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ABSTRACT

Deep generative modeling has long been viewed as a challenging unsupervised
learning problem, partly due to the lack of labels and the high dimension of the
data. Although various latent variable models have been proposed to tackle these
difficulties, the latent variable only serves as a device to model the observed data,
and is typically averaged out during training. In this article, we show that by intro-
ducing a properly pre-trained encoder, the latent variable can play a more impor-
tant role, which decomposes a deep generative model into a supervised learning
problem and a much simpler unsupervised learning task. With this new train-
ing method, which we call the auxiliary supervised learning (ASL) framework,
deep generative models can benefit from the enormous success of deep super-
vised learning and representation learning techniques. By evaluating on various
synthetic and real data sets, we demonstrate that ASL is a stable, efficient, and
accurate training framework for deep generative models.

1 INTRODUCTION

In recent years deep generative models have received immense interest from deep learning re-
searchers and practitioners, and have become an essential part of unsupervised learning techniques.
Representative deep generative models include variational autoencoders (VAE, Kingma & Welling,
2014), generative adversarial networks (GAN, Goodfellow et al., 2014), normalizing flows (Rezende
& Mohamed, 2015), autoregressive models (Larochelle & Murray, 2011; Gregor et al., 2014), dif-
fusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020), and energy-based models
(EBM), among many others. The fundamental goal of deep generative modeling is to train a sta-
tistical distribution pθ(x) based on observed data points X1, . . . , Xn ∈ X ⊂ Rp. While this goal
is shared by many classical statistical and machine learning models, deep generative models have
gained great popularity due to their unique features and focuses. First, deep generative models vastly
benefit from the advance of deep neural networks, leading to highly expressive probability models.
Second, the distribution pθ(x) in deep generative models does not need to be explicitly specified.
In fact, it is more commonly expressed by the simulation and sampling mechanism. Third, the
data space X is in general high-dimensional, but data are assumed to approximately lie on a d-
dimensional manifold with d ≪ p, so that the intrinsic dimension of the data is much smaller than
the ambient dimension.

To reflect such properties, many deep generative models assume that each data point X ∈ X ⊂ Rp

is generated by a low-dimensional latent variable Z ∈ Z ⊂ Rd via the model

pθ(x) =

∫
Z
p(z)pθ(x|z)dz, (1)

where p(z) is the marginal distribution of Z , and pθ(x|z) is the conditional distribution of X given
the latent variable Z. In most cases, p(z) is taken to be a fixed distribution such as the standard
normal, and pθ(x|z) utilizes deep neural networks to enrich the class of distributions that pθ(x) can
express. One such example is VAE, which typically chooses pθ(x|z) = N(fθ(z), σ

2I) with a deep
neural network fθ(z) when X is continuous.

In the latent variable model (1), Z is unobserved without actual data points, so it is only used as a
device for modeling X , and would typically be integrated out in the objective function. As a result,
deep generative models are commonly viewed as challenging unsupervised learning problems, as
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the only given data are X . On the other hand, a great part of the deep learning innovation was driven
by various supervised learning problems including regression and classification. How to make full
use of supervised learning techniques in deep generative models remains an open question.

In this article, we develop the auxiliary supervised learning (ASL) framework for training deep
generative models. ASL augments the data with a carefully chosen auxiliary random vector, and
converts the original unsupervised learning problem into a supervised model coupled with a smaller
unsupervised problem. This seemingly trivial reformulation of the learning objective turns out to
have a great potential to improve and generalize existing methods.

One core idea of ASL is to materialize the unobserved auxiliary variable via representation learn-
ing. We show that with suitable choice of the auxiliary variable, the observed data can be well
predicted by their latent representations, which allows the use of advanced supervised learning tech-
niques. To meet this goal we propose a new method to construct useful latent representations of
high-dimensional data. As a whole, the highlights of this article are as follows:

• We develop an intuitive and powerful framework to train deep generative models, which
benefits from advances in deep supervised learning and representation learning techniques.

• We propose a novel mutual-information-based method to capture the latent structure of the
data, which shows promising results compared with conventional methods such as VAE.

• The resulting training method is easy to implement, avoids heavy manual tuning, and enjoys
excellent stability.

• Numerical experiments demonstrate the superior performance of ASL on various synthetic
and real data sets.

2 AUXILIARY SUPERVISED LEARNING FOR DEEP GENERATIVE MODELS

2.1 MOTIVATION

The ASL framework is motivated by a simple and familiar identity, the decomposition of joint
distributions. For the data random vector X , we can always augment it by introducing an auxiliary
random vector U ∈ Rr and define their joint distribution p(x, u). Here U is arbitrary and does not
need to be the latent variable Z in model (1). Clearly, p(x, u) admits two ways of decomposition,

p(x, u) = px(x)pu|x(u|x) = pu(u)px|u(x|u). (2)

If U is taken to be the latent variable Z in deep generative models, then (1) is equivalent to the second
form of the decomposition. Whereas in this article, we show that the first form provides another view
of the data generation process, and can play an important role in training deep generative models.
Since the data distribution px(x) is fixed, the joint distribution p(x, u) is completely determined by
the conditional distribution pu|x(u|x), which we call an encoder following the convention of the
VAE literature.

The importance and usefulness of the encoder can be illustrated in the following way. Suppose
that pu|x(u|x) is pre-trained and can be used to generate U ∼ pu|x(u|x) for any x. Then for each
data point Xi, we can simulate Ui ∼ pu|x(u|Xi), resulting in an augmented data set (Xi, Ui), i =
1, . . . , n. The data point pair (Xi, Ui) exactly follows the joint distribution given by (2), so the
second form of decomposition also holds, i.e., (Xi, Ui) ∼ pu(u)px|u(x|u).
The observation above comprises the core idea of ASL, which advocates a better use of the latent
representation of the data. With any given encoder pu|x(u|x), we can form the augmented data set
{(Xi, Ui)}ni=1, and our task is to estimate pu(u) and px|u(x|u) based on (Xi, Ui). Once these two
distributions are trained, a new data point of X can be easily generated by the following sampling
process:

U∗ ∼ pu(u), X∗ ∼ px|u(x|U∗).

If the dimension of U is small, then pu(u) can be estimated from the marginal data {Ui}ni=1, which
is a much simpler task than estimating px(x) itself. Therefore, the main challenge in the ASL
framework is to train the conditional distribution px|u(x|u). But since we have full access to the
paired data {(Xi, Ui)}ni=1, estimating px|u(x|u) is essentially a supervised learning problem, which
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is a well-studied area in machine learning. The proposed framework, auxiliary supervised learning,
obtains its name exactly from this part: we convert the original challenging unsupervised learning
problem into a simple low-dimensional density estimation task and a supervised learning problem,
in which the “labels” are the original data Xi, and the “features” are the artificial and auxiliary
variables Ui. A diagram of the ASL framework is shown in Figure 1.

...
... ...

...

Figure 1: An illustration of the ASL
framework. The auxiliary data points
Ui are generated from Xi by the en-
coder px|u(x|u), forming the paired
data (Xi, Ui). Marginal distribution
pu(u) is estimated from the Ui data,
and generator distribution px|u(x|u) is
learned in a supervised fashion based
on (Xi, Ui). New data points of X
are generated by simulation of U∗ ∼
pu(u), followed by the generator X∗ ∼
px|u(x|U∗).

2.2 SUPERVISED LEARNING CAN BE HARD

Although it is commonly considered that supervised learning possesses certain advantages over
unsupervised learning, we emphasize that the modeling and training of px|u(x|u) is not necessarily
an easy task. As an extreme example, if U is completely independent of X , then learning px|u(x|u)
is the same as learning px(x) itself, which of course is a hard problem. Therefore, the choice of the
encoder pu|x(u|x) has an impact on the difficulty in learning px|u(x|u). We defer such discussions
to Section 3, where we give conditions on which supervised learning is beneficial, and provide
concrete methods to achieve this goal.

2.3 OUTLINE OF THE FRAMEWORK

Assuming that the encoder pu|x(u|x) is given or pre-trained, the ASL framework consists of the
following three steps.

I. Simulation step In this step we generate the paired data points (Xi, Ui) by sampling from
the encoder. Specifically, the encoder pu|x(u|x) can be parameterized by a deterministic mapping
fϕ : Rp+r → Rr such that U = fϕ(x, ε) ∼ pu|x(u|x) with ε ∼ N(0, Ir). This formulation is a
generalization to the reparameterization trick commonly used by VAE (Kingma & Welling, 2014).
For example, one can take fϕ(x, ε) = µ(x) + σ(x) ⊙ ε, where µ, σ : Rp → Rr are deep neural
networks and⊙means elementwise multiplication. Of course, more general forms of fϕ exist. With
this formulation, Ui is simulated as Ui = fϕ(Xi, εi), where εi are i.i.d. N(0, Ir) random vectors
independent of all Xi.

II. Density estimation step Since the dimension of U is typically much smaller than X , many
existing methods can be used to efficiently estimate pu(u), including normalizing flows, EBM,
Gaussian mixture models, etc. Dai & Wipf (2019) also shows that a vanilla VAE can be used to
estimate a low-dimensional density accurately if the latent dimension equals the ambient dimension.
Although theoretically adversarial training can also be used to learn pu(u), our numerical experi-
ments show that likelihood-based methods such as affine coupling normalizing flows (Dinh et al.,
2014) are good enough for this step, and have the huge advantage of stable training. For this reason,
we only show the likelihood-based training method in Algorithm 1 with a generic density model
pη(u) for pu(u).

III. Supervised learning step For now, we simply assume that px|u(x|u) can be modeled by a
regression model, X = gθ(U) + ε, where gθ : Rr → Rp is a deep neural network, and ε is a
zero-mean error term. As a convention of supervised learning, we define a loss function ℓ(x, x̂) to
measure the difference between the true values of X and its predicted values. Common choices of
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ℓ include ℓ(x, x̂) = 1
2∥x − x̂∥22 and ℓ(x, x̂) = ∥x − x̂∥1, among many others. The neural network

parameters θ are then learned via stochastic gradient methods. After gθ is trained, we can use the
residuals Xi − gθ(Ui) to estimate the covariance of ε under suitable distribution assumptions.

In practice, the simulation step of ASL can be implemented within each iteration of step II and step
III. In this way the Ui data points have more variations, making the two training steps II and III
less prone to over-fitting. Also note that the density estimation and supervised learning steps are
completely independent of each other, so pu(u) and px|u(x|u) can be trained in parallel, saving
visible computing time. As a whole, the outline of ASL is summarized in Algorithm 1.

Algorithm 1 Outline of the ASL framework for training deep generative models

Input: Data {Xi}ni=1, pre-trained encoder fϕ, density model pη , regression model gθ
Output: Estimated neural network parameters η̂, θ̂

1: for k = 1, 2, . . . ,K do
2: Sample mini-batch indices I1, . . . , IM
3: Sample UIb ← fϕ(XIb , εb), εb

iid∼ N(0, Ir), b = 1, . . . ,M

4: Define L1(η) = −M−1
∑M

b=1 log pη(UIb)
5: Update ηk ← ηk−1 − αk∇L1(ηk−1)
6: end for

Density estimation

↓

In parallel
7: for k = 1, 2, . . . ,K do
8: Sample mini-batch indices I1, . . . , IM
9: Sample UIb ← fϕ(XIb , εb), εb

iid∼ N(0, Ir), b = 1, . . . ,M

10: Define L2(θ) = M−1
∑M

b=1 ℓ(XIb , gθ(UIb))
11: Update θk ← θk−1 − αk∇L2(θk−1)
12: end for

↑

Supervised learning

13: return η̂ = ηK , θ̂ = θK

3 ENCODERS THAT MAKE SUPERVISED LEARNING EASY

As mentioned in Section 2.2, the supervised learning of px|u(x|u) is not necessarily easy. In general,
if the conditional distribution px|u(x|u) has a complicated form other than simple distributions such
as normal, then the training of px|u(x|u) is also difficult, even when the paired data (Xi, Ui) are
fully observed. However, px|u(x|u) is determined by the encoder pu|x(u|x), which is free to choose
in the ASL framework. In Sections 3.1 and 3.2 below, we provide two schemes for pre-training
encoders that make the supervised learning part easy.

