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Abstract

The use of emojis provide for adding a visual001
modality to textual communication. The task002
of predicting emojis however provides a chal-003
lenge for computational approaches as emoji004
use tends to cluster into the frequently used005
and the rarely used emojis. Much of the re-006
search on emoji use has focused on high re-007
source languages and conceptualised the task008
of predicting emojis around traditional servers-009
side machine learning approaches, which can010
introduce privacy concerns, as user data is011
transmitted to a central storage. We show012
that a privacy preserving approach, Federated013
Learning exhibits comparable performance to014
traditional servers-side transformer models. In015
this paper, we provide a benchmark dataset016
of 118k tweets (augmented from 25k unique017
tweets) for emoji prediction in Hindi and pro-018
pose modification to the CausalFedGSD algo-019
rithm aiming to balance model performance020
and user privacy.1 We show that our approach021
obtains comparative scores with more complex022
centralised models while reducing the amount023
of data required to optimise the models and024
minimising risks to user privacy.025

1 Introduction026

Since the creation of emojis around the turn of027

the millennium (Stark and Crawford, 2015; Al-028

shenqeeti, 2016), they have become of a staple029

of informal textual communication, expressing030

emotion and intent in written text (Barbieri et al.,031

2018b). This development in communication style032

has prompted research into emoji analysis and pre-033

diction for English (e.g. Barbieri et al., 2018a,b;034

Felbo et al., 2017; Tomihira et al., 2020; Zhang035

et al., 2020) while comparatively little attention036

has been given to the low resource languages.037

Emoji-prediction has posed a challenge for the038

research community because emojis express mul-039

tiple modalities, contain visual semantics and the040

1The dataset will be made publicly available upon request.

Figure 1: The Federated Learning process: (A) client
devices compute updates on locally stored data, (B)
client weight updates are aggregated on the server and
used to update the global model, (C) the resulting
global model is distributed to all the clients.

ability to stand in place for words (Padilla López 041

and Cap, 2017). The challenge is further com- 042

pounded by the quantity of emojis sent and the im- 043

balanced distribution of emoji use (Cappallo et al., 044

2018; Padilla López and Cap, 2017). Machine 045

learning for emoji analysis and prediction has tra- 046

ditionally relied on traditional server-side architec- 047

tures. However, training such models risk leaking 048

sensitive information that may co-occur with emo- 049

jis which can provide breaches of data privacy 050

regulation (e.g. GDPR and CCPA). In contrast, 051

federated learning (FL) (McMahan et al., 2017) 052

approaches the task of training machine learning 053

models by emphasising privacy of data. Such pri- 054

vacy is ensured by training models locally and shar- 055

ing updates, rather than the data, with a central 056

server (see Figure 1). The FL approach assumes 057

that some client-updates may be corrupted during 058

transmission. FL therefore aims to retain predictive 059

performance while emphasising user privacy. 060

Motivated by prior work in privacy preserving 061

machine learning (e.g. Ramaswamy et al., 2019; 062

Yang et al., 2018) and emoji prediction for low re- 063

source languages (e.g. Choudhary et al., 2018b), we 064

examine the application of FL to emoji prediction 065
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for Hindi. Specifically, we collect an imbalanced066

