
SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

Kaixuan Huang 1 Xudong Guo 2 Mengdi Wang 1

Abstract

Speculative decoding reduces the inference la-
tency of a target large language model via utilizing
a smaller and faster draft model. Its performance
depends on a hyperparameter K — the candidate
length, i.e., the number of candidate tokens for the
target model to verify in each round. We study the
choice of the candidate length K and formulate
it as a Markov Decision Process. We theoreti-
cally show that the optimal policy of this Markov
decision process takes the form of a threshold
policy, i.e., the current speculation should stop
and be verified when the probability of getting a
rejection exceeds a threshold value. Motivated
by this theory, we propose SpecDec++, an en-
hanced version of speculative decoding that adap-
tively determines the candidate length on the fly.
We augment the draft model with a trained ac-
ceptance prediction head to predict the condi-
tional acceptance probability of the candidate to-
kens. SpecDec++ will stop the current spec-
ulation when the predicted probability that at
least one token gets rejected exceeds a threshold.
We implement SpecDec++ and apply it to the
llama-2-chat 7B & 70B model pair. Our adaptive
method achieves a 2.04x speedup on the Alpaca
dataset (an additional 7.2% improvement over the
baseline speculative decoding). On the GSM8K
and HumanEval datasets, our method achieves
a 2.26x speedup (9.4% improvement) and 2.23x
speedup (11.1% improvement), respectively. The
code is released at https://github.com/
Kaffaljidhmah2/SpecDec_pp.

1. Introduction
Current state-of-the-art Large Language Models (LLMs)
have demonstrated extraordinary capabilities in various lan-

1Princeton University 2Tsinghua University. Correspondence
to: Kaixuan Huang <kaixuanh@princeton.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

guage tasks and have shown early signs of artificial general
intelligence (Achiam et al., 2023; Anil et al., 2023; Team
et al., 2023; Touvron et al., 2023a;b). As the top-performing
LLMs often have more than a hundred billion parameters,
there is an increasing demand for serving such huge models
efficiently.

To decrease the inference latency, motivated by specula-
tive execution techniques in processors, speculative decod-
ing (Chen et al., 2023a; Leviathan et al., 2023) incorporates
a draft model, which is smaller and faster, as the speculator
for the target model, which is the large language model
we want to accelerate. Given the current prefix, the draft
model first auto-regressively generates K tokens, taking
substantially less time than it would take the target model.
The target model computes their log probabilities in paral-
lel and then sequentially determines whether each token is
accepted or not. Following the first rejected token (if any),
the algorithm discards the remaining tokens and corrects the
rejected token with a fresh sample from a modified distri-
bution. If all tokens are accepted, a new token is sampled
from the next-token probability given by the target model
and appended to the sequence of accepted tokens, and then
the process moves forward. Such draft-verify-correct loops
continue until the desired output is fully generated.

The speedup effect of speculative decoding depends on two
crucial aspects: (1) how well the draft model aligns with the
target model, and (2) how fast the draft model gets compared
to the target model. The two aspects influence the choice
of the hyperparameter K: the number of candidate tokens
generated by the draft model in each loop. When the draft
model aligns well and/or runs fast, we can choose a larger
K, which potentially allows more tokens to be accepted in
each loop. However, a larger K also increases the chances
of rejection so that more tokens get discarded.

In this work, we aim to boost the performance of speculative
decoding by adaptively choosing the candidate length K for
each round. We formalize the adaptive decision-making of
K for speculative decoding as a Markov Decision Process
(MDP). The decision to make at each timestep is whether
or not to stop the current speculation round and submit the
candidate tokens to the target model for verification and
correction. The objective is to minimize the total inference
time taken to generate a full response. Theoretically, we

1

https://github.com/Kaffaljidhmah2/SpecDec_pp
https://github.com/Kaffaljidhmah2/SpecDec_pp

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

Alpaca HumanEval GSM8K

10

15

20

25

To
ke

ns
 p

er
 S

ec
on

d

1.90x
2.04x

7.2% improvement
2.00x

2.23x
11.1% improvement

2.07x
2.26x

9.4% improvement No Speculative Decoding
SpecDec
SpecDec++

Figure 1. The performance of SpecDec++. Compared with the baseline speculative decoding (SpecDec) with fixed candidate lengths,
by adaptively determining the candidate lengths via a trained acceptance prediction head, SpecDec++ achieves a relative 7.2%, 11.1%,
and 9.4% improvement over the baseline methods on the Alpaca, HumanEval, and GSM8K dataset, respectively. The experiments are
conducted with llama-2-chat 7B & 70B model pair on 2 NVIDIA A100-80G GPUs.

show that the optimal policy takes the form of a threshold
policy, i.e., it is optimal to stop the speculation round when-
ever the probability of existing at least one rejected token in
the candidates exceeds a threshold.

Inspired by the theory, we propose SpecDec++, an en-
hanced version of speculative decoding that adaptively de-
termines the candidate length on the fly. First, we train
an acceptance prediction head on top of the draft model to
predict the acceptance probability of the candidate token.
Training such an acceptance prediction head has two chal-
lenges: (1) there will be a severe class imbalance problem,
e.g., most tokens generated by the draft model will have
a high probability of acceptance, depending on how well
the two models align; (2) the input sequence to the model
contains mostly tokens from the target model and only a
fraction of tokens generated by the draft model, so the train-
ing signal is sparse. To overcome the two challenges, we
adopt a weighted Binary Cross-Entropy loss to address the
class imbalance problem, and we adapt the random masking
idea from BERT (Devlin et al., 2019) to randomly mix to-
kens from the target model and the draft model to increase
training efficiency.

At inference time, we opt to stop the current speculation
round when the predicted probability of the existence of
a rejected token exceeds a constant stopping threshold.
The procedure is illustrated in Figure 2. We implement
SpecDec++ and apply it to llama-2-chat 7B & 70B model
pair. Our adaptive method achieves a 2.04x speedup com-
pared with the 1.90x speedup of the baseline speculative
decoding method on the Alpaca dataset (an additional 7.2%
improvement). On the easier GSM8K and HumanEval
datasets, our method improves the baseline from 2.07x to
2.26x speedup (9.4% improvement) and from 2.00x to 2.23x
speedup (11.1% improvement), respectively.

2. Background
Metrics. To measure the benefit of a speculative decoding
pipeline, we show that the latency (inference time per token)

Ttotal/N can be written as the following (see a complete
derivation in Appendix A)

latency = tdraft+tdraft·Ndiscarded/N+(ttarget−tdraft)·Ntarget/N.
(2.1)

We focus on two metrics: (1) discard rate Ndiscarded/N ,
which measures the average number of discarded tokens per
one generated token, and (1) verification rate Ntarget/N ,
which measures the average number of the forward calls of
the target model per one generated token.

3. SpecDec++: Theory and Algorithm
3.1. Speculative Decoding as Markov Decision

Processes

We defer the formulation of speculative decoding into the
following Markov Decision Process (MDP) framework and
the proof of the following theorem in Appendix B.

Theorem 3.1. For any time-homogeneous policy π that has
an upper bound for the number of candidate tokens, at the
current state s = (xprefix, (Y1, . . . , Yk)), when

P(∃1 ≤ i ≤ k, Yi is rejected | xprefix) ≥ c2 + ∆

c1 + c2 + ∆
,

the expected total cost of stop is smaller than the expected
total cost of continue, where ∆ = ∆(π, xprompt, p, q, c1, c2)
is a problem-specific constant.

3.2. SpecDec++

Theorem 3.1 provides a sufficient condition for us to stop
the current round of speculation and call the target model
to verify the candidate tokens. Motivated by Theorem 3.1,
we propose SpecDec++, an adaptive speculative decod-
ing algorithm that utilizes an additional prediction head to
determine whether or not to stop the current speculation
round.

SpecDec++ incorporates an additional prediction head
fθ on top of the draft model that predicts the conditional

2

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

probability

P(Yi is accepted | Y1, . . . , Yi−1 are accepted , xprefix)

= min
(

1,
p(Yi|xprefix, Y1, . . . , Yi−1)

q(Yi|xprefix, Y1, . . . , Yi−1)

)
.

We opt to implement a small prediction head such that the
computational overhead is negligible compared to a forward
pass of the draft model. During inference time, we feed
the input (xprefix, Y1, . . . , Yi) to the draft model and obtain
the final embedding ei of the last token Yi. The predicted
acceptance probability is given by

P̂(Yi is accepted | Y1, . . . , Yi−1 are accepted , xprefix) = sigmoid(fθ(ei)).
(3.1)

Given a threshold h, we end the current round of specu-
lation when the predicted probability that there exists one
rejected token exceeds h π(sk) = stop ⇔ P̂(∃1 ≤ i ≤
k, such that Yi is rejected | xprefix) > h, which can be com-
puted by chain rule

P̂(∃1 ≤ i ≤ k, such that Yi is rejected | xprefix)

=1−
k∏
i=1

P̂(Yi is accepted | Y1, . . . , Yi−1 are accepted , xprefix).

We summarize the proposed algorithm in Algorithm 2 and
illustrate it in Figure 2.

Draft Model

Acceptance Prediction Head

multiplication

STOP CONTINUE

Figure 2. SpecDec++ uses a trained acceptance prediction
head to predict the conditional acceptance probability of the can-
didate tokens. When the predicted probability of the existence
of at least one rejected token exceeds the stopping threshold h,
the current speculation round ends and the candidate tokens go
through the target model for verification and correction.

3.3. Training Dataset and Objective

Let Dprompt be the prompt distribution. For each xprompt in
Dprompt, we generate a response (X1, . . . , XN) using the
target model. Next, we feed the prompt and the response
into the draft model to get q(· | xprompt, X1, . . . , Xi−1)
for every i. We sample a Yi from the distribution and

calculate the conditional acceptance probability Pi =

min
(

1,
p(Yi|xprompt,X1,...,Xi−1)
q(Yi|xprompt,X1,...,Xi−1)

)
for each token, which will

be the training target.

We construct the response sequence (Z1, . . . , ZN) by ran-
domly taking r% tokens from (X1, . . . , XN) and the re-
maining tokens from (Y1, . . . , YN), borrowing the random
masking idea from BERT (Devlin et al., 2019). We only
compute losses for the tokens from (Y1, . . . , YN).

We note that there will be distribution shifts between
(xprefix, Y1, . . . , Yk), the sequence encountered during the
inference process, and (xprefix, Z1, . . . , Zk), the sequence
encountered during training process. The distribution shift
may cause certain biases in the prediction head, e.g., over-
confident about the acceptance. Furthermore, as in the typ-
ical setting of speculative decoding where the draft model
and the target model align reasonably well, there will be
class imbalance issues in the training dataset, where most
of the training examples will have Pi close to 1.

To accommodate the issues above, we train the prediction
head using a weighted binary cross-entropy (BCE) loss,
taken over the tokens Zi’s stemming from Yi’s:∑

1≤i≤N:
Zi is taken from Yi

(−wacc ·Pi log P̂i−wrej · (1−Pi) log(1− P̂i)
)
,

where wacc and wrej are the weights and P̂i =
sigmoid(fθ(ei(xprompt, Z1, . . . , Zi−1, Yi))).

4. Experiments
4.1. Experimental Setups

Datasets and Model Pairs. We adopt three datasets in our
experiments: Alpaca (Taori et al., 2023), HumanEval (Chen
et al., 2021), GSM8K (Cobbe et al., 2021). We only use
prompts of the datasets and do not use responses. In the
experiments, we use llama-2-chat models (Touvron et al.,
2023b). We choose to use llama-2-chat 7B as the draft
model and llama-2-chat 70B as the target model. To reduce
memory consumption, we use the bfloat16 format for the
models.

Network Architecture, Weighted BCE Loss, and Stop-
ping Criteria for SpecDec++. We build a (D + 1)-layer
ResNet with SiLU activation as the acceptance prediction
head, and we sweepD from 0 (linear layer) to 4 in the exper-
iments. We adopt the weighted BCE loss where set wacc = 1
and choose wrej from {1, 3, 6, 12}. We tune the stopping
threshold h in {0.1, 0.3, 0.5, 0.7, 0.9}. To ensure the robust-
ness of SpecDec++, we manually stop each speculation
round when the number of candidate tokens exceeds 20.

Baseline Method. We compare SpecDec++ with the
naive speculative decoding algorithm where the number

3

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

of the candidate tokens K is fixed as a hyperparameter. We
tune K in {2, 4, 6, 8, 10, 12, 14}.

Due to space limits, additional experimental setup is de-
ferred to Appendix C.1.

4.2. Forward Time Analysis

First, we verify the correctness of Equation (A.1) and deter-
mine the forward time of the draft model tdraft and the target
model ttarget under our specific setting. The full results are
deferred to Appendix C.2.

4.3. Performances

We test the performances of the baseline speculative decod-
ing with different K and SpecDec++ with the different
acceptance prediction heads and different thresholds h. We
calculate the discard rates Ndiscarded/N and the verification
rates Ntarget/N (Equation (2.1)). The results are plotted
in Figure 3. We see that SpecDec++ has strictly better
Pareto frontiers than the baseline SpecDec on both the in-
distribution test set Alpaca and the two out-of-distribution
datasets HumanEval and GSM8K. Our method with adap-
tive candidate lengths improves upon the baseline method
of fixed candidate lengths by reducing both the discard rate
and the verification rate. The two metrics are indepen-
dent of the actual forward times (tdraft and ttarget) and hence
reusable for other hardware configurations, which indicates
that SpecDec++ will still outperform the baseline under
different sets of tdraft and ttarget. Finally, we plug in the actual
values of (tdraft, ttarget) = (0.0234, 0.112) as in Section 4.2.
We summarize the throughputs in Table 1 and visualize the
improvements in Figure 1.

Table 1. The best throughputs achieved by SpecDec++ compared
to the best throughputs achieved by the speculative decoding base-
line on Alpaca, HumanEval, and GSM8K datasets.

Dataset Alpaca HumanEval GSM8K
SpecDec++ 18.88 (tokens/s) 20.61 (tokens/s) 20.95 (tokens/s)
SpecDec (baseline) 17.62 (tokens/s) 18.55 (tokens/s) 19.14 (tokens/s)

Discussions. As the distribution shift of the OOD datasets
will influence the accuracies and the calibrations of the
acceptance prediction heads, a natural question to ask is
whether the optimal performances for different datasets are
achieved with different acceptance prediction heads and
stopping thresholds. Empirically, we confirm that this is
indeed the case. Nevertheless, we find that using the accep-
tance prediction trained with wrej = 6 and network depth
D = 3 and the stopping threshold h = 0.7 achieves over
99.3% of the best tokens per second across the three datasets
(2.03x for Alpaca, 2.21x for HumanEval, and 2.26x for
GSM8K). Additional ablation studies on how the hyperpa-
rameters (wrej, D, h) influence the final tokens per second
can be found in Appendix C.3.