3.1 VAE-BASED METHOD

The first case is when the observed data are exactly restricted to a d-dimensional manifold. Dai &
Wipf (2019) proves that an optimally trained normal VAE with latent dimension r ≥ d can perfectly
reconstruct X by sampling U∗ ∼ q(u) and X ∼ px|u(x|U∗), where q(u) =

∫
pu|x(u|x)p(x)dx,

and pu|x(u|x), px|u(x|u) are the learned encoder and decoder from VAE, respectively. In other
words, a simple normal model for px|u(x|u) suffices.

As a result, under the assumption above, the learned encoder in VAE is also a valid encoder in the
ASL framework, and step II and step III of ASL can be viewed as learning the prior pu(u) and
fine-tuning the decoder px|u(x|u) after training a VAE model. We use the name VAE-ASL to stand
for ASL training methods based on a VAE encoder.

3.2 A NEW MI-BASED METHOD

More generally, X only approximately lies on a manifold, so we cannot solely rely on VAE to
obtain the encoder. The second case to make px|u(x|u) easy is when this conditional distribution
has a small uncertainty given U = u. For example, suppose that px|u(x|u) is primarily determined

4



by its conditional mean f(u), then px|u(x|u) can be well approximated by a degenerate distribution
concentrated at f(u), and the estimation of f(·) is basically a regression problem.

To achieve this goal, the auxiliary variable U should capture most of the information contained in X ,
so pre-training the encoder is essentially a representation learning problem. One formal criterion to
measure the information overlap between two random vectors is mutual information (MI), defined
as

I(X,U) =

∫
p(x, u) log

p(x, u)

px(x)pu(u)
dxdu = DKL[p(x, u)∥px(x)pu(u)],

whereDKL(·∥·) is the Kullback–Leibler divergence. An interpretation of MI is given by the identity
I(X,U) = H(X) − H(X|U), where H(X) and H(X|U) are the differential entropy and condi-
tional differential entropy, respectively. SinceH(X) is fixed, a large I(X,U) implies thatH(X|U)
is small, meaning that the uncertainty about X after observing U is small.

Naturally, one would hope to seek the encoder pu|x(u|x) such that I(X,U) is maximized. However,
directly estimating MI is intractable, so a number of lower bounds of MI have been developed Poole
et al. (2019). But still, it was pointed out that these estimators are typically biased and exhibit high
variance (Tschannen et al., 2020). To overcome such difficulties, in Theorem 1 we propose a new
easy-to-compute lower bound for MI.

Theorem 1. Let (X,U) ∈ Rp × Rr be a pair of continuous random vectors with joint distribution
p(x, u). Then for any mapping g : Rr → Rp and any vector a = (a1, . . . , ap)

T with ai > 0,
i = 1, . . . , p, denote ξ = g(U), and we have

I(X,U) ≥ IASL(X,U ; g, a) := H(X)− 1

2

p∑
i=1

[Ep(x,u)(Xi − ξi)
2

ai
+ log(ai)

]
− p log(2π)

2
.

Since g and a are arbitrary, one can use a deep neural network to represent g, and optimize g and a
jointly to tighten the bound.

One issue of MI is that it is invariant to invertible transformations of the variables, so the marginal
distribution of U can be arbitrary. To stabilize training and enhance identifiability, we need a regu-
larizer to force U close to a fixed distribution. Define

k(u, u′) =
4β(β + 1)∥u− u′∥2

(1 + ∥u− u′∥2)β+2
+ 2β · r − ∥u− u′∥2

(1 + ∥u− u′∥2)β+1
+

uTu′

(1 + ∥u− u′∥2)β

for some β > 0, and then DStein(pu) = Eu,u′∼pu [k(u, u
′)] is the kernelized Stein discrepancy

between pu(u) and N(0, Ir) using an inverse multi-quadric kernel (Liu et al., 2016; Hu et al., 2018).
In general, a small value of DStein(pu) indicates that pu is close to a standard normal distribution.

