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Abstract001

This paper explores the use of large language002
models (LLMs) for annotating document util-003
ity in training retrieval and retrieval-augmented004
generation (RAG) systems, aiming to reduce005
dependence on costly human annotations. We006
address the gap between retrieval relevance and007
generative utility by employing LLMs to an-008
notate document utility. To effectively utilize009
multiple positive samples per query, we intro-010
duce a novel loss that maximizes their summed011
marginal likelihood. Using the Qwen-2.5-32B012
model, we annotate utility on the MS MARCO013
dataset and conduct retrieval experiments on014
MS MARCO and BEIR, as well as RAG ex-015
periments on MS MARCO QA, NQ, and Hot-016
potQA. Our results show that LLM-generated017
annotations enhance out-of-domain retrieval018
performance and improve RAG outcomes com-019
pared to models trained solely on human an-020
notations or downstream QA metrics. Further-021
more, combining LLM annotations with just022
20% of human labels achieves performance023
comparable to using full human annotations.024
Our study offers a comprehensive approach to025
utilizing LLM annotations for initializing QA026
systems on new corpora.027

1 Introduction028

Information retrieval (IR) has long been essential029

for information seeking, and retrieval-augmented030

generation (RAG) is increasingly recognized as a031

key strategy for reducing hallucinations in large032

language models (LLMs) in the modern landscape033

of information access (Shuster et al., 2021; Za-034

mani et al., 2022; Ram et al., 2023). Typically, re-035

trieval models rely on human annotations of query-036

document relevance for training and evaluation. In037

RAG, the goal shifts towards optimizing the final038

question answering (QA) performance using re-039

sults from effective retrievers, with less emphasis040

on retrieval performance itself. Given the high cost041

of human annotation and the promising potential042

of LLMs for relevance judgments (Rahmani et al., 043

2024), we aim to explore whether LLM-generated 044

annotations can effectively replace human annota- 045

tions in training models for retrieval and RAG. This 046

is particularly crucial for initializing QA systems 047

based on a reference corpus without annotations. 048

There is a gap between the objectives of retrieval 049

and RAG. Retrieval focuses on topical relevance, 050

while RAG requires reference documents to be use- 051

ful for generation (i.e., utility). In other words, re- 052

sults considered relevant by a retriever may not be 053

useful for an LLM during generation. Aware of this 054

mismatch, researchers have shifted from using rel- 055

evance annotations as document labels to assessing 056

LLM performance on downstream tasks with the 057

document as its label (Shi et al., 2024; Lewis et al., 058

2020; Izacard et al., 2023; Glass et al., 2022; Za- 059

mani and Bendersky, 2024; Gao et al., 2024). This 060

includes metrics such as the likelihood of generat- 061

ing ground-truth answers (Shi et al., 2024) or exact 062

match scores between generated and ground-truth 063

answers (Zamani and Bendersky, 2024). Another 064

approach involves prompting LLMs to select docu- 065

ments with utility from relevance-oriented retrieval 066

results for use in RAG (Zhang et al., 2024a,b). Stud- 067

ies from both approaches have demonstrated im- 068

proved RAG performance. 069

Despite their effectiveness, both approaches 070

have limitations. The first approach requires manu- 071

ally labeled ground-truth answers to assess down- 072

stream task performance, which results in substan- 073

tial QA annotation costs. Additionally, retrievers 074

trained on the performance of a specific task may 075

struggle to generalize to other downstream tasks or 076

even different evaluation metrics within the same 077

task. This issue is exacerbated when dealing with 078

non-factoid questions, where accurate evaluation is 079

challenging, making it less feasible to use QA per- 080

formance as training objectives for retrieval. In con- 081

trast, the second approach, which leverages LLMs 082

to select useful documents for generation (Zhang 083
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et al., 2024a,b), does not require human annota-084

tion and is not confined to specific tasks or metrics.085

However, the selection is from initially retrieved086

results and cannot scale to the entire corpus during087

inference due to prohibitive costs.088

To address these limitations, this paper proposes089

using LLMs to annotate document utility for re-090

triever training, aiming to identify useful docu-091

ments from the entire collection for RAG. We092

focus on four research questions (RQs): (RQ1)093

What is the optimal training strategy when multi-094

ple annotated positive samples are available for a095

query, in terms of data ingestion and retriever op-096

timization? (RQ2) How do retrievers trained with097

LLM-annotated utility compare to those trained098

with human-annotated relevance in both in-domain099

and out-of-domain retrieval? (RQ3) Can LLM-100

annotated data enhance retrieval performance when101

human labels are already available? (RQ4) Do re-102

trievers trained with utility-focused LLM annota-103

tions result in better RAG performance compared104

to those trained with downstream task performance105

metrics and human annotations in both in-domain106

and out-of-domain collections?107

To study the research questions, we employ a108

state-of-the-art open-source LLM, Qwen-2.5-32B-109

Int8 (Yang et al., 2024), to annotate the utility of110

hard negatives in the MS MARCO dataset (Nguyen111

et al., 2016). In contrast to human annotation on112

MS MARCO, which has one positive sample per113

query, Qwen annotates an average of 2.9 positive114

samples per query. Optimizing the standard joint115

likelihood of the multiple positives results in sig-116

nificant performance regression. To address the117

challenges posed by multiple positives, we intro-118

duce a novel loss function, SumMargLH, which119

maximizes their summed marginal likelihood and120

performs significantly better. For retrieval evalua-121

tion, we compare retrievers trained with LLM and122

human annotations on the MS MARCO Dev set123

and BEIR (Thakur et al., 2021). For RAG evalua-124

tion, we assess the retrievers on the MS MARCO125

QA task and two QA tasks with retrieval collections126

also included in BEIR, i.e., NQ (Kwiatkowski et al.,127

2019) and HotpotQA (Yang et al., 2018). Our find-128

ings include: 1) LLM annotations alone result in129

worse in-domain retrieval performance but better130

out-of-domain performance compared to human131

annotations; 2) Combining LLM annotations with132

20% of human annotations achieves similar perfor-133

mance to models trained with 100% human labels;134

3) Retrievers trained with both LLM and human135

annotations using curriculum learning significantly 136

outperform those using only human annotations; 137

4) The findings for RAG performance are consis- 138

tent with the retrieval performance regarding both 139

in-domain and out-of-domain datasets. We summa- 140

rize our contributions as follows: 141

• We introduce a comprehensive solution for data 142

annotation using LLMs for retrieval and RAG, 143

along with corresponding training strategies. 144

• We conduct an extensive study on the use of 145

LLM-annotated utility to train retrievers for both 146

in-domain and out-of-domain retrieval and RAG. 147

• Extensive experiments and analyses demonstrate 148

the advantages of leveraging utility-focused LLM 149

annotations for retrieval and RAG, particularly 150

for out-of-domain data. 151

• We enhance the MS MARCO dataset with LLM 152

annotations, providing passage labels for approx- 153

imately 500K queries, which can facilitate re- 154

search on false negatives, weak supervision, and 155

retrieval evaluation by LLMs. 156

Our work offers a viable and promising solution 157

for initiating QA systems on new corpora, espe- 158

cially when human annotations are unavailable and 159

budgets are limited. 160

2 Related Work 161

2.1 First-Stage Retrieval 162

Initially, the first-stage retrieval models were pre- 163

dominantly classical term-based models, such as 164

BM25 (Robertson et al., 2009), which combines 165

term matching with TF-IDF weighting. To address 166

the semantic mismatch limitations of classical term- 167

based models, neural information retrieval (IR) 168

emerged by leveraging neural networks to learn 169

semantic representations (Huang et al., 2013; Guo 170

et al., 2016). Subsequently, pre-trained language 171

model (PLM)-based retrievers have been exten- 172

sively explored (Xiao et al., 2022; Wang et al., 173

2023; Izacard et al., 2021a; Ma et al., 2021; Ren 174

et al., 2021). More recently, LLMs have been di- 175

rectly applied as first-stage retrieval models (Ma 176

et al., 2024; Springer et al., 2024; Zhang et al., 177

2025; Li et al., 2024), demonstrating unprece- 178

dented potential in IR. 179

2.2 Utility-Focused RAG 180

There is a gap between the objectives of retrieval 181

and RAG. Retrieval focuses on topical relevance, 182

while RAG requires reference documents to be use- 183

ful for effective generation. To address this issue, 184

2



Relevant/
Irrelevant

P(a|q,d)

dq a

q

Candidate pool

(c)(a) (b)

Ground-truth
answer

q

Document list Relevant docs

q

Reference
answer

a'

Relevant docs

q

Reference
answer

a'

Docs selected by utility

...

Docs ranked by utility

> ...>

Select the passages that have utility in
generating the reference answer to the
following question.

Utility-based Selection

Step3

Rank the passages based on their utility
in generating the reference answer to
the following question.

Utility-based Ranking

Pseudo Answer Generation

Step2

(Generate the reference
answer to the question.)

Relevance-based Selection

Step1

(Select passages that are
relevant to the question.)

Figure 1: Different annotation methodologies: (a) Human annotation, (b) Using downstream task performance as
utility score, (c) Our utility-focused annotation pipeline. The prompts are illustrative, see Appendix F for details.

current research mainly focuses on two approaches:185

1. Verbalized utility judgments, which directly uti-186

lized LLMs for selecting useful documents from187

the retrieved document list (Zhang et al., 2024b,a;188

Zhao et al., 2024). 2. Utility-optimized retriever,189

which involves transferring the preference of LLMs190

to the retriever. Two primary optimization signals191

are commonly employed: (a) the likelihood of gen-192

erating the ground truth answers given the query193

and document (Shi et al., 2024; Lewis et al., 2020;194

Izacard et al., 2023; Glass et al., 2022; Bacciu et al.,195

2023); (b) evaluation metrics of the downstream196

tasks (Zamani and Bendersky, 2024; Gao et al.,197

2024; Wang et al., 2024), such as exact match. This198

approach relies on ground truth answers for specific199

downstream tasks and limits generalization.200

2.3 Automatic Annotation with LLMs201

In the field of information retrieval, many studies202

(Thomas et al., 2024; Rahmani et al., 2024; Takehi203

et al., 2024; Ni et al., 2024; Zhang et al., 2024a)204

have explored the annotation capabilities of LLMs205

for relevance judgments. However, these studies206

predominantly focus on small evaluation datasets,207

lacking a comprehensive investigation into the an-208

notation capabilities of LLMs to scale to the entire209

training datasets for retrieval-related task.210

3 Utility-Focused LLM Annotation211

Figure 1(a)&(b) illustrates two primary types of212

document labels used in retriever training for RAG:213

human-annotated relevance labels and utility scores214

derived from downstream tasks. Retrievers trained215

using human-annotated relevance typically focus216

on aboutness and topic-relatedness. In contrast,217

utility scores, which are estimated based on down-218

stream tasks, such as the probability of LLMs gen- 219

erating the correct answer given a document, are 220

more beneficial for RAG (Shi et al., 2024). Build- 221

ing on the insight that LLMs can effectively assess 222

utility for RAG (Zhang et al., 2024b), we intro- 223

duce a utility-focused LLM annotation pipeline for 224

training retrievers, as depicted in Figure 1(c). This 225

approach is designed for both initial retrieval stages 226

and RAG, aiming to minimize the manual effort 227

required for annotating document relevance and 228

ground-truth answers. 229

3.1 Annotation Methodology 230

Annotation Pool Construction. Given a query, 231

the majority of documents in a corpus are irrele- 232

vant, making it impractical to annotate the utility 233

of every document with LLMs. A common prac- 234

tice is to compile a candidate pool by aggregating 235

documents retrieved by effective retrievers, such as 236

unsupervised methods like BM25 (Robertson et al., 237

2009), and retrievers trained on other collections. 238

We adopt a similar approach in our study. Our anno- 239

tation process is based on the widely used retrieval 240

benchmark, the MS MARCO passage set (Nguyen 241

et al., 2016). It is well-known that MS MARCO 242

typically includes only one annotated positive ex- 243

ample per query and many false negatives due to 244

under-annotation (Craswell et al., 2020, 2021). 245

Retrievers trained with MS MARCO typically 246

gather a pool of hard negatives {d−i }ni=1, from 247

which a subset of m samples is randomly selected. 248

These sampled hard negatives, along with the sin- 249

gle positive d+ and in-batch negatives, are then 250

used for contrastive learning. To neutralize the 251

impact of hard negatives when comparing the re- 252

trievers trained with human and LLM annotations, 253
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Figure 2: Positive annotation distribution of different
annotators at various stages.

we utilize the same collection of positives and hard254

negatives as in Ma et al. (2024) (from BM25 and255

CoCondenser (Gao et al., 2021)) for LLM anno-256

tation. This ensures that all comparison models257

have the same set of n + 1 annotated documents258

for each query, differing only in their annotations.259

m + 1 instances are selected for training in each260

epoch, including positives and randomly sampled261

negatives (n = 30,m = 15 in this paper). To study262

the effect of whether human-annotated positives263

are included in the annotation pool, we compare264

the performance of consistently including and ex-265

cluding human-annotated positives in training. As266

presented in Appendix B.1, the essential conclu-267

sions are similar to those we report in Section 5.268

Annotation Methods. After collecting the candi-269

date pool, we apply three annotation methods, as270

illustrated in Figure 1(c): relevance-based selec-271

tion (RelSel), utility-based selection (UtilSel), and272

utility-based ranking (UtilRank). In RelSel, we273

begin with an initial filtering step where an LLM274

is used to select a subset of documents that are top-275

ically relevant to the query. Next, we employ the276

utility judgment method from Zhang et al. (2024b),277

which involves generating a pseudo-answer based278

on the output from RelSel and assessing document279

utility for downstream generation using the pseudo-280

relevant documents and pseudo-answer. This list-281

wise comparison enables the LLM to make accurate282

relative judgments. In UtilSel, the LLM selects the283

subset of useful documents. In contrast, UtilRank284

asks the LLM to rank the input documents accord-285

ing to their utility, then the top k% documents are286

annotated as positive (k = 10 in our main experi-287

ments). The float number is rounded down, and if288

the result is zero, a single document will be marked289

as positive. UtilSel can flexibly determine the num-290

ber of useful documents, whereas UtilRank allows291

for different thresholds to balance the precision292

and recall of LLM annotations. All the annotation293

prompts are detailed in Appendix F.294

LLM
Precision Recall Avg Number

RS US UR RS US UR RS US UR

Llama 7.1 11.9 36.5 97.6 91.6 41.0 13.8 7.7 1.2
Qwen 15.1 29.5 71.3 92.8 84.8 72.0 6.2 2.9 1.0

Table 1: Precision and Recall (%) of human positive
under different annotations. “RS”, “US”, “UR” mean
“RelSel”, “UtilSel”, “UtilRank”, respectively.

3.2 Statistics of LLM Annotations 295

We employ two well-known open-source LLMs 296

of different sizes for annotation: LlaMa-3.1- 297

8B-Instruct (Llama-3.1-8B) (Dubey et al., 2024) 298

and Qwen-2.5-32B-Instruct with GPTQ-quantized 299

(Frantar et al., 2022) 8-bit version (Qwen-2.5-32B- 300

Int8) (Yang et al., 2024). 301

Positive Annotation Distribution. Figure 2 shows 302

the distribution of positive annotations made by 303

RelSel and UtilSel (UtilRank is not shown since 304

its number of positives is determined by the thresh- 305

old k%). The average number section in Table 1 306

provides the specific average number of positive 307

annotations. We find that the instances considered 308

useful by LLMs are significantly fewer than those 309

they identify as relevant, consistent with the find- 310

ings in Zhang et al. (2024a). Additionally, the 311

stronger model (i.e., Qwen) tends to select fewer 312

useful documents. 313

Annotation Quality Evaluation. We compare the 314

consistency of annotations by LLMs and humans. 315

Considering human labels as the ground-truth, the 316

precision and recall of the LLM-marked positives 317

for each method are shown in Table 1. It reveals 318

that 1) UtilSel has higher precision and lower recall 319

than RelSel, 2) Qwen is more accurate than Llama 320

in selecting the human positive (precision doubled 321

with some real drop). As we know, there are false 322

negatives in the annotation pool. We also manually 323

checked around 200 LLM annotations and found 324

that LLM-annotated positives are more than actual 325

positives. This means that LLM should be stricter 326

to be more accurate. Qwen has fewer false-positive 327

issues, and its UtilRank has the best overall preci- 328

sion and recall trade-off. Since Qwen has better 329

annotation quality, our experiments in Section 5 330

are all based on its annotations. 331

3.3 Training with Utility Annotations 332

Loss Function. Dense retrievers are typically 333

trained to maximize the likelihood of a positive 334

sample d+ compared to a negative passage set D−, 335

which usually includes hard negatives and in-batch 336

negatives (Karpukhin et al., 2020). Given a query 337
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q, the probability of a document d to be positive in338