0.15 0.20 0.25 0.30
Verification Rate

0.5

1.0

1.5

D
is

ca
rd

 R
at

e

Alpaca

SpecDec++
SpecDec

0.15 0.20 0.25 0.30
Verification Rate

0.5

1.0

1.5

D
is

ca
rd

 R
at

e

HumanEval

SpecDec++
SpecDec

0.15 0.20 0.25 0.30
Verification Rate

0.5

1.0

1.5

D
is

ca
rd

 R
at

e

GSM8K

SpecDec++
SpecDec

Figure 3. The average verification rate Ntarget/N and the average
discard rate Ndiscarded/N for the baseline SpecDec under different
candidate lengths and SpecDec++ with different acceptance pre-
diction heads and stopping thresholds. SpecDec++ has better
Pareto frontiers than SpecDec on both the in-distribution dataset
Alpaca and the two out-of-distribution datasets HumanEval and
GSM8K.

5. Related Work
See Appendix D for a detailed discussion on related work
about speculative decoding, token trees, and diffusion lan-
guage models.

6. Conclusion
In this work, we study the determination of the candidate
lengths for speculative decoding. We formulate the prob-
lem as a Markov Decision Process and provide a theorem
that gives a sufficient condition to stop the current spec-
ulation. Motivated by the theoretical result, we propose
SpecDec++ to adaptively select the candidate length with
a trained acceptance prediction head. We demonstrate sig-
nificant speedups over baselines and our method can be
seamlessly integrated with other improvements.

4

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Agarwal, R., Vieillard, N., Zhou, Y., Stanczyk, P., Garea,
S. R., Geist, M., and Bachem, O. On-policy distillation of
language models: Learning from self-generated mistakes.
In The Twelfth International Conference on Learning
Representations, 2024.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,
D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van
Den Berg, R. Structured denoising diffusion models in
discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

Bae, S., Ko, J., Song, H., and Yun, S.-Y. Fast and robust
early-exiting framework for autoregressive language mod-
els with synchronized parallel decoding. In Proceedings
of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5910–5924, 2023.

Bhendawade, N., Belousova, I., Fu, Q., Mason, H., Raste-
gari, M., and Najibi, M. Speculative streaming: Fast
llm inference without auxiliary models. arXiv preprint
arXiv:2402.11131, 2024.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. arXiv preprint
arXiv: 2401.10774, 2024.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, M., Bai, Y., Poor, H. V., and Wang, M. Efficient
rl with impaired observability: Learning to act with de-
layed and missing state observations. Advances in Neural
Information Processing Systems, 36, 2024a.

Chen, Z., Yang, X., Lin, J., Sun, C., Huang, J., and Chang,
K. C.-C. Cascade speculative drafting for even faster llm
inference. arXiv preprint arXiv:2312.11462, 2023b.

Chen, Z., May, A., Svirschevski, R., Huang, Y., Ryabinin,
M., Jia, Z., and Chen, B. Sequoia: Scalable, robust, and
hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024b.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171–4186, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Du, C., Jiang, J., Yuanchen, X., Wu, J., Yu, S., Li, Y., Li, S.,
Xu, K., Nie, L., Tu, Z., et al. Glide with a cape: A low-
hassle method to accelerate speculative decoding. arXiv
preprint arXiv:2402.02082, 2024.

Fu, Y., Bailis, P., Stoica, I., and Zhang, H. Break the se-
quential dependency of llm inference using lookahead
decoding. arXiv preprint arXiv:2402.02057, 2024.

He, Z., Zhong, Z., Cai, T., Lee, J. D., and He, D. Rest:
Retrieval-based speculative decoding. arXiv preprint
arXiv:2311.08252, 2023.

Howson, B., Pike-Burke, C., and Filippi, S. Delayed feed-
back in generalised linear bandits revisited. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 6095–6119. PMLR, 2023.

Jeon, W., Gagrani, M., Goel, R., Park, J., Lee, M., and
Lott, C. Recursive speculative decoding: Accelerating
llm inference via sampling without replacement. arXiv
preprint arXiv:2402.14160, 2024.

Kim, S., Mangalam, K., Moon, S., Malik, J., Mahoney,
M. W., Gholami, A., and Keutzer, K. Speculative decod-
ing with big little decoder. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Kou, S., Hu, L., He, Z., Deng, Z., and Zhang, H. Cllms:
Consistency large language models. arXiv preprint
arXiv:2403.00835, 2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

5

https://aclanthology.org/N19-1423

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

Lee, J., Agarwal, A., Dann, C., and Zhang, T. Learning in
pomdps is sample-efficient with hindsight observability.
In International Conference on Machine Learning, pp.
18733–18773. PMLR, 2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast in-
ference from transformers via speculative decoding.
In Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., and Scarlett, J. (eds.), Proceedings of
the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pp. 19274–19286. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/leviathan23a.html.

Li, X., Thickstun, J., Gulrajani, I., Liang, P. S., and
Hashimoto, T. B. Diffusion-lm improves controllable
text generation. Advances in Neural Information Process-
ing Systems, 35:4328–4343, 2022.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm
knows what you are looking for before generation. arXiv
preprint arXiv:2404.14469, 2024a.

Li, Y., Wei, F., Zhang, C., and Zhang, H. Eagle: Speculative
sampling requires rethinking feature uncertainty. arXiv
preprint arXiv:2401.15077, 2024b.

Liu, F., Tang, Y., Liu, Z., Ni, Y., Han, K., and Wang, Y.
Kangaroo: Lossless self-speculative decoding via double
early exiting. arXiv preprint arXiv:2404.18911, 2024.

Liu, X., Hu, L., Bailis, P., Stoica, I., Deng, Z., Cheung,
A., and Zhang, H. Online speculative decoding. arXiv
preprint arXiv:2310.07177, 2023.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z., Wong,
R. Y. Y., Zhu, A., Yang, L., Shi, X., Shi, C., Chen, Z.,
Arfeen, D., Abhyankar, R., and Jia, Z. Specinfer: Ac-
celerating generative large language model serving with
speculative inference and token tree verification, 2023.

Monea, G., Joulin, A., and Grave, E. Pass: Parallel specula-
tive sampling. arXiv preprint arXiv:2311.13581, 2023.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently
scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

Santilli, A., Severino, S., Postolache, E., Maiorca, V.,
Mancusi, M., Marin, R., and Rodola, E. Accelerat-
ing transformer inference for translation via parallel de-
coding. In Rogers, A., Boyd-Graber, J., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 12336–12355, Toronto, Canada,

July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.689. URL https:
//aclanthology.org/2023.acl-long.689.

Spector, B. F. and Re, C. Accelerating LLM inference
with staged speculative decoding. In Workshop on Ef-
ficient Systems for Foundation Models @ ICML2023,
2023. URL https://openreview.net/forum?
id=RKHF3VYjLK.

Stern, M., Shazeer, N., and Uszkoreit, J. Blockwise parallel
decoding for deep autoregressive models. Advances in
Neural Information Processing Systems, 31, 2018.

Su, Q., Giannoula, C., and Pekhimenko, G. The synergy of
speculative decoding and batching in serving large lan-
guage models. arXiv preprint arXiv:2310.18813, 2023.

Sun, H., Chen, Z., Yang, X., Tian, Y., and Chen, B. Tri-
force: Lossless acceleration of long sequence generation
with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024a.

Sun, Z., Suresh, A. T., Ro, J. H., Beirami, A., Jain, H.,
and Yu, F. Spectr: Fast speculative decoding via optimal
transport. Advances in Neural Information Processing
Systems, 36, 2024b.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Align-
ing language models with self-generated instructions. In

6

https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://aclanthology.org/2023.acl-long.689
https://aclanthology.org/2023.acl-long.689
https://openreview.net/forum?id=RKHF3VYjLK
https://openreview.net/forum?id=RKHF3VYjLK
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.), Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 13484–13508, Toronto, Canada, July 2023. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.754. URL https://aclanthology.
org/2023.acl-long.754.

Xia, H., Yang, Z., Dong, Q., Wang, P., Li, Y., Ge, T., Liu, T.,
Li, W., and Sui, Z. Unlocking efficiency in large language
model inference: A comprehensive survey of speculative
decoding. arXiv preprint arXiv:2401.07851, 2024.

Xu, D., Yin, W., Jin, X., Zhang, Y., Wei, S., Xu, M., and Liu,
X. Llmcad: Fast and scalable on-device large language
model inference. arXiv preprint arXiv:2309.04255, 2023.

Yang, N., Ge, T., Wang, L., Jiao, B., Jiang, D., Yang, L.,
Majumder, R., and Wei, F. Inference with reference:
Lossless acceleration of large language models. arXiv
preprint arXiv:2304.04487, 2023a.

Yang, S., Lee, G., Cho, J., Papailiopoulos, D., and
Lee, K. Predictive pipelined decoding: A compute-
latency trade-off for exact llm decoding. arXiv preprint
arXiv:2307.05908, 2023b.

Yang, S., Huang, S., Dai, X., and Chen, J. Multi-candidate
speculative decoding. arXiv preprint arXiv:2401.06706,
2024a.

Yang, Y., Zhong, H., Wu, T., Liu, B., Wang, L., and Du,
S. S. A reduction-based framework for sequential deci-
sion making with delayed feedback. Advances in Neural
Information Processing Systems, 36, 2024b.

Zhang, A., Wang, C., Wang, Y., Zhang, X., and Cheng,
Y. Recurrent drafter for fast speculative decoding in
large language models. arXiv preprint arXiv:2403.09919,
2024.

Zhao, W., Huang, Y., Han, X., Xiao, C., Liu, Z., and Sun,
M. Ouroboros: Speculative decoding with large model
enhanced drafting. arXiv preprint arXiv:2402.13720,
2024.

Zhong, S., Yang, Z., Li, M., Gong, R., Wang, R., and Huang,
R. Propd: Dynamic token tree pruning and generation for
llm parallel decoding. arXiv preprint arXiv:2402.13485,
2024.

Zhou, Y., Lyu, K., Rawat, A. S., Menon, A. K., Ros-
tamizadeh, A., Kumar, S., Kagy, J.-F., and Agarwal, R.
Distillspec: Improving speculative decoding via knowl-
edge distillation. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=rsY6J3ZaTF.

7

https://aclanthology.org/2023.acl-long.754
https://aclanthology.org/2023.acl-long.754
https://openreview.net/forum?id=rsY6J3ZaTF
https://openreview.net/forum?id=rsY6J3ZaTF

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

A. Additional Background
Rejection Sampling. If we want to sample from a target discrete distribution p(x), we first sample x from a draft distribution
q(x). We accept the sample x with probability min(1, p(x)q(x)); otherwise we replace it with a sample from the modified

distribution Norm[(p− q)+], where z+ = max(z, 0) is the positive part of z and Norm[f] = f(·)∑
x f(x)

normalizes a function
f to make it a proper probability distribution. The proof of the unbiasedness of rejection sampling can be found in (Chen
et al., 2023a).

Speculative Decoding. Speculative decoding extends to the auto-regressive generation scenarios by chaining K rejection
sampling procedures together. To auto-regressively generate a sequence from p(· | xprefix), we first generates K candidate
tokens (y1, y2, . . . , yK) from q(· | xprefix): yi ∼ q(Yi | xprefix, y1, . . . , yi−1), i = 1, 2, . . . ,K. Next, we sequentially
check if each yi is accepted or not. If there is any rejection, we replace the first rejected token with a fresh sample from the
corresponding modified probability distribution and discard the subsequent tokens.

The key practical consideration is that the probabilities of the candidate tokens p(yi | xprefix, y1, . . . , yi−1) can be calculated in
parallel by the target model with no additional overhead, as the forward time is bottlenecked by the memory operations (Pope
et al., 2023). For completeness, the speculative decoding algorithm is stated in Algorithm 1.

Algorithm 1 Speculative Decoding (Chen et al., 2023a; Leviathan et al., 2023)
Require: draft model q, target model p, prefix xprefix, number of candidate tokens K.

for i = 1 to K do
Compute qi = q(· | xprefix, y1, . . . , yi−1).
Sample yi ∼ qi.

end for
Compute in parallel pi = p(· | xprefix, y1, . . . , yi−1) for i = 1, . . . ,K + 1.
Sample r1, . . . , rK with ri ∼ Unif[0, 1], i = 1, . . . ,K.
Compute the number of accepted tokens n = min

(
{i− 1 | ri ≥ pi(yi)/qi(yi)} ∪K

)
.

if n < K then
Sample y′ from the modified distribution Norm[(pn+1 − qn+1)+]

else
Sample y′ from pK+1

end if
Return xprefix, y1, . . . , yn, y

′

Inference Time of Speculative Decoding.

Our objective is to minimize the total inference time, which consists of

Ttotal = tdraftNdraft + ttargetNtarget, (A.1)

where tdraft and ttarget are the time needed for one forward pass and Ndraft and Ntarget are the total number of forward passes
of the draft model and the target model, respectively. Equation (A.1) holds under the implicit assumption that the forward
passes of each of the models take constant time, which is true when we have enough computational resources to support the
increased concurrency when the length of the input sequence grows (Leviathan et al., 2023). We empirically verify that
Equation (A.1) holds in our setting; see Section 4.2.

Let N be the number of the final generated tokens. N is a random variable inherent to the target model and the initial
prompt, independent of the draft model and the number of candidate tokens K of each round we choose. Let Ndiscarded be
the number of total discarded tokens. Then we have the following identity for Algorithm 1

Ndraft +Ntarget = N +Ndiscarded.

Therefore, Ttotal can be written as

Ttotal = T0 + tdraftNdiscarded + (ttarget − tdraft)Ntarget, (A.2)

where T0 = tdraftN is the oracle inference time.

8

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

To minimize the total inference time, we are required to trade-off between two objectives: minimizing the number of the
discarded tokens Ndiscarded and minimizing the number of forward passes of the target model Ntarget. The two objectives
conflict with each other, as a largerK will incur more discarded tokens but less number of forward passes of the target model.
Equation (A.2) states that the total cost is the weighted sum of the two and the weights are given by tdraft and (ttarget − tdraft).

A.1. A Motivating Example: Oracle Performances of Greedy Speculative Decoding

Let us focus on a simplified deterministic setting of speculative decoding, where we use greedy decoding for the draft model
and the target model. In this setting, the draft model deterministically generates a series of greedy tokens (Y1, . . . , YK), and
the speculative decoding algorithm reduces to sequentially checking whether Yi is also the greedy token of the target model.
The first rejected token is replaced by the greedy token of the target model. If all the tokens are accepted, an additional
token is generated by the target model directly.

For a given prompt xprompt, let (X1, X2, . . . , XN) be the greedy tokens generated by the target model. We ask the following
question:

What is the oracle performance of the speculative decoding algorithm we can obtain by varying the number of candidate
tokens, if we have the knowledge of (X1, X2, . . . , XN) in hindsight?

Let us consider the first speculation round. The draft model generates (Y1, Y2, . . .) greedily. Let Yi be the first token such
that Yi 6= Xi. The optimal strategy is to stop the speculation at time (i−1), so the last candidate token Yi−1 is accepted, and
Yi will be generated directly by the target model, because (1) if we stop the speculation earlier, then the shorter candidate
tokens will still be accepted, but this induces at least one unnecessary forward pass of the target model; (2) if we stop the
speculation later, then we waste at least one candidate token Yi. By repeating the argument, we have the following.

Lemma A.1. In the greedy decoding setting, for a given prompt xprompt, let (X1, X2, . . . , XN) be the greedy tokens
generated by the target model. We define Yi = argmax q(· | xprompt, X1, X2, . . . , Xi−1) to be the greedy token of the draft
model q conditioned on the partial generation of the target model. Let S be the set of disagreement between the draft model
and the target model: S = {1 ≤ i ≤ N | Yi 6= Xi}. Then, by optimally stopping at time (i− 1) for every i ∈ S, we obtain
the oracle performance with Ndiscarded = 0 and Ntarget = |S|+ 1.

To empirically verify this, we perform a preliminary experiment with the same setting in Section 4, where we use all the
prompts in the Alpaca dataset and calculate the set of disagreement S for each prompt with the llama-2-chat-7B/llama-2-chat-
70B model pair. The results show that the average Ntarget/N = 0.164± 0.078 and the corresponding oracle throughput is
27.06±4.13 tokens/second (2.92x speedup) according to Equation (2.1) with the empirical value of (ttarget, tdraft) reported in
Section 4.2. In comparison, the average throughput for the target model without speculative decoding is 9.26 tokens/second,
while speculative decoding with the best fixed K gives 17.58 tokens/second (1.90x speedup) (Section 4). We see that there
is a huge potential in adaptively tuning the candidate lengths.

B. Theoretical Analysis

B.1. Speculative Decoding as Markov Decision Processes

We formulate speculative decoding into the following Markov Decision Process (MDP) framework.

States. We define the tuple s = (xprefix, (Y1, . . . , Yk)) as the current state of the MDP. Specifically, xprefix is the concatenation
of the prompt and the partial response containing all the accepted tokens. (Y1, . . . , Yk) is the current candidate tokens,
which are auto-regressively sampled from the draft distribution q:

Yi ∼ q(· | xprefix, Y1, . . . , Yi−1), i = 1, 2,

The initial state of the MDP is (xprompt,∅).

Actions. Given the current state (xprefix, (Y1, . . . , Yk)), the decision to make is whether or not to end the current spec-
ulation round and submit the candidate tokens to the target model for verification. We denote the current action by
a ∈ {stop, continue} as the choice of stopping or continuing the current speculation round. 1

1In practice, when Yk+1 is EOS (the special token denoting the end of sequence) or when the total length hits the maximal generation
length, we manually set a = stop.

9

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

Algorithm 2 SpecDec++
Require: draft model q, target model p, prefix xprefix, acceptance prediction head fθ, threshold h.

Initialize the cumulative acceptance probability p̂ = 1
for i = 1 do

if i > 1 then
Compute the final hidden embedding ei−1 of the token yi−1.

end if
Compute qi = q(· | xprefix, y1, . . . , yi−1).
Sample yi ∼ qi.
Update p̂← p̂ · sigmoid(fθ(ei−1)).
if 1− p̂ > h then

Break
end if

end for
Let K be the number of candidate tokens in the previous for-loop.
Compute in parallel pi = p(· | xprefix, y1, . . . , yi−1) for i = 1, . . . ,K + 1.
Sample r1, . . . , rK with ri ∼ Unif[0, 1], i = 1, . . . ,K.
Compute the number of accepted tokens n = min

(
{i− 1 | ri ≥ pi(yi)/qi(yi)} ∪K

)
.

if n < K then
Sample y′ from the modified distribution Norm[(pn+1 − qn+1)+]

else
Sample y′ from pK+1

end if
Return xprefix, y1, . . . , yn, y

′

We note that in an extended MDP setting, we can include the draft probability qk+1 for the token Yk+1 as a part of the current
action. Finetuning the draft model to align better with the target model can be viewed as an offline policy optimization
algorithm that will likely improve the performance. And it has been studied in previous work, e.g. DistillSpec (Zhou et al.,
2024) and Medusa (Cai et al., 2024). In the paper, we consider the draft probability qk+1 as given by the draft model and do
not optimize qk+1.

Transitions. First, we draw a random sample Yk+1 ∼ qk+1 and append Yk+1 to the current list of the candidate tokens.

• When a = continue, the next state s′ is simply (xprefix, (Y1, . . . , Yk, Yk+1)).
• When a = stop, the candidate tokens (Y1, . . . , Yk+1) are verified via speculative decoding (Algorithm 1). Let n be

the number of the accepted tokens. Let y′ be the replaced token when n < k + 1 or the fresh token from the next-
token distribution given by the target model when n = k + 1. The next state s′ = (x′prefix,∅) with the new prefix
x′prefix = (xprefix, y1, . . . , yn, y

′) being the concatenation of the previous prefix and the newly generated tokens.

Immediate Costs. According to Equation (A.2), let c1 = tdraft and c2 = (ttarget − tdraft). We can define the immediate cost
as the following

c(s, continue, s′) = I(∃1 ≤ i ≤ k + 1, Yi is rejected) · c1,

c(s, stop, s′) = I(∃1 ≤ i ≤ k + 1, Yi is rejected) · c1 + c2.

For both cases, we suffer a loss c1 if the current candidate token Yk+1 is discarded, which happens if there exists any
candidate token Yi (1 ≤ i ≤ k + 1) that is rejected. If we choose to stop at the current step, we suffer an additional cost c2
corresponding to the extra inference time of the target model.

Note that different from the traditional MDP setting when the reward/cost is immediately available to the learner, our setting
is more related to the delayed feedback setting (Howson et al., 2023; Lee et al., 2023; Yang et al., 2024b; Chen et al., 2024a),
where the cost is only available after the candidate tokens are submitted to the target model for verification.

10

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

B.2. Proof

In the section, we present the proof of Theorem 3.1.

For any time-homogeneous policy π, we define a random variable Cπ(s, a) as the total cost-to-go from the current state
s = (xprefix, (Y1, . . . , Yk)) when taking action a.

Cπ(s, a) =

M∑
i=1

c(si, ai, si+1), with s1 = s, a1 = a,

where the next state si+1 given (si, ai) follows the stochastic transition of the MDP, ai = π(si) for i ≥ 2, and M is
a random variable of the number of total steps. We make the assumption that π has an upper bound for the number of
candidate tokens, so we exclude the cases where the policy π potentially leads to an infinite loop and hence M <∞. Let
Cπ(s) = Cπ(s, π(s)).

proof of Theorem 3.1. We analyze the difference Cπ(s, continue)− Cπ(s, stop) for three cases.

Case 1. E1 = {∃1 ≤ i ≤ k + 1, such that Yi is rejected}.

Let x′prefix be the next prefix given by the speculative decoding algorithm, where the first rejected token among (Y1, . . . , Yk+1)
is replaced by the token from the modified distribution. We know that

Cπ(s, stop) = c1 + c2 + Cπ((x′prefix,∅)).

If we choose to continue at the current step, we know that no matter how many additional steps we continue to generate
draft tokens, we will eventually discard them and get the same new prefix x′prefix. Let Nπ

continue(s) be the total number of
extra continue’s induced by the policy π given the current state s and action continue. We have

Cπ(s, continue) = c1 + c1 · (1 +Nπ
continue(s)) + c2 + Cπ((x′prefix,∅)).

In summary, we have
Cπ(s, continue)− Cπ(s, stop) ≥ c1, conditioned on E1.

Case 2. E2 = {∀1 ≤ i ≤ k + 1, Yi is accepted, Yk+2 is rejected}.

If we stop the current round of speculation, then all the candidate tokens (Y1, . . . , Yk+1) will be accepted and an additional
Xk+2 is sampled from p(· | xprefix, Y1, . . . , Yk+1).

Cπ(s, stop) = c2 + Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅)).

Again, if we choose to continue at the current step, as Yk+2 is rejected, future generated tokens beyond Yk+2

will also be discarded. After the verification, Yk+2 will be replaced by Wk+2 ∼ Norm[(p(·|xprefix, Y1 . . . , Yk+1) −
q(·|xprefix, Y1 . . . , Yk+1))+]. Let Nπ

continue(s) be the total number of extra continue’s induced by the policy π given the
current state s and action continue. We have

Cπ(s, continue) = c1 · (1 +Nπ
continue(s)) + c2 + Cπ(((xprefix, Y1, . . . , Yk+1,Wk+2),∅)).

Denote ∆1 = Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅))− Cπ(((xprefix, Y1, . . . , Yk+1,Wk+2),∅)). In summary, we have

Cπ(s, continue)− Cπ(s, stop) ≥ c1 −∆1, conditioned on E2.

Case 3. E3 = {∀1 ≤ i ≤ k + 2, Yi is accepted}.

Similar to Case 2, if we stop the current round of speculation, then all the candidate tokens (Y1, . . . , Yk+1) will be accepted,
and an additional Xk+2 is sampled from p(· | xprefix, Y1, . . . , Yk+1).

Cπ(s, stop) = c2 + Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅)).

11

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

If we choose to continue at the current step, there is no immediate cost at the current step and we transit to
(xprefix, (Y1, . . . , Yk+1)).

Cπ(s, continue) = Cπ((xprefix, (Y1, . . . , Yk+1))).

Denote ∆2 = Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅))− Cπ((xprefix, (Y1, . . . , Yk+1))). We have

Cπ(s, continue)− Cπ(s, stop) ≥ −c2 −∆2, conditioned on E3.

Summary. At the current state, the values of (Y1, . . . , Yk) are known. We calculate the conditional expectation of
Cπ(s, continue)− Cπ(s, stop) given the current observation. For simplicity of notation, we do not explicitly write out the
condition on (Y1, . . . , Yk).

E[Cπ(s, continue)− Cπ(s, stop)]

≥P(E1)c1 + P(E2)(c1 − E[∆1 | E2]) + P(E3)(−c2 − E[∆2 | E3]).

When the right-hand side of the above inequality is larger than zero, the expected total cost of continue is larger than the
expected cost of stop. Therefore, we obtain a sufficient condition to stop at the current step.

To continue the analysis, we assume that we have an almost-sure upper bound ∆ on E[∆1 | E2] and E[∆2 | E3]:

E[∆1 | E2] ≤ ∆ a.s. and E[∆2 | E3] ≤ ∆ a.s..

A naive bound for ∆ is the upper bound of C, e.g., maxNtarget · ttarget + maxNdraft · tdraft. We assume that both the maximum
generated tokens and the numbers of candidate tokens per round have an upper limit, so the upper bound is finite.

Then

P(E1)c1 + P(E2)(c1 − E[∆1 | E2]) + P(E3)(−c2 − E[∆2 | E3]) ≥ 0

⇔ P(E1)c1 + P(E2)c1 ≥ P(E3)c2 + P(E3)E[∆2 | E3] + P(E2)E[∆1 | E2]

⇐ P(E1)c1 + P(E2)c1 ≥ P(E3)c2 + P(E3)∆ + P(E2)∆

⇐ P(E1)c1 ≥ (P(E2) + P(E3))c2 + (P(E3) + P(E2))∆

⇔ P(E1) ≥ c2 + ∆

c1 + c2 + ∆
.

Finally, we note that

P(E1) = P[∃1 ≤ i ≤ k + 1, such that Yi is rejected | Y1, . . . , Yk]

≥ P[∃1 ≤ i ≤ k, such that Yi is rejected | Y1, . . . , Yk],

which concludes the proof.

C. Additional Experimental Results
C.1. Additional Experimental Setups

The subsection continues Section 4.1.

Datasets. We adopt three datasets in our experiments: (1) Alpaca (Taori et al., 2023), an instruction-following dataset
generated using Self-Instruct (Wang et al., 2023) from OpenAI’s text-davinci-003 model; (2) HumanEval (Chen
et al., 2021), a test dataset containing Python code synthesis problems; and (3) GSM8K (Cobbe et al., 2021), a dataset of
high-school math problems. We only use prompts of the datasets and do not use responses.

Dataset splits. We split the Alpaca dataset into train/dev/test splits, containing 40k, 10k, 2k prompts, respectively. We use
train split to train the prediction heads and evaluate them on the dev split. We benchmark the performance of SpecDec++ on
the test split. For HumanEval and GSM8K, we only use them for benchmarking the out-of-distribution (OOD) performance
of SpecDec++. For each test dataset, we subsample 150 examples for benchmarking the performances.

Mixing probability. As in Section 3.3, we mix the response tokens from the generations from the target model and the
predicted next-tokens from the draft model. We set an aggressive value r% = 15% so only 15% of the tokens are from the

12

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

target model, as we find empirically that the draft model and the target model often align well. Setting a smaller r increases
the training efficiency as more supervision signals are used.

Training Details. We train all the acceptance prediction heads on the train split of the Alpaca dataset for 3 epochs with
batch size 32. We use Adam optimizer and a cosine learning rate schedule with the initial learning rate 5e− 5.

Hardware configuration. We use 2 NVIDIA A100 GPUs with 80G memory for the experiments. We shard the 70B model
across the two devices and communication overhead occurs when inferring with llama-2-chat 70B. When doing speculative
decoding, the 7B model is loaded only on one device.