Note that both IASL(X,U ; g, a) and DStein(pu) can be unbiasedly estimated from samples of
(Xi, Ui), which indicates that we do not require the encoder pu|x(u|x) to have a tractable den-
sity function. This greatly frees us from the VAE-based encoders that assume pu|x(u|x) is normal.
Instead, we represent the encoder using a deterministic deep neural network fϕ by generating U as
U = fϕ(X, ε), ε ∼ N(0, Ir).

As a whole, we propose to estimate fϕ, g, and a jointly by minimizing the following objective
function:

min
fϕ,g,a

−IASL(X,U ; g, a) + λDStein(pu), (3)

where λ is a weight parameter. It should be noted that the main purpose of (3) is to obtain the
encoder fϕ, whereas g and a are merely auxiliary quantities to tighten the MI bound. However, g
has the same structure as the regression function gθ in step III of ASL, and in practice we find that g
provides an excellent initial value for gθ in the supervised learning step. We use the name MI-ASL
to stand for ASL training based on (3).

3.3 DECODER-FREE METHODS

Both VAE-ASL and MI-ASL simultaneously pre-train the encoder fϕ and the regression function
gθ. There are also methods that directly optimize fϕ without including gθ, such as the deep InfoMax
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(Hjelm et al., 2019) and the augmented multiscale deep InfoMax (Bachman et al., 2019). More
generally, methods that can learn latent representations of high-dimensional data can all be viewed
as candidates for the encoder in our framework.

4 RELATED WORK

Both VAE and ASL put an emphasis on the latent representations of the data. However, ASL
has some fundamental differences with VAE. As pointed out by Zhao et al. (2018), the objec-
tive function of VAE is equivalent to matching the two forms of decomposition by minimizing
DKL[px(x)pu|x(u|x)∥pu(u)px|u(x|u)] ≡ −ELBO−H(X). However, in most cases pu, pu|x, and
px|u are all taken to be Gaussian, so there is almost always some discrepancy between the two forms
of decomposition. Even though some articles propose to use more complicated distributions for the
prior pu and the posterior pu|x (Rezende & Mohamed, 2015; Salimans et al., 2015; Kingma et al.,
2016; Tomczak & Welling, 2018; Bauer & Mnih, 2019), and there are various works on improving
the optimization process of VAE (Kim et al., 2018; He et al., 2019; Fu et al., 2019), we shall point
out that VAE does not necessarily generate good latent representations. This is because matching
pxpu|x with pupx|u does not mean U and X share information. In this sense, the VAE objective
function has an intrinsic limitation on representation learning.

ASL, on the other hand, utilizes the identity between the two decompositions, so it mitigates the
distribution matching problem of VAE and is less restricted by the model capacity. Moreover, in
MI-ASL we explicitly forces the latent U to have large information overlap with X , thus ensuring
the quality of the latent representation.

Another line of works have focused on refining existing pre-trained models. For example, Che
et al. (2020) proposes to improve the latent space of GAN via rejection sampling, which uses the
discriminator from an existing GAN to implement an EBM on latent variables. Dai & Wipf (2019)
proposes the two-stage VAE, which enhances a VAE model by using another VAE to estimate the
aggregated posterior. While these works emphasize on the resampling of priors, the ASL framework
points out that the decoder also needs further training.

5 NUMERICAL EXPERIMENTS

5.1 LOW-DIMENSIONAL SYNTHETIC DATA

Although deep generative models are most useful for modeling high-dimensional data, it is helpful
to first examine their performances on some low-dimensional yet challenging synthetic data sets.
Figure 2(a) shows the true data points of six synthetic data sets, which exhibit properties such as
multi-modality, nearly singular densities, manifold embedding, etc. We emphasize that although
these data only have two or three dimensions, correctly estimating their distributions is a highly
difficult task. To illustrate this point, we use VAE and normalizing flows to fit the data, with results
shown in Figure 8 in the appendix. It shows that even for such low-dimensional data, standard
methods can have surprisingly bad output. In contrast, Figure 2(b) gives the generated samples by
ASL with latent dimension r = 2, implying that ASL successfully recovers the true distributions
with only minimal deviations.

To quantitatively measure the quality of generated samples, we compute the 1-Wasserstein distance
between the true and generate samples for each data set and each model. We repeat each experi-
ment 30 times, and summarize the distributions of these distances in Figure 3. It is clear that ASL
demonstrates satisfactory performance and stability.

5.2 EVALUATION ON LATENT REPRESENTATION

As discussed in Section 3, the encoder can play a critical role in extracting useful information from
high-dimensional data. We then use the Fashion-MNIST data set (Xiao et al., 2017) to evaluate the
performance of two encoder pre-training schemes: VAE-ASL and MI-ASL. Specifically, we train
the two encoders with latent dimension r = 32, and then individually simulate Ui based on the same
set of Xi data points. To visualize the structure of the generated auxiliary data points, we use t-SNE
(Van der Maaten & Hinton, 2008) to project the 32-dimensional Ui onto a two-dimensional plane, as
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(a) True samples

(b) Samples generated by ASL

Figure 2: True samples of six synthetic data sets and randomly generated data points by ASL.
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Figure 3: Quantitative evaluation of three generative models on the synthetic data sets. Each boxplot
shows the distribution of the 1-Wasserstein distance between the true and generated data points.

is demonstrated in Figure 4. Surprisingly, the VAE-based encoder fails to capture the latent structure
of the original data, as it is known that Fashion-MNIST consists of ten classes. In contrast, the new
MI-based encoder clearly reveals the clusters that are well aligned with the true labels. This finding
highlights the advantage of the MI-based encoder, and suggests that ASL would benefit from new
advances in representation learning techniques.

5.3 EVALUATION ON GENERATION

After the encoders are pre-trained, we then use ASL to build generative models for the Fashion-
MNIST data. We first examine the reconstructed images formed by passing the original data points
to the encoder fϕ and the generator gθ, which shed light on the best quality the generative models
can achieve. Figure 5 shows the true and reconstructed images side by side, from which we can
see that images reconstructed by MI-ASL have sharper edges than those by VAE-ASL, and preserve
more details on the apparel. This finding is consistent with Figure 4, as we have shown that the
MI-based encoder is more powerful in learning the latent structure. On the other hand, although
the VAE encoder has poor performance in the latent space, ASL turns out to be very robust to this
choice, which has acceptable quality on the reconstructed images.

To further test the generalization ability, we randomly generate images from various learned models,
and compare ASL with the two-stage VAE model proposed by Dai & Wipf (2019). Two-stage VAE
is an improved VAE model that has been shown to achieve good generation quality. Figure 6(a)
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Figure 4: t-SNE visualization of the auxiliary data points generated by the VAE-based and MI-based
encoders, respectively.

Figure 5: True and reconstructed images from the Fashion-MNIST data. Left: true images from the
testing set. Middle: images reconstructed by VAE-ASL. Right: images reconstructed by MI-ASL.

shows the results by vanilla VAE, which obviously contain many blurry images. The two-stage VAE
has significant improvement over VAE, but it still tends to over-simplify the patterns on the clothes.
Finally, the two ASL models in Figures 6(c) and (d) are able to generate visible marks on shoes and
handbags, which is non-trivial for Fashion-MNIST data. Overall, ASL has desirable performance in
both reconstruction and generation tasks.

(a) VAE (b) Two-stage VAE (c) VAE-ASL (d) MI-ASL

Figure 6: Randomly generated samples from various deep generative models.

To show the quantitative performance of ASL, we also fit the CIFAR-10 data (Krizhevsky et al.,
2009) with generated images shown in Figure 9, and use the Fréchet inception distance (FID, Heusel
et al., 2017) as a metric for image generation quality. Table 1 gives the means and standard deviations
of the FID scores of the compared methods. Note that we primarily show the relative performance of
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Table 1: FID scores for different generative models. The numbers in the parentheses are the standard
deviations across ten independent runs.

