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ABSTRACT

Generative retrieval employs sequence models for conditional generation of docu-
ment IDs based on a query (DSI (Tay et al.,|2022); NCI (Wang et al., 2022); inter
alia). While this has led to improved performance in zero-shot retrieval, it is a
challenge to support documents not seen during training. We identify the perfor-
mance of generative retrieval lies in contrastive training between sibling nodes in a
document hierarchy. This motivates our proposal, the hierarchical corpus encoder
(HCE), which can be supported by traditional dense encoders. Our experiments
show that HCE achieves superior results than generative retrieval models under
both unsupervised zero-shot and supervised settings, while also allowing the easy
addition and removal of documents to the index.

1 INTRODUCTION

Recent work on neural information retrieval (IR) has broadly fallen into two categories: dense
encoders, and generative retrieval. For dense retrieval (Lee et al.l |2019; Karpukhin et al., [2020;
[zacard et al.| 2022} i.a.), a fixed-dimension vector representation is created for each document by an
encoder, and searching is performed with techniques such as approximate nearest neighbor (ANN)
search or maximum inner product search (MIPS; Shrivastava & Li|(2014))) with an external index
(e.g., FAISS (Douze et al.,[2024))). Such encoders are generally trained in a supervised fashion by
learning to distinguish relevant documents (positive examples) against irrelevant documents (negative
examples) given a query. This is known as contrastive training.

Generative retrieval (Tay et al.l [2022; [Wang et al.} [2022] i.a.) takes a different approach: directly
outputting the identifier of the document with an encoder-decoder sequence model without an explicit
vector representation for each document. Purported advantages include (a) there is no need to deploy
an explicit MIPS index; and (b) better performance in unsupervised settings when adapted to a new
corpus without any labeled training data. However, they also suffer from known problems such as the
addition of new documents requires continued training, which is both computationally expensive and
is prone to catastrophic forgetting (Kishore et al.,|[2023)).

Here we examine the innovations of generative retrieval and identify the key important distinction
with dense retrieval approaches to date: tiered hierarchical negative samples. This motivates our
proposal, the hierarchical corpus encoder (HCE). At training time, positive samples are contrasted
against siblings on a document hierarchy as negative samples, mimicking the loss employed in
generative retrieval (§E]). At test time, retrieval falls back to MIPS with an external index. HCE
provides the best of both worlds: (1) zero-shot adaptation to new domains; and (2) efficient addition
and removal to the index without fine-tuning.

Our experimental results demonstrate that HCE achieves superior performance over a variety of
popular dense and generative retrieval methods under both supervised and unsupervised scenarios,
illustrating the effectiveness of HCE’s modeling of the document set as a hierarchy.

2 BACKGROUND

Dense Retrieval In the dense retrieval paradigm of information retrieval, one seeks to learn an
encoder F : V* — R that maps a string of tokens (from vocabulary set V) to a point in a n-
dimensional vector space. Retrieval can then be performed in by some nearest neighbor search (NNS)
or maximum inner product search (MIPS) in this space R”. A common instantiation of this encoder



Under review as a conference paper at ICLR 2025

is a Transformer with a pooling operation on top (Izacard et al.| [2022)), followed by an optional
normalization step (that makes the norm of the vector 1, as is done in N1 et al.[ (2022)).

Under the condition where query-document relevance judgments are present, it is common practice to
train such an encoder with a constrastive loss (Sohnl 2016), where the model is trained to discriminate
positive candidates d* that are relevant to the query ¢ from irrelevant negative candidates d~ € D~.
We denote the vector representation of a query ¢ as q = F(¢), and similarly d = F(d). For a set of
documents D, we denote D = {F(d)}4<p, which is a set of vectors. A common form of the loss is

exp S(q,d")

expS(q,d*) + Z expS(q,d7)
d-eD-

Lc(q,d", D7) = —log e))

where S(q, d) is the scoring function between vectors. This scoring function is usually just an inner
product (optionally scaled by a temperature 7) between vector embeddings S(q,d) =q-d/7,ora

normalized version S(g, d) = m where cosine similarity is computed.

This general framework is first pioneered by [Lee et al.| (2019) and [Karpukhin et al.| (2020) for dense
retrieval in NLP, where it is successfully applied to open-domain question answering.

Generative Retrieval Generative retrieval is a new paradigm that directly generates document
identifiers by the model’s parametric memory, without using an external index. Specifically, one
first assigns a unique string-valued identifier to each document, and when decoding, constrain the
decoding process so that its output falls within the set of unique identifiers. Top-k retrieval is done by
using beam search in the decoding process. Such method removes the need for any external index,
making the whole memory of the corpus parametrized by a neural network.

The earliest work in this thread is GENRE (De Cao et al., 2021)), where the correct entity name
(e.g. Wikipedia article title) is generated through a sequence-to-sequence model for entity linking.
DSI (Tay et al.} 2022)) and NCI (Wang et al., [2022) applied the generative retrieval approach to ad
hoc document retrieval. GENRET (Sun et al.| [2023)) learns the document IDs without the initial
preprocessing step. Such methods suffer from two drawbacks: (a) scalability: challenging to scale
to massive scale of documents since all memory is parametrized in the model, absent of external
storage; (b) extensibility: hard to expand the document set if new documents are going to be indexed,
since it is usually pre-trained on a static collection of documents.