dataset of 118, 030 tweets in Hindi which contain067

700 unique emojis that we classify into 10 pre-068

defined categories of emojis. 2 We further examine069

the impact of two different data balancing strategies070

on federated and server-side, centralised model per-071

formance. Specifically, we examine: re-sampling072

and cost-sensitive re-weighting. The models under073

consideration are 6 centralised models that form074

our baselines: bi-directional LSTM (Hochreiter075

and Schmidhuber, 1997), IndicBert (Kakwani et al.,076

2020), HindiBERT,3 Hindi-Electra,4 mBERT (De-077

vlin et al., 2019), and XLM-R (Conneau et al.,078

2020); and LSTMs trained using two FL algo-079

rithms: FedProx (Li et al., 2018) and a modified080

version of CausalFedGSD (Francis et al., 2021).081

We show that LSTMs trained using FL perform082

competitively with more complex, centralised mod-083

els in spite of only using up to 50% of the data.084

2 Prior work085

Federated learning Federated Learning (McMa-086

han et al., 2017) is a training procedure which087

distributes training of models onto a number of088

client devices. Each client device locally computes089

weight updates on the basis of local data, and090

transmits the updated weights to the central server.091

In this way, FL can help prevent computational092

bottlenecks when training models on a large corpus093

while simultaneously preserving privacy by not094

transmitting raw data. This training approach has095

previously been applied for on-device token pre-096

diction on mobile phones for English. In a study of097

the quality of mobile keyboard suggestions, Yang098

et al. (2018) show that FL improves the quality099

of suggested words. Addressing emoji-prediction100

in English, Ramaswamy et al. (2019) use FL, to101

improve on traditional server-based models on user102

devices.103

Centralised training In efforts to extend emoji104

prediction, Ma et al. (2020) experiment with a105

BERT-based model on a new English dataset that106

includes a large set of emojis for multi label pre-107

diction. Addressing the issue of low resource108

languages, Choudhary et al. (2018b) train a bi-109

directional LSTM-based siamese network, jointly110

training their model with high resource and low111

2These categories are obtained from the Emojis library,
available at https://github.com/alexandrevicenzi/emojis.

3https://huggingface.co/monsoon-nlp/hindi-bert
4https://huggingface.co/monsoon-nlp/hindi-tpu-electra

Figure 2: Distribution of 15 most frequently appearing
emojis in Hindi.

resource languages. A number of studies on emoji 112

prediction have been conducted in lower-resourced 113

languages than English (e.g. Liebeskind and Liebe- 114

skind, 2019; Ronzano et al., 2018; Choudhary et al., 115

2018a; Barbieri et al., 2018a; Duarte et al., 2020; 116

Tomihira et al., 2020). However, a commonality of 117

these studies is the use of centralised machine learn- 118

ing models which compromise the privacy of users. 119

Here, we study the use of FL for emoji prediction 120

in low resource settings. 121

3 Data 122

We collect our dataset for emoji prediction by scrap- 123

ing ∼1M tweets using the Twitter API v25, keep- 124

ing only the 24, 794 tweets that contain at least one 125

emoji and are written in Hindi. For tweets that 126

contain multiple emojis, we duplicate the tweet by 127

the number of emojis they contain and assign a 128

single emoji to each copy, resulting in a dataset 129

of 118, 030 tweets with 700 unique emojis. Due 130

to the highly imbalanced nature of emoji use in 131

our dataset (see Figure 2), we categorise into a 132

coarse-grained set of 10 emoji categories. Such 133

simplifications, from multi-label to multi-class and 134

unique emojis into emoji clusters risk losing se- 135

mantic meaning that the emojis might hold. These 136

choices however are motivated by how challeng- 137

ing the task of emoji prediction is, without such 138

simplifications (Choudhary et al., 2018b). 139

3.1 Balancing data 140

This dataset exhibits a long-tail in the distribution 141

of emoji categories (see Figure 3), with the vast 142

majority of tweets belonging to the “Smileys & 143

Emotions” and “People & Body” categories. To 144

address this issue, we use two different data balanc- 145

ing methods: re-sampling (He and Garcia, 2009) 146

5https://developer.twitter.com/en/docs/twitter-api. Addi-
tional details can be found in the appendices.
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Figure 3: Category distribution of complete dataset