{d+} ∪D− is calculated as:339

P (d|q, d+, D−) =
exp(s(q, d))∑

d′∈{d+}∪D− exp(s(q, d′))
, (1)340

where s(q, d) is the matching score of q and d.341

SingleLH. As many large-scale retrieval342

datasets, such as MS MARCO, only have one rele-343

vant instance per query, the loss function is usually344

maximizing the likelihood of the single positive:345

Ls(q, d
+, D−) = − logP (d+|q, d+, D−). (2)346

Since LLMs have multiple positive annotations,347

SingleLH cannot be used directly.348

Rand1LH. A straightforward approach is to ran-349

domly sample one positive instance per query in350

each epoch and use the standard SingleLH for train-351

ing, which we name as Rand1LH.352

JointLH. Another common way is to enlarge353

{d+} to a positive passage set D+(|D+| ≥ 1) and354

optimize the joint likelihood of each positive in-355

stance in D+:356

Ls(q,D
+, D−) = − log

∏
d+∈D+

P (d+|q,D+, D−). (3)357

This function may not be robust to low-quality an-358

notations, as even a single false positive can sig-359

nificantly affect the overall loss. As noted in Sec-360

tion 3.2, LLM annotations include false positives,361

which can make this loss function suboptimal.362

SumMargLH. Considering the quality of LLM363

annotation may be unstable, we propose a novel ob-364

jective that maximizes the summed marginal likeli-365

hood of each positive instance in D+, i.e.,366

Ls(q,D
+, D−) = − log

∑
d+∈D+

P (d+|q,D+, D−). (4)367

It optimizes the overall likelihood of instances in368

D+ to be positive, and does not require the likeli-369

hood of each positive to be maximized. Thus, it370

relaxes the optimization towards potentially false371

positives, and can better leverage LLM annotations372

(shown in Section 6).373

Combining Human and LLM Annotations.374

When budgets allow, human-labeled data can be375

used alongside LLM annotations rather than rely-376

ing solely on the latter. Given that human annota-377

tions typically have higher quality than those from378

LLMs, simply merging and treating them equally379

may not be effective. Therefore, we propose us-380

ing curriculum learning (Bengio et al., 2009) (CL)381

to integrate the two types of data, starting with382

training retrievers on the lower-quality LLM anno-383

tations and subsequently refining them with higher-384

quality human annotations.385

4 Experimental Setup 386

4.1 Datasets 387

Retrieval Datasets. As in many existing works 388

(Xiao et al., 2022; Guo et al., 2022), we train all 389

retrievers on the MS MARCO training set, with 390

about 503K queries and 8.8 million passages. Re- 391

trieval evaluation is conducted on the MS MARCO 392

Dev set, TREC DL 19/20 (Craswell et al., 2020, 393

2021) with more human annotations, and the 14 394

public retrieval datasets across various domains 395

with diverse downstream tasks in BEIR (Thakur 396

et al., 2021) benchmark, excluding MS MARCO. 397

RAG Datasets. We use the MS MARCO QA, 398

which has the ground-truth answers for the queries 399

in the MS MARCO retrieval dataset, to evaluate 400

the RAG performance when using Llama-3.1-8B 401

and Qwen-2.5-32B-Int8 as generators. Similarly, 402

for two subsets of BEIR, i.e., NQ (Kwiatkowski 403

et al., 2019) and HotpotQA (Yang et al., 2018), 404

we use the ground-truth answers of the questions 405

to evaluate the RAG performance with the two 406

generators. Detailed information about the datasets 407

can be found in Appendix C.1. 408

4.2 Baselines 409

Our comparisons of data annotation methods are 410

based on the pretrained version of two represen- 411

tative retrievers, RetroMAE (Xiao et al., 2022) 412

and Contriever (Izacard et al., 2021a) (before fine- 413

tuning). Our baselines include retrievers trained 414

with human annotations and downstream task per- 415

formance (shown in Figure 1(a)&(b) respectively): 416

• Human: Retrievers trained with original human 417

annotations in MS MARCO using SingleLH. 418

• REPLUG (Shi et al., 2024): The likelihood of 419

the ground-truth answer given each passage is 420

used as its utility label. Retrievers are optimized 421

towards negative KL divergence between the dis- 422

tribution of passage utility labels and their rele- 423

vance scores (see Appendix A.2 for details). 424

• REPLUG (CL 20%/100%): This approach ini- 425

tially trains the model with utility scores and then 426

updates the model with either 20% randomly se- 427

lected or 100% of the human annotations using 428

curriculum learning. 429

Similarly, our methods include using LLM anno- 430

tations alone (UtilSel, UtilRank), and combining 431

them with 20%/100% human annotations using cur- 432

riculum learning. Implementation details of each 433

method can be found in Appendix C.2. 434
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Annotation

RetroMAE Contriever
Human Test Hybrid Test Human Test Hybrid Test

Dev DL19 DL20
M@10 N@10

Dev DL19 DL20
M@10 N@10M@10 R@1000 N@10 N@10 M@10 R@1000 N@10 N@10

Human 38.6 98.6 68.2 71.6 83.7 63.1 35.6 97.6 68.5 67.9 82.2 62.0

REPLUG 33.8− 94.7− 65.5 58.7 75.7− 54.3− 31.4− 93.1− 64.3 59.7 79.4 53.2−

UtilSel 35.3−† 97.7−† 68.0 71.0 87.5+† 65.8+† 33.3−† 96.8−† 67.8 67.8 85.0† 63.7†

UtilRank 35.7−† 97.8−† 67.1 71.0 86.1† 66.1+† 33.6−† 96.8−† 70.8 68.8 84.6† 63.7†

REPLUG (CL 20%) 36.6− 98.3− 69.5 67.8 81.7 60.2− 33.7− 97.2− 68.4 66.6 82.9 59.4−

UtilSel (CL 20%) 38.2† 98.5† 69.6 71.4 83.4 65.5+† 35.3† 97.4 69.3 68.7 85.4+ 63.4†

UtilRank (CL 20%) 38.3† 98.4 70.5 70.0 84.3 64.6† 35.6† 97.4 70.4 70.1 86.1+ 64.0†

REPLUG (CL 100%) 38.7 98.6 69.5 69.7 83.7 63.1 35.5 97.7 68.0 69.1 80.7 59.0−

UtilSel (CL 100%) 39.3+† 98.6 70.5 70.9 84.7 64.7+† 36.6+† 97.8 69.3 68.4 85.7+† 63.8+†

UtilRank (CL 100%) 39.2+† 98.7 69.6 69.9 84.2 64.2 36.5+† 97.8 69.9 69.2 85.2+† 63.9+†

Table 2: Retrieval performance (%) of different annotation methods. “M@k”, “R@k”, “N@k” mean “MRR@k”,
“Recall@k”, and “NDCG@k” respectively. “+”, “−”, and “†” indicate significant improvements and decrements
over Human, and significant improvements over REPLUG within the same group, respectively, using a two-sided
paired t-test (p < 0.05). underline and Bold indicate the best performance within each group and overall.

Datasets BM25 Human REPLUG UtilSel UtilRank
Curriculum Learning, 20% Curriculum Learning, 100%

REPLUG UtilSel UtilRank REPLUG UtilSel UtilRank

DBPedia 31.8 36.0 29.1 38.0 37.9 35.9 37.4 37.4 36.1 37.1 37.5
FiQA 23.6 29.7 24.9 32.6 31.6 30.8 32.1 31.3 31.3 31.6 30.4
NQ 30.6 49.2 41.2 53.5 53.9 48.0 51.4 51.9 50.1 51.9 51.7

HotpotQA 63.3 58.4 57.4 59.6 59.6 60.2 60.0 59.8 60.5 60.1 59.5
NFCorpus 32.2 32.8 30.3 33.9 34.0 33.9 34.2 33.8 33.7 34.0 33.4
T-COVID 59.5 63.4 54.2 66.1 64.5 68.5 65.0 67.5 71.8 64.8 68.0

Touche 44.2 24.2 18.9 28.5 26.6 27.0 24.7 28.0 25.4 22.6 25.7
CQA 32.5 32.2 29.2 32.3 30.7 33.2 33.9 33.0 32.8 32.9 32.8

ArguAna 39.7 30.5 22.7 34.1 25.0 32.9 36.4 29.3 29.0 30.8 28.1
C-FEVER 16.5 18.0 13.2 19.5 16.4 17.9 16.5 15.3 18.4 18.5 16.8

FEVER 65.1 66.6 66.1 73.8 73.1 72.3 69.9 72.4 71.1 70.1 71.0
Quora 78.9 86.2 76.9 85.4 85.3 85.3 86.1 85.9 85.7 86.4 86.5

SCIDOCS 14.1 13.4 13.5 14.3 13.6 14.5 14.4 13.9 13.9 13.7 13.6
SciFact 67.9 63.1 59.3 62.8 63.2 63.2 64.2 63.8 63.6 64.1 64.9

Average 42.9 43.1 38.4 45.3 43.9 44.5 44.7 44.5 44.5 44.2 44.3

Table 3: Zero-shot retrieval performance (NDCG@10, %) of different retrievers (RetroMAE backbone) trained with
various annotations. Bold and underlined represent the best and second best performance, respectively.

4.3 Evaluation435

Human annotations often contain many false neg-436

atives due to under-annotation, and humans may437

have different preferences from LLMs. Evaluat-438

ing retrieval performance using human labels as439

ground truth may be unfair to models trained with440

LLM annotations. To create a more balanced com-441

parison set with more relevance labels and fewer442

false negatives, we randomly sampled 200 queries443

from the MS MARCO Dev set. For each query, we444

collected a candidate pool by merging the top 20445

retrieved passages from various retrievers (Human,446

REPLUG, UtilSel, UtilRank) and used GPT-4o-447

mini (Hurst et al., 2024) to select positive instances448

from the pool based on the ground-truth answer,449

using the UtilSel prompt (see Appendix F). Both450

the original human and GPT-annotated positives451

are considered new golden labels. We refer to this452

combined set as the Hybrid Test and the set with453

only human annotations as the Human Test.454

We evaluate retrievers trained with MS MARCO 455

annotated data by humans or LLMs under both 456

in-domain settings (MS MARCO Dev, TREC 457

DL 19/20, MS MARCO Hybrid Test) and out-of- 458

domain settings (14 BEIR datasets). The retrieved 459

results are then directly fed to generators to assess 460

downstream QA performance on MS MARCO QA 461

and two BEIR datasets, NQ and HotpotQA. De- 462

tailed evaluation metrics for retrieval and RAG are 463

provided in Appendix C.3. 464

5 Experimental Results 465

5.1 Retrieval Performance 466

In-domain Results. Table 2 shows the overall 467

in-domain retrieval performance. Main findings 468

include: 1) On human-labeled test sets, models 469

trained with human relevance annotations perform 470

better than using LLM annotations alone, and they 471

are both better than training with downstream task 472

performance (REPLUG). 2) When combining 20% 473
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Annotation Recall
Generator: Llama-3.1-8B Generator: Qwen-2.5-32B-Int8

BLEU-3 BLEU-4 ROUGE-L BERT-score BLEU-3 BLEU-4 ROUGE-L BERT-score
Human 24.7 17.2 14.2 35.7 67.8 15.8 12.6 34.3 67.4

REPLUG 21.7− 15.7 12.9 33.8− 66.7− 14.7 11.6 32.4− 66.2−

UtilSel 22.3− 16.3 13.4 34.7−† 67.4−† 14.9 11.7 33.5−† 67.1−†

UtilRank 22.6− 16.6 13.6 35.1−† 67.5−† 15.2 12.0 33.9−† 67.3−†

REPLUG (CL 20%) 23.2− 16.7 13.7 34.9− 67.4− 15.2 12.1 33.6− 67.1−

UtilSel (CL 20%) 24.6† 17.4 14.3 35.4† 67.7† 15.8 12.6 34.2† 67.4†

UtilRank (CL 20%) 24.6† 17.4 14.4 35.6† 67.8† 15.8 12.6 34.3† 67.5†

REPLUG (CL 100%) 25.0 17.2 14.2 35.8 67.8 15.8 12.6 34.4 67.5
UtilSel (CL 100%) 25.6+ 17.8 14.8 36.0 68.0+† 16.2 12.9 34.6+† 67.7+†

UtilRank (CL 100%) 25.5+ 17.7 14.7 35.9 68.0+† 16.2 12.9 34.6+† 67.7+†

Table 4: RAG performance (%) of different retrievers (RetroMAE backbone) trained with various MS MARCO
annotations on MS MARCO QA dataset. The symbols +, −, and † are defined in Table 2. Bold and underline are
also defined in Table 2. The official BLEU evaluation for MS MARCO QA targets the entire queries, not individual
queries, thus no significance tests are conducted.

Annotation

NQ HotpotQA

Recall
Llama Qwen

Recall
Llama Qwen

EM F1 EM F1 EM F1 EM F1
Human 56.7 42.8 56.4 43.6 57.9 54.8 31.5 42.6 38.6 50.7

REPLUG 46.2− 41.1− 53.7− 41.6− 55.0− 53.3− 30.6− 41.6− 38.0 50.0−

UtilSel 61.1+† 44.4+† 58.8+† 44.9† 59.8+† 55.8+† 31.9† 43.2† 39.0† 51.1†

UtilRank 62.0+† 45.4+† 59.8+† 45.9+† 60.0+† 55.9+† 31.4† 43.0† 38.7 51.0†

REPLUG (CL 20%) 55.0− 43.3 56.9 44.7 58.4 56.5+ 31.3 42.6 38.6 50.7
UtilSel (CL 20%) 59.8+† 43.4 58.0+ 44.9+ 59.3+ 56.2+ 31.9 43.0 38.8 51.0
UtilRank (CL 20%) 59.7+† 44.7+ 58.9+† 45.6+ 59.7+† 56.2+ 31.5 42.9 39.0 51.3

REPLUG (CL 100%) 58.2+ 43.5 57.2 45.3+ 59.2+ 57.1+ 31.8 43.3+ 38.8 51.1
UtilSel (CL 100%) 59.9+† 43.7 57.5 45.4+ 59.8+ 56.6+ 31.7 43.2 38.7 50.8
UtilRank (CL 100%) 59.4+† 43.8 57.8+ 45.0+ 59.1+ 56.0+ 31.4 42.9 38.4 50.7

Table 5: RAG performance (%) of different retrievers (RetroMAE backbone) trained with various MS MARCO
annotations on the NQ and HotpotQA datasets. The symbols +, −, and † are defined in Table 2. Bold and underline
are also defined in Table 2. “Llama” and “Qwen” are “Llama-3.1-8B” and “Qwen-2.5-32B-Int8”, respectively.

human labels, the model performance of UtilSel474

and UtilRank has no significant difference with475

using all the human annotations. This means that476

UtilSel and UtilRank can save about 80% human ef-477

fort on this dataset to achieve similar performance.478

3) With 100% human annotations, UtilSel and Util-479

Rank can achieve significant improvements over480

using human annotations alone, which confirms481

the efficacy of our annotation and training strategy482

as a data augmentation approach. 4) Regarding483

both human and GPT-4 annotated golden labels,484

UtilSel and UtilRank significantly outperform mod-485

els trained with human annotations alone, indicat-486

ing their potential in a fairer setting.487

Out-of-domain (OOD) Results. Table 3 and Ta-488

ble 11 (in Appendix D.1) report the zero-shot re-489

trieval performance of RetroMAE and Contriever490

trained with different annotations. We observe the491

following: 1) Both UtilSel and UtilRank exhibit492

superior out-of-domain (OOD) performance com-493

pared to retrievers trained solely on MS MARCO494

human annotations. This indicates that reliance495

on MS MARCO human labels may lead to model 496

overfitting to the corpus. The fact that UtilSel out- 497

performs UtilRank and it utilizes more LLM anno- 498

tations than UtilRank, as shown in Table 1, further 499

supports this observation. 2) When incorporating 500

20% or 100% human labels during training, the 501

OOD retrieval performance decreases compared to 502

not using them, reinforcing the first point. These 503

findings suggest a trade-off between in-domain and 504

OOD retrieval performance, which can be adjusted 505

by varying the mix of MS MARCO human labels 506

with LLM annotations. 507

5.2 RAG Performance 508

In-domain Results. In Table 4, we present the 509

RAG performance on MS MARCO QA using pas- 510

sages from retrievers (based on RetroMAE) com- 511

pared in Section 5.1 for RAG. The findings are 512

consistent with the first three conclusions regard- 513

ing in-domain retrieval discussed in 5.1, which is 514

expected as more accurate retrieval enhances gen- 515

eration. This confirms that UtilSel and UtilRank 516
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Method/Component Variants MRR@10 R@1000

Human - 38.6 98.6

LLM Annotator
Llama-8B 33.0 97.4
Qwen-32B-Int8 35.3 97.7

Annotation Strategy
RelSel 33.5 97.9
UtilSel 35.3 97.7
UtilRank 35.7 97.8

Training Loss
Rand1LH 34.5 97.9
JointLH 34.0 97.5
SumMargLH 35.3 97.7

+20% Human Labels
Positive Union 33.2 97.2
CL 38.2 98.5

Table 6: Controlled experiments using LLM annotations
for training. See Appendix C.2 for detailed settings.

can significantly reduce human annotation efforts517

while maintaining comparable RAG performance.518

Notably, REPLUG performs the poorest among the519

methods, differing from results in Shi et al. (2024).520

This discrepancy could arise because we used RE-521

PLUG for static utility annotation, whereas the522

original paper iteratively updated retrievers based523

on generation performance for RAG.524

OOD Results. Similarly, we assess the RAG per-525

formance based on MS MARCO-trained retrievers526

on NQ and HotpotQA. Results are shown in Table 5.527

Key findings include: 1) UtilSel and UtilRank con-528

sistently yield the best RAG performance across529

most generators and datasets (particularly on NQ),530

highlighting the potential of utility-focused LLM531

annotation in initializing QA systems. 2) On NQ,532

the best RAG performance is observed when no533

human annotations are used, mirroring the retrieval534

performance trend across many BEIR datasets (in535

Table 3). In contrast, on HotpotQA, retrieval per-536

formance is improved when human labels are used,537

while RAG is not enhanced. These results suggest538

that human annotations do not significantly benefit539

UtilSel and UtilRank for OOD RAG.540

6 Further Analysis541

Comparison of Strategy Variants. Table 6 com-542

pares the variants of our annotation method and543

training strategies regarding the retrieval perfor-544

mance on MS MARCO. The default setting for545

each component when using LLM annotations for546

training is Qwen, UtilSel, and SumMargLH. Key547

findings are: 1) Within the same GPU memory, the548

quantized version of larger LLMs has better capac-549

ity than smaller ones (Qwen better than LLama);550

2) UtilSel and UtilRank lead to better performance551

than RelSel, indicating stricter annotation criterion552

is needed; 3) When multiple positives exist, Sum-553

MargLH achieves the best performance, indicating554
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Figure 3: (a): Retrieval performance (%) with differ-
ent human annotation ratios in curriculum learning; (b):
Annotation quality evaluation (%) and retrieval perfor-
mance (%) with different thresholds for UtilRank.

its robustness to potential noise introduced by LLM 555

annotations. 4) When integrating human annota- 556

tions, training with higher-quality human annota- 557

tions at last outperforms optimizing towards the 558

union of positives from humans and LLMs. 559

Human Annotation Ratio in CL. Figure 3 shows 560

the retrieval performance on the MS MARCO Dev 561

set of using different ratios of human annotations 562

in CL. It indicates that the in-domain retrieval per- 563

formance increases with more human-labeled data 564

used in CL. 565

Cutoff Threshold for UtilRank. As illustrated in 566

Figure 3, smaller thresholds result in higher preci- 567

sion while lower recall regarding human-labeled 568

ground truth, and better in-domain retrieval perfor- 569

mance. This again confirms that stricter criteria and 570

fewer positives lead to better in-domain retrieval 571

performance. It is not surprising since this results 572

in a positive-to-negative ratio more closely aligned 573

with the distribution encountered during inference. 574

7 Conclusion 575

In this work, we explore the use of LLMs to an- 576

notate large-scale retrieval training datasets with 577

a focus on utility to reduce dependence on costly 578

human annotations. Experiments show that retriev- 579

ers trained with utility annotations outperform re- 580

trievers trained with human annotations in out-of- 581

domain settings on both retrieval and RAG tasks. 582

Furthermore, we investigate combining LLM an- 583

notations with human annotations by curriculum 584

learning. Interestingly, with only 20% of human an- 585

notations, the performance of the retriever trained 586

on utility annotations has no significant decline 587

over full human annotations. Moreover, with 100% 588

human annotations yields a significant improve- 589

ment over training solely on human annotations. 590

This highlights the effectiveness of LLM-generated 591

annotations as weak supervision in the early stages 592

of training. Our study offers a comprehensive ap- 593

proach to utilizing LLM annotations for initializing 594

QA systems on new corpora. 595

8



8 Limitation596

There are several limitations should be acknowl-597

edged: 1) Our annotation pool is constructed us-598

ing human-annotated positives and hard negatives599

retrieved by other models. It may not fully re-600

flect real-world annotation scenarios, where can-601

didates are typically retrieved using unsupervised602

methods like BM25 or retrievers trained on other603

data. We analyze the impact of including human-604

labeled positives in Appendix B.1. 2) Due to605

time and resource constraints, we did not adopt606

stronger LLMs (e.g., Deepseek-R1 (Guo et al.,607

2025)) for annotation, though they may offer fur-608

ther improvements. 3) Our annotations are lim-609

ited to MS MARCO, a standard dataset for re-610

trieval. Extending this approach to RAG datasets611

like NQ and HotpotQA remains a promising direc-612

tion, as our analysis suggests that similar trends613

would likely hold. The code and models are avail-614

able on https://anonymous.4open.science/r/615

utility-focused-annotation-EC13/.616

9 Ethics Statement617

Our research does not rely on personally identi-618

fiable information. All datasets, pre-trained IR619

models, and LLMs used in this study are publicly620

available, and we have properly cited all relevant621

sources. We firmly believe in the principles of open622

research and the scientific value of reproducibility.623

To this end, we have made all our code, data, and624

trained models associated with this paper publicly625

available on GitHub.626
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A Preliminary 989

A.1 Typical Dense Retrieval Models 990

Dense retrieval models primarily employ a two- 991

tower architecture of pre-trained language models, 992

i.e.,Rq(·) and Rd(·), to encode query and passage 993

into fixed-length dense vectors. The relevance be- 994

tween the query q and passage d is s(q, d), i.e., 995

s(q, d) = f < Rq(q),Rd(d) >, (5) 996

where f < · > is usually implemented as a sim- 997

ple metric, e.g., dot product and cosine similarity. 998

Rq(·) and Rd(·) usually share the parameters. 999

A.2 Downstream Task Performance as Utility 1000

Score 1001

Considering the downstream task for the retriever, 1002

i.e., RAG, the goals of the retriever and genera- 1003

tor in RAG are different and can be mismatched. 1004

To alleviate this issue, the utility of retrieval in- 1005

formation fu(q, d, a), where a is the ground truth 1006

answer, enables the retriever to be more effec- 1007

tively alignment with the generator. fu(q, d, a) 1008

mainly has two ways: directly model how likely the 1009

candidate passages can generate the ground truth 1010

answer (Shi et al., 2024), i.e., P (a|q, d), which 1011

computes the likelihood of the ground truth an- 1012

swer; and measure the divergence of model out- 1013

put LLM(q, d) and the answer a using evaluation 1014

metrics (Zamani and Bendersky, 2024), e.g., EM, 1015

i.e., EM(a, LLM(q, d)). Given the query q and 1016

candidate passage list D = [d1, d2, ..., dn], where 1017

n = |D|. The optimization of the retriever is 1018

to minimize the KL divergence between the rel- 1019

evance distribution R = {s′(q, di)}Ni=1, where 1020

s′(q, di) is the relevance s(q, di) from retriever 1021

after softmax operation, and utility distribution 1022
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Annotation
Human Test Hybrid Test

MRR@10 Recall@1000 DL19 (NDCG@10) DL20 (NDCG@10) MRR@10 NDCG@10

Human 38.6 98.6 68.2 71.6 83.7 63.1

Exclusion (0%) 31.2− 97.1− 64.6 70.2 84.5 63.3
Exclusion (CL 20%) 37.4− 98.5 70.5 69.4 84.2 63.0−

Exclusion (CL 30%) 38.2 98.5 69.3 70.4 85.0 64.2+

Random (0%) 35.3− 97.7− 68.0 71.0 87.5+ 65.8+

Random (CL 20%) 38.2 98.5 69.6 71.4 83.4 65.5+

Inclusion (0%) 36.1− 98.1− 69.0 71.3 87.7 66.7+

Inclusion (CL 20%) 38.2 98.6 70.9 70.7 84.2 64.6+

Table 7: Retrieval performance (%) with different UtilSel annotation labels on whether human-annotated relevant
passage is included or not during training (i.e., Exclusion, Random, Inclusion) using RetroMAE backbone. “+” and
“−” indicate significant improvements and decrements over Human using a two-sided paired t-test (p < 0.05).

Dataset Human
Random Exclusion Inclusion

0% (CL, 20%) 0% (CL, 20%) (CL, 30%) 0% (CL, 20%)

DBPedia 36.0 38.0 37.4 39.0 37.3 37.1 38.8 37.0
FiQA 29.7 32.6 32.1 30.1 32.8 31.2 32.6 32.3
NQ 49.2 53.5 51.4 52.2 51.0 51.8 53.7 51.0
HotpotQA 58.4 59.6 60.0 59.1 60.5 60.4 59.9 60.3
NFCorpus 32.8 33.9 34.2 34.4 34.3 33.4 34.1 34.4
T-COVID 63.4 66.1 65.0 60.3 67.4 66.1 65.1 67.6
Touche 24.2 28.5 24.7 25.3 26.5 26.2 25.0 26.2
CQA 32.2 32.3 33.9 32.2 34.7 33.4 32.4 33.8
ArguAna 30.5 34.1 36.4 39.3 38.5 36.4 37.9 36.8
C-FEVER 18.0 19.5 16.5 19.3 17.2 16.7 18.3 17.2
FEVER 66.6 73.8 69.9 69.9 71.4 71.6 71.0 71.2
Quora 86.2 85.4 86.1 84.9 86.2 86.3 85.8 86.2
SCIDOCS 13.4 14.3 14.4 14.5 14.2 14.1 14.3 14.1
SciFact 63.1 62.8 64.2 62.9 63.9 64.2 63.2 63.2

Avg 43.1 45.3 44.7 44.5 45.4 44.9 45.2 45.1
Table 8: Zero-shot retrieval performance (NDCG@10, %) with different UtilSel annotation labels on whether
human-annotated relevant passage is included or not during training using RetroMAE backbone.

U = {f ′
u(q, di, a)}Ni=1, where f ′

u(·) is the utility1023

function fu(·) from generator after softmax:1024

KL(U ||R) =

N∑
i=1

U(di)log(
U(di)

R(di)
). (6)1025

B Additional Analyses of Training1026

Strategies1027

B.1 Impact of Human Annotated Positive1028

When generating LLM annotations, the model re-1029

lies on a pool that includes human-annotated posi-1030

tives and retrieved negatives. To examine whether1031

the presence of human-annotated positives in this1032

pool influences retriever training, we compare three1033

strategies: 1. Random: The default strategy in our1034

main experiments. Positives and negatives of each1035

query are randomly sampled from all LLM annota-1036

tioned positive and negative instances, respectively,1037

without distinguishing human-annotated examples1038

during retriever training. 2. Exclusion: Human-an-1039

notated positives are explicitly excluded during re-1040

triever training. Sepcifically, passages for each1041

query during training are randomly selected from1042

the LLM annotations which excluding human-an-1043

notated passages. 3. Inclusion: Human-annotated1044

positives for each query are always included during1045

training, the rest are randomly sampled from the 1046

remaining LLM-labeled passages. 1047

Tables 7 and 8 report in-domain and out-of- 1048

domain retrieval performance under three sampling 1049

strategies. We draw three main observations: 1. Ex- 1050

cluding human positives substantially degrades per- 1051

formance, highlighting their importance as high- 1052

-quality signals. As shown in Table 1, LLMs con- 1053

sistently recall human positives, indicating their 1054

strong alignment with human judgments. Remov- 1055

ing them reduces annotation quality and hinders 1056

retriever training. Conversely, explicitly including 1057

human positives in each batch yields the best re- 1058

sults. 2. Despite the initial performance gap under 1059

the Exclusion setting, introducing 30% human-la- 1060

beled data in the second stage of curriculum learn- 1061

ing effectively closes the gap. The resulting model 1062

performs on par with those trained using the full 1063

human set, suggesting that LLM-generated nega- 1064

tives and non-human positives still provide valu- 1065

able learning signals when combined with even par- 1066

tial human supervision. 3. For OOD performance, 1067

the Exclusion setting outperforms the model trained 1068

purely on human labels, consistent with the main 1069

findings under the Random setting. 1070
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Retrieval RAG

Datasets MS MARCO Dev TREC DL-19 TREC DL-20 MS MARCO-QA NQ HotpotQA

#Queries 6980 43 54 6980 2255 7405
#Rel.Passage per query 1.1 95.4 66.8 1.1 1.2 2
#Graded.Retrieval labels 2 4 4 2 2 2

Table 9: Statistics of retrieval and RAG datasets.

B.2 Positive Sampling Strategies1071

LLM annotations might yield multiple positive in-1072

stances. If the loss function is SumMargLH or1073

JointLH, for their positive selection during train-1074

ing for each query, we devised three strategies:1075

1. Pos-one: randomly select one annotated positive1076

instance, and sample the remaining examples from1077

other positives and negatives; 2. Pos-avg: compute1078

the average number of positive instances per query1079

from LLM annotations, then sample this number1080

of positives randomly for each query, with the rest1081

sampled from negatives; 3. Pos-all: include all an-1082

notated positive instances whenever available, and1083

sample the remaining examples from negatives (en-1084

suring at least one negative instance is included).1085

As shown in Table 10, these positive sampling1086

strategies have limited effect on standard retriever1087

training using LLM annotations, but show a more1088

noticeable impact in the curriculum learning set-1089

ting. This may be because human-labeled data1090

typically contain fewer positive examples, making1091

the Pos-one strategy more aligned with their distri-1092

bution than Pos-all, thereby reducing distribution1093

mismatch during curriculum learning.1094

Sampling MRR@10 Recall@1000

Pos-one 35.1 97.7
Pos-avg 35.1 97.7
Pos-all 35.3 97.7

Pos-one (CL) 38.2 98.5
Pos-all (CL) 37.8 98.5

Table 10: Effect of positive sampling strategies in train-
ing, evaluated under the UtilSel annotations.

C Detailed Experimental Settings1095

C.1 Retrieval and RAG Datasets1096

Retrieval Datasets. Three human-annotated test1097

collections are used for in-domain retrieval eval-1098

uation: the MS MARCO Dev set (Nguyen et al.,1099

2016), which comprises 6980 queries, and TREC1100

DL19/DL20 (Craswell et al., 2020, 2021), which1101

include 43 and 54 queries from MS MARCO1102

Dev set. DL19 and DL20 have more human-1103

annotated relevant passages, with each query hav-1104

ing an average of around 95 and 67 positives, re-1105

spectively. We further evaluate the zero-shot per-1106

formance of our retrievers on 14 publicly available 1107

datasets from the BEIR benchmark, excluding MS 1108

MARCO (Nguyen et al., 2016), which is used for 1109

training. The evaluation datasets include TREC- 1110

COVID (Voorhees et al., 2021), NFCorpus (Boteva 1111

et al., 2016), NQ (Kwiatkowski et al., 2019), Hot- 1112

potQA (Yang et al., 2018), FiQA (Maia et al., 1113

2018), ArguAna (Wachsmuth et al., 2018), Touche 1114

(Bondarenko et al., 2020), Quora, DBPedia (Ha- 1115

sibi et al., 2017), SCIDOCS (Cohan et al., 2020), 1116

FEVER (Thorne et al., 2018), Climate-FEVER 1117

(Diggelmann et al., 2020), SciFact (Wadden et al., 1118

2020), and CQA (Hoogeveen et al., 2015). 1119

RAG Datasets. For the in-domain setting, we 1120

use the MS MARCO QA dataset, which con- 1121

tains ground-truth answers for MS MARCO Dev 1122

queries on in-domain RAG evaluation. For the 1123

out-of-domain setting, we use two factoid question 1124

datasets in the BEIR benchmark for RAG evalua- 1125

tion: NQ (Kwiatkowski et al., 2019), which con- 1126

sists of real questions issued to the Google search 1127

engine, and HotpotQA (Yang et al., 2018), which 1128

consists of QA pairs requiring multi-hop reasoning 1129

gathered via Amazon Mechanical Turk. We used 1130

the queries with ground truth answers from 3,452 1131

queries on NQ and then collected 2,255 queries for 1132

RAG evaluation. Table 9 shows detailed statistics 1133

of the in-domain retrieval datasets and all RAG 1134

datasets used in our work. 1135

C.2 Implementation Details 1136

The retriever is trained for 2 epochs using the 1137

AdamW optimizer with a batch size of 16 (per 1138

device) and a learning rate of 3e-5. Training is con- 1139

ducted on a machine with 8 × Nvidia A800 (80GB) 1140

GPUs. To ensure reproducibility of the single run, 1141

the random seed that will be set at the beginning 1142

of training using the default value. In the second 1143

stage of curriculum learning, the retriever is further 1144

trained for 1 epoch with the same hyper-parameters, 1145

except that the learning rate is re-initialized to 3e-5. 1146

Unless otherwise specified, we use Qwen-2.5- 1147

32B-Int8 as the annotator, adopt the SumMargLH 1148

loss with UtilSel annotations, and apply the Pos-all 1149

strategy for selecting positives. During curriculum 1150

learning, the positive sampling strategy is switched 1151
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Datasets Human REPLUG UtilSel UtilRank
Curriculum Learning, 20% Curriculum Learning, 100%

REPLUG UtilSel UtilRank REPLUG UtilSel UtilRank

DBPedia 34.5 26.6 37.3 36.9 33.7 36.3 36.8 35.9 36.7 36.8
FiQA 28.3 22.5 30.1 29.3 28.3 29.4 29.6 29.2 29.5 29.2
NQ 47.2 37.0 50.7 50.7 43.5 48.2 49.2 47.0 48.9 49.9

HotpotQA 55.1 49.9 56.8 55.5 55.9 56.9 56.7 56.9 57.0 56.9
NFCorpus 30.4 28.0 31.3 31.1 31.6 31.3 30.9 31.5 31.8 31.5
T-COVID 49.9 26.9 53.4 55.1 34.8 59.1 62.2 48.7 56.6 56.7

Touche 20.1 14.7 23.7 26.6 14.1 21.0 26.0 17.0 21.4 24.4
CQA 28.6 24.6 28.9 26.5 29.9 30.9 29.9 28.1 29.5 29.5

ArguAna 16.9 4.6 30.3 25.3 24.5 34.2 32.3 20.4 28.3 27.9
C-FEVER 14.3 8.9 20.0 17.3 16.4 17.3 16.4 17.5 17.4 17.2

FEVER 64.4 57.8 67.0 68.2 61.4 62.4 66.1 67.0 64.6 67.6
Quora 85.1 67.7 84.3 84.6 82.6 85.0 85.0 84.5 85.5 85.5

SCIDOCS 12.2 10.2 13.2 12.2 13.2 13.2 12.9 12.4 13.1 13.0
SciFact 61.7 54.8 64.8 61.6 62.2 65.5 62.9 63.7 65.7 62.7

Average 39.2 31.0 42.3 41.5 38.0 42.2 42.6 40.0 41.8 42.1

Table 11: Zero-shot retrieval performance (NDCG@10, %) of different retrievers (Contriever backbone).

Top-k Annotation Recall
Generator: LlaMa-3.1-8B Generator: Qwen2.5-32B-Int8

BLUE-3 BLUE-4 ROUGE-L BERT-score BLUE-3 BLUE-4 ROUGE-L BERT-score

Top 1

Human 24.7 17.2 14.2 35.7 67.8 15.8 12.6 34.3 67.4
REPLUG 21.7 15.7 12.9 33.8 66.7 14.7 11.6 32.4 66.2
UtilSel 22.3 16.3 13.4 34.7 67.4 14.9 11.7 33.5 67.1
UtilRank 22.6 16.6 13.6 35.1 67.5 15.2 12.0 33.9 67.3

Top 5

Human 55.4 13.4 11.4 33.9 66.0 14.2 11.1 33.4 67.0
REPLUG 48.4 13.8 11.4 32.9 65.8 13.9 10.8 32.8 66.7
UtilSel 51.5 14.3 11.8 33.3 66.1 13.7 10.7 33.0 66.8
UtilRank 51.6 14.4 11.9 33.3 66.1 13.8 10.7 32.9 66.8

Table 12: RAG performance with different top-k on MS MARCO QA dataset (RetroMAE backbone).

to Pos-one (see Appendix B.2 for details). Due to1152

the top 10% ranked list of UtilRank containing an1153

average of one positive, and SumMargLH have no1154

advantage in UtilRank, we use Rand1LH loss for1155

training under UtilRank.1156

For RAG evaluation, the retrieved passages are1157

directly fed to LLMs. We use top-1 passage for MS1158

MARCO QA and top-5 passages for NQ and Hot-1159

potQA. The rationale for these choices is discussed1160

in Appendix D.2.1161

The original REPLUG (Shi et al., 2024) uses1162

Contriever (Izacard et al., 2021b) and optimizes the1163

retriever by aligning its relevance scores with LLM-1164

derived utility scores via KL divergence. Our setup1165

follows the overall REPLUG framework but differs1166

in two key aspects: we adopt the same retriever1167

backbone as in other experiments for fair compari-1168

son, and use static negatives during training instead1169

of dynamically generated ones.1170

C.3 Evaluation Metrics1171

To evaluate retrieval performance, we employ three1172

standard metrics: Mean Reciprocal Rank (MRR)1173

(Craswell, 2009), Recall and Normalized Dis-1174

counted Cumulative Gain (NDCG) (Järvelin and1175

Kekäläinen, 2002). To evaluate RAG performance,1176

we adopt two different approaches based on the1177

nature of the datasets: 1. For datasets that include1178

non-factoid QA, such as MS MARCO, we evalu-1179

ate answer generation performance using ROUGE 1180

(Lin, 2004), BLEU (Papineni et al., 2002) 1, and 1181

BERT-Score (Zhang et al., 2019) 2. 2. For factoid 1182

QA datasets, such as NQ and HotpotQA, we use 1183

Exact Match (EM) and F1 score as main metrics. 1184

D Supplementary Experimental Results 1185

D.1 Zero-shot Retrieval Performance Using 1186

Contriever Backbone 1187

Table 11 compares the zero-shot retrieval perfor- 1188

mance of various retrievers built on the Contriever 1189

backbone. All models are trained on MS MARCO 1190

using different annotation strategies, including hu- 1191

man labels, REPLUG, utility-based annotations 1192

(UtilSel and UtilRank), and corresponding curricu- 1193

lum learning variants. 1194

D.2 Top-k in RAG 1195

Our top-k choices in RAG evaluation reflect the 1196

characteristics of each dataset: 1. MS MARCO 1197

QA focuses primarily on non-factoid questions. As 1198

shown in Table 12, including more passages tends 1199

to introduce irrelevant or verbose content, which 1200

lead to lower RAG performance. Therefore, we 1201

1https://github.com/microsoft/
MSMARCO-Question-Answering/tree/master/
Evaluation

2We use the best model for BERT-Score: (https://
huggingface.co/microsoft/deberta-xlarge-mnli)
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Method Pre-training Hard Negatives
Dev DL19 DL20

M@10 R@1000 N@10 N@10

BM25 (Lin et al., 2021) No - 18.4 85.3 50.6 48.0

DPR (Karpukhin et al., 2020) No Static(BM25) 31.4 95.3 59.0 -
Condenser (Gao and Callan, 2021a) Yes Static(BM25) 33.8 96.1 64.8 -
RetroMAE (Xiao et al., 2022) Yes Static(BM25) 35.5 97.6 - -

ANCE (Xiong et al., 2020) No Dynamic 33.0 95.9 64.8 -
ADORE (Zhan et al., 2021) No Dynamic 34.7 - 68.3 -
CoCondenser (Gao and Callan, 2021b) Yes Dynamic 38.2 98.4 71.2 68.4
SimLM (Wang et al., 2022) Yes Dynamic 39.1 98.6 69.8 69.2

RetroMAE Yes Static(CoCondenser+BM25) 38.6 98.6 68.2 71.6
Contriever Yes Static(CoCondenser+BM25) 35.6 97.6 68.5 67.9

Table 13: Retrieval performance on MS MARCO (measured by MRR@10, Recall@1000, NDCG@10).

Datasets
Static(BM25) Dynamic Static(CoCondenser+BM25)

RetroMAE (Xiao et al., 2022) Contriever (Izacard et al., 2021b) RetroMAE Contriever

MS MARCO - 40.7 45.2 42.1

DBPedia 39.0 41.3 36.0 34.5
FiQA 31.6 32.9 29.7 28.3
NQ 51.8 49.8 49.2 47.2

HotpotQA 63.5 63.8 58.4 55.1
NFCorpus 30.8 32.8 32.8 30.4
T-COVID 77.2 59.6 63.4 49.9

Touche 23.7 23.0 24.2 20.1
CQA 31.7 34.5 32.2 28.6

ArguAna 43.3 44.6 30.5 16.9
C-FEVER 23.2 23.7 18.0 14.3

FEVER 77.4 75.8 66.6 64.4
Quora 84.7 86.5 86.2 85.1

SCIDOCS 15.0 16.5 13.4 12.2
SciFact 65.3 67.7 63.1 61.7

Average 47.0∗ 46.6 43.1 39.2
Table 14: Zero-shot retrieval performance (NDCG@10, %) on 14 BEIR datasets. MS MARCO is reported for
reference but excluded from the average. Note that the original RetroMAE reports average performance over 18
datasets, while our reproduction only considers 14 publicly available datasets.

use top-1 passage for evaluation. 2. HotpotQA is1202

a multi-hop factoid QA dataset, which naturally1203

benefits from access to multiple supporting pas-1204

sages. Hence, we adopt top-5 passages (NQ also1205

uses top-5 passages for consistency).1206

D.3 Comparison with Reported Retrieval1207

Results in Prior Work1208

In this section, we summarize the retrieval perfor-1209

mance of several representative dense retrievers on1210

MS MARCO and BEIR, based on results reported1211

in their original papers.1212

Table 13 shows performance on MS MARCO.1213

Compared to the original results, our reproduction1214

of RetroMAE shows slight differences. This can1215

be attributed to the use of different hard negatives:1216

while the original model used BM25-mined neg-1217

atives, we employ a combination of BM25 and1218

coCondenser negatives, which are more diverse1219

and challenging. This leads to improved perfor-1220

mance on MS MARCO by enhancing the ability to1221

distinguish fine-grained semantic differences.1222

Table 14 reports zero-shot performance on BEIR,1223

measured by NDCG@10 across 14 datasets. Both1224

RetroMAE and Contriever show a performance 1225

drop compared to their original results. We at- 1226

tribute this to the following factors: 1. For Retro- 1227

MAE: Our reimplementation uses stronger hard 1228

negatives during MS MARCO fine-tuning, which 1229

improves in-domain performance but may hinder 1230

generalization. Additionally, our model version is 1231

pre-trained on MS MARCO, whereas the original 1232

version was pre-trained on English Wikipedia and 1233

BookCorpus, which offer broader domain diversity 1234

and improved transferability. 2. For Contriever: 1235

The original paper uses only one hard negative 1236

per query and relies mainly on in-batch negatives, 1237

a strategy that mitigates overfitting and preserves 1238

generalization. In contrast, our setting introduces 1239

more difficult negatives, improving MS MARCO 1240

performance but leading to a drop on BEIR. More- 1241

over, we adopt a unified setup for all models and 1242

use [CLS] pooling, whereas the original Contriever 1243

uses mean pooling, which may also contribute to 1244

the performance difference. 1245

D.4 Further Analysis for SumMargLH 1246

From Table 15, we can observe the following: 1) 1247

When the number of positive instances is small, 1248
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Annotation Threshold Avg
Loss Function

SumMargLH Rand1LH

UtilRank

10% 1.0 35.6 35.7
20% 1.3 35.4 35.6
30% 1.7 35.1 34.9
40% 2.3 34.7 34.6
50% 3.0 34.6 34.4

UtilSel - 2.9 35.3 34.5
Table 15: Retrieval performance (MRR@10) on MS
MARCO Dev using different loss functions across var-
ious annotation settings under RetroMAE backbone.
“Avg” means the average number of positive instances.

Annotation Cost($) Time(h) MRR@10 R@1000

Human 1,369,910 - 38.6 98.6
REPLUG 44,639 70+ 33.8 94.7
UtilSel 339 53 35.3 97.7
UtilSel (CL 20%) 274,321 - 38.2 98.5

Table 16: Retrieval performance (%) of different anno-
tations on MS MARCO Dev and corresponding annota-
tion cost. “R@k” means “Recall@k”.

the advantage of SumMargLH over Rand1LH is1249

limited. However, as the number increases, Sum-1250

MargLH generally yields better performance. 2)1251

When the average number of positives is simi-1252

lar, UtilSel outperforms UtilRank, suggesting that1253

LLM-selected positives may be more effective than1254

those chosen by thresholding.1255

E Efficiency and Cost1256

According to Gilardi et al. (2023), the cost of hu-1257

man annotation is approximately $0.09 per annota-1258

tion on MTurk, a crowd-sourcing platform. Each1259

query requires annotations for 31 passages, and1260

there are a total of 491,007 queries, leading to a1261

total human annotation cost of $1,369,910. We uti-1262

lize cloud computing resources, where the cost of1263

using an A800 80GB GPU is assumed to be $0.81264

per hour3. Our utility-focused annotation process1265

requires a total of 53 hours on an 8 × A800 GPU1266

machine using the Qwen-2.5-32B-Int8, resulting in1267

a GPU computing cost of $339. For the REPLUG1268

method, the annotation process takes 70 hours, cost-1269

ing $448 in GPU computing. However, REPLUG1270

requires human-annotated answers for each query,1271

bringing the total to $44,639. More details are pro-1272

vided in Table 16. Although human annotation1273

achieves superior performance on the in-domain1274

dataset, the cost of such annotation is substantial.1275

In contrast, the utility-focused annotation offers the1276

lowest annotation cost, with performance second1277

only to that of human annotation.1278

3https://vast.ai/pricing/gpu/A800-PCIE

F Prompts for Annotation via LLMs 1279

Relevance-based selection, pseudo-answer genera- 1280

tion, utility-based selection, and utility-based rank- 1281

ing prompts are shown in Figure 4, Figure 5, Figure 1282

6, and Figure 7, respectively. 1283
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User: You are the relevance judger, an intelligent assistant that can select the passages that 

relevant to the question.

Assistant: Yes, i am the relevance judger.

User: I will provide you with {num} passages, each indicated by number identifier []. 

Select the passages that are relevant to the question: {query}.

Assistant: Okay, please provide the passages.

User: [{rank}] {passage}

Assistant: Received passage [{rank}].

....

User: Directly output the passages you selected that are relevant to the question. The 

format of the output is: 'My selection:[[i],[j],...].'. Only response the selection results, do 

not say any word or explain. 

Figure 4: Relevance-based selection prompt for LLMs.

User: You are a faithful question and answer assistant. Answer the question based on the 

given information with one or few sentences without the source.

Assistant: Yes, i am the faithful question and answer assistant.

User: Given the information: \n{passage}\n Answer the following question based on the 

given information with one or few sentences without the source.\n Question: 

{question}\n\n Answer:

Figure 5: Pseudo-answer generation prompt for LLMs.

User: You are the utility judger, an intelligent assistant that can select the passages that 

have utility in answering the question.

Assistant: Yes, i am the utility judger.

User: I will provide you with {num} passages, each indicated by number identifier []. \n I 

will also provide you with a reference answer to the question. \nSelect the passages that 

have utility in generating the reference answer to the following question from the {num} 

passages: {query}.

Assistant: Okay, please provide the passages and the reference answer.

User: [{rank}] {passage}

Assistant: Received passage [{rank}].

....

User: Question: {query}. 

Reference answer: {answer}. 

The requirements for judging whether a passage has utility in answering the question are: 

The passage has utility in answering the question, meaning that the passage not only be 

relevant to the question, but also be useful in generating a correct, reasonable and perfect 

answer to the question. 

Directly output the passages you selected that have utility in generating the reference 

answer to the question. The format of the output is: 'My selection:[[i],[j],...].'. Only 

response the selection results, do not say any word or explain. 

Figure 6: Utility-based selection prompt for LLMs.
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User: You are RankGPT, an intelligent assistant that can rank passages based on their 

utility in generating the given reference answer to the question.

Assistant: Yes, i am RankGPT.

User: I will provide you with {num} passages, each indicated by number identifier [].  I 

will also give you a reference answer to the question. \nRank the passages based on their 

utility in generating the reference answer to the question: {query}.

Assistant: Okay, please provide the passages and the reference answer.

user: [{rank}] {passage}

Assistant: Received passage [{rank}].

....

User: Question: {query}. 

Reference answer: {answer}

Rank the {num} passages above based on their utility in generating the reference answer to 

the question. The passages should be listed in utility descending order using identifiers.  

The passages that have utility generating the reference answer to the question should be 

listed first. The output format should be [] > [] > [] > ..., e.g., [i] > [j] > [k] > ... Only 

response the ranking results, do not say any word or explain.

Figure 7: Utility-based ranking prompt for LLMs.
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