Adding new documents in generative retrieval usually requires continued training. There are methods
proposed to alleviate the problem: DSI++ (Mehta et al., |2023)) sought to mitigate catastrophic
forgetting for continued training; IncDSI (Kishore et al.,2023)) proposed a constrained optimization
method to find optimal vectors for new documents, but it only applies to the atomic version of DSI.

3 A CLOSER LOOK AT GENERATIVE RETRIEVAL

Generative retrieval seems to be a departure from traditional contrastive learning, but upon scrutiny,
we found that the underlying loss is similar in many ways. Here we take a closer look at arguably the
seminal work that started the research thread on generative retrieval for documents: the differentiable
search index (DSI; Tay et al.l[2022). There were two proposed versions of DSI, namely the atomic-ID
version and the hierarchical version. Later work that followed (e.g. NCI; Wang et al.| (2022))
prioritized the hierarchical version.

Atomic Version In the atomic version of DSI, each document’s ID is added to the vocabulary of
the Seq2Seq decoder, and the decoder is run exactly 1 step to generate the correct document ID. The
Seq2Seq negative log-likelihood loss would b

LGR-atom (¢, d*) = —log (softmax(WrmHead - 8)[d*]) . 2

Note here s € R is the decoder output state (Figure 1|Left), and Wy pheaq is the weight matrix
of the language model head of the decoder, and x[d™*] selects the probability term from vector x
that corresponds to the document d*. Since the token set of this decoder is the document ID set,

! Bias term omitted for more succinct exposition, as one can always rewrite (WTx + b) as (w, b)T(x, 1).
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Wi MHead = [Vg] dep € RIPIXnaee and the logits (Wimpead - ) € R!P!. Expanding

exps - Vg+
LGR-atom (g, d") = —log ZSXT =Lc (S, Va+, {Va- }d—ep\{d+}) . 3)
d+

deD
Thus we see that in the atomic version of generative retrieval,

* a fixed-length vector v is actually trained for each document d, in the form of rows in the weight

matrix of the language model head;

* afixed-length vector is actually created for the query, in the form of the decoder state vector s;

* and the decoding process of arg max ep €xps- V4 is in fact maximum inner product search (MIPS).
Hence the atomic version of generative retrieval can be considered as a form of contrastive learning,
where the positive document is contrasted with all other documents in the corpus, with the embedding
for all documents saved as parametric memory in Wimpead (Figure T|Left). These embeddings are

updated under gradient descent for every training iteration. This is different from contrastive learning
in dense retrievers, where usually a small set of negative samples are sampled from the corpus.
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Figure 1: Left: DSI with atomic IDs. Right: DSI with a document hierarchy.

Hierarchical Version The atomic version above obviously does not scale efficiently beyond
hundreds of thousands of candidate documents, as the size of its parametric memory would scale
linearly with respect to the number of documents. Therefore the authors of DSI proposed a hierarchical
method that limits the number of tokens that the decoder can generate. In the hierarchical version of
DSI, a hierarchy of documents is computed before training via divisive k-means clustering. The set
of documents are arranged as leaves in a tree, where intermediate nodes are clustering centroids. In
figue 1

this tree 7, each document d is assigned a path from root pg = ( p(l) cee, plf‘ll) (Figure 1|Right).

The DSI decoder is expected to output this path pg as the sequence output. Since DSI is trained with
a sequence objective with a softmax head, this sequence loss can therefore be expressed as

‘pd*’l exps(t) V(p(t)) ‘pd*'l
Lorenier(q.d") == > log 5 = > Le (sOvpiD phpezi ), @)
= 2 eps v(p) S

pez®)

where ¢ is the decoder step, s'*) is the decoder state at step 7, and X(*) is the set of symbols allowed
on depth ¢ of the hierarchy. Here we see that the hierarchical version of generative retrieval performs
contrastive learning at each step in the decoding process: at each step ¢, the decoder state s'*), acting
as a query, is matched with all possible tokens £(*) at this step 7: the correct action at this step p((jﬂ) is
contrasted against all other steps. In essence, DSI is taking tiered hierarchical negative samples.

It can be seen that the loss function of generative retrieval essentially consists of one (under the
atomic version) or multiple (under the hierarchical version) steps of contrastive loss, with the decoder
state at each step functioning as the query vector. We make the observation that contrastive loss is a
sampled estimation of the full log-likelihood loss; and the hierarchical version is a computationally
efficient way of working with a very large candidate set. Indeed, the same idea has been explored in
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Algorithm 1 HIERAGGCLUSTER

Algorithm 2 SPHKMEANS

Require: vectorsv; e R"?, 1 <i < |D|
Require: branching factor b
t « [log, |D[]
T) — {TREE(v;, )}
K — [|D|/b]
while 7 > 0 do
T(=1)  SPHKMEANS(T (), K)
> Clusters into a forest of subtrees

> A forest of leaf nodes

te—1t—-1
K « [K/D]
end while

Require: vectorsv; e R, 1 <i < |D|
Require: number of clusters K

Vi, a; ~ Unif{l,--- ,K} > Random init
while a; not converged do
. Vi
Z ca;=k 't
Vk, ¢ «— AT, > E step
”Zi:ai:kvin
Vi, a; < argmaxy v; - Cg > M step

end while
return {TREE(ck, {i: Vi}ai=’<)}1§ks1<
> Returns a forest of clusters

return 7(?) > Returns a tree with a single root > TREE(r, C) is a tree with root r and children C

many applications of NLP. For example, in the early days of neural language modeling, Morin &
Bengio| (2005) proposed a hierarchical softmax function to speed up the softmax computation over a
large vocabulary set. This was then adopted in Word2Vec (Mikolov et al.| 2013).