Inference setting. We set the maximal sequence length to be 512. We use temperature T = 1 and adopt top-k sampling
with k = 50. We do not integrate KV cache management techniques such as PagedAttention (Kwon et al., 2023) or KV
cache pre-allocation.

Experiments Compute Resources. The required compute resources are estimated to be 500 hours on 2 NVIDIA A100-
80G GPUs for the training dataset generation, 400 hours on 1 NVIDIA A100-80G GPU for training 20 acceptance
prediction heads (sweeping D from 0 to 4 and wrej among 1, 3, 6, 12), 500 hours on 2 NVIDIA A100-80G GPUs for the
whole evaluation set. The full research project would require at least 2x the reported compute, as there were preliminary
experiments that are not in the paper.

C.2. Forward Time Analysis

First, we verify the correctness of Equation (A.1) and determine the forward time of the draft model tdraft and the target
model ttarget under our specific setting.

We collect all the (Ndraft, Ntarget, Ttotal) tuples from generations using speculative decoding (either the baseline version or
SpecDec++) and perform a linear regression to determine the coefficients. We also determine the standalone inference
time when using only the draft model or the target model with linear regression. The linear regressions fit well with all
R2 ≥ 0.98 and the results are summarized in Table 2.

The additional cost of the acceptance prediction head is negligible, as we find that the average tdraft in SpecDec++
setting is smaller than the average tdraft in baseline SpecDec setting by 0.0004s, which is likely caused by random noise of
the environment, as the standard deviation between difference datasets around 0.0006s. Therefore, for both the baseline
speculative decoding setting and SpecDec++ setting, we choose (tdraft, ttarget) = (0.0234, 0.112), which is the average
between the two cases. We use Equation (2.1) to calculate the theoretical throughputs (tokens per second), which match the
noisier empirical throughputs well with relative error ≤ 6.2% for all prompts.

In the standalone setting where only the draft model or the target model is used, we see significant decreases in both tdraft and
ttarget, which indicates that speculative decoding induces minor additional communication overhead. We use (tdraft, ttarget) =
(0.0207, 0.108) for the stand-alone setting. The average throughput for the target model is 9.26 tokens/second.

We report the full results of the linear regression in Table 2. Additionally, we visualize tdraft and ttarget across the three
settings in Figure 4.

Stand-alone SpecDec SpecDec++0.020

0.022

0.024

Fo
rw

ar
d

Ti
m

e
(s

) draft model

Stand-alone SpecDec SpecDec++

0.108

0.110

0.112

0.114
target model

Figure 4. The forward time of the draft model (llama-2-chat-7B) and the target model (llama-2-chat-70B) under different settings. For
each setting, we perform linear regression to calculate the forward times and then average them across different datasets. The additional
cost of the acceptance prediction head is negligible compared to the systematic error and the random noise of the environment. Full results
are deferred to Table 2.

13

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

Table 2. The forward time of the draft model (llama-2-chat-7B) and the target model (llama-2-chat-70B) under different settings and
different datasets. We perform linear regression to calculate the forward times.

Setting Dataset tdraft ttarget R2

stand-alone

Alpaca 0.0206 0.108 0.9994 & 0.9998
HumanEval 0.0207 0.107 0.9994 & 0.9998
GSM8K 0.0206 0.109 0.9990 & 0.9992
average 0.0207 ± 0.0001 0.108 ± 0.001

SpecDec

Alpaca 0.0232 0.114 0.9983
HumanEval 0.0246 0.111 0.9965
GSM8K 0.0229 0.113 0.9926
average 0.0236 ± 0.0007 0.112 ± 0.001

SpecDec++

Alpaca 0.0240 0.110 0.9982
HumanEval 0.0229 0.111 0.9880
GSM8K 0.0225 0.113 0.9925
average 0.0231 ± 0.0006 0.111 ± 0.001

C.3. Ablation Studies.

We study how the hyperparameters wrej, D, h influence the final throughputs (tokens per second). First, we calculate the
(unweighted) binary KL divergence between the ground-truth probability and the predicted probability, i.e.,

KL(p||q) = p log
p

q
+ (1− p) log

1− p
1− q

.

As KL(p||q) = BCE(p||q) − H(p), the binary KL divergence is a metric for how well the acceptance prediction head
fits the ground-truth probabilities. Next, for each acceptance prediction head, we report the best throughput by varying
the stopping threshold h among {0.1, 0.3, 0.5, 0.7, 0.9}, and the corresponding h that achieves the best performance. The
results are summarized in Table 3.

From the table, we see that increasing wrej = 1 increases the unweighted eval KL. All the prediction heads trained
with wrej = 1 perform the best with h = 0.3 under all three datasets, and similarly, most prediction heads trained with
wrej = 3, 6, 12 perform the best with h = 0.5, 0.7, 0.9, respectively. This synergy between wrej = 1 and h is expected, since
increasing wrej = 1 forces the acceptance prediction head to focus more on the cases where the candidate token is rejected
and thus mitigates the over-confidence issue. In return, the stopping threshold h can be set to a higher value to adjust for the
increased predicted probability of existing one rejection.

We bold the throughputs that are above 99% of the maximum throughput of the same dataset. We see that there are two sets
of hyperparameters that consistently achieve 99% of the maximum throughputs across the three datasets: wrej = 6, D = 3,
h = 0.7 and wrej = 6, D = 4, h = 0.7.

D. Related Works
Speculative decoding. Since the proposal of speculative decoding, people have been improving the algorithm from different
perspectives. Our work is complementary to the works that improve speculative decoding by (1) making the draft model
align better with the target model (Zhou et al., 2024; Agarwal et al., 2024; Liu et al., 2023), (2) building smaller draft models
or merging draft models into the target model (e.g. early-exiting) (Miao et al., 2023; Liu et al., 2024; Yang et al., 2023b; Bae
et al., 2023; Zhang et al., 2024; Monea et al., 2023; Chen et al., 2023b), and (3) building a heirachical system of speculative
decoding (Spector & Re, 2023; Sun et al., 2024a). Our work is not directly appliable to the methods that do not have the
concept of an auto-regressive draft model (Stern et al., 2018; Li et al., 2024b; Bhendawade et al., 2024; Cai et al., 2024) and
the retrieval-based methods (He et al., 2023; Zhao et al., 2024; Yang et al., 2023a; Fu et al., 2024).

Candidate length selection. Leviathan et al. (2023) make the i.i.d. assumption on the acceptance probabilities of the
candidate tokens and theoretically derive the optimal choice of K. Besides, Liu et al. (2024) and Kim et al. (2024) adopt a
simple heuristic that ends the speculation if the confidence of the current draft token distribution falls below a threshold. Xu
et al. (2023) uses the cumulative product of the confidences and extends to the token tree version. In comparison, our work
systematically studies the candidate length selection within the MDP framework and uses the cumulative product of our

14

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

Table 3. The performance of the acceptance prediction heads with different loss weights wrej and network depths D. The train/eval KL
refers to the binary KL divergence between the ground-truth probability and the predicted probability. For the three datasets, we report
the best throughput and the corresponding stopping threshold h. The throughputs are bolded if they are above 99% of the maximum
throughput of the same dataset.

wrej Depth D train/KL eval/KL Alpaca HumanEval GSM8K
1 0 0.422 0.412 18.48 (h = 0.3) 19.91 (h = 0.5) 20.32 (h = 0.3)
1 1 0.409 0.390 18.39 (h = 0.3) 20.29 (h = 0.3) 20.44 (h = 0.3)
1 2 0.391 0.387 18.87 (h = 0.3) 20.26 (h = 0.3) 20.87 (h = 0.3)
1 3 0.387 0.384 18.82 (h = 0.3) 20.10 (h = 0.3) 20.86 (h = 0.3)
1 4 0.384 0.383 18.57 (h = 0.3) 20.51 (h = 0.3) 20.73 (h = 0.3)
3 0 0.515 0.491 18.31 (h = 0.5) 20.12 (h = 0.7) 20.36 (h = 0.5)
3 1 0.479 0.461 18.88 (h = 0.5) 20.32 (h = 0.5) 20.70 (h = 0.5)
3 2 0.475 0.458 18.60 (h = 0.5) 20.17 (h = 0.5) 20.61 (h = 0.3)
3 3 0.462 0.454 18.76 (h = 0.5) 20.32 (h = 0.5) 20.88 (h = 0.5)
3 4 0.465 0.451 18.88 (h = 0.5) 20.50 (h = 0.7) 20.82 (h = 0.5)
6 0 0.657 0.637 18.67 (h = 0.7) 19.90 (h = 0.9) 20.24 (h = 0.7)
6 1 0.620 0.596 18.75 (h = 0.7) 20.09 (h = 0.9) 20.86 (h = 0.7)
6 2 0.607 0.589 18.65 (h = 0.7) 20.17 (h = 0.9) 20.70 (h = 0.7)
6 3 0.617 0.582 18.80 (h = 0.7) 20.47 (h = 0.7) 20.95 (h = 0.7)
6 4 0.603 0.575 18.87 (h = 0.7) 20.61 (h = 0.7) 20.77 (h = 0.7)
12 0 0.922 0.871 18.55 (h = 0.9) 19.93 (h = 0.9) 20.62 (h = 0.9)
12 1 0.830 0.805 18.71 (h = 0.9) 20.25 (h = 0.9) 20.73 (h = 0.9)
12 2 0.834 0.794 18.58 (h = 0.9) 20.39 (h = 0.9) 20.77 (h = 0.7)
12 3 0.801 0.781 18.76 (h = 0.9) 20.29 (h = 0.9) 20.67 (h = 0.9)
12 4 0.799 0.773 18.82 (h = 0.9) 20.19 (h = 0.9) 20.65 (h = 0.9)

trained prediction head to determine the end of the speculation.

D.1. Additional Related Works

Large language models are mostly based on Transformer architectures (Vaswani et al., 2017) that auto-regressively predict
the probability of the next token given its predecessors. One bottleneck of the inference speed lies in the fact that auto-
regressive decoding is an inherently non-parallelizable sequential operation: the probabilities of future tokens depend on the
current token and there is no trivial way to skip the current token when predicting future tokens. Therefore, the inference
time of auto-regressive decoding scales linearly with the number of the generated tokens.

However, the time of a forward pass to compute the log probabilities of the tokens through transformers is nearly constant
for batched sequences with different lengths within a proper range, thanks to the increasingly powerful parallel computing
units (Pope et al., 2023; Vaswani et al., 2017; Chen et al., 2023a; Leviathan et al., 2023).

Therefore, to overcome the bottleneck of the auto-regressive decoding, one can find a fast way to generate K tokens, which
often increases FLOPs, and the ask the target model to verify and correct the candidates (Stern et al., 2018; Chen et al.,
2023a; Leviathan et al., 2023); see a comprehensive survey (Xia et al., 2024). For those methods to work, we assume that
we have enough computational resources (e.g. CUDA memories) to support the increased concurrency. Nevertheless, in the
long-context generation regime, the memory issue becomes prominent, which requires additional KV-cache management
techniques such as compression or retrieval (Li et al., 2024a; Sun et al., 2024a).

Improvements of Speculative Decoding Methods

The performance of speculative decoding depends on how well the draft model aligns with the target model, and how fast
the draft model is compared to the target model. People have been improving speculative decoding in two aspects: (1)
making the draft model align better with the target model via distillation (Zhou et al., 2024; Agarwal et al., 2024) and online
learning (Liu et al., 2023); and (2) making the token generation faster and cheaper, e.g. training multiple smaller draft
models from stratch (Miao et al., 2023).

15

SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths

In addition, the candidate tokens can be generated without a separate draft model (Stern et al., 2018; Li et al., 2024b; Du
et al., 2024; Bhendawade et al., 2024), such as building additional modules that predict the next k tokens (Medusa heads (Cai
et al., 2024), RNN heads (Zhang et al., 2024), soft tokens (Monea et al., 2023)), early-exiting methods that reuse the
intermediate representations of the target model (Liu et al., 2024; Yang et al., 2023b; Bae et al., 2023), and retrieval-based
methods that involve constructing an n-gram datastore and using retrieval to generate candidates (He et al., 2023; Zhao
et al., 2024; Yang et al., 2023a; Fu et al., 2024).

Those techniques can be combined, resulting in a heirachical system (Spector & Re, 2023; Zhao et al., 2024; Sun et al.,
2024a).

Token Tree Generation, Verification and Pruning.

Paralleling across the batch dimension via token trees is another direction to increase throughputs (Miao et al., 2023; Xu
et al., 2023; Su et al., 2023). For greedy decoding, token tree generation and verification are studied in (Cai et al., 2024).
For the stochastic sampling setting, REST (He et al., 2023) proposes a straightforward approach: keeping the token paths
that coincide with the stochastic tokens given by the target model. There are also researches extending the stochastic
speculative decoding to the token tree setting, which often needs to adjust the drafting and verification probabilities to ensure
unbiasedness, e.g. MCSD (Yang et al., 2024a), Recursive SD (Jeon et al., 2024), Sequoia (Chen et al., 2024b), EAGLE (Li
et al., 2024b), SpecTR (Sun et al., 2024b).

One important problem to study is how to construct and prune the token tree to maximize throughputs and avoid heavy
communication overheads, which is studied in (Chen et al., 2024b; Zhong et al., 2024). Our work can serve as a starting
point towards the problem, as the candidate length K can be viewed as the depth of a token tree with only one branch.

Diffusion language models. Diffusion language models either in the discrete space (see D3PM (Austin et al., 2021) and
its follow-ups) or in the embedding space (see Diffusion-LM (Li et al., 2022) and its follow-ups) are non-autoregressive
language models, whose generation time can scale sub-linearly with the sequence length. BERT-type encoder-only models
and auto-regressive decoder-only models can be also viewed as diffusion model, with mask prediction and next-token
prediction being the denoising operation (Austin et al., 2021). Viewing next-token prediction as Jacobi iteration (Santilli
et al., 2023) and denoising operation is a powerful idea and it leads to subsequent work such as lookahead decoding (Fu
et al., 2024) and consistency LLMs (Kou et al., 2024).

E. Limitations
Our theoretical result contains a problem-specific constant ∆ which is hard to analyze theoretically or estimate empirically.
Nevertheless, the choice of the stopping threshold h can be determined through hyperparameter search; see Appendix C.3.
As is the case with all speculative decoding algorithms, our method relies on the implicit assumption that the draft model
and the target model align well. For a weak draft model, the acceptance prediction head may perform badly.

16