VAE Two-stage VAE VAE-ASL MI-ASL

Fashion-MNIST 47.19 (0.35) 43.88 (0.35) 38.39 (0.50) 26.00 (0.28)

CIFAR-10 99.34 (0.25) 89.91 (0.26) 86.51 (0.21) 87.19 (0.28)

ASL and two-stage VAE under a fixed network architecture, and do not pursue the lowest possible
scores. The comparison of two-stage VAE and many other generative models can be found in Dai
& Wipf (2019) and Xiao et al. (2019). Overall, the results indicate that ASL is competitive with
modern deep generative models.

5.4 CELEBA HUMAN FACE DATA

Finally, we show qualitative results of ASL on human face image generation based on the large scale
CelebA data (Liu et al., 2015). Figure 7 illustrates the true, reconstructed, and randomly generated
images by ASL based on the MI encoder. A larger collection of generated samples are given in
Figure 10 in the appendix, which also includes the results of VAE-ASL. Both variants of ASL are
able to generate high-quality images, and more importantly, they do not require heavy tuning of
hyperparameters. To show that ASL does not simply memorize data, we interpolate between images
in the latent space, and demonstrate the results in Figure 11. It shows that the intermediate images
are also meaningful. Furthermore, we plot various loss function values of ASL in Figure 12, which
validates the stability of training in ASL. Overall, ASL is shown to be a promising framework that
enjoys high generation quality, requires little manual tuning, and is extremely stable during training.

(a) True images

(b) Reconstructed images

(c) Randomly generated images

Figure 7: True images from the CelebA data and model-generated images based on ASL.

6 DISCUSSION

In this article we propose the ASL framework for training deep generative models. ASL is concep-
tually simple, but exhibits great potential to improve the training of complicated generative models.
At the core of the framework is the use of representation learning to construct informative auxiliary
variables, and the application of supervised learning to train deep neural networks. Various numer-
ical experiments demonstrate the accuracy and stability of ASL. Most importantly, ASL provides
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a general framework that is not limited to a specific method. The architecture of ASL is highly
modularized, and one has great flexibility in choosing the models for each component of ASL, in-
cluding the encoder, density estimator, supervised learning algorithm, etc. We anticipate that under
this framework deep generative models would greatly benefit from the advances of other subfields
of deep learning.

Reproducibility Statement To enhance the reproducibility of this work, we provide the imple-
mentation details for the numerical experiments presented in this article. Source code, pre-trained
model files, and output plots can be obtained at https://drive.google.com/drive/
folders/1emu6X4Rkxu_ft1HRVPGZAxKfYmPnPGt4.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Let |A| denote the determinant of a square matrix A. We first introduce the well-known result that
for a given covariance matrix, the differential entropy is maximized by the normal distribution.

Lemma 1 (Theorem 8.6.5, Cover & Thomas, 2006). Let the random vector X ∈ Rp have zero mean
and covariance matrix Σ. Then

H(X) ≤ p

2
+

p log(2π)

2
+

1

2
log |Σ|,

with equality if and only if X ∼ N(0,Σ).

Then we are ready to prove Theorem 1. For any univariate random variable Z ∈ R whose second
moment exists, it is known that E(Z − c)2 is minimized by c = E(Z). Therefore, given U = u,
each EX|U=u(Xi − X̂i)

2 is minimized by X̂∗ = E(X|U = u). Let g : Rr → Rp be any mapping
and denote ξ = g(U), and then

EX|U=u(Xi − ξi)
2 ≥ EX|U=u(Xi − X̂∗

i )
2 = Var(Xi|U = u),

where Var(Xi|U = u) is the conditional variance of Xi given U = u.

Let Σ(u) be the conditional covariance matrix of X given U = u, and define

H(X|U = u) = −
∫

px|u(x|u) log px|u(x|u)dx.