In generative retrieval, decoding is done in a coarse-to-fine manner with constrained beam search.
This is akin to the approach of |Chen et al.[(2020b), who classified textual entity mentions into a
constraining type hierarchy. Hierarchical decoding is also reminiscent of indexing algorithms such
as hierarchical k-means trees (Nistér & Stewénius, [2006; Muja & Lowe, [2009)): first build a tree of
samples based on clustering as index, and when decoding, apply beam search over this tree.

With this understanding of generative retrieval, we translate the innovations to a dense retriever.

4 MODEL

We propose HCE, which jointly learns an encoder F : V* — R” (the n-dimensional hypersphere
S™~1 ¢ R™ if normalized) with a hierarchical tree 7 of the document set, with a novel loss that takes
the hierarchy of documents into account.

4.1 LEARNING WITH DOCUMENT HIERARCHY R NO _ |'N<1)/b'| -1
(o))

Clustering Given an initial encoder Fy, we g 012

can compute all embeddings in the document set E ¢ N = [N®/p

D: {Fo(d)}gep- We perform an agglomerative 2 o

version of hierarchical clustering (Algorithm © @ 3
hl: ] N =[N /b]

on these vectors to form a tree. This differs from £ Q\

DSI, where divisive clustering is performed. The 3 01

reason is that we keep the path from the root the < bb N® = p|

same length for all documents (see [Figure 2)),

i o Figure 2: A document hierarchy with depth 3.
and easier parallelization on GPUs.

Starting with |D| vectors for the entire corpus, we perform spherical K-means clusteringE] where
K =[|D|/b]. Here b is a branching factor. We recurse until K = 1, when all clusters are collected
into a single root node. Note that for each tree node there is no guarantee that it has exactly b children,
and b can be understood as the expected number of vectors in each cluster (see[Figure 2). For each
clustering step, the spherical K-means clustering (Dhillon & Modha, [2001) is used (Algorithm 2).

The resulting hierarchical tree 7 = T?) has depth L = [log,, |D|], so that each document d can be

encoded as a fixed-length path pg = ( pg), RN pff‘)) from root (see , where the highlighted

leaf node has its path to root p = (1,1,0) bolded). Each prefix (p1), .-, p®) (I < L) of this
path points to a nonterminal node c of this tree, and corresponds to a centroid from the hierarchical
clustering process. We denote the vector of the centroid as ¢(p(1), -, p)) e R™.

Hierarchy-aware Loss Provided that the hierarchy is constructed, we adapt the sequence decoding
loss (LGRr-hier, [Equation 4) in generative retrieval to our encoder-based method. Recall that LGRr-hier

2 Spherical K-means is used instead of normal K-means since most pretrained retriever maximize inner
product or cosine similarity between relevant query-document pairs, instead of minimizing L, distance.
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Figure 3: Illustration of HCE training, where the query is contrasted with tiered negative samples.
Query and documents here are taken from the NQ320k dataset (Kwiatkowski et al., 2019).

contrasts the vector of the positive path against the vector of the negative paths on each layer of the
hierarchy, given the decoder state at each step s*) as the query vector. We make two modifications:

* Since there is no decoder in our case, the query vector stays the same across steps: it will always
be the vector embedding q = F(g) of the query g across levels.

* Vectors for intermediate nodes are the centroid vectors of the prefixes from K-means clustering.

As such, given query ¢ and its relevant document d*, at step 7 on hierarchy 7, we contrast the positive

prefix (pgi), e pgf) against all its siblings {(pgi), - ,pgfl),p_) ‘ p~# pilﬂ)} Figure 3|):
0 0 -1 - _
ﬁg)(q’d+)=£c (q’ C(P£1+)"" ’p((;g)’ {C(P((ﬁ),"' ’p;{r ),P ))p ;&pgj}) 4)

Naturally we could do this for each layer of the hierarchy: Ly (q,d") = Zleﬁg) (g,d"), taking
tiered hierarchical negative samples. However, doing this for the full hierarchy is not memory-
efficient: it requires storing the embedding of all documents (leaf nodes of the hierarchy) as param-
eters! This gets us back to the situation of generative retrieval with atomic IDs (§3). We adopt a
simple solution: retain the vectors of the first M(M < L) layers of the L layers in memory. For the
first M layers, we apply the hierarchy loss in[Equation 5} for the last (L — M) layers, we fall back to
constrastive loss, where negative samples are sampled within the children of the prefix (Figure 3):

M L
Lace(q.d%) = > L5 (q.d)+ > £ (g, Sample, (pY, -+ p§) \ (d*}) . (6)
t=1 t=M+1

Hierarchy loss Contrastive loss with negative samples

Here L is a bi-directional contrastive loss elaborated below, and Sample,,  (p) samples nns

documents that are the children of the prefix p. In our experiments we take nns = 4.