and cost-sensitive reweighting (Khan et al., 2017).147

Re-Sampling Re-sampling has been used widely148

to address issues of class imbalances (e.g. Buda149

et al., 2018; Zou et al., 2018; Geifman and El-150

Yaniv, 2017; Shen et al., 2016). We balance the151

training data by up-sampling the minority class152

(Drumnond, 2003) and down-sampling the major-153

ity class (Chawla et al., 2002), resulting in a bal-154

anced dataset of 94, 420 tweets (9442 documents155

per class). The validation and test sets are left un-156

modified to ensure a fair and realistic evaluation.157

Cost-Sensitive learning Another method to deal158

with data imbalances is cost-sensitive learning (see159

Zhou and Liu, 2005; Huang et al., 2016; Ting, 2000;160

Sarafianos et al., 2018). Under this scheme, each161

class is assigned a weight that is used to weight the162

loss function (Lin et al., 2017). For our models,163

we assign each class the inverse class frequency as164

its weight.165

3.2 Pre-processing166

We perform a number of pre-processing steps to167

limit the risk of over-fitting to rarely occurring to-168

kens. For instance, we lower-case all text and169

remove numbers, punctuation, and URLS. We170

also remove Twitter specific such as hashtags, @-171

mentions, and the retweet marker: "RT:".172

4 Experiments173

We conduct our experiments using PyTorch (Paszke174

et al., 2019) and Transformers (Wolf et al., 2020)175

on Google Colab using a Nvidia Tesla V100 GPU176

with 26GB of RAM. The datasets are split into177

train (80%), validation (10%), and test sets (10%).178

We measure our performance using precision, re- 179

call, and weighted F1. Each model is trained 180

and evaluated on the original imbalanced data and 181

two balancing approaches (see Section 3.1). Fi- 182

nally, for the federated setting, we conduct exper- 183

iments where data is independent and identically 184

distributed (I.I.D.) across the different client nodes. 185

4.1 Baseline models 186

We use 6 centralised models as baselines to com- 187

pare the federated approach against. Specifically, 188

we use a bi-LSTM (Hochreiter and Schmidhuber, 189

1997) with 2 hidden layers and dropout at 0.5, two 190

multi-lingual models: mBERT (Devlin et al., 2019) 191

and XLM-R (Conneau et al., 2020). Finally we use 192

IndicBERT (Kakwani et al., 2020), HindiBERT, 193

and Hindi-Electra as these are pre-trained on Indic 194

languages.6 All baselines are trained with batch 195

size 8, learning rate 4e− 5, and seq. length 128. 196

4.2 Federated models 197

For our federated experiments, we use the Fed- 198

Prox (Li et al., 2018) and a modified version of the 199

CausalFedGSD (Francis et al., 2021) algorithms. 200

FedProx trains models by considering the dissimi- 201

larity among the local gradients and uses a proxi- 202

mal term to the loss function to prevent divergence 203

when the data is not I.I.D.7 CausalFedGSD trains 204

models by sharing a global subset of raw data with 205

all local clients, where local and global data are 206

concatenated to compute the weight updates. We 207

modify CausalFedGSD such that the global model 208

is initialised on 30% the data and subsequently all 209

weight updates are computed locally. 210

We reuse the Bi-LSTM (see Section 4.1) as our 211

experimental model on client devices due to its 212

relative low requirements for compute. For our 213

experiments, we set the number of clients to 100 214

and simulate I.I.D. and non-I.I.D. settings. We 215

simulate an I.I.D. setting by ensuring that all client 216

devices receive data that is representative of the 217

entire dataset. For the non-I.I.D. setting, we create 218

severely imbalanced data splits for clients by 219

first grouping the data by label, then splitting the 220

grouped data into 200 bins and randomly assigning 221

2 bins to each client. We experiment with three 222

different settings, in which we randomly select 223

6IndicBERT is pre-trained on 12 Indic languages, HindiB-
ERT and Hindi-Electra are both trained on Hindi Wikipedia
and CommonCrawl.

7We set the value of the proximal term to 0.01 following
Li et al. (2018).
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Bi-LSTM mBERT XLM-R IndicBERT hindiBERT Hindi-Electra
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Imbalanced 64.72 64.26 63.83 63.25 66.90 64.50 68.74 70.39 69.44 67.15 68.22 67.60 65.39 66.53 65.90 27.34 52.29 35.91
Re-sampled 64.42 55.41 58.61 62.18 53.43 56.58 67.92 60.76 63.39 68.04 62.44 64.58 62.95 55.16 57.92 64.42 57.93 60.30

Cost-Sensitive 68.41 62.27 64.46 63.99 62.73 63.30 69.79 68.33 68.87 69.54 67.98 68.66 66.97 65.32 66.06 27.34 52.29 35.91