Then by Lemma 1, we have

H(X|U = u) ≤ p

2
+

p log(2π)

2
+

1

2
log |Σ(u)|.

By Hadamard’s inequality,

|Σ(u)| ≤
p∏

i=1

σ(u)2ii,

where σ(u)2ii = Var(Xi|U = u) are the diagonal elements of Σ(u). Therefore,

log |Σ(u)| ≤
p∑

i=1

log [Var(Xi|U = u)] ≤
p∑

i=1

log
[
EX|U=u(Xi − ξi)

2
]
. (4)

For any x, a > 0, log(x) ≤ x/a + log(a) − 1, and the equality holds if and only if a = x. As a
result, (4) indicates that

log |Σ(u)| ≤
p∑

i=1

[EX|U=u(Xi − ξi)
2

ai
+ log(ai)− 1

]
(5)

for any vector a = (a1, . . . , ap)
T with ai > 0. Taking the expectation of U on both sides of 5, we

get ∫
pu(u) log |Σ(u)|du ≤

p∑
i=1

[Ep(x,u)(Xi − ξi)
2

ai
+ log(ai)− 1

]
.

Finally,

H(X|U) =

∫
pu(u)H(X|U = u)du ≤ p log(2π)

2
+

1

2

p∑
i=1

[Ep(x,u)(Xi − ξi)
2

ai
+ log(ai)

]
,

and the required result is obtained.
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Fashion MNIST CelebA

Encoder-VAE

x ∈ R28×28 x ∈ R64×64

→ Conv64→ ReLU → Conv64→ BN→ LeakyReLU
→ Conv64→ ReLU → Conv128→ BN→ LeakyReLU
→ Conv128→ ReLU → Conv256→ BN→ LeakyReLU
→Flatten→FC32×2 → Conv512→ BN→ LeakyReLU

→ Conv256→Flatten→FC128×2

Encoder-MI

x ∈ R64×64 x ∈ R64×64

→ Conv64→ ReLU → Conv64→ BN→ LeakyReLU
→ Conv64→ ReLU → Conv128→ BN→ LeakyReLU
→ Conv128→ ReLU → Conv256→ BN→ LeakyReLU
→Flatten→2×(FC256→ReLU)→ FC32 → Conv512→ BN→ LeakyReLU

→ Conv1024→Flatten
→Dense256,512,256 → FC128

Generator

u ∈ R32 → ReLU→FC u ∈ R128

→ Conv64 → ReLU → Conv512→ BN→ ReLU
→ Conv64 → ReLU → Conv256→ BN→ LeakyReLU
→ Conv1 → Flatten→ Sigmoid → Conv256→ BN→ ReLU

→ Conv128→ BN→ ReLU
→ Conv3→Flatten→ Sigmoid

Flow
u∈ R32 →[FC256 →ReLU6 u∈ R128 →[FC128 →ReLU6
→ FC256 →ReLU6→ MaskedAC]×16 → FC128 →ReLU6

→ FC128 →ReLU6→ MaskedAC]×20

Table 2: Network architectures for the numerical experiments in Section 5.

A.2 NEURAL NETWORK ARCHITECTURES

The network architectures for the numerical experiments in Section 5 are displayed in Table 2. Here
Dense is a feed-forward neural network with subscripts indicating the hidden layers’ dimensions
and ReLU as the activation function. For the low-dimensional synthetic data, all of the networks are
Dense networks with three hidden layers.

A.3 ADDITIONAL VISUALIZATION RESULTS

(a) Samples generated by VAE

(b) Samples generated by normalizing flow

Figure 8: Randomly generated samples of synthetic data by VAE and normalizing flow.
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(a) VAE (b) Two-stage VAE

(c) VAE-ASL (d) MI-ASL

Figure 9: Randomly generated images trained from the CIFAR-10 data set.

(a) MI-ASL (b) VAE-ASL

Figure 10: Randomly generated face images by ASL using two different encoders.
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Figure 11: Interpolation of generated images in the latent space.
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Figure 12: Loss function values of ASL in the training of encoder, regression function, and density
estimation, respectively.
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