Contrastive Loss with Tricks It has been shown that the in-batch negative trick (Henderson et al.l
2017;|Chen et al.} 2020a) improves the performance by including positive documents for other queries
J # i in the same mini-batclﬂ B as negative documents for query i. Additionally, [Ni et al.| (2022)
shows that one can do a bi-directional loss: viewing the candidate as the query and the queries in the
batch as candidates. We combine these tricks. For details, see[Appendix Al

4.2 TRAINING UNDER DIFFERENT SCENARIOS

Our proposed method HCE can be used in both supervised training where query-document relevance
judgments are present; and in zero-shot cases where query dataset is absent.

Supervised Training Given a training set of Syain = {(g,d*)} (there is no need for labeled
irrelevant samples) and a corpus D, we simply optimize the HCE loss proposed above.

3 Batch size can be increased by the number of GPUs by using the A11Gather operation, e.g. in NCCL.
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Unsupervised Training In this scenario only the corpus D is present, and our goal of this training
step is to align the encoder’s output distribution with the distribution of the corpus.

The goal is creating a pseudo-query for each document. We experimented with two approaches:

* Inverse Cloze Task (ICT; Lee et al.[(2019)): A random segment § of text d* is used as a pseudo-
query: Ly (d*) = Lyce(q,d™). In NCI (Wang et al., 2022) it is referred to as document-as-query,
and we follow their choice of taking a random span of 64 tokens;

* SimCSE (Gao et al.} [2021): The text d* is encoded again with a different randomized dropout
mask, yielding a different encoding d* from the original d*. Then the variant d* is used as the
query vector: Ly (d*) = Lyce(dt,d?).

We found that these two methods perform similarly. For all experiments described, ICT is used.

Joint Training Additionally, the supervised and the unsupervised objective can be jointly optimized:

L (Suain: D) = E(g,0)~Seun |L5(q.dN)| + @ Eap [Lu(d)]. (7)

This achieves the two goals outlined in Wang & Isolal (2020): (a) aligning the query with its relevant
document; (b) ensures that the distribution of the corpus is nicely distributed.

Co-Training of Encoder and Hierarchy Fi- Algorithm 3 EM-STYLE-TRAIN
nally, we introduce a co-training approach for
jointly optimizing the encoder and the hierarchy. po quire: Validation dataset S

In existing generative retrievers (e.g. DSI, NCI), Require: Document collection D
the construction of the hierarchy is a preprocess- Require: Initial model checkpoint F

Require: Training dataset Sain

ing step, and is usually computed from another F —F,
encoderE'] We seek to jointly optimize these in an T «— HIERAGGCLUSTER({Fo(d)}qeD)
EM-style (coordinate descent with alternating m «— METRIC(F, Syoy, D) > Some metric on F
maximization) co-training setup (Alg. 3). while early stopping criteria not met do
F’ — OpPTIMIZE(F, T, Sirain> D)

In essence, after each epoch, if the metric on the m’ «— METRIC(F’, Sgev, D)
validation set increases (i.e., a better represen- if m’ > mthen > A beiter representation found
tation of the corpus is obtained), a re-clustering T «— HIERAGGCLUSTER(F’(d)4ep)
of the corpus will be triggered. We stress that m — m’
after training completes, the hierarchy 7 can be ;nd lfF’

-

safely discarded as only the encoder F is needed

for downstream indexing and retrieval. end while

return F

5 EXPERIMENTS & DISCUSSIONS

Setup We start from the pre-trained dense encoder GTRE] (Ni et al.} [2022) as both a baseline and
the initial checkpoint where we continue training, as this is also used as a baseline in DSI (Tay et al.|
2022). Additionally GTR, DSI, and NCI are all fine-tuned versions of T3, facilitating fair comparison.

We mostly follow the configurations as specified in GTR, where the temperature for contrastive
loss is set as 7 = 0.01, with the AdaFactor optimizer (Shazeer & Stern, |2018)) with linear decay
in accordance with GTR’s hyperparametersﬂ We use machines with 8x NVidia A100 GPUs with
bfloat16 precision, with total batch size across GPUs 512 (for the ArguAna dataset, 192). No
experiment ran for more than 1 day.

HCE-{U, S, J} stands for unsupervised, supervised, and joint training respectively. For HCE-J, the
loss weight for unsupervised learning in issetat @ = 0.5.

4 In both DSI and NCI, document vectors used to generate the hierarchy is computed with BERT-
base whereas their model is based on TS5, causing a discrepancy. HCE uses the same underlying model.

5 GTR normalizes the embeddings so that their L, norm is 1, thus mapping into the hypersphere S" 1.
6 A minor difference is that we employ an initial learning rate 7 = 1074, since we found that the original
n = 1073 causes unstable oscillation under unsupervised learning.
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5.1 SUPERVISED SETTING: NQ320K & TRIVIAQA

Datasets We employ two datasets commonly used in prior work for supervised retrieval training:
NaturalQuestions (Kwiatkowski et al.l [2019) and TriviaQA (Joshi et al., 2017). NaturalQuestions
collects real-user queries from Google and each query is paired with an answer span from a Wikipedia
article. A common version of the dataset is NQ320k, where there are 320k query-passage pairs.
TriviaQA is a reading comprehension dataset whose candidate passages also come from Wikipedia.
We follow the preprocessing scripts in NCI (Wang et al., [2022). For details see[Appendix B|

Baselines and Metrics We include the following methods as baselines, grouped by their categories:

 Sparse retrieval: BM25 (Robertson et al.,[1994) and a version with augmented generated queries
by DocT5Query (Nogueira & Lin, 2019).

* Pre-trained dense retrievers: These are dense retrievers pre-trained or fine-tuned with other
datasets such as MS MARCO (Nguyen et al., 2016)), but not fine-tuned on the datasets here. These
include Contriever fine-tuned on MS MARCO (Izacard et al., [2022)) (based on BERT) and GTR
(based on T5).

¢ Fine-tuned dense retrievers: Dense retrievers fine-tuned on NQ320k or TriviaQA. These include
DPR (Karpukhin et al., [2020) and ANCE (Xiong et al.l 2021). We also fine-tune our initial
checkpoint, GTR, with ANCE-style contrastive training only (without hierarchy, denoted with
“+CT”) to illustrate the gain of our novel hierarchy loss. Our full HCE also falls into this category.

* Generative retrievers: DSI (Tay et al., 2022)); NCI (Wang et al.,[2022); SEAL (Bevilacqua et al.,
2022)) where substrings are generated as document IDs; and GENRET (Sun et al.| [2023), the
state-of-the-art generative retriever that learns document IDs without clustering as preprocessing.

We use the NIST tre c,eva tool, reporting the union of the common metrics employed in prior
work, including recall at various cutoff k (R@k), and mean reciprocal rank (MRR)

Hyperparameters Learning rate, temperature, etc. are set in the prior section. Here the only
parameter we tune is the branching factor b, which impacts the performance (see analysis below).

Query Generation In some of the baseline methods, query generation (QG) is applied to the
document set — these retrievers are marked with “+QG” in In all of these retrievers,
DocT5Query (Nogueira & Linl 2019) fine-tuned by MS MARCO (Nguyen et al., [2016) is employed.
For sparse retrievers, generated queries are appended to the document to be indexed. For dense &
generative retrievers, generated queries and corresponding documents are added to the training set.

Results Jointly trained HCE outperformed all dense and generative retrieval baselines across both
datasets . This demonstrates the effectiveness of HCE’s learned vector representationsﬂ
HCE is especially good at recall@k where k > 5, with a 6-7% boost against NCI and 2% gain
against GENRET under NQ320k, and a 2% boost against NCI for TriviaQA.

HCE’s performance gain is less in recall@ k when k is small, as compared to a large k. Our hypothesis
is that when discriminating between similar documents under the same prefix in the hierarchy, HCE
uses a negative-sampling approach for computational efficiency, resulting in less negative samples
than the full set under the prefix being trained. This in turn causes good performance on the first M
levels of the hierarchy but not as good at the last layer of the hierarchy.

Discussion: Ablation Studies Here we remove certain components from our best setup to see the
contribution of each component. From|[Table T| we see that by removing query generation or hierarchy
co-training (Figure 3), the performance of R@1 drops about 1%, while for recall at k >= 10 the
results are largely the same. Comparing HCE with GTR+CT we found that our novel hierarchy-aware
loss improves the performance of R@1 about 4% across datasets.

7 https://github.com/usnistgov/trec_eval.

8 In some prior work, hit@k (a.k.a. success@k) is reported, which is defined to be the ratio of queries where
at least 1 relevant document is found within the top-k retrieved set. Note that for NQ320k, each query is paired
with at most 1 relevant document, thus recall@k = hit@k for NQ320k. However, for TriviaQA, there may be
more than 1 relevant document for a query, hence recall@k # hit@k.

9 Note that HCE is an encoder-only model: it has only half of the parameters of DSI and NCI models.
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Model | NQ320k TriviaQA
| R@1 R@5 R@10 R@100 MRR | R@5 R@20 R@100

Sparse retrievers

BM25 0.297 0.508 0.603 0.821 0.402 | 0.569  0.695 0.802

BM25 (+QG) 0.380 0.591 0.693 0.861 0.489 | 0.597 0.721 0.827

Pre-trained dense retrievers

Contriever 0.436 0.717  0.796 0.944  0.561 | 0.565 0.706 0.832

Contriever-MSMARCO 0.597 0.840 0.902 0973  0.705 | 0.645 0.762 0.869

GTR (base) 0.560 0.792 0.844 0937  0.662 | 0.610 0.724 0.832

GTR (large) 0.565 0.801 0.854 0944  0.677 | 0.625 0.742 0.852

Supervisedly trained dense retrievers

DPR 0.463  0.695 0.756 0.909  0.569 | 0.512 0.622 0.741

ANCE 0.526 0.804 0913  0.628 0.803 0.853

GTR (large), +CT 0.622  0.869 0.926 0968  0.735 | 0.747 0.876 0.948

GTR (large), +CT, +QG 0.672 0.896  0.927 0972  0.775 | 0.763  0.887 0.953

Generative retrievers

DSI (base) 0.274 0.566

DSI(large) 0.356 0.626

NCI (base) 0.602 0.766  0.802 0909  0.679

NCI (base), +QG 0.659 0.821 0.852 0924  0.731 | 0.782 0.873 0.928

NCI (1arge), +QG 0.662 0.817 0.853 0925 0.734 | 0.802 0.886 0.936

GENRET (+QG) 0.681 0.861 0.888 0952 0759 | 0.789 0.881 0.940

Ours: Hierarchy-aware trained dense retrievers

HCE-J (base) 0.620 0.876  0.906 0969  0.705 | 0.764  0.881 0.946

HCE-J (base), +QG 0.640 0.878 0914 0973  0.742 | 0.785 0.898 0.954

HCE-J (1arge) 0.695 0.899 0.933 0976  0.789 | 0.768  0.890 0.956

HCE-J (1arge), +QG 0.712 0906 0.939 0979  0.801 | 0.803 0.906 0.962
Hierarchy co-training removed | 0.700 0.899  0.931 0.977 0.793 | 0.783  0.894 0.957

Table 1: Performance on NQ320k and TriviaQA. Numbers typeset in italics are recomputed if
model output is public; or rerun from their public implementations. Missing numbers due to our
inability to reproduce the exact method to our best effort (may be due to unreleased source code). All
rows labeled with base/large are based on T5-base/large, thus sharing the same number of
parameters for fair comparison.

Discussion: Effect of Tree Depth A critical hyperparameter of HCE is b, the branching factor that
controls the tree depth and the expected number of children for each intermediate node. Intuitively,
the deeper the hierarchy is, the finer-grained tiered negative samples each relevant document receives.

We ran experiments for NQ320k under the  —— I

best setup (HCE-J, large, +QG), with b € N 16

{2,4,8,16,32,64,128,256}. Recall at {1,5,10, 100} N L1

with varying b are plotted in with the tree depth 097 eme—se: )

also shown (L = [log, |D|]). We set M = L — 1: the last  _ | == Recal@1 [ 121

layer is computed via negative sampling. § \ T realon 0§
0.8 N —— Reca

It can be seen that recall at 10/100 remains mostly the same '\_\ Recsl@T e

for all b. A significant difference can be observed for re- RSy 6

call@1: The best result, b = 8, has R@1 = 0.712, whereas 07| emmmmm—- \'Q | .

for b > 64, R@1 ~ 0.67. This 4% gap can be attributed fi TR,

to the finer-grained hierarchy: the sampled negative sib- 2 4 8 16 32 64 128 25

lings are much closer to the positive document, generating Branching factor

harder negative samples for contrastive learning.
Figure 4: Recall@{1, 5, 10, 100} for var-

ious branching factors b under NQ320k.
5.2 UNSUPERVISED SETTING: BEIR

We evaluate on the BEIR benchmark (Thakur et al.l [2021) that contains a diverse set of IR tasks. We
use a subset (BEIR-14) that consists of 14 of these datasets following prior work in |[zacard et al.
(2022): MS MARCO (Nguyen et al., 2016)), which is already used as a fine-tuning dataset in our
initial checkpoint GTR, and also datasets without a public license, are excluded.

The branching factor b is universally set to be the smallest power of 2 such that the hierarchy depth
L=3,ie., b=+/|D|; b=2M"%"1 Forexample, given a document set of IM documents, we have
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Dataset | BM25 | DPR ANCE TAS-B | GENRET |  T5-base T5-large
\ \ | +QG | GTR HCE-U GTR HCE-U
TREC-COVID | 0.656 | 0.332 0.654 0481 | 0718 | 0589 0688 0591  0.724
NFCorpus 0325 | 0.189 0237 0383 | 0316 | 0304 0328 0329 0349
NQ 0329 | 0474 0446  0.463 0495 0514 0547 0561
HotpotQA 0.603 | 0391 0456  0.584 0535 0567 0579 0590
FiQA-2018 0236 | 0.112 0295 0300 | 0302 | 0352 0388 0424 0473
ArguAna 0315 | 0.175 0415 0429 | 0343 | 0363 0374 0380 0387
Touché-2020 0367 | 0.131 0240  0.162 0303 0321 0326 0339
CQADupStack | 0299 | 0.153 0296  0.314 0.118  0.41  0.127  0.153
Quora 0.789 | 0.248 0852  0.835 0880 0874  0.885  0.880
DBPedia-entity | 0313 | 0.263 0281  0.384 0347 0358 0391  0.408
SciDocs 0.158 | 0077 0122  0.149 | 0149 | 0.140 0160 0.158  0.183
FEVER 0753 | 0.562 0669  0.700 0.646 0671 0682 0714
Climate-FEVER | 0213 | 0.148  0.198  0.228 0241 0269 0262 0277
SciFact 0.665 | 0318 0507 0.643 | 0639 | 0595 0640 0631 0.674

Average (<200k) | 0.393 | 0.201  0.372 0.398 0.411 0.391 0.430  0.420  0.465
Average 0.430 | 0.255  0.405 0.432 0422 0450 0451 0.479

