluating p; for a given ¢ costs S shots. Therefore, to
compute Ly, for a parameter in layer ¢, we need to evaluate p; fori = £, ..., L, which requires
S(L—1t+1)

shots for a single evaluation of L. Because the parameter-shift rule requires two such evaluations,
Lk(0+(q’47’")) and Lk(ﬁ’(q*“)), the cost for the single parameter 6 ¢, is

Tyor =2S(L—L+1).

Each layer ¢ has 3n parameters (three per gate, one gate per qubit), and 7, ¢, depends only on £.
Hence, the total number of shots for all parameters in layer ¢ is

Tp=3n Ty, =06Sn(L—C+1).

Summing over all layers yields the total shot count:

L L
T‘layerwise - ZTZ = ZGSTL(L —/ + 1)
=1 =1
L L
—=65n) (L—(+1)=65n) t
=1 t=1
. 6sn@ — 3SnL(L + 1),

which proves the first claim.

For the second claim, assume instead that the full loss Ly (for any parameter setting 6 and any
layer index) can be evaluated with S shots. Then, for each parameter ¢, ¢, the parameter-shift rule
requires two evaluations of Ly, costing 25 shots. Since there are 3nL parameters in total, the shot
count is

Teonst = 3nL - 25 = 6SnL,

as claimed. O

From Proposition [2} we see that Quorus-Layerwise has a quadratic shot overhead compared to a
loss function that can be evaluated with just S shots (which is standard in variational quantum
algorithms). To reduce this shot overhead, we aim to evaluate our loss function Ly in just S shots,
independent of the layer count L. This will be detailed next.

1.2.2 QUORUS-ANCILLA OVERHEAD

To that end, we propose a technique, Quorus-Ancilla, that uses ancilla(e) qubit(s). As depicted in
Fig.[5] we entangle the first qubit with an ancilla qubit after each layer. Thus, if the client has L
layers for C class classification, then we require the client to have L x [log2(C)] ancilla qubits,
with the ability to do a two-qubit gate from the first [log2(C)] qubits to each ancilla. Note that,
in doing so, the loss function L for client k can now be computed in just S shots. To do so, the
client simply needs to obtain the marginal probability distribution over [logs(C)]| ancillae of each
of the L groups of [logs(C)] ancillae; for group of [logs(C)] ancillae qubits a;, this will yield the
marginal distribution p;. With just S shots of the circuit, each group of ancillae a; will be measured
S times, which gives us S values for each group of ancillae to form the histogram that we use as our
estimate of p;. With p;, we can compute our loss function L with classical postprocessing.

We would like to highlight how the hardware constraint of additional ancillae and higher connec-
tivity is amenable for some quantum hardware architectures but not others. For example, supercon-
ducting machines have limited connectivity and cannot natively perform two-qubit gates between
one qubit and an arbitrary number of other qubits without additional overhead (Lange et al., [2025).
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However, trapped-ion machines exhibit all-to-all connectivity, and neutral atom machines are recon-
figurable and can, in theory, support two-qubit gates between any qubits (Chen et al.| 2024; [Evered
et al., 2023). Thus, for trapped-ion and neutral atom clients that are resource-constrained (cannot
run many shots), Quorus-Ancilla is amenable to their hardware capabilities.

Finally, we would like note that the user actually does not need to have L ancillae, provided they
have some way to reset the qubit mid-computation. Using just [logo(C')] ancilla qubits and resetting
their state to 0 after each layer would also be sufficient to implement the Quorus-Ancilla approach.
However, if the measurement and reset operation takes a long time, then that could block the op-
erations in the circuit’s next layer and induce latency in the circuit. Thus, using [log2(C)] ancilla
qubits is particularly amenable to clients who have the ability to reset a qubit in parallel with other
circuit operations, with real-time cost that is similar to that of the circuit operations. This hardware
requirement is also used in quantum error correction (DeCross et al.,2022)). Thus, as quantum hard-
ware tailored for quantum error correction improves, the same functionality can be used to support
this technique.

1.2.3 QUORUS-BLOCKING OVERHEAD

For a client that does not have additional ancilla qubits, we propose an alternate version of Quorus,
called Quorus-Blocking. Depicted in Fig. [6] (a), we require the client to have the ability to do a
mid-circuit measurement on the first [log>(C)| qubits after each layer. We store the measure-
ment outcome on the [logs(C)] ancillae at each layer for each shot; thus, with .S shots, we will have
S values for each layer to form the histogram which we use as an estimator for p;.

We would like to highlight that for clients with the ability to implement mid-circuit measurements
quickly, Quorus-Blocking is particularly amenable. And, as discussed above, with quantum hard-
ware built to support quantum error correction, the same capability of doing fast mid-circuit mea-
surements will enable the practicality of Quorus-Blocking.

1.2.4 QUORUS-FUNNEL OVERHEAD

Despite the real-world relevance of the hardware requirements discussed in the above sections, there
is quantum hardware today where none of the above constraints are satisfied, given the relative
nascency of quantum hardware. To support clients with the least amount of hardware constraints,
we trade-off quantum hardware constraints with quantum model size. For the Quorus-Funnel
approach, we require the client to use a model that acts on [log2(C)] fewer qubits after each
layer. The reason for this is, if [log2(C)] qubits are not used for computation in any further layer,
then they can be measured without blocking other computation. Thus, by obtaining the marginal
distribution over the first [log2(C)] remaining qubits after each layer, with just S shots, we can
obtain an estimate for p; for each layer.

1.3 SUMMARY OF QUORUS RESOURCE COSTS

In conclusion, we have discussed why Quorus does not incur a high classical resource cost over
other QFL methods, and discussed the unique and practically relevant hardware requirements that
each version of Quorus has. In doing so, we highlight the relevance of Quorus to quantum platforms
in our current-day and ones we expect in the near future.
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