Table 1: Centralised model performances.
c = 10% c = 30% c = 50%

IID non-IID IID non-IID IID non-IID
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Imbalanced 61.33 64.66 62.32 57.70 64.10 57.96 61.55 67.64 63.60 58.01 58.42 54.86 61.65 66.83 63.57 58.30 61.59 58.09
Re-sampled 61.49 46.22 51.12 56.84 30.06 34.28 60.60 43.75 49.19 57.48 35.32 41.36 60.85 47.71 52.14 56.13 41.28 45.76

Cost-Sensitive 62.14 63.35 61.99 58.08 65.86 61.25 63.72 65.25 63.78 56.39 57.76 54.36 60.36 59.99 59.57 56.68 63.22 59.36

Table 2: Results using the FedProx algorithm. c is the percentage of clients whose updates are considered.
c = 10% c = 30% c = 50%

IID non-IID IID non-IID IID non-IID
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Imbalanced 61.83 67.24 63.87 58.96 45.88 38.34 61.62 67.11 63.41 58.95 63.80 60.58 61.66 67.38 63.70 59.46 49.39 43.88
Re-sampled 59.44 37.53 43.68 53.10 49.91 41.50 59.53 41.06 46.54 58.61 26.68 32.45 60.97 39.02 45.48 57.70 32.98 39.71

Cost-Sensitive 60.88 59.38 59.49 54.82 57.42 46.17 60.45 60.71 59.96 59.05 66.52 62.09 60.44 61.41 60.38 58.69 63.60 60.11

Table 3: Results using the modified CausalFedGSD. c is the percentage of clients whose updates are considered.

Approach Centralised Federated
Bi-LSTM FedProx Modified CausalFedGSD

Imbalanced 63.83 63.60 63.87
Re-sampled 58.61 52.14 46.54
Cost-Sensitive 64.46 63.78 62.09

Table 4: F1-scores for the best performing centralised
and federated models.

10%, 30%, and 50% of all clients whose updates224

are incorporated into the global model.225

4.3 Analysis226

Considering the results for our baseline models227

(see Table 1), we find that XLM-R and IndicBERT228

obtain the best performances. We find that using229

a cost-sensitive weighting tends to out-perform re-230

resampling the dataset. Specifically, we find that231

the cost-sensitive weighting performs comparably232

with other settings or out-performs them. Curi-233

ously, we find that Hindi Electra under-performs234

compared to all other models, including HindiB-235

ERT which is a smaller model trained on the same236

data. This discrepancy in the performances of these237

two models may be due to the differences in com-238

plexity, and thus data required to achieve competi-239

tive performances.8 Finally, the bi-LSTM slightly240

under-performs in comparison to XLM-R, however241

it obtains competitive performances with all other242

well-performing models.243

Turning to the performance of the federated base-244

lines (see Table 2), we find an expected perfor-245

mance of the models.9 Generally, we find that246

the federated models achieve comparative perfor-247

mances, that are slightly lower than the centralised248

8The developers of Hindi Electra also note similar under-
performance on other tasks.

9Please refer to the appendices for additional details on
model performance and training.

systems. Considering the F1-scores, we find that 249

the optimal setting of the ratio of clients is subject 250

to the data being I.I.D. In contrast, models trained 251

on the re-sampled data tend to prefer data in an 252

I.I.D. setting, but in general under-perform in com- 253

parison with other weighting strategies, including 254

the imbalanced sample. Using our modification of 255

the CausalFedGSD algorithm, we show improve- 256

ments over our FL baselines when the data is I.I.D. 257

and variable performance for a non-I.I.D. setting 258

(see Table 3). Comparing the performances of the 259

best performing settings, we find that the FL archi- 260

tectures perform comparably with the centralised 261

models, in spite of being exposed to less data and 262

preserving privacy of users (see Table 4). 263

5 Conclusion 264

Emoji prediction in user-generated text is a task 265

which entails potentially highly private data, hence 266

it is important to consider privacy-preserving meth- 267

ods for the task. Here, we presented a new dataset 268

for emoji for Hindi and compared a privacy pre- 269

serving approach, Federated Learning, with the cen- 270

tralised server-trained method and also a modified 271

approach to the CausalFedGSD algorithm (Francis 272

et al., 2021) to perform federated learning. Experi- 273

menting with the different data balancing methods 274

and simulating settings where data is I.I.D. and 275

non-I.I.D, we find that using federated learning can 276

afford comparable performances to the more com- 277

plex fine-tuned language models trained centrally, 278

while ensuring privacy. In future work, we plan 279

to extend this work to multi-label emoji prediction 280

and investigate strategies for dealing with decay of 281

the model vocabulary. 282
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Ethical considerations283

The primary reason for using federated learning is284

to ensure user-privacy. The approach can then stand285

in conflict with open and reproducible science, in286

terms of data sharing. We address this issue by287

making our dataset open to the public, given that288

researchers provide an Institutional Review Board289

(IRB) approval and a research statement that details290

the methods and goals of the research, where IRB291

processes are not implemented. For researchers292

who are at institutions without IRB processes, data293

will only be released given a research statement294

that also details potential harms to participants.295

Our modification of the CausalFedGSD model296

introduces the concern of some data being used to297

initialise the model. Here a concern can be that298

some data will be available globally. While this299

concern is justified, the use of federated learning300

affords two things: First, federated learning can301

limit on the overall amount of raw data that is trans-302

mitted and risks exposure. Second, initialisation303

can occur using synthetic data, created for the ex-304

press purposes of model initialisation. Moreover,305

pre-existing public, or privately owned, datasets306

can be used to initialise models, which can be fur-307

ther trained given weight updates provided by the308

client nodes. Federated learning, and our approach309

to federated learning thus reduce the risks of expos-310

ing sensitive information about users, although the311

method does not completely remove such risks.312
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A Appendix528

A.1 Data529

The tweets were curated using the "Elevated ac-530

cess" to the Twitter API v2. Using a developer ac-531

count, we query tweets written in Hindi language532

that are up to 512 characters long. Multiple occur-533

rences of tweets due to re-tweeting were discarded.534

Figure 4 shows a sample of tweets present in our535

Hindi dataset for the task of emoji prediction.536

A.2 Server-Based Models537

For traditional server-side transformer models, we538

use the simpletransformers10 library. We use the539

default configuration options. We train all the trans-540

former models for 25 epochs with a learning rate541

of 4e-5 and no weight decay or momentum.542

A.3 Federated Learning Plots543

This section provides detailed graphs comparing544

the training loss, validation AUC, validation F1545

10https://simpletransformers.ai/

score and validation accuracy for every dataset vari- 546

ation. All of these graphs were made using Weights 547

and Biases (Biewald, 2020). 548

A.3.1 Imbalanced Dataset (IID) 549

A.3.2 Imbalanced Dataset (non-IID) 550
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Remember that only love is blind and not your family and the colony. Spreading the word in public interest

Text Emoji LabelLang

िबलकुल सही कहा आपने भाई 

याद रखना िसर्फ प्रेम अंधा होता है घरवाले और कॉलोनी वाले नहीं जनिहत में जारी 

तुझे िकतना चाहने लगे हम 

एकदम जबरदस्त भावनात्मक मीठास शब्दों के सरसरी हवाओं में कुछ अजीब सी खुशबू। 

जन्मिदन की अनंत शुभकामनायें 

People & Body

Smileys & Emotion

Objects

Animals & Nature

Food & Drink

You are absolutely right brother

How much we love you

Some strange fragrance in the whispering winds of very emotional sweet words

Best wishes for your birthday

Hindi

English

Hindi

English

Hindi

English

Hindi

English

Hindi

English

Figure 4: Example of our Hindi dataset

A.3.3 Balanced Dataset (IID)551 A.3.4 Balanced Dataset (non-IID) 552
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A.3.5 Cost Sensitive Approach (IID)553

A.3.6 Cost Sensitive Approach (non-IID) 554

A.4 Time vs GPU Usage 555

This section provides detailed graphs for GPU us- 556

age in Watts for every variation of experiments run. 557
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A.4.1 Imbalanced Dataset558

A.4.2 Balanced Dataset559

A.4.3 Cost Sensitive Approach560
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