Table 2: NDCG @10 for BEIR-14 datasets under unsupervised training.
Dataset | T5-base T5-large

| GTR HCE-U HCE-S HCEJ | GTR HCE-U HCE-S HCE-J

NFCorpus 0.304  0.328 0.337 0331 | 0329  0.349 0.423 0.403
HotpotQA | 0.535  0.567 0.595 0.605 | 0.579  0.590 0.663 0.676
FiQA-2018 | 0.352  0.388 0.392 0.401 | 0424 0473 0.482 0.491
SciFact 0.595  0.640 0.746 0.764 | 0.631 0.674 0.805 0.811

Table 3: NDCG@10 for BEIR datasets with a training set under different training scenarios.

b = V1000000 = 100, hence we set b = 128. In the HCE loss, we choose M = 2, i.e., the loss of the
first two layers are computed via the hierarchy, whereas the last year through contrastive sampling.

Baselines and Metrics BEIR is designed for zero-shot retrieval: as such, we compare our unsuper-
vised HCE-U with various baselines. Baselines include BM25, dense retrievers DPR, ANCE, GTR,
and TAS-B (Hofstitter et al., |2021)), a dense retriever trained with balanced topic aware sampling.
Additionally, GENRET, the state-of-the-art generative retriever, reported its performance on the 6
BEIR datasets whose corpus has <200k documents. EGI Following the setup in BEIR, the preferred
metric is NDCG @10 and recall@100 (R@100).

Results Unsupervised HCE consistently outperform GTR (with the exception of Quora), with
an improvement of ~ 1-11% (on average 3%) for NDCG@10 and ~ 3% for R@100 (
[Appendix C). We see that the distribution of the corpus plays an important role here: for corpus like
TREC-COVID (biomedical literature) which deviates from the distribution of normal web search
text, we see a 10% improvement after unsupervised fine-tuning; for datasets like NQ, HotpotQA, and
DBPedia-entity where the documents come from Wikipedia, the performance gain is less, presumably
because the pre-trained GTR has already seen text from Wikipedia. Unsupervised fine-tuning does
not yield a gain in Quora, because the documents being retrieved are also queries (the task asks the
model to find potentially duplicate questions asked on Quora), which are short — the inverse cloze
task (ICT) sampling that takes a short excerpt does not work properly in this case.

Discussion: Effect of Supervision We study the effect of (un)supervised HCE training. We
take the subset of BEIR where training data is provided publicly, and run HCE under 3 scenarios:
unsupervised, supervised, and joint training. Results are reported in

We see that with supervision, adding unsupervised training as an auxiliary task results in ~1% gain in
NDCG@10, showing that the joint loss in is effective. The performance drop in NFCorpus
is due to the dataset’s imbalanced training set]' '}

Discussion: Scalability and Complexity for Clustering At training time, apart from the encoder,
the centroids of the first M layers of the hierarchy are optimized as parameters, but can be discarded at

10 We found that GENRET does not scale to corpora larger than 200k documents owing to memory issues.
1 NFCorpus has more than 100k training pairs but only 3k documents in the corpus — setting the loss weight
a =1 (balanced between supervised and unsupervised objective) may be detrimental here.
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indexing and retrieval time. This requires O (b™ n) extra space at training, where 7 is the dimension-
ality of the embeddings. In practice, with a corpus with N ~ 5,000,000 documents (e.g. Wikipedia
articles), we have b = 256, M = 2, n = 768. This space consumption is tolerable under this scenario.

The k-means algorithm runs in O (INkn) time, where [ is the number of iterations. We observed in
all datasets the iteration process converged before I < 256. Considering I a constant, the total time

foee N1 0 (2 - & ) = O(N?n/b). This

complexity is high, but ameliorated since it can be parallelized on GPUs, and it can be made to a
streaming version for lower memory consumption

complexity for constructing a document hierarchy is

09 [« —e— HCE-old
5.3 INCREMENTALLY UPDATED RETRIEVAL \\ e
0.8 | ~ N === IncDSl-new
Our proposed HCE supports on-the-fly update of documents to \\\}} T DPRad
the index without training, since the new documents can just be 5% Y - .
encoded and added to the index. However, if too many documents — « °=< ::l\@\
are added to the extent that the corpus distribution is distorted, 08 | T
a re-training and re-indexing might be needed. We study this ™
scenario of a streaming document set under the setting of IncDSI 05 AN
(Kishore et al),[2023), who proposed the setting of incrementally T T
updated retrieval. A dataset D is partitioned into 3 subsets: the 10’ 10° 10° 10°

old set Dy (90%) which is used to train the retriever; the new set
D’ (9%), in a streaming fashion after training;and a tuning set D*

(1%) for validation purposes. et m——e N
We use the dataset partitions for NQ320k provided in Kishore et al. . Q\:_\ \\\,:
(2023). Following their setup, we add k € {10', 10%,10°, 10%} \ T

0.85 \ PN e

new documents in D’ to an index trained with the same old set
Dy. Since our method of adding new documents simply involves

encoding the new documents, there is no parameter to tune so |~
D* is discarded. We measure R@1 and R@10 at different k \
(number of documents added) for both the original test set in Dy 0T T e T
and the queries associated with the new documents in D’ (denoted v

“old/new” in|Figure JJ). 10" 10° 10° 10°

Number of documents to add

R@10
N
>
/
3

We take the results reported in Kishore et al.| (2023)), including

methods that do not require long-time post-training after adding  Fjgure 5: Recall@{1, 10} for in-
new documents. These include IncDSI, a constrained optimizer  ¢remental updates on NQ320k.
that finds a new embedding for a new document in the embedding

space of an atomic DSI (; and DPR, a contrastively-trained retriever. [E]

Results are shown in[Figure 5] We see from the trends that all methods’ performance dropped for new
documents as expected (especially when k goes from 102 to 10*), but HCE’s performance drop for
new documents is comparable to IncDSI, a method specifically designed for incremental additions.
Atk € {103, 104}, HCE performs comparably with IncDSI under R@1 for new documents in D’,
and significantly outperforms under R@10.

6 CONCLUSION

We present hierarchical corpus encoder (HCE) that jointly learns a dense encoder and a document
hierarchy for information retrieval. HCE contrasts positive samples against siblings nodes on the
document hierarchy as negative samples, mimicking the training dynamics in hierarchical generative
retrieval. HCE is shown to achieve superior performance over a variety of dense encoder and
generative retrieval baselines, under both supervised and unsupervised scenarios, demonstrating the
effectiveness of jointly learning a document hierarchy.

HCE easily scales to corpora with >5M documents. Additionally, as a dense encoder, HCE supports
easy addition and removal of documents to an MIPS index without the need for continued training, as
is demonstrated in our incrementally updated retrieval experiments.

12 Our method runs easily on the whole Wikipedia as corpus, with >5M documents to be indexed.
13 Note that these are not directly comparable since IncDSI/DPR are based on BERT while HCE is on T5.

10
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A DETAILS OF THE CONTRASTIVE LOSS

The contrastive loss employed utilizes both the in-batch negative trick and bidirection contrastive
loss. Mathematically it can be written as

£2(B) = s Z log exp S(qi.d;) + log exp S(qi» d}) ®
‘ BIZ3 |~ > expS(qid))+ > expS(gi.dy) > expS(q;.di
JjEB d;eD; JEB
query to doc doc to query (no neg. samples)

B STATISTICS OF THE DATASETS

Statistics of the datasets used is provided for reference. Note that the “NQ” dataset in BEIR is a
differently preprocessed version of NaturalQuestions (Kwiatkowski et al.,[2019) than NQ320k.
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Dataset \ # Training pairs  # Test queries  # docs in corpus
NQ320k 152,144% 7,830 109,739
TriviaQA 110,647 7,701 73,970
BEIR

TREC-COVID - 50 171332
NFCorpus 110,575 323 3633
NQ - 3452 2681468
HotpotQA 170,000 7,405 5,233,329
FiQA-2018 14,166 648 57,638
ArguAna - 1,406 8,674
Touch’e-2020 - 49 382,545
CQADupStack - 13,145 457,199
Quora - 10,000 522,931
DBPedia-entity - 400 4,635,922
SciDocs - 1,000 25,657
FEVER - 6,666 5,416,568
Climate-FEVER - 1,535 5,416,593
SciFact 920 300 5,183

Table 4: Statistics on various datasets used. " Negative pairs are discarded.

C ADDITIONAL METRICS OF BEIR

For zero-shot retrieval in BEIR, prior work also reported recall@100 (R@100). We report the
performance of our unsupervised model (HCE-U) here, as compared to various baselines. GENRET
does not report R@100.

Dataset ‘ BM25 ‘ DPR ANCE TAS-B T5-base T5-large
| | | GTR HCE-U GTR HCE-U

TREC-COVID 0.498 | 0.457  0.457 0.387 | 0.411 0444 0434 0457
NFCorpus 0.250 | 0.208  0.232 0.280 | 0275 0305 0.298  0.334
NQ 0.760 | 0.880  0.836 0903 | 0.893 0918 0930  0.945
HotpotQA 0.740 | 0.591 0.578 0.728 | 0.676  0.704  0.725  0.739
FiQA-2018 0.539 | 0342  0.581 0.593 | 0.670  0.702  0.734  0.789
ArguAna 0942 | 0.751  0.937 0942 | 0974 0976 0978  0.979
Touché-2020 0.538 | 0.301  0.458 0.431 | 0.488 0.510 0500  0.519
CQADupStack 0.606 | 0.403 0.579 0.622 | 0.221  0.251 0.234  0.265
Quora 0973 | 0470  0.987 0986 | 0.994 0994 0995 0.995
DBPedia-entity 0.398 | 0.365 0.319 0499 | 0418 0440 0.480  0.511
SciDocs 0.356 | 0.360  0.269 0335 | 0319 0384 0354  0.429
FEVER 0.931 | 0.840  0.900 0937 | 0923 0935 0941  0.947
Climate-FEVER | 0.436 | 0.427  0.445 0.534 | 0522 0565 0552 0.582
SciFact 0.908 | 0.727  0.816 0.891 | 0.860  0.904 0.894  0.932
Average | 0.634 | 0.509  0.600 0.648 | 0.617 0.645 0.646  0.673

Table 5: Recall@100 for BEIR-14 datasets under unsupervised training.
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