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Abstract

The use of emojis provide for adding a visual
modality to textual communication. The task
of predicting emojis however provides a chal-
lenge for computational approaches as emoji
use tends to cluster into the frequently used
and the rarely used emojis. Much of the re-
search on emoji use has focused on high re-
source languages and conceptualised the task
of predicting emojis around traditional servers-
side machine learning approaches, which can
introduce privacy concerns, as user data is
transmitted to a central storage. We show
that a privacy preserving approach, Federated
Learning exhibits comparable performance to
traditional servers-side transformer models. In
this paper, we provide a benchmark dataset
of 118k tweets (augmented from 25k unique
tweets) for emoji prediction in Hindi and pro-
pose modification to the CausalFedGSD algo-
rithm aiming to balance model performance
and user privacy.! We show that our approach
obtains comparative scores with more complex
centralised models while reducing the amount
of data required to optimise the models and
minimising risks to user privacy.

1 Introduction

Since the creation of emojis around the turn of
the millennium (Stark and Crawford, 2015; Al-
shengeeti, 2016), they have become of a staple
of informal textual communication, expressing
emotion and intent in written text (Barbieri et al.,
2018b). This development in communication style
has prompted research into emoji analysis and pre-
diction for English (e.g. Barbieri et al., 2018a,b;
Felbo et al., 2017; Tomihira et al., 2020; Zhang
et al., 2020) while comparatively little attention
has been given to the low resource languages.
Emoji-prediction has posed a challenge for the
research community because emojis express mul-
tiple modalities, contain visual semantics and the

!The dataset will be made publicly available upon request.
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Figure 1: The Federated Learning process: (A) client
devices compute updates on locally stored data, (B)
client weight updates are aggregated on the server and
used to update the global model, (C) the resulting
global model is distributed to all the clients.

ability to stand in place for words (Padilla Lépez
and Cap, 2017). The challenge is further com-
pounded by the quantity of emojis sent and the im-
balanced distribution of emoji use (Cappallo et al.,
2018; Padilla Lopez and Cap, 2017). Machine
learning for emoji analysis and prediction has tra-
ditionally relied on traditional server-side architec-
tures. However, training such models risk leaking
sensitive information that may co-occur with emo-
jis  which can provide breaches of data privacy
regulation (e.g. GDPR and CCPA). In contrast,
federated learning (FL) (McMabhan et al., 2017)
approaches the task of training machine learning
models by emphasising privacy of data. Such pri-
vacy is ensured by training models locally and shar-
ing updates, rather than the data, with a central
server (see Figure 1). The FL approach assumes
that some client-updates may be corrupted during
transmission. FL therefore aims to retain predictive
performance while emphasising user privacy.

Motivated by prior work in privacy preserving
machine learning (e.g. Ramaswamy et al., 2019;
Yang et al., 2018) and emoji prediction for low re-
source languages (e.g. Choudhary et al., 2018b), we
examine the application of FL to emoji prediction



for Hindi. Specifically, we collect an imbalanced
dataset of 118, 030 tweets in Hindi which contain
700 unique emojis that we classify into 10 pre-
defined categories of emojis. > We further examine
the impact of two different data balancing strategies
on federated and server-side, centralised model per-
formance. Specifically, we examine: re-sampling
and cost-sensitive re-weighting. The models under
consideration are 6 centralised models that form
our baselines: bi-directional LSTM (Hochreiter
and Schmidhuber, 1997), IndicBert (Kakwani et al.,
2020), HindiBERT,® Hindi-Electra,* mBERT (De-
vlin et al., 2019), and XLM-R (Conneau et al.,
2020); and LSTMs trained using two FL algo-
rithms: FedProx (Li et al., 2018) and a modified
version of CausalFedGSD (Francis et al., 2021).
We show that LSTMs trained using FL perform
competitively with more complex, centralised mod-
els in spite of only using up to 50% of the data.

2 Prior work

Federated learning Federated Learning (McMa-
han et al., 2017) is a training procedure which
distributes training of models onto a number of
client devices. Each client device locally computes
weight updates on the basis of local data, and
transmits the updated weights to the central server.
In this way, FL can help prevent computational
bottlenecks when training models on a large corpus
while simultaneously preserving privacy by not
transmitting raw data. This training approach has
previously been applied for on-device token pre-
diction on mobile phones for English. In a study of
the quality of mobile keyboard suggestions, Yang
et al. (2018) show that FL improves the quality
of suggested words. Addressing emoji-prediction
in English, Ramaswamy et al. (2019) use FL, to
improve on traditional server-based models on user
devices.

Centralised training In efforts to extend emoji
prediction, Ma et al. (2020) experiment with a
BERT-based model on a new English dataset that
includes a large set of emojis for multi label pre-
diction. Addressing the issue of low resource
languages, Choudhary et al. (2018b) train a bi-
directional LSTM-based siamese network, jointly
training their model with high resource and low

These categories are obtained from the Emojis library,
available at https://github.com/alexandrevicenzi/emojis.

*https://huggingface.co/monsoon-nlp/hindi-bert

“https://huggingface.co/monsoon-nlp/hindi-tpu-electra
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Figure 2: Distribution of 15 most frequently appearing
emojis in Hindi.

resource languages. A number of studies on emoji
prediction have been conducted in lower-resourced
languages than English (e.g. Liebeskind and Liebe-
skind, 2019; Ronzano et al., 2018; Choudhary et al.,
2018a; Barbieri et al., 2018a; Duarte et al., 2020;
Tomihira et al., 2020). However, a commonality of
these studies is the use of centralised machine learn-
ing models which compromise the privacy of users.
Here, we study the use of FL for emoji prediction
in low resource settings.

3 Data

We collect our dataset for emoji prediction by scrap-
ing ~1M tweets using the Twitter API v2°, keep-
ing only the 24, 794 tweets that contain at least one
emoji and are written in Hindi. For tweets that
contain multiple emojis, we duplicate the tweet by
the number of emojis they contain and assign a
single emoji to each copy, resulting in a dataset
of 118,030 tweets with 700 unique emojis. Due
to the highly imbalanced nature of emoji use in
our dataset (see Figure 2), we categorise into a
coarse-grained set of 10 emoji categories. Such
simplifications, from multi-label to multi-class and
unique emojis into emoji clusters risk losing se-
mantic meaning that the emojis might hold. These
choices however are motivated by how challeng-
ing the task of emoji prediction is, without such
simplifications (Choudhary et al., 2018b).

3.1 Balancing data

This dataset exhibits a long-tail in the distribution
of emoji categories (see Figure 3), with the vast
majority of tweets belonging to the “Smileys &
Emotions” and “People & Body” categories. To
address this issue, we use two different data balanc-
ing methods: re-sampling (He and Garcia, 2009)

Shttps://developer.twitter.com/en/docs/twitter-api. Addi-
tional details can be found in the appendices.
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Figure 3: Category distribution of complete dataset

and cost-sensitive reweighting (Khan et al., 2017).

Re-Sampling Re-sampling has been used widely
to address issues of class imbalances (e.g. Buda
et al., 2018; Zou et al., 2018; Geifman and El-
Yaniv, 2017; Shen et al., 2016). We balance the
training data by up-sampling the minority class
(Drumnond, 2003) and down-sampling the major-
ity class (Chawla et al., 2002), resulting in a bal-
anced dataset of 94,420 tweets (9442 documents
per class). The validation and test sets are left un-
modified to ensure a fair and realistic evaluation.

Cost-Sensitive learning  Another method to deal
with data imbalances is cost-sensitive learning (see
Zhou and Liu, 2005; Huang et al., 2016; Ting, 2000;
Sarafianos et al., 2018). Under this scheme, each
class is assigned a weight that is used to weight the
loss function (Lin et al., 2017). For our models,
we assign each class the inverse class frequency as
its weight.

3.2 Pre-processing

We perform a number of pre-processing steps to
limit the risk of over-fitting to rarely occurring to-
kens. For instance, we lower-case all text and
remove numbers, punctuation, and URLS. We
also remove Twitter specific such as hashtags, @-
mentions, and the retweet marker: "RT:".

4 Experiments

We conduct our experiments using PyTorch (Paszke
et al., 2019) and Transformers (Wolf et al., 2020)
on Google Colab using a Nvidia Tesla V100 GPU
with 26GB of RAM. The datasets are split into
train (80%), validation (10%), and test sets (10%).

We measure our performance using precision, re-
call, and weighted F1. Each model is trained
and evaluated on the original imbalanced data and
two balancing approaches (see Section 3.1). Fi-
nally, for the federated setting, we conduct exper-
iments where data is independent and identically
distributed (I.I.D.) across the different client nodes.

4.1 Baseline models

We use 6 centralised models as baselines to com-
pare the federated approach against. Specifically,
we use a bi-LSTM (Hochreiter and Schmidhuber,
1997) with 2 hidden layers and dropout at 0.5, two
multi-lingual models: mBERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2020). Finally we use
IndicBERT (Kakwani et al., 2020), HindiBERT,
and Hindi-Electra as these are pre-trained on Indic
languages.® All baselines are trained with batch
size 8, learning rate 4e — 5, and seq. length 128.

4.2 Federated models

For our federated experiments, we use the Fed-
Prox (Li et al., 2018) and a modified version of the
CausalFedGSD (Francis et al., 2021) algorithms.
FedProx trains models by considering the dissimi-
larity among the local gradients and uses a proxi-
mal term to the loss function to prevent divergence
when the data is not L1.D.” CausalFedGSD trains
models by sharing a global subset of raw data with
all local clients, where local and global data are
concatenated to compute the weight updates. We
modify CausalFedGSD such that the global model
is initialised on 30% the data and subsequently all
weight updates are computed locally.

We reuse the Bi-LSTM (see Section 4.1) as our
experimental model on client devices due to its
relative low requirements for compute. For our
experiments, we set the number of clients to 100
and simulate I.LI.D. and non-L.LD. settings. We
simulate an L.L.D. setting by ensuring that all client
devices receive data that is representative of the
entire dataset. For the non-L.L.D. setting, we create
severely imbalanced data splits for clients by
first grouping the data by label, then splitting the
grouped data into 200 bins and randomly assigning
2 bins to each client. We experiment with three
different settings, in which we randomly select

®IndicBERT is pre-trained on 12 Indic languages, HindiB-
ERT and Hindi-Electra are both trained on Hindi Wikipedia
and CommonCrawl.

"We set the value of the proximal term to 0.01 following
Li et al. (2018).



Bi-LSTM mBERT XLM-R IndicBERT hindiBERT Hindi-Electra

Precision Recall F1 Precision  Recall Fl1 Precision Recall  Fl Precision  Recall F1 Precision Recall Fl1 Precision Recall F1
Imbalanced 64.72 64.26 63.83 | 63.25 66.90  64.50 68.74 70.39 6944 | 67.15 68.22  67.60 65.39 66.53 65.90 | 27.34 52.29 3591
Re-sampled 64.42 55.41  58.61 62.18 53.43  56.58 67.92 60.76  63.39 | 68.04 62.44  64.58 62.95 55.16  57.92 64.42 57.93  60.30
Cost-Sensitive | 68.41 62.27 64.46 | 63.99 62.73  63.30 69.79 68.33 68.87 | 69.54 67.98 68.66 66.97 65.32  66.06 27.34 52.29 3591

Table 1: Centralised model performances.
c=10% c=30% ¢=50%
1D non-IID 1D non-IID 1D non-IID

Precision Recall Fl1 Precision  Recall Fl1 Precision Recall Fl1 Precision  Recall F1 Precision Recall Fl1 Precision Recall Fl1
Imbalanced 61.33 64.66 62.32 57.70 64.10 57.96 61.55 67.64  63.60 58.01 5842  54.86 61.65 66.83 63.57 | 58.30 61.59  58.09
Re-sampled 61.49 46.22  51.12 56.84 30.06  34.28 60.60 43.75  49.19 57.48 35.32  41.36 60.85 47.71 5214 | 56.13 41.28  45.76
Cost-Sensitive | 62.14 63.35 61.99 58.08 65.86  61.25 63.72 65.25 63.78 | 56.39 57.76  54.36 60.36 59.99  59.57 | 56.68 63.22  59.36

Table 2: Results using the FedProx algorithm. c is the percentage of clients

whose updates are considered.

c=10% c=30% c=50%
1D non-1ID 1D non-1ID 1D non-I1ID
Precision Recall Fl1 Precision  Recall Fl1 Precision Recall Fl1 Precision  Recall F1 Precision Recall Fl1 Precision Recall F1
Imbalanced 61.83 67.24 63.87 58.96 45.88 38.34 61.62 67.11 63.41 58.95 63.80  60.58 61.66 67.38 63.70 | 59.46 49.39  43.88
Re-sampled 59.44 37.53  43.68 53.10 49.91  41.50 59.53 41.06  46.54 58.61 26.68 32.45 60.97 39.02  45.48 57.70 32,98 39.71
Cost-Sensitive | 60.88 59.38  59.49 54.82 57.42  46.17 | 60.45 60.71  59.96 59.05 66.52  62.09 60.44 61.41  60.38 58.69 63.60 60.11

Table 3: Results using the modified CausalFedGSD. c is the percentage of clients whose updates are considered.

Approach Centralised Federated

Bi-LSTM  FedProx Modified CausalFedGSD
Imbalanced 63.83 63.60 63.87
Re-sampled 58.61 52.14 46.54
Cost-Sensitive 64.46 63.78 62.09

Table 4: Fl-scores for the best performing centralised
and federated models.

10%, 30%, and 50% of all clients whose updates
are incorporated into the global model.

4.3 Analysis

Considering the results for our baseline models
(see Table 1), we find that XLM-R and IndicBERT
obtain the best performances. We find that using
a cost-sensitive weighting tends to out-perform re-
resampling the dataset. Specifically, we find that
the cost-sensitive weighting performs comparably
with other settings or out-performs them. Curi-
ously, we find that Hindi Electra under-performs
compared to all other models, including HindiB-
ERT which is a smaller model trained on the same
data. This discrepancy in the performances of these
two models may be due to the differences in com-
plexity, and thus data required to achieve competi-
tive performances.® Finally, the bi-LSTM slightly
under-performs in comparison to XLM-R, however
it obtains competitive performances with all other
well-performing models.

Turning to the performance of the federated base-
lines (see Table 2), we find an expected perfor-
mance of the models.” Generally, we find that
the federated models achieve comparative perfor-
mances, that are slightly lower than the centralised

8The developers of Hindi Electra also note similar under-
performance on other tasks.

%Please refer to the appendices for additional details on
model performance and training.

systems. Considering the F1-scores, we find that
the optimal setting of the ratio of clients is subject
to the data being L.I.D. In contrast, models trained
on the re-sampled data tend to prefer data in an
LLD. setting, but in general under-perform in com-
parison with other weighting strategies, including
the imbalanced sample. Using our modification of
the CausalFedGSD algorithm, we show improve-
ments over our FL baselines when the data is I.I.D.
and variable performance for a non-I.I.D. setting
(see Table 3). Comparing the performances of the
best performing settings, we find that the FL archi-
tectures perform comparably with the centralised
models, in spite of being exposed to less data and
preserving privacy of users (see Table 4).

5 Conclusion

Emoji prediction in user-generated text is a task
which entails potentially highly private data, hence
it is important to consider privacy-preserving meth-
ods for the task. Here, we presented a new dataset
for emoji for Hindi and compared a privacy pre-
serving approach, Federated Learning, with the cen-
tralised server-trained method and also a modified
approach to the CausalFedGSD algorithm (Francis
et al., 2021) to perform federated learning. Experi-
menting with the different data balancing methods
and simulating settings where data is [.I.D. and
non-L.I.D, we find that using federated learning can
afford comparable performances to the more com-
plex fine-tuned language models trained centrally,
while ensuring privacy. In future work, we plan
to extend this work to multi-label emoji prediction
and investigate strategies for dealing with decay of
the model vocabulary.



Ethical considerations

The primary reason for using federated learning is
to ensure user-privacy. The approach can then stand
in conflict with open and reproducible science, in
terms of data sharing. We address this issue by
making our dataset open to the public, given that
researchers provide an Institutional Review Board
(IRB) approval and a research statement that details
the methods and goals of the research, where IRB
processes are not implemented. For researchers
who are at institutions without IRB processes, data
will only be released given a research statement
that also details potential harms to participants.
Our modification of the CausalFedGSD model
introduces the concern of some data being used to
initialise the model. Here a concern can be that
some data will be available globally. While this
concern is justified, the use of federated learning
affords two things: First, federated learning can
limit on the overall amount of raw data that is trans-
mitted and risks exposure. Second, initialisation
can occur using synthetic data, created for the ex-
press purposes of model initialisation. Moreover,
pre-existing public, or privately owned, datasets
can be used to initialise models, which can be fur-
ther trained given weight updates provided by the
client nodes. Federated learning, and our approach
to federated learning thus reduce the risks of expos-
ing sensitive information about users, although the
method does not completely remove such risks.
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A Appendix
A.1 Data

The tweets were curated using the "Elevated ac-
cess" to the Twitter API v2. Using a developer ac-
count, we query tweets written in Hindi language
that are up to 512 characters long. Multiple occur-
rences of tweets due to re-tweeting were discarded.
Figure 4 shows a sample of tweets present in our
Hindi dataset for the task of emoji prediction.

A.2 Server-Based Models

For traditional server-side transformer models, we
use the simpletransformers!'® library. We use the
default configuration options. We train all the trans-
former models for 25 epochs with a learning rate
of 4e-5 and no weight decay or momentum.

A.3 Federated Learning Plots

This section provides detailed graphs comparing
the training loss, validation AUC, validation F1

https://simpletransformers.ai/

score and validation accuracy for every dataset vari-
ation. All of these graphs were made using Weights
and Biases (Biewald, 2020).

A.3.1 Imbalanced Dataset (IID)
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Lang Text Emoji Label

Hindi farcTeget Tét dat 3o WTE
English You are absolutely right brother People & Body
Hindi TE T TR T 37T 81T § TRaTel 3R Bl arel el SHed H STRT
: Smileys & Emotion
English  Remember that only love is blind and not your family and the colony. Spreading the word in public interest ¥
Hindi 1 fepertT T o7 g
Endlish Objects
nglis How much we love you
Hindi YehaH STeREHd HTdATeHeD HISH el & TRadt garsii § g sy 9 gerg) )
Endlish : h b Animals & Nature
ngis Some strange fragrance in the whispering winds of very emotional sweet words
Hindi

ST el A BT ™ Food & Drink

English =
ngts Best wishes for your birthday

Figure 4: Example of our Hindi dataset
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A.3.3 Balanced Dataset (IID) A.3.4 Balanced Dataset (non-IID)
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A.3.5 Cost Sensitive Approach (IID)
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A.3.6 Cost Sensitive Approach (non-I1ID)
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A.4 Time vs GPU Usage

This section provides detailed graphs for GPU us-
age in Watts for every variation of experiments run.



A.4.1 Imbalanced Dataset
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