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Practitioners have consistently observed three puzzling phenomena in transformer-
based large languagemodels (LLMs): attention sinks, value-state drains, and residual-
state peaks, collectively referred to as extreme-token phenomena. These phenomena are
characterized by certain so-called “sink tokens” receiving disproportionately high
attention weights, exhibiting significantly smaller value states, and having much
larger residual-state norms than those of other tokens. These extreme tokens give
rise to various challenges in LLM inference, quantization, and interpretability.
We elucidate the mechanisms behind extreme-token phenomena. First, we show
that these phenomena arise in very simple architectures—transformers with one to
three layers—trained on a toy model, the Bigram-Backcopy (BB) task. In this set-
ting, we identify an active-dormant mechanism, where attention heads become sinks
for specific input domains while remaining non-sinks for others. Our theoretical
analysis of the training dynamics reveals that these phenomena are driven by a
mutual reinforcement mechanism. Building on these insights, we propose strategies
tomitigate extreme-token phenomena during pretraining, including replacing soft-
max with ReLU and Adam with SGD. Next, we extend our analysis to pretrained
LLMs, including Llama and OLMo, showing that many attention heads exhibit a
similar active-dormant mechanism as in the BB task, and that themutual reinforcement
mechanism also governs the emergence of extreme-token phenomena during LLM
pretraining. Our results reveal that many of the static and dynamic properties of
extreme-token phenomena predicted by the BB task align with observations in pre-
trained LLMs.

1. Introduction
Recent analyses of transformer-based open-source large language models (LLMs), such as GPT-
2 [47], Llama-2 [55], Llama-3 [15], Mixtral [33], and Pythia [4], have revealed three intriguing
phenomena:

- Attention sinks [62]: In many attention heads, the initial token consistently attracts a large
portion of the attention weights. Other special tokens, such as the delimiter token, can also
draw significant attention weights. These tokens are collectively referred to as sink tokens.

- Value-state drains [26]: For the attention heads that exhibit attention sinks, the value states of
sink tokens are consistently much smaller than those of other tokens.

- Residual-state peaks [51]: The residual states of sink tokens, excluding those from the first
and last layers, exhibit significantly larger norms compared to other tokens.

These phenomena often appear together and consistently occur in various pretrained LLMs, which
we collectively refer to as the extreme-token phenomena. Figure 1 illustrates these phenomena
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(b) Norms of value states
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(c) Norms of residual states
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Figure 1: Extreme-token phenomena in Llama 3.1. We evaluate the attention weights, value states norm,
and residual states norm on the Llama 3.1-8B-Base model, where the input sentence is “⟨s⟩Summer is
warm⟨period⟩ Winter is cold⟨period⟩”. Left (a): The attention weights across multiple heads at Layer 24.
We observe the attention sink phenomenon: the ⟨s⟩ token attracts a significant portion of the overall attention
weight. Middle (b): The empirical distribution of the norms of value states over all layers and all heads. We
exclude 2% of the outlier values to help visualization. We observe the value-state drain phenomenon: the value
state of the ⟨s⟩ token is much smaller than those of other tokens on average. Right (c): The norm of the residual
stream states, measured at the output of each layer. We observe the residual-state peak phenomenon: the ⟨s⟩ to-
ken’s residual states have significantly larger norms than those of other tokens from layers 1 to 30. We present
the extreme-token phenomena over other input sequences in Appendix F.

in Llama-3.1-8B-Base, using a fixed prompt sentence: “⟨s⟩Summer is warm⟨period⟩ Winter is
cold⟨period⟩”. Here, the first token ⟨s⟩ (the Beginning-of-Sequence token), serves as the sink token.
As shown in the figure, the sink token receives disproportionately high attention weights, exhibits
significantly smaller value states, and has much larger residual state norms compared to other to-
kens. It is important to note that the initial token does not have to be ⟨s⟩ to act as a sink token; other
tokens appearing at the start of the sequence can also serve this role. Additionally, in models such
as Llama-2, a delimiter token can also function as the sink token.

The extreme-token phenomena have posed several challenges for pretrained transformers in down-
stream tasks. For instance, sink tokens require special treatment during long-context inference
[9, 28, 62, 65] and model quantization [14, 40, 50] to maintain high levels of performance. Addi-
tionally, attention sinks have reduced the interpretability of attention maps in vision transformers
[11]. To address these issues, Sun et al. [51] and Darcet et al. [11] propose adding a “special token”
to transformers to serve as the sink token, preventing other tokens from becoming sinks. How-
ever, even this special token still exhibits extreme-token phenomena. Despite these efforts, no prior
work has satisfiably explained the mechanisms behind the extreme-token phenomena. Xiao et al.
[62] proposes a hypothesis for why they occur, suggesting that models tend to dump unnecessary
attention values to specific tokens.

This work aims to demystify the extreme-token phenomena in LLMs. We demonstrate that these
phenomena arise from an active-dormant mechanism in attention heads (cf. Claim 1), coupled with
a mutual-reinforcement mechanism during pretraining (cf. Claim 2). We support these statements
through studies on simplified transformer architectures and tasks, a dynamical theory for these
models, and experiments on pretrained LLMs. The structure of the paper and our key contributions
are outlined as follows:

1. In Section 2, we train one- to three-layer transformers on a simple task called the Bigram-
Backcopy (BB) task, which also displays extreme-token phenomena similar to those observed
in LLMs. We show that attention sinks and value-state drains are a consequence of the active-
dormantmechanism (cf. Claim 1). Both theoretically and empirically, wedemonstrate thatmutual
reinforcement mechanism (cf. Claim 2) dynamically drives these phenomena: attention sinks and
value-state drains reinforce one another, leading to a stable phasewhere all query tokens gener-
ate near identical attention logits for the keys of extreme tokens. Additionally, empirical results
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BB-task Theory BB-task Experiments LLM Experiments
∆logit·,⟨s⟩ log-growth ✓ ✓ ⋆

∥Val⟨s⟩∥ monotonic decrease ✓ ✓ ✓
∥Res⟨s⟩∥ linear growth ⋆ ✓ ✓
logit·,⟨s⟩ concentration ✓ ✓ ✓

Table 1: Consistency of the quantitative properties across the theoretical and empirical results
of the Bigram-Backcopy task and empirical results of LLMs. A ✓ denotes a consistent result,
while a ⋆ denotes an inconclusive result. The logit·,⟨s⟩ denotes logits corresponding to the key of
the extreme token and queries of all non-extreme tokens, i.e., the Qry⊤· Key⟨s⟩. The ∆logit·,⟨s⟩ =

logit·,⟨s⟩ − Mean[logit·,others] is a progress measure for attention sinks. The ∥Val⟨s⟩∥ denotes the
value state norm of the extreme token, and ∥Res⟨s⟩∥ denotes the residual state norm of the extreme
token. See Section 1.2 for the definitions of these notations.

reveal that residual-state peaks arise from the interaction between this mutual reinforcement
mechanism and the Adam optimization algorithm.

2. In Section 3, we demonstrate the active-dormant mechanism in pre-trained LLMs by showing
that many attention heads transition between active and dormant phases based on the input
domain. Specifically, we identify an interpretable active-dormant head (Layer 16, Head 25 in
Llama 2-7B-Base [55]) that activates on GitHub data but remains dormant on Wikipedia data.
Moreover, in examining the dynamics of OLMo-7B-0424 [23], we observe the same mutual
reinforcement mechanism and stable phase, consistent with those found in the BB task. This
demonstrates that the simple BB model captures both the static and dynamic properties of
extreme-token phenomena in LLMs and accurately predicts their behavior.

3. Importantly, the quantitative properties of extreme-token dynamics show strong consistency
among the theoretical and empirical results of the Bigram-Backcopy task and the empirical
performance of OLMo. In particular, we consistently observe the sink-logits concentration
phenomenon, where the logits corresponding to the key of the extreme token and the queries
of all non-extreme tokens (logit·,⟨s⟩) are nearly identical—an observation not previously docu-
mented in the literature. We summarize the aligned results between the theoretical and empir-
ical findings of the Bigram-Backcopy task and the empirical performance of LLMs in Table 1.

4. We propose architectural and optimization modifications to mitigate the extreme-token phe-
nomena. Specifically, we demonstrate that replacing SoftMax with ReLU activations in atten-
tion heads eliminates extreme-token phenomena in the BB task, while switching from Adam
to SGD removes the residual-state peak phenomenon. We discuss the possibility that similar
modifications could mitigate extreme-token phenomena in LLMs.

1.1. Related work
Several studies independently identified the “attention sink” phenomenon in language models and
vision transformers, where attention weights were found to be concentrated on a few tokens [11,
14, 17, 28, 62, 67]. Recent research has provided more detailed characterizations of this attention
pattern and the attention sink phenomenon [20, 51]. Sun et al. [51] attributed the attention sink to
the massive activation of the hidden representations of the corresponding tokens. Both Sun et al.
[51] andZhai et al. [67] discussedmethods formitigating the attention sink bymodifying themodel
and training recipes. Additionally, recent studies have leveraged the attention sink phenomenon to
develop improved quantization and more efficient inference algorithms [7, 9, 30, 36, 40, 50, 65].
A concurrent work by Gu et al. [24] studied how optimization, data distribution, loss function,
and model architecture in LM pre-training influence the emergence of attention sink, showing that
replacing the softmax function with sigmoid can prevent attention sink emergence in models up to
1B parameters.
The dynamics of transformers are studied under various simplifications, including linear attention
structures [2, 68], reparametrizations [53], NTK [12], often in the setting of in-context linear re-
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gression [1, 59, 69] and structured sequences [5, 45, 52]. Notably, Huang et al. [31], Kim et al.
[35], Zhang et al. [68] demonstrate that a one-layer attention head trained via gradient descent con-
verges to a model that effectively performs in-context regression. [5] shows the fast learning of
bigram memorization and the slow development of in-context abilities. [52] shows the scan and
snap dynamics in reparametrized one-layer transformers. [48] simplifies the structure of the induc-
tion head, showing the connection between the sharp transitions of in-context learning dynamics
and the nested nonlinearities of multi-layer operations.
Mechanistic interpretability is a growing field focused on understanding the internalmechanisms of
language models in solving specific tasks [5, 16, 19, 21, 42, 44, 46, 54, 58]. This includes mechanisms
like the induction head and function vector for in-context learning [5, 16, 46, 54], the binding ID
mechanism for binding tasks [19], association-storage mechanisms for factual identification tasks
[42], and a complete circuit for indirect object identification tasks [58]. The task addressed in this
paper is closely related to [5], who explored synthetic tasks where tokens are generated from either
global or context-specific bigram distributions. Several other studies have also employed synthetic
tasks to explore neural network mechanisms [3, 8, 25, 38, 41, 44, 70, 72].
A line of work focuses on quantizing neural networks using low-bit fixed-point representations
[22, 32, 39, 43, 66], such as INT8 [14, 39] or INT4 [13, 60, 63] to savememory usage and computational
cost. In LLMs, the extreme-token phenomena lead to substantial performance degradation after
quantization [6] and have become a key focus of recent research [18, 30, 36, 64]. Dettmers et al.
[14] and Lin et al. [37] propose mixed-precision approaches, using FP16 for outlier values and INT8
for others, enabling large model quantization without performance loss. Xiao et al. [61] rescales
the weights and activations to reduce magnitudes of outliers, and Bondarenko et al. [7] proposes
modified attention structures to remove outliers, making language models easier to quantize.
We note that Gurnee et al. [27] proposed Attention Deactivation Neurons, Bondarenko et al. [7]
proposed the “no-op” hypothesis, and Xiao et al. [62] proposed the “dump unnecessary atten-
tion” conjecture as mechanisms of attention sinks. In contrast, we explain the extreme-token phe-
nomena through the active-dormant and mutual reinforcement mechanisms, offering the proof of
their emergence within training dynamics in a toymodel and providing empirical evidence of these
mechanisms in LLMs.
1.2. Preliminaries and notations
While different LLMs may use slightly varying transformer architectures, most use the structure
proposed by [56], with the key modification being the shift from post-norm to pre-norm. We
represent the tokenized input sequence of length n, with positional embeddings included, as
H = [h1, . . . ,hn] ∈ Rd×n, where hi denotes the ith input token, and d is the embedding dimen-
sion. We denote the layer-normalization operation as LN, the column-wise SoftMax operation as
SoftMax, the causal-mask as mask, and the pointwise ReLU function as ReLU.
The transformer architecture applies causal-attention and MLP layers iteratively to the input se-
quence H. A causal attention layer with M heads is represented as Attn(·), parameterized by
{(Qm,Km,Vm,Om)}m:

Attn(H) :=
∑M−1

m=0 attnm(H) ∈ Rd×n, (1)
where each attention head attnm(·) is given by

attnm(H) := OmVmLN(H)SoftMax
(
mask

(
LN(H)⊤K⊤

mQmLN(H)
))
. (2)

We denote the attention map as Map = SoftMax
(
mask

(
LN(H)⊤K⊤

mQmLN(H)
)), and typically plot

its transpose, Map⊤, in figures.
An MLP layer, denoted mlp(·), has parameters (W1,W2):

mlp(H) := W2ReLU(W1LN(H)) ∈ Rd×n. (3)
An L-layer transformer consists of a composition of L self-attention and MLP layers with residual
connection structure. Given an input H(0) ∈ Rd×n, the output of the L-layer transformer, H(L), is
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computed as follows:
H(ℓ+1) = H(ℓ+1/2) + mlp(ℓ)

(
H(ℓ+1/2)

)
, H(ℓ+1/2) = H(ℓ) +Attn(ℓ)

(
H(ℓ)

)
, ℓ ∈ {0, . . . , L− 1}.

(4)
For consistency between the code and the text, we adopt zero-indexing throughout this paper, mean-
ing that attention head and layer indices begin at 0 instead of 1.
For the output H(ℓ+1) of layer ℓ, we define the residual state Resv of a token v ∈ {0, 1, . . . , n −
1} as the vth column of H(ℓ+1). For a specific layer ℓ with input H(ℓ) ∈ Rd×n, and for a specific
attention head m with query, key, and value matrices (Q,K,V,O), we define the query, key, and
value states (Qryv, Keyv, Valv) of a token v ∈ [n] as the vth columns of QH(ℓ), KH(ℓ), and OVH(ℓ),
respectively2. The attention logit logitv′,v is defined as the (v′, v)th element of (H(ℓ))⊤Q⊤KH(ℓ). For
notation simplicity, we omit the dependence on ℓ andm in (Qryv, Keyv, Valv, logitv′,v), as these will
be clear from context. Additionally, for a fixed token v, we use the shorthand logit·,v for the set
{logitv′,v | v′ ∈ V}.
We use ⟨s⟩ to refer to the "Beginning-of-Sequence" token. Since the ⟨s⟩ token consistently behaves
as an extreme token in LLMs, we often refer to ⟨s⟩ and the first extreme token interchangeably. We
also abuse notation by writing (Qry⟨s⟩, Key⟨s⟩, Val⟨s⟩) to represent the query, key, and value states of
the ⟨s⟩ token.

2. Extreme-token Phenomena in the Bigram-Backcopy Task
In this section, we analyze simple transformers trained on the Bigram-Backcopy (BB) task, a simple
model that exhibits extreme-token phenomena. We demonstrate the active-dormant mechanism (cf.
Claim1) andmutual reinforcementmechanism (cf. Claim2)within the BB task andprovide predictions
for the behavior of sink tokens, which will be validated through LLM experiments in the following
section.
The Bigram-Backcopy task is a data-generation model that consists of two sub-tasks: Bigram-
transition and Backcopy. In this model, each sequence begins with the ⟨s⟩ token, followed by tokens
sampled according to a pre-determined bigram transition probability P (in other words, a Markov
chain). When specific trigger tokens are encountered, instead of sampling according to the transi-
tion P, the preceding token is copied to the next position. An illustration of the Bigram-Backcopy
task is provided in Figure 2a. Following Bietti et al. [5], we select the transition P and the vocab-
ulary V with |V| = V = 64 based on the estimated character-level bigram distribution from the
tiny Shakespeare dataset. In all experiments, the set of trigger tokens, T , is fixed and consists of the
|T | = 3 most frequent tokens from the unigram distribution. Consequently, the non-trigger token
set, V \ T , comprises 61 tokens.
2.1. One-layer transformer exhibits attention sinks and value-state drains
On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with a single SoftMax
attnhead and one mlp layer. Unless otherwise specified, themodel is trained usingAdam for 10, 000
steps, achieving near-optimal prediction accuracy. Detailed training procedures are provided inAp-
pendix C.1. Figure 2b shows that the trained transformer exhibits the attention sink phenomenon,
where the ⟨s⟩ token captures a significant proportion of the attention weights. More importantly,
the attention weights display interpretable patterns: all non-trigger tokens exhibit attention sinks,
while the attention for trigger tokens is concentrated on their preceding positions. Additionally, Fig-
ure 2c reveals a value-state drain phenomenon similar to that observed in LLMs, suggesting that,
for non-trigger tokens, the attn head contributes minimal value to the residual stream. We provide
additional attention patterns on different input sequences in Appendix C.2.
The active-dormant mechanism of the attention head. Inspired by the interpretable attention
weight patterns observed, we propose the active-dormant mechanism. For any given token, an atten-
tion head is considered active if it makes a significant contribution to the residual state, and dormant

2We define the value state as OVH rather than VH since the former quantity is actually what is added to
the residual state.
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Figure 2: Experiments on the Bigram-Backcopy task. Left (a): The data generation procedure for the Bigram-
Backcopy task. Here we fix ‘t’, ‘e’, and the space character (‘ ’) as trigger tokens. The BB task samples bigram
transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): The attention map of a given
prompt. Trigger tokens are marked in red. The attention head at non-trigger tokens is dormant and displays
attention sinks. Right (c): The value state norms for the prompt. The ⟨s⟩ token has the smallest norm.

if its contribution is minimal. As illustrated in Figure 2b, when trained on the BB task, the attention
head is active for trigger tokens and dormant for non-trigger tokens.

Figure 4a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head
takes care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains signifi-
cantly better than a random guess, but the bigram loss degrades to near-random levels. Conversely,
when the attn layer is zeroed out, the backcopy loss becomes worse than a random guess, while
the bigram loss remains unaffected. This indicates that on trigger tokens, the attn head is active
and handles the backcopy task, whereas on non-trigger tokens, the attn head is dormant, allow-
ing the mlp layer to handle the Bigram task. We summarize the active-dormant mechanism of the
attn head in Claim 1.

Claim 1 (Active-dormant mechanism). Attention heads of pre-
trained models are often governed by the active-dormant mechanism,
exhibiting two phases:
(1) Dormant phase: On non-trigger tokens, the attn head assigns

dominant weights to the ⟨s⟩ token, adding minimal value to the
residual stream and having little impact on the model’s output.

(2) Active phase: On trigger tokens, the attn head assigns dom-
inant attention weights to relevant context tokens, adding sub-
stantial value to the residual stream and significantly impacting
the model’s output.

Attention Head

ActiveDormant

0
v1
v2
v3
v4

×

0 0 0 0 0 Output

Values

h0 h1 h2 h3 h4 h′ 0 h′ 1 h′ 2 h′ 3 h′ 4
Sequence 1 Sequence 2

0 ⋆ ⋆ ⋆ ⋆

Figure 3: Active-dormant mecha-
nism

The growth of attention logits on the ⟨s⟩ token and the decrease in its value state norms. Fig-
ure 4b illustrates the training dynamics of excess risks, attention weights, attention logits (for
each token vn at position n in the prompt, we compute ∆logit·,⟨s⟩ ≡ meann[⟨Qryvn , Key⟨s⟩⟩ −
meani(⟨Qryvn , Keyvi)⟩], which serves as a progress measure for attention sinks), and value state
norms for the ⟨s⟩ token. All values are rescaled to the 0 to 1 range to highlight trends rather than
absolute values. Both the Bigram and Backcopy excess risks decrease to nearly zero within the first
1000 steps, with the Bigram excess risk approaching zero faster than the Backcopy risk. As the
Backcopy risk decreases, the attention weights on the ⟨s⟩ token begin to increase, suggesting a con-
nection between the formation of attention sinks and the backcopy function in the attention heads.
After the first 1000 steps, although both Bigram and Backcopy excess risks have nearly reached zero,
the attention logits and weights on the ⟨s⟩ token continue to increase, while the value state norm
of the ⟨s⟩ token continues to decrease. While this is an intriguing phenomenon, our next goal is
to understand why the attention logits and value state norms continue to evolve toward extreme
values.
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(a) Excess risk after interventions
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Figure 4: Interventions and dynamics of one-layer transformer on the Bigram-Backcopy task. Left (a):
Excess risks for a one-layermodel trained on the Bigram-Backcopy (BB) task under various interventions. Right
(b): The excess risks, attention weights, attention logits, and value state norms for the ⟨s⟩ token throughout the
training dynamics. Each curve is rescaled to fall within a 0 to 1 range. On the right side of (b), the horizontal
axis is logarithmically scaled. The∆logit·,⟨s⟩ curve represents the mean of attention logits from all given non-
trigger query tokens v on the ⟨s⟩ token, normalized by themean of attention logits for other tokens. The shaded
area represents the 90% uncertainty interval on the distribution over all non-trigger tokens.

Input sequence
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Figure 5: Simplified transformer architecture. The output logits are computed by summing the contributions
from both the mlp layer and the attn head. The predicted probabilities are obtained by applying the SoftMax
function to these output logits. The mlp layer is assumed to provide the Markov transition probabilities for
non-trigger tokens, while the attn head is parameterized by attention logits and value states, as described
in Eq. (6), (7), and (8). Additionally, the trainable variables, denoted by (α,β) ∈ RV × RV , represent the
attention logits and value states of the ⟨s⟩ token.

2.2. Analysis of a minimally-sufficient transformer architecture
In this section, we analyze the training dynamics of transformers on the BB task, focusing on a sim-
plified architecture that retains the attention sinks and value-state-drains phenomena. We analyze
the regimewhen the Bigram transition probability is fully learned, and the Backcopy task is partially
learned (i.e., after step 200 in Figure 4b), and we focus on the dynamics of the attention logits and
value states. Readers who are more interested in the results than the theoretical analysis can skip
the detailed analysis and proceed directly to the statement of the mutual reinforcement mechanism
in Claim 2.

Let V (of size V ) denote the set of all tokens excluding the ⟨s⟩ token, and let T represent the set
of all trigger tokens. For any v ∈ V , we define pvk = P(k|v) as the next-token Markov transition
probability, andpv = (pv1, . . . , pvV )

⊤ ∈ ∆(V) as the transition vector in the simplex. The embedding
map is denoted by emb : [n] × V → RD, where for a token v ∈ V at position i ∈ [n], the embedded
vector is embi(v). The ⟨s⟩ token always appears at position 0, and we denote its embedding vector
by emb(⟨s⟩). For simplicity, we abuse the notation and use the sequence itself, [⟨s⟩, v1, . . . , vn]where
{vk}k∈[n] ⊆ V , to represent the embedding of the sequence.

Given an input sequence H = [⟨s⟩, v1:n] ∈ RD×(n+1) with ⟨s⟩ as the first token, we define the
predicted probability of the next token as SoftMax(TF(H)n), whereTF(H)n ∈ RD is the last column
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of TF(H) ∈ RD×(n+1), defined as
TF(·) = attn(·)+mlp(·), attn(H) = VHSoftMax(mask(H⊤K⊤QH)), mlp(H) = W2ReLU(W1H).

(5)
The simplified transformer architecture TF is a parallel summation of the attn head and the mlp

layer, with no layer normalization. This parallel summation is a reasonable simplification, as se-
quential attn and mlp layers can effectively simulate parallel attn and mlp operations. Notice that
we have redefined the notations of attn and mlp in this section, which are simplified versions of
Eq. (2) and (3).
Simplification and reparameterization of the model. To simplify the analysis of the training dy-
namics, we further reduce the model by restricting the (K,Q,V,W1,W2) matrices to follow the
patterns observed in the later training stages (i.e., after step 200 of the training in Figure 4b).
• Restricted Attention Pattern. Based on the intuition from Figure 2b, we know that eventually

only a few attention logits are non-trivial. Thus, we assume that the model has learned the
attention pattern by this stage (which is reasonable given that the Backcopy risk is already
small after step 200 in Figure 4b). We parameterize the attention logits on the ⟨s⟩ key-token
as (α⟨s⟩;αv1 ; . . . ;αvn), restrict the attention logits for any trigger query-token to (0, . . . , λ, 0)
(where the second-to-last coordinate is λ), and set all other logits to zero. Specifically, we re-
strict:

emb(⟨s⟩)⊤K⊤Q · embi(v) = αv · 1{v ̸∈ T } for v ∈ V, i ∈ [n],

embi(v)
⊤K⊤Q · embj(v) = λ · 1{v ∈ T , i = j − 1} for v, v ∈ V, i, j ∈ [n].

(6)

Notice that this naturally implies αv = 0 for v ∈ T .
• Restricted Value Pattern. At later stages of the training dynamics, we observe that the value

states for each token are nearly a scaled version of the one-hot encoding vector. We assume this
observed pattern and parameterize the value state of v by ξvev ∈ RV . For the ⟨s⟩ token, we
parameterize its value state by β ∈ RV . Specifically, we restrict

V · emb(⟨s⟩) = β ∈ RV ,

V · embi(v) = ξvev ∈ RV , with ξv = 0 for v ∈ T , and ξv ≥ 0 for v ∈ V \ T .
(7)

• MLP Layer Perfectly Predicts the Transition Probability. Notice that the mlp layer handles the Bi-
gram task. By step 200 in Figure 4b, the Bigram risk has nearly vanished. Therefore, we assume
that the mlp layer outputs the Markov transition probabilities pv for non-trigger tokens v, and
zero for trigger tokens. Specifically, we restrict:

mlp(embi(v)) = log pv · 1{v ̸∈ T } for v ∈ V. (8)
These reparameterizations are illustrated in Figure 5. Theorem 1 establishes the existence of a trans-
former architecture that satisfies the restrictions and reparameterizations outlined above. Further-
more, this restricted transformer can generate the ground-truth transitions of the BB model when
certain parameters diverge.
Theorem 1 (Existence of reparameterization that solves the BB task; informal). For any parameters
(α ∈ RV ,β ∈ RV , ξ ∈ RV , λ ∈ R), there exists a one-layer transformer as described in (5) with weight
matrices (Q,K,V,W1,W2) such that Eq. (6), (7), and (8) hold. Furthermore, there exists a sequence
of parameters where minv∈V αv → ∞, minv∈V ξv → ∞, λ → ∞, and β = 0, such that this transformer
generates the ground-truth transitions of the BB model in the limit.

The formal statement and proof of Theorem 1 are provided in Appendix A.1.
Dynamic analyses of the reparameterizedmodel. To analyze the later stage training dynamics, we
adopt the reparameterization given in Eq. (6), (7), and (8) as our assumption. We further define
Mk =

∑n
i=1 1{vi = k}, M = (M1, . . . ,MV ), and M =

∑
k∈V Mk = n. Substituting these into

Eq. (5), for a non-trigger token v ∈ V \ T , the output of the attention layer with input sequence
H = [⟨s⟩, v1:n−1, v] is given by

TF(H)n = log pv +
eαv

eαv +M
β +

V∑
k=1

Mkξk
eαv +M

· ek. (9)
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Therefore, for the non-trigger token v, the cross-entropy loss between the true Markov transition pv

and the predicted transition SoftMax(TF(H)n) is given by

lossv(αv,β) =

V∑
k=1

pvk

{
log
[ V∑

i=1

pvi exp
(eαvβi +Miξi

eαv +M

)]
− eαvβk +Mkξk

eαv +M
− log pvk

}
. (10)

For simplicity, we neglect the loss on trigger tokens and assume that ({Mi}i∈[V ],M) remain fixed
across different positions in the input sequences.3 We then consider the total loss as the average of
the losses on each non-trigger token, weighted by its proportion in the stable distribution {πv}v∈V ,
given by

loss(α,β) =
∑

v∈V\T πv · lossv(αv,β). (11)
We assume that ξ and λ are fixed, and that α (the attention logits of the ⟨s⟩ token) and β (the
value state norms of the ⟨s⟩ token) are trainable variables, as we are interested in the dynamics of
the attention logits and value state norm for the ⟨s⟩ token. The following theorem illustrates the
logarithmic growth of the attention logits α, the shrinkage of value states β, and the stable phase
of these two variables.
Theorem 2. Consider the gradient flow of the loss function loss(α,β). Assume ξv ≥ 0 for any v and πv > 0
for any v ∈ V , and {Mi · ξi}i∈V are not all equal.

(a) (Attention logits grow logarithmically, reinforced by small value states) Fix β = β · 1 for a constant β,
and consider the gradient flow overα. With any initial valueα(0), there exists r(t)with norm uniformly
bounded in time, such that

α(t) = 1
2 log t · 1+ r(t). (12)

(b) (Value state shrinks to a small constant vector, reinforced by large attention logits) Fix α = α · 1 for a
constant α, define β(0) = V −1[

∑
v βv(0)] and B = V −1[

∑
v Mvξv]. Consider the gradient flow over

β. As t → ∞, we have
β(t) → β⋆ = [β(0) + e−αB] · 1− e−α ·M ◦ ξ. (13)

(c) (Stable phase: Sink-logits concentration) Consider the gradient flow over the variables (α,β). Any
vector of the following form

α = α · 1, β = c · 1− e−α ·M ◦ ξ, α, c ∈ R (14)
is a stationary point. These are all global minimizers of loss(α,β).

The proof of Theorem 2 is provided in Appendix A.2, A.3, and A.4. We offer two key remarks: (1)
As αv → ∞, a Taylor expansion of the gradient ∂loss/∂αv suggests that dαv/dt ∝ exp(−2αv), which
leads to the logarithmic growth ofαv . Similar logarithmic growth has been reported in the literature
under different setups [52, 71]; (2) The stable phase described in Theorem 2(c) seems to imply that
the system can remain stable without attention sinks, as it does not require α to be large. However,
in practice, models trained on the BB task tend to converge to a stable phase where α is relatively
large.
The formation of attention sinks andvalue-state drains. Below,we explain howTheorem2 reveals
the mutual reinforcement mechanism behind the formation of attention sinks and value-state drains.
(a) When the value states of the ⟨s⟩ token are small and constant,β = β·1, Theorem2(a) shows that

the attention logits on the ⟨s⟩ token α(t) ≈ α(t)1 for α(t) = (1/2) log t, grow logarithmically.
This demonstrates that the presence of a small constant value state (β = β · 1) reinforces the
formation of attention sinks (α(t) ≈ α(t) · 1 for α(t) increases logarithmically).

(b) When the attention logits of the ⟨s⟩ token are large and constant, α = α · 1 for α → ∞, Theo-
rem 2(b) shows that the value states of the ⟨s⟩ token β(t) → β(0) · 1. Starting with a random
Gaussian initialization for β(0), we have ∥β(t)∥2 ≈ ∥β(0) · 1∥2 ≈ ∥β(0)∥2/

√
V , where V is

the vocabulary size, typically large. This indicates that attention sinks (α = α · 1 for large α)
reinforces the formation of value-state drains (β(t) → β · 1 for small β).

3We note that [48] makes a similar simplification in analyzing induction heads.
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(c) In the later stages of the dynamics, both the attention logits and value states of the ⟨s⟩ token
stabilize, as described in 2(c). The attention logits remain constant at α = α · 1 with large α,
while the value states become small, β = [β(0) + e−αB] · 1− e−α ·M ◦ ξ.

Based on these theoretical insights, we summarize the dynamical mechanism underlying attention
sinks and value-state drains: For any attention head given a specific prompt, if the model can ac-
curately predict the next token without using the attention head, but adding any value state from
previous tokens—except for certain special tokens—worsens the prediction, the attention head will
become dormant, forming an attention sink at those special tokens. This phenomenon is induced
by the mutual reinforcement mechanism, as described below:

Claim 2 (Mutual reinforcement mechanism). Dynamically, attention
sinks and value-state drains arise through mutual reinforcement:
(a) The SoftMax mechanism shifts attention weights towards tokens that

exhibit value-state drains, reinforcing these tokens as attention sinks.
(b) Attention sinks on these extreme tokens further suppress their value

states, reinforcing their role as value-state drains.
(c) The mutual reinforcement stabilizes when all non-trigger tokens have

large, nearly identical attention logits on the extreme token.
Due to the causal mask, the training dynamics favor the ⟨s⟩ token as the
extreme token.

α + (1−α)β=Attention Head Output

Attention sink
α → 1

Value state drain 
β → 0

v
|v | > 0with

Figure 6: Mutual reinforce-
ment mechanism

Experimental verification of the quantitative prediction. Revisiting Figure 4b, which illustrates
the dynamics of a single-layer transformermodel trainedwithAdamon the BB task, we observe that
∆logit·,⟨s⟩ exhibits growth rates consistent with Theorem 2. In this context, ∆logit·,⟨s⟩ corresponds
to α, as all other attention logits are assumed to be zero under the assumptions of Theorem 2. When
plotted on a logarithmic scale, the ∆logit·,⟨s⟩ curve grows approximately linearly between 1,000
and 10,000 steps, then accelerates before stabilizing around 100,000 steps. Meanwhile, the norm of
the value state ∥Val⟨s⟩∥2 decreases monotonically. The simultaneous increase in attention weights
and decrease in value-state norms demonstrate the mutual reinforcement mechanism during the
training process.
To further validate that Theorem 2 accurately captures the dynamics of the original model, we con-
structed a simplifiedmodel based on Eq. (6), (7), and (8), and trained the parameters (α ∈ RV ,β ∈
RV , ξ ∈ RV , λ ∈ R) using Adam. The resulting training curves closely resemble those of the one-
layer transformer, also displaying the mutual reinforcement mechanism. A detailed description of
the experiment can be found in Appendix C.3.
Generality of the theoretical prediction. Although Theorem 2 focuses on a specific BB task with a
simplified architecture and loss function, the underlying principles are broadly applicable to more
general settings. In particular, we expect that the formation of extreme tokens in LLMs follows a
similar mutual reinforcement mechanism. Indeed, Theorem 2 is essentially based on the following
two key assumptions: (1) even with a specific attention head attn zeroed out, the LLM can still
accurately predict the next token, implying that the attention head is better off dormant; and (2) for
the attention head attn, value states of previous tokens—except for certain special tokens—remain
relevant for specific tasks and therefore do not vanish. Under these assumptions, we anticipate the
formation of attention sinks and value-state drains for the attention head attn and such special
tokens. In Section 3, we explore how these phenomena are formed during the training dynamics of
LLMs, finding that the empirical results align with the theory.
Replacing SoftMax by ReLU attention removes attention sinks and value-state drains. As a con-
sequence of our theory, we predict that training using ReLU attention in place of SoftMax attention
will prevent the mutual reinforcement mechanism. Without SoftMax, the training dynamics no
longer push the attention weights toward the ⟨s⟩ token, which remains zero throughout training.
In the absence of attention sinks, the dynamics no longer push down the value state norm, and the
mutual reinforcement mechanism breaks. Figure 7a presents the training dynamics on the BB task
using ReLU instead of SoftMax attention, showing that both the Bigram and Backcopy risk converge
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(a) ReLU attention
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Figure 7: Left (a): The training dynamics of the single-layer ReLU attention transformer on the BB task. Mid-
dle (b): The intervention results on the attn+mlp+attn+mlp+mlp architecture. The attention sink and value-
state peak of the middle attn layer disappear after zeroing out attn+ mlp of layer 0. Right (c): The evolution
of massive norms in a three-layer transformer trained with Adam, SGD, and using a ReLU attention trans-
former. Notably, only the three-layer model with Softax attention trained using Adam results in the formation
of residual-state peaks.

to the Bayes risk after 200 training steps, but the attention logits of ⟨s⟩ do not increase, and the value
state does not shrink, confirming our prediction.
2.3. The emergence of residual-state peaks
In this section, we experimentally investigate the residual-state peaks phenomenon. We observe
that no residual-state peaks occur in the single-layer transformer trained on the BB task. To explore
this further, we train slightly deeper transformers on the BB task and track the residual state norm
after layer 0. We observe that two-layer models do not exhibit residual-state peaks, while models
with three or more layers do. Additional experimental results are provided in Appendix B.1 and
B.2.
Massive residual state at layer 0 output induces attention sinks and value-state drains in themid-
dle layer. To investigate the relationship between massive residual states and attention sinks, we
train on the BB task using the “attn+mlp+attn+mlp+mlp” model, which is the minimal structure
that shows the massive residual states phenomena. We perform intervention by analyzing how the
model’s behavior changes after zeroing out layer 0 (the first “attn+mlp” block). Before and after
zeroing, we compute the difference in ∥Res⟨s⟩∥ and Meanv[∥Resv∥] at the layer 0 output, and com-
pute logit·,⟨s⟩ and ∥Val⟨s⟩∥ in the middle layer. After zeroing out, the residual state norm becomes
non-massive, and attention logits and the value state norm return to a normal level. This confirms
that the residual-state peak contributes to the attention sink and value-state-drain phenomena in
the middle layer of pre-trained transformers.
Linear growth of residual-state norm with Adam training. Figure 7c shows the residual-state
norms of the ⟨s⟩ token at the layer 0 output of three-layer transformers during pre-training on the
BB task. The results indicate that training the transformer with Adam leads to a linear increase in
residual state norms.
Switching from Adam to SGD and switching from SoftMax to ReLU attention eliminates the
residual-state peaks. Figure 7c also illustrates the dynamics of residual-state norms in other train-
ing setups. When switching the training algorithm from Adam to SGD, attention sinks remain,
but residual-state peaks disappear. Similarly, switching to ReLU attention, which lacks the mutual
reinforcement mechanism, also eliminates residual-state peaks. These findings highlight the de-
pendence of residual-state peaks on SoftMax attention and the Adam optimization algorithm. We
propose a potential explanation of this phenomenon in Appendix B.3.

3. Extreme-token Phenomena in pretrained LLMs
In this section, we investigate extreme-token phenomena in open-source pretrained LLMs. In Sec-
tion 3.1, we analyze the static behavior of these phenomena in Llama 2-7B-Base [55], confirming
the existence of the active-dormant mechanism in LLMs. Notably, we identify a specific head that is
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(a) Attention weights for GitHub/Wikipedia data (b) Zero-out-head intervention outcomes
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Figure 8: Active-dormant mechanism of Layer 16 Head 25 (L16H25) of Llama 2-7B-Base. We observe that
L16H25 is active on GitHub data and dormant on Wikipedia data, both sourced from RedPajama-1T [10]. Left
(a): Attention weights of L16H25, prompted by three randomly selected samples from each domain. Right
(b): Results of an intervention study showing the change in cross-entropy loss when the output of L16H25
(specifically, its value states) is set to zero across sequences in both domains. The findings indicate that the
model’s performance for GitHub data, measured by cross-entropy loss, strongly relies on the output of this
attention head.

active on GitHub samples but dormant on Wikipedia samples. In Section 3.2, we examine the dy-
namic behavior of extreme-token phenomena during the pretraining of OLMo-7B [23]. We show
that the attention logits, value states norm, and residual states norm of the sink token(s) in OLMo
reflect behavior similar to that of the simpler BB model. Specifically, the simultaneous formation of
attention sinks and value-state drains gives evidence for the mutual reinforcement mechanism.

3.1. Active-dormant mechanism in LLMs
Our study of the BB model leads to the following prediction with respect to the extreme-token
phenomena, which we hypothesize also applies to LLMs:
Attention heads are controlled by an active-dormant mechanism (cf. Claim 1). The presence of attention

sinks and value-state drains indicates that an attention head is in a dormant phase.

This hypothesis suggests that in LLMs, whether an attention head becomes a sink depends on the
context. Specifically, the attention head may become entirely irrelevant for selecting the next tokens
in certain contexts or tasks, but not in others. When this irrelevance occurs, the attention head
transitions into an attention sink. This hypothesis was confirmed in small transformers and the BB
task, as demonstrated in Section 2.
Accordingly, we aim to identify instances of attention heads in pretrained LLMs that exhibit this
active-dormant behavior, i.e., heads that are dormant in some domains but active in others. In
Figure 8, we display a particular attention head—Layer 16 Head 25 (L16H25) of Llama 2-7B-Base
[55]—which demonstrates a clear active-dormant distinction across two distinct contexts (e.g., to-
kens from theGitHub subset versus theWikipedia subset of RedPajama [10]). Whilemany attention
heads show similar context-dependent behavior (see Appendix D), we focus on this one because
the conditions for its activation are straightforward and interpretable, whereas other heads may
have more nuanced criteria.
Figure 8a shows the attentionmaps of L16H25 on samples fromboth theGitHub andWikipedia sub-
sets of RedPajama. It demonstrates that L16H26 is dormant (i.e., an attention sink) on samples from
Wikipedia, which resemble prose, and active (i.e., not an attention sink) on samples from GitHub,
which resemble code. Additionally, Figure 8b compares the loss difference when L16H25 is ze-
roed out for prompts from both domains. The results show that zeroing out this head significantly
decreases model performance on GitHub sequences, while having minimal impact on Wikipedia
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(a) Attention sink dynamics
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(b) Value state dynamics
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(c) Residual state dynamics
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Figure 9: Attention weights, value state norms, and residual state norms of Layer 24 during the training
dynamics of OLMo. Left (a): The total attention mass on extreme tokens ⟨s⟩ and “Delim”(⟨period⟩) at Layer
24, averaged across all attention heads. The horizontal axis is logarithmically scaled after step 10k. We ob-
serve a rapid increase followed by stabilization within the range [0.9, 1] for the rest of training, consistent with
our predictions. Middle (b): The value state norms of each token at Layer 24 during training, averaged over
all heads. The horizontal axis is logarithmically scaled after step 10k. Initially, the value states of all tokens
shrink, eventually converging, while the value states of the extreme tokens shrink to significantly lower levels
compared to other tokens. Figure (a) and (b) coincide with the trends in Figure 4b under the BB task. Right
(c): The residual state norms of each token at Layer 24 during training. The residual state norm of ⟨s⟩ increases
linearly in magnitude throughout training, matching Figure 7c in the BB task.

sequences. This observation also confirms the head behaves as dormant in some contexts and ac-
tive in others—in some contexts, removing this head has no effect on model performance, while in
others, its removal causes significant performance drops.

3.2. Extreme-token phenomena along training dynamics of LLMs

(a) Logit dynamics
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(b) Sink-logits concentration
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Figure 10: Attention logits of Layer 24. Left (a): Attention logits difference of all tokens’ query states against
⟨s⟩’s key state during training. The difference in attention logits is computed as ∆logit·,⟨s⟩ = Qry⊤· Key⟨s⟩ −
Mean[Qry⊤· KeyOthers]. The horizontal axis is logarithmically scaled after step 10k. We observe that ∆logit·,⟨s⟩
increases approximately in logarithmic scale during training steps 10k to 100k, matching the decreasing phase
of the value states in Figure 9b. Right (b): Attention logits of the last token’s query state against all token’s
key states for pretrained OLMo. In this experiment, we generate 128 randomly sampled test tokens with IDs
from 100 to 50000 in the OLMo tokenizer. We append each token separately to the test phrase “Summer is
warm⟨period⟩Winter is cold⟨period⟩”, creating 128 different samples, which we feed to the LLM to examine
the model behavior. We plot the distribution of (un-shifted) attention logits logit·,v = Qry⊤testKeyv across
all heads at Layer 24 and all test tokens. The distribution of logit·,⟨s⟩ and logit·,Delim have considerably small
variance compared with other logits, confirming the sink-logits concentration phenomenon.

Our study of the BB model leads to the following prediction about the dynamical behavior of the
extreme-token phenomena, which we hypothesize also applies to LLMs:
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Attention heads undergo an attention-increasing and value-state-shrinking phase driven by the mutual
reinforcement mechanism (cf. Claim 2). This is followed by a stable phase, where all non-trigger tokens have
large, nearly identical attention logits on the extreme token. Simultaneously, the residual state norms of the

extreme tokens increase linearly during pretraining.

We confirm these predictions below. To observe the training dynamics of a large-scale LLM, we
use the setup of OLMo-7B-0424 [23] (henceforth just referred to as OLMo), which provides open-
sourced weights at various stages of their training.4 For our analysis, we inspect OLMo at multiple
checkpoints: every 500 steps for the first 10,000 steps, then at 25,000 steps, 50,000 steps, and every
50,000 steps up to 449,000 steps (approximately the end of their training).5 The input we use for this
analysis is again “Summer is warm⟨period⟩ Winter is cold⟨period⟩”6 In this prompt, the “Delim”
token, namely “⟨period⟩”, also becomes a sink token along with ⟨s⟩. We believe this occurs be-
cause the period is not semantically meaningful and is not useful for predicting future tokens (cf.
Appendix G.2)
Figure 9 illustrates the dynamics of attention weights, value state norms, and the residual state
norms for attention heads in Layer 24 of OLMo. The figure shows that the average attention on ex-
treme tokens (⟨s⟩ and Delim) increases rapidly at the beginning of training before stablizing, while
the value state norms of these extreme tokens decrease during training steps 10k-100k. The synchro-
nized evolution of attention weights and value state norms aligns with the prediction of the mutual
reinforcement mechanism. Additionally, the residual states of ⟨s⟩ increase linearly, while those of
other tokens converge to a small number. Figure 10 provides a more detailed examination of the at-
tention logits in Layer 24 of OLMo. Figure 10a presents the dynamics of the difference in attention
logits, showing that ∆logit·,⟨s⟩ increase during training steps 10k-100k, matching the decreasing
phase of the value states. Figure 10b also demonstrates the sink-logits concentration phenomenon.
Specifically, it shows that the sink logits will eventually converge to a stable phase, in which logits
corresponding to the key of the sink token and queries of all non-sink tokens are nearly identical.
These findings coincide with the dynamical behavior predicted by the BB model, as outlined in
Theorem 2(c) and corroborated by the experimental results in Figure 4.

4. Conclusions
In this work, we investigated the extreme-token phenomena, specifically attention sinks, value-state
drains, and residual-state peaks. We analyzed simple transformers trained on the Bigram-Backcopy
(BB) task, both theoretically and empirically, demonstrating that these models exhibit the same
extreme-token phenomena observed in large language models (LLMs). Building on the insights
from the BB task, we made several detailed predictions about the behavior of extreme-token phe-
nomena in LLMs. In particular, we identified the active-dormant mechanism governing attention
heads in both the BBmodel and LLMs, with attention sinks and value-state drains serving as indica-
tors of dormant phase, and a mutual reinforcement mechanism that induces these phenomena during
pretraining. Using insights from these mechanisms, we applied simple modifications to the model
architecture and optimization procedure, effectively mitigating the extreme-token phenomena in
the BB model. Overall, our work uncovers the underlying mechanisms of extreme-token phenom-
ena and suggests potential pathways to mitigate these issues during LLM pretraining.
We believe the most compelling direction for future work is to explore whether eliminating the
extreme-token phenomena is essential or beneficial for building powerful transformer-based LLMs.
While it is possible to mitigate these phenomena through simple modifications to the architecture

4We did not analyze Llama for dynamics, as they do not provide open-source intermediate checkpoints
along pretraining.

5For the single 150,000-step checkpoint, we observed that its statistics were outliers, which we hypothesize
is due to a system failure. We address this by using the average of nearby checkpoints to represent its statistics.

6Note that OLMo does not have a specific reserved token to denote the beginning of a string, but attention
sinks still form in the majority of heads. In these heads, the initial token behaves as an attention sink, so in this
section we denote it by ⟨s⟩ for consistency with Section 2 (cf. the remark at the end of Section 1.2) We discuss
this further in Appendix G.2.

14



or training algorithms, it remains unclear whether their elimination significantly improves down-
stream tasks such as inference and quantization. Given the resource-intensive nature of pretraining
large-scale LLMs, we anticipate that pretraining a model at the scale of GPT-2 could both provide
valuable insight into this issue and help point the way to architectures that can reduce the pretrain-
ing burden.
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A. Proofs of Theorem 1 and 2
We introduce new notations that are frequently used in the proofs. Recall that in Eq. (11), we used
{πv}v∈V to denote the stable distribution across all tokens. We further define the stable distribution
excluding trigger tokens as follows:

π̃ ∈ RV , π̃i = πi1{i ∈ V \ T }. (15)
Section 2.2 defines the bigram transition probability in the Bigram-Backcopy task as pvk = P(k | v).
We further define the bigram transition probability matrix as

P =

p11 . . . p1V
... . . . ...

pV 1 . . . pV V

 =

p⊤
1...

p⊤
V

 . (16)

Given a token v, define the predicted probability at token v as the logit output passed through the
softmax activation. LetH = [⟨s⟩; v1:n−1; v]. Using the form ofTF(H)n defined in Eq. (9), we denote

lv = SoftMax(TF(H)n) = (lv1, . . . , lvV ), with lvi =
pvi exp

[
Miξi+eαβi

eα+M

]
∑V

k=1 pvk exp
[
Mkξk+eαβk

eα+M

] . (17)

Similar to Eq. (16), we define the full output probability matrix as

L =

 l11 . . . l1V
... . . . ...

lV 1 . . . lV V

 =

l⊤1...
l⊤V

 . (18)

Using the notation lv and π̃v , we can rewrite the loss functions defined in Eq. (10) and Eq. (11) as
follows:

lossv(αv,β) = −
V∑

k=1

pvk log lvk, lossv(α,β) =

V∑
v=1

π̃v lossv(αv,β). (19)

We always have that∑k pvk = 1 and∑k lvk = 1. The total variation norm and KL-divergence are
then defined as:

∥pv − lv∥TV =
∑
k

|pvk − lvk|, KL(pv || lv) = −
∑
k

pvk log(lvk/pvk). (20)

Given any vector u = [u1; . . . ;ud], define the corresponding diagonal matrix as

diag(u) =


u1 0 . . . 0
... . . . ...
... . . . ...
0 . . . 0 ud

 .

Given any pv defined in Eq. (16), denote
GP

v = diag(pv)− pvp
⊤
v , GL

v = diag(lv)− lvl
⊤
v . (21)

We now present technical lemmas concerning GP
v andGl

v .
Lemma A.1. The matrices GP

v ∈ RV×V and GL
v ∈ RV×V are positive semi-definite for any v ∈ V .

Proof of Lemma A.1. Since∑V
k=1 pvk = 1 and∑V

k=1 lvk = 1 for any v, we have that
(GP

v )ii = pi − p2i = pi(
∑
k ̸=i

pk) ≥
∑
k ̸=i

|(GP
v )ik|,

(GL
v )ii = li − l2i = li(

∑
k ̸=i

lk) ≥
∑
k ̸=i

|(GL
v )ik|.

This shows that both GP
v and GL

v are diagonally dominant matrices. By Corollary 6.2.27 in Horn
and Johnson [29], they are positive semi-definite.
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Lemma A.2. Suppose that π̃v > 0 for any v ∈ V \ T . For any η ∈ RV with η ⊥ 1, there exists ω > 0 such
that

η⊤
[ V∑
k=1

π̃kG
P
k

]
η ≥ ω∥η∥22.

Proof of Lemma A.2. Denote the null spaces of GP
v for v ∈ V as Sv. We solve for each Sv. Setting

GP
v η = 0 gives that

[pvj − pvj(
∑
k

pvk)]ηj = 0 for any j ∈ V .

If pvj ̸= 0, we divide each side with pvj and get that ηj =
∑

k pvkηk. As a result, we get that

Sv = {η | ηj is constant for pvj ̸= 0}.

Since all πk > 0, for any k ∈ V \ T , there is v ∈ V \ T such that pvk > 0, we get that

∩v∈V\T Sv = {c · 1 | c ∈ R}.

Since η ⊥ 1, we get that η ⊥ ∩v∈V\T Sv. We denote the minimal non-zero eigenvalues of GL
v for

v ∈ V \ T as λ. We get that

η⊤
[ V∑
k=1

π̃kG
P
k

]
η ≥

[
min

v∈V\T
π̃v

]
λ∥η∥22.

Setting ω = λ ·minv∈V\T π̃v > 0, this proves Lemma A.2.

Lemma A.3. Given ω defined in Lemma A.2, suppose that

max
v,k

|pvk − lvk| = δ ≤ min {ω/(6V ), 1}. (22)

For any η ∈ RV with η ⊥ 1, we have that

η⊤
[ V∑
k=1

π̃kG
L
k

]
η ≥ ω

2
∥η∥22.

Proof of Lemma A.3. Denote δ = maxv,k |pvk − lvk|. Suppose that δ ≤ 1. For any k ∈ V \ T , we can
verify that ∣∣∣(GP

k )ij − (GL
k )ij

∣∣∣ ≤ 3δ,

for any i, j ∈ [V ]. We denote

E =

V∑
k=1

π̃kG
P
k −

V∑
k=1

π̃kG
L
k .

Therefore, |Eij | ≤ 3δ for any i, j ∈ [V ]. This means that

η⊤Eη ≤ ∥E∥2∥η∥22 ≤ ∥E∥F ∥η∥22 ≤ V · 3δ · ∥η∥22.

As a result, when δ ≤ min {ω/(6V ), 1}, we get that

η⊤
[ V∑
k=1

π̃kG
L
k

]
η ≥ ω∥η∥22 − η⊤Eη ≥ ω

2
∥η∥22.

This proves Lemma A.3.
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A.1. Proof of Theorem 1
We denote the hidden dimension as d and the sequence length asN . Recall that the token v at posi-
tion i is encoded as embi(v). We begin with the assumption regarding the transformer’s embedding
dimension:
Assumption A. We have {emb0(⟨s⟩)}∪{embi(v)}i∈{0}∪[N−1],v∈V ⊆ Rd, where the embedding dimension
d ≥ V N + 1.

Assumption A requires a large embedding dimension d ≥ V N + 1. This assumption is used to
ensure that there are enough orthonormal bases in the embedding space. Given the fact that there
are O(exp(d)) approximately linearly independent vectors for large d [57], it is possible to relax the
assumption to be d ≫ log(V N). However, since Assumption A pertains only to the construction of
λ for trigger tokens and is unrelated to Theorem 2, we adopt it to simplify the proof of Theorem 1.
Theorem A.4 (Formal statement of Theorem 1). Let Assumption A hold. For any parameters
(α ∈ RV ,β ∈ RV , ξ ∈ RV , λ ∈ R), there exists a one-layer transformer (5) with weight matrices
(Q,K,V,W1,W2) such that Eq. (6), (7), and (8) hold. Consider the Bigram-Backcopy task, where given
an input H = [⟨s⟩; v1:n−1, v], the ground-truth transition gives P(v′ | H) = pvv′ for v ∈ V \ T , and
P(v′ | H) = 1{v′ = vn−1} for v ∈ T . There exists a sequenceminv∈V αv → ∞,minv∈V ξv → ∞, λ → ∞,
and β = 0 such that this transformer generates the ground-truth transition in the limit, i.e.,

SoftMax(TF(H)n) → P( · |H). (23)

Proof of Theorem A.4.

Step 1. Construction for the attention head. We let {emb0(⟨s⟩)}∪{embi(v)}i∈{0}∪[N−1],v∈V∪{ev}v∈V
to be a set of orthonormal basis inRd, and denote {ηi}i∈{0}∪[N−1] ⊆ Rd by a set of orthonormal basis
in Rd (the existence is guaranteed by Assumption A). Therefore, for any parameters (α ∈ RV ,β ∈
RV , ξ ∈ RV , λ ∈ R), there exists a query matrix Q ∈ Rd×N such that

Q · embi(v) = ληi−1 for i > 1, v ∈ T ,

Q · embi(v) = αvη0 for i > 0, v ∈ V \ T .
(24)

Meanwhile, there is a key matrix K ∈ Rd×N such that
K · embi(v) = ηi for i > 0, v ∈ V,
K · emb0(⟨s⟩) = η0.

(25)

Denote {ev}v∈V as an orthonormal basis in RV . There is a matrix V ∈ Rd×V such that
V · embi(v) = ξvev ∈ RV , with ξv = 0 for v ∈ T , and ξv ≥ 0 for v ∈ V \ T .
V · emb0(⟨s⟩) = β ∈ RV .

(26)

This construction matches Eq. (6) and (7).
As a result, for vn ∈ V \ T , by Eq. (5), denoting H = [⟨s⟩; v1:n−1; vn] and attn(H)n to be the last
column of attn(H), we have

attn(H)n =

n∑
i=0

exp[embn(vn)
⊤Q⊤K · embi(vi)]V · embi(vi)∑n

j=0 exp[embn(vn)
⊤Q⊤K · embj(vj)]

=
exp[αvnη

⊤
0 η0] · β +

∑n
i=1

{
exp[αvnη

⊤
0 ηi]ξvi · evi

}
exp[αvnη

⊤
0 η0] +

∑n
j=1 exp[αvnη

⊤
0 ηj ]

=
eαvn

eαvn + n
· β +

n∑
i=1

1

eαvn + n
· ξvievi .

For vn ∈ T , we have

attn(H)n =

n∑
i=0

exp[embn(vn)
⊤Q⊤K · embi(vi)]V · embi(vi)∑n

j=0 exp[embn(vn)
⊤Q⊤K · embj(vj)]
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=
exp[λη⊤

n−1η0] · β +
∑n

i=1

{
exp[λη⊤

n−1ηi]ξvi · evi
}

exp[λη⊤
n−1η0] +

∑n
j=1 exp[λη

⊤
n−1ηj ]

=
1

eλ + n
· β +

∑
i ̸=n−1

1

eλ + n
· ξvievi +

eλ

eλ + n
· ξvn−1

evn−1
.

Step 2. Construction for the MLP layer. Further, define the weights for the mlp layer such that
W1 · embi(v) = ev ∈ RV , W2ev = log pv · 1{v ̸∈ T } ∈ RV for i ∈ [N ], v ∈ V, (27)

where {ev} is the eorthonormal basis in RV and pv ∈ RV is defined in Eq. (16). As a result,
mlp(H)n = W2ReLU(W1embn(v)) = W2ev = log pv · 1{v /∈ T }. This matches the Eq. (8).
Step 3. The output of the transformer. By Eq. (5) again, on non-trigger token v ∈ V \ T , the
transformer output gives that

TF(H)n = mlp(embn(v)) + attn(H)n

= log pv +
eαvn

eαvn + n
· β +

n∑
i=0

1

eαvn + n
· ξvievi .

On trigger token v ∈ T , the transformer output gives that
TF(H)n = mlp(embn(v)) + attn(H)n

=
1

eλ + n
· β +

∑
i ̸=n−1

1

eλ + n
· ξvievi +

eλ

eλ + n
· ξvn−1

evn−1
.

There exists a sequence minv∈V αv → ∞,minv∈V ξv → ∞, λ → ∞, and β = 0, we get that
SoftMax[TF(H)n] → pvn

for n > 0, vn ∈ V \ T ,

SoftMax[TF(H)n] → (1{v = vn−1})v∈V for n > 0, vn ∈ T .

This proves Eq. (23), indicating that the transformer output matches the ground truth transition.
This finishes the proof of Theorem A.4.

A.2. Proof of Theorem 2(c): Stable phase
We first state Lemma A.5 and Proposition A.6 that are used to prove Theorem 2(c). Lemma A.5
computes the gradients of lik as defined in Eq. (17).
Lemma A.5. Given lik defined in Eq. (17), for any i, k, v, and any value of αv and βv , we have that

∂lik
∂αv

=
1{i = v}likeαi

(eαi +M)2

[
Mβk −Mkξk −

V∑
j=1

lij(Mβj −Mjξj)
]
,

∂lik
∂βv

=
eαi

eαi +M
[lik1{k = v} − likliv].

Furthermore, we have
V∑

k=1

∂lik
∂αv

= 0 for any i, v, α, and β,

V∑
v=1

∂lik
∂βv

= 0 for any i, k, α, and β.

Proof of Lemma A.5. We repeatedly use the following two facts:

∂
{
exp

[
Mkξk+eαiβk

eαi+M

]}
∂αv

=
1{i = v}eαi(Mβk −Mkξk)

(eαi +M)2
exp

[Mkξk + eαiβk

eαi +M

]
,
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∂
{
exp

[
Mkξk+eαiβk

eαi+M

]}
∂βv

=
1{k = v}eαi

eαi +M
exp

[Mkξk + eαiβk

eαi +M

]
.

When i ̸= v, lik has zero gradients with respect to αv . When i = v, we have that

∂lvk
∂αv

= lvke
αv

[Mβk −Mkξk
(eαv +M)2

]
−

lvk
∑V

i=1 pvie
αv

[
Mβi−Miξi
(eαv+M)2

]
exp

[
Miξi+eαvβi

eαv+M

]
∑V

i=1 pvi exp
[
Miξi+eαvβi

eαv+M

]
=

eαv

(eαv +M)2

{
lvk[Mβk −Mkξk]− lvk

V∑
j=1

lvj(Mβj −Mjξj)
}
,

and

∂lik
∂βv

=
[ eαi

eαi +M

]
lik1{k = v} −

[
eαi

eαi+M

]
piv exp

[
Mvξv+eαiβv

eαi+M

]
pik exp

[
Mkξk+eαiβk

eαi+M

]
(∑V

j=1 pij exp
[
Mjξj+eαiβj

eαi+M

])2
=
[ eαi

eαi +M

]
[lik1{k = v} − likliv].

We can verify that
V∑

k=1

∂lik
∂αv

=
eαv

(eαv +M)2

V∑
k=1

{
lvk[Mβk −Mkξk]− lvk

V∑
j=1

lvj(Mαj −Mjξj)
}

=
eαv

(eαv +M)2

{ V∑
k=1

lvk[Mβk −Mkξk]−
V∑

j=1

lvj(Mαj −Mjξj)
}

= 0,

and
V∑

v=1

∂lik
∂βv

=
[ eαi

eαi +M

] V∑
v=1

[lik1{k = v} − likliv]

=
[ eαi

eαi +M

]
[lik − lik]

= 0.

This finishes the proof of Lemma A.5.

PropositionA.6 computes the gradient of losswith respect toα andβ, giving theODEof the gradient
flow.
Proposition A.6. Consider the gradient flow of optimizing loss(α,β) given by

α̇(t) = −∇αloss(α(t),β(t)), β̇(t) = −∇β loss(α(t),β(t)). (28)
Simplifying the dynamics using Lemma A.5 gives that

α̇v(t) =
π̃ve

αv

(eαv +M)2

V∑
i=1

(pvi − lvi)(Mβi −Miξi),

β̇v(t) =

V∑
k=1

{ π̃ke
αk [pkv − lkv]

eαk +M

}
.

Proof of Proposition A.6. Taking the derivative of loss(α,β) gives that

∂loss(α,β)

∂αv
= π̃v

V∑
k=1

pvk · −1

lvi
· ∂lvi
∂αv
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=
π̃ve

αv

(eαv +M)2

{ V∑
i=1

lvi[Mβi −Miξi]−
V∑

k=1

pvk[Mβk −Mkξk]
}

=
π̃ve

αv

(eαv +M)2

V∑
k=1

{
[lvk − pvk][Mβk −Mkξk]

}
.

Similarly, we have that

∂loss(α,β)

∂βv
=

V∑
j=1

π̃j

V∑
k=1

pjk

{ eαj ljv
eαj +M

− eαj1{k = v}
eαj +M

}

=

V∑
j=1

{ π̃je
αj [ljv − pjv]

eαj +M

}
.

Plug them in Eq. (28) proves Proposition A.6.

Theorem A.7 (Restatement the stable phase part in Theorem 2(c)). Assume ξv ≥ 0 for any v, πv > 0
for any v ∈ V , and {Mi · ξi}i∈V are not all equal. Consider the gradient flow over the variables (α,β), i.e.,
(α̇(t), β̇(t)) = −∇α,β loss(α(t),β(t)). Any vector of the following form

α⋆ = α · 1, β⋆ = c · 1− e−α ·M ◦ ξ, α, c ∈ R (29)
is a stationary point. These are all global minimizers of loss(α,β).

Proof of Theorem A.7. When α = α⋆ and β = β⋆, given lvi defined in Eq. (17) with any v and i, we
have that

lvi =
pvi exp

[
Miξi+eαβi

eα+M

]
∑V

k=1 pvk exp
[
Mkξk+eαβk

eα+M

]
=

pvi exp
[

eαc
eα+M

]
∑V

k=1 pvk exp
[

eαc
eα+M

]
= pvi.

Plug lvi into ∂loss(α,β)/∂α and ∂loss(α,β)/∂β, we have

∂loss(α,β)

∂αv

∣∣∣
α⋆,β⋆

=
π̃ve

αv

(eαv +M)2

V∑
k=1

{
(lvk − pvk)[Wβk −Mkξk]

}
= 0,

∂loss(α,β)

∂βv

∣∣∣
α⋆,β⋆

=

V∑
k=1

{ π̃ke
αk [lkv − pkv]

eαk +M

}
= 0.

This shows that α = α⋆ and β = β⋆ are stationary points. We further compute the second-order
derivative using LemmaA.5. To simplify the notation, we use zk = Wβk−Mkξk and z = [z1, . . . , zV ].
We have that

∂2loss(α,β)

∂αi∂αv

∣∣∣
α⋆,β⋆

= 1{v = i} · π̃ve
α

(eα +M)2

V∑
k=1

{∂lik
∂αv

zk

}
= 1{v = i} · π̃ve

2α

(eα +M)4

{ V∑
k=1

likz
2
k −

[ V∑
k=1

likzk

]2}
= 1{v = i} · π̃ve

2α

(eα +M)4

{ V∑
k=1

pikz
2
k −

[ V∑
k=1

pikzk

]2}
,
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where in the last line, we plugged in lvi = pvi for any v and i. Similarly, we compute the second
order derivatives with respect to αi and βv ,

∂2loss(α,β)

∂αi∂βv

∣∣∣
α⋆,β⋆

=
π̃ie

α

(eα +M)2

V∑
k=1

{∂lik
∂βv

zk

}
=

π̃ie
2α

(eα +M)3

{
pivzk − piv

V∑
k=1

pikzk

}
.

With the same manner, we compute the second order derivatives with respect to βi and βv ,

∂2loss(α,β)

∂βi∂βv

∣∣∣
α⋆,β⋆

=

V∑
k=1

{∂lki
∂βv

π̃ke
α

eα +M

}
=

e2α

(eα +M)2

V∑
k=1

{π̃k[1{v = i}pkv − pkipkv]}.

Combining the above computations gives that

Hessian(loss(α⋆,β⋆)) =

(
∇2

αloss(α,β) ∇α∇β loss(α,β)
∇β∇αloss(α,β) ∇2

αloss(α,β)

)
,

with

∇2
αloss(α,β) =

e2α

(eα +M)4
diag

{
π̃ ◦ [z⊤GP

1 z; . . . ;G
P
V z]
}
,

∇α∇β loss(α,β) =
e2α

(eα +M)3
diag

{
π̃
}
[z⊤GP

1 ; . . . ; z
⊤GP

V ],

∇2
β loss(α,β) =

e2α

(eα +M)2

V∑
k=1

π̃kG
P
k ,

where GP
k is defined in Eq. (21). Furthermore, there exists U such that

UHessian(loss(α⋆,β⋆))U⊤ = Diag-Hessian(loss(α⋆,β⋆)), with

Diag-Hessian(loss(α⋆,β⋆)) =

(
∇2

αloss(α,β) 0

0 e2α

(eα+M)2B

)
,

where the B is given by

B =

V∑
k=1

π̃k

(
GP

k − (z⊤GP
k z)

−1GP
k zz

⊤GP
k

)
.

To prove that B is positive semi-definite, consider any vector η with ∥η∥2 = 1:

η⊤Bη =

V∑
k=1

π̃k

(
η⊤GP

k η − η⊤GP
k zz

⊤GP
k η

z⊤GP
k z

)
.

Since GP
k is positive semi-definite, the Cauchy inequality gives that

z⊤GP
k η ≤

√
z⊤GP

k zη
⊤GP

k η.

As a result, we have that

η⊤Bη ≥
V∑

k=1

π̃k

(
η⊤GP

k η − z⊤GP
k zη

⊤GP
k η

z⊤GP
k z

)
= 0.

This shows thatB is positive semi-definite. Therefore, Hessian(loss(α⋆,β⋆)) is positive semi-definte.
This proves Theorem A.7.

27



A.3. Proof of Theorem 2(a): Attention sinks
Theorem A.8 (Restatement of the attention sink part in Theorem 2(a)). Assume ξv ≥ 0 for any v,
πv > 0 for any v ∈ V , and {Mi · ξi}i∈V are not all equal. Fix β = β · 1 for a constant β, and consider the
gradient flow of the loss function loss(α,β) over α, i.e., α̇(t) = −∇loss(α(t),β). With any initial value
α(0), there exists r(t) with norm uniformly bounded in time, such that

α(t) = 1
2 log t · 1+ r(t). (30)

Proof of Theorem A.8. We separately analyze each entry of α. Focusing on αv , to simplify the nota-
tion, we introduce a random variable φ such that

P(φ = Mkξk) = pvk.

Denote
u = eαv .

Therefore, using Lemma A.6, we get that

du

dt
=

π̃ve
2αv

(eαv +M)2

V∑
i=1

(pvi − lvi)(Mβi −Miξi).

We take in β = c · 1 and expand the expression of du/dt. This gives us that

du

dt
=

π̃vu
2

(u+M)2

∑V
k=1 pvke

Mkξk/(u+M)Mkξk −
∑V

k=1 pvke
Mkξk/(u+M)

∑V
k=1 pvkMkξk∑V

k=1 pvke
Mkξk/(u+M)

=
π̃vu

2

(u+M)2
Cov(e

φ
u+M , φ)

Ee
φ

u+M

.

Since both ex/(u+M) and x are monotonically increasing with respect to x, du/dt ≥ 0. Therefore, u
is monotonically increasing, and we have that

u(t)2

[u(t) +M ]2
≥ u(0)2

[u(0) +M ]2
, Ee

φ
u(t)+M ≤ Ee

φ
u(0)+M .

Meanwhile, the first and second order Taylor expansions of eφ/(u+M) give that

e
φ

u+M = 1 +
θ1(φ)φ

u+M
, e

φ
u+M = 1 +

φ

u+M
+ θ2(φ)

[ φ

u+M

]2
,

where both θ1(φ) and θ2(φ)φ
2 are monotonically increasing functions of φ. We also have the bound

that
θ(φ) ≤

[
exp

{maxk Mkξk
u(0) +M

}
− 1
]
/
[maxk Mkξk
u(0) +M

− 1
]
= Cθ.

Therefore, we get two more inequalities:
Cov(θ1(φ)φ,φ) ≤ CθE(φ2), Cov(θ2(φ)φ

2, φ) ≥ 0.

We bound du/dt and get that
du

dt
≤ π̃vCov(e

φ
u+M , φ)

= π̃vCov(1 +
θ1(φ)φ

u+M
,φ)

≤ π̃vCθE(φ2)

u
.

By solving the ODE, we get that

u ≤
√

2π̃vCθE(φ2)t+ C1.
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To give a lower bound, we have that
du

dt
≥ u(0)2

[u(0) +M ]2
π̃vCov(e

φ
u+M , φ)

Ee
φ

u(0)+M

=
u(0)2

[u(0) +M ]2
π̃v

Ee
φ

u(0)+M

Cov(1 +
φ

u+M
+ θ2(φ)

[ φ

u+M

]2
, φ)

≥ u(0)2

[u(0) +M ]2
π̃v

Ee
φ

u(0)+M

Var(φ)

u+M

≥ u(0)2

[u(0) +M ]2
π̃v

Ee
φ

u(0)+M

· u(0)

u(0) +M
· Var(φ)

u

=
C̃

u
.

Therefore, u ≥
√
C̃t+ C̃2. In conclusion, we have that

yv = log u =
1

2
log t+ rv,

with rv bounded. This proves Theorem A.8.

A.4. Proof of Theorem 2(b): Value-state drains
Theorem A.9 (Restatement of Theorem 2(b)). Assume ξv ≥ 0 for any v, πv > 0 for any v ∈ V ,
and {Mi · ξi}i∈V are not all equal. Fix α = α · 1 for a constant α, define β(0) = V −1[

∑
v βv(0)] and

B = V −1[
∑

v Mvξv]. Consider the gradient flow of the loss function loss(α,β) over β for fixed α, i.e.,
β̇(t) = −∇β loss(α,β(t)). As t → ∞, we have

β(t) → β⋆ = [β(0) + e−αB] · 1− e−α ·M ◦ ξ. (31)

Proof of Theorem A.9. We plug β⋆ into the loss and get that loss(α,β⋆) =
∑V

v=1 π̃v

∑V
k=1 pvk log pvk.

Computing ∇2
β loss(α,β), we get that

∇2
β loss(α,β) =

V∑
k=1

π̃kG
L
k ,

where GL
k is defined in Eq. (21). Lemma A.1 indicates that it is positive semi-definite. Therefore,

we have that
loss(α,β(t)) → loss(α,β⋆) as t → ∞.

We choose δ as defined in Eq.(22). When t is sufficiently large, we have that

loss(α,β(t)) ≤ loss(α,β⋆) +
1

mink∈V\T π̃k
· 2δ2.

The convexity further implies that for any β̃ = θβ(t) + (1− θ)β⋆ (θ ∈ (0, 1)), we have that

loss(α, β̃) ≤ loss(α,β⋆) +
1

mink∈V\T π̃k
· 2δ2.

Denote l̃v = lv(α, β̃) as l evaluated on (α, β̃). Using the definition of the KL-divergence in Eq. (20),
we have that

V∑
v=1

π̃vKL(pv || l̃v) = loss(α,β(t))− loss(α,β⋆) ≤ 1

mink∈V\T π̃k
· 2δ2.

This further implies thatKL(pv || l̃v) ≤ 2δ2 for any v. Using Pinsker’s inequality, we get that
V∑

k=1

|pvk − l̃vk| = ∥pv − lv∥TV ≤
√
KL(pv || l̃v)/2 ≤ δ.
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Therefore, maxv,k

∣∣∣pvk − l̃vk

∣∣∣ ≤ δ. Lemma A.5 gives that ∑V
v=1 β̇v(t) = 0. Therefore,∑V

v=1 βv(t)/V = β(0). The choice of β⋆ guarantees that β⋆
= β(0). This shows that β(t)− β⋆ ⊥ 1.

Using Lemma A.3, there exists ω > 0 such that

(β(t)− β⋆)⊤∇2
β loss(α,β)(β(t)− β⋆) = (β(t)− β⋆)⊤

[ V∑
k=1

π̃kG
L
k

]
(β(t)− β⋆) ≥ ω

2
∥β(t)− β⋆∥22.

Using Taylor expansion, we have that

loss(α,β⋆)− loss(α,β(t)) = −∇β loss(α,β(t))(β(t)− β⋆) +
1

2
(β(t)− β⋆)⊤∇2

β loss(α, β̃)(β(t)− β⋆)

≥ −∇β loss(α,β(t))(β(t)− β⋆) +
ω

2
∥β(t)− β⋆∥22

≥ − 1

2ω
∥∇β loss(α,β(t))∥22.

This shows that loss(α,β(t)) satisfies the Polyak-Lojasiewicz (PL) condition [34] when t is suffi-
ciently large. This proves Theorem A.9.
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B. The Linear Growth of the Residual States
B.1. The minimal model structure to recapitulate residual state peak
We give more details for the claim in Section 2.3, stating that “The residual-state peaks require
a three-layer structure.” Figure 11 presents the difference of residual norms between the ⟨s⟩ token
and others (∥Res⟨s⟩∥−Ev ̸=⟨s⟩[∥Resv∥]), with different combinations of model structures. The 3×TF
and 2× TF + mlp are the architectures that demonstrate clear evidence of residual state peaks.
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Figure 11: Minimal structures to elicit residual state peaks. We use A + B + C to indicate the model with
structure A, B, C in layers 0, 1, and 2, respectively.

B.2. Additional plots for the three-layer transformer trained on BB task
We provide more results to the three layer transformer model trained on the BB task. They provide
supporting evidence for the claim in Section 2.3, stating that “Massive residual states amplify at-
tention sinks and value-state drains in later layers.” Figures 12, 13, and 14 show the extreme token
phenomena in a three-layer transformer. The residual state peaks show different phenomena from
those in LLMs, with the last layer output increasing the residual norms of non-⟨s⟩ tokens. Figure 1
demonstrates that the residual state norms of ⟨s⟩ drop match the magnitudes of other tokens at the
last layer.

(a) Layer 0
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s,t,\nTHtHEtENo?t 0

1
(b) Layer 1

s , t , \nTH t HE t ENo ? t

s,t,\nTHtHEtENo?t 0

1
(c) Layer 2
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s,t,\nTHtHEtENo?t 0

1

Figure 12: Attention weight patterns of three-layer transformer trained on the BB task

B.3. Potential mechanism for linear growth of the residual state peak in
multi-layer models

We give more details for the claim in Section 2.3, stating that “The ReLU attention and changing
Adam to SGD eliminates the residual state peaks” We first state Claim 2.3.
Claim B.1 (Potential mechanism for the formation of residual-state peaks). In the training dynamic
of a multi-layer transformer, if the mutual reinforcement mechanism (cf. Claim 2) occurs in upper layers:
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(c) Layer 2
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Figure 13: Value state norms of three-layer transformer trained on the BB task
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Figure 14: Residual state norms of three-layer transformer trained on the BB task

1. The gradients of Res⟨s⟩ have the same direction (aligning with the null space of value matrices in
upper layers and the Key⟨s⟩) along the training dynamics.

2. The layer-norm operations cause the fast decay of the magnitude of the gradients.

3. Adam induces diminishing gradients to be constant updates, leading to the linear growth for the
norm of the residual state of the extreme token.

To support the claim, we use the simplified model in Section 2, including the residual state norm.
Denote the layer-norm operation as LayerNorm. Heuristically, we can split the residual state Res⟨s⟩
to a summation of two directions.

Res⟨s⟩ = m · η + ε,

where η, ε ∈ RV with ∥η∥2 = ∥ε∥2 = 1, and η⊤ε = ρ > 0. The η corresponds to the direction of
Key⟨s⟩ in the original transformer, and ε corresponds to other directions. Assume that the attention
logit from the token v to the ⟨s⟩ token in layer 1 is given by

logitv,⟨s⟩ = αv = α̃vη
⊤LayerNorm(Res⟨s⟩) = α̃v ·

m+ ρ√
m2 + 2mρ+ 1

. (32)

We assume that the scalars m and α̃ are trainable, quantifying the norm of the residual states and
magnitude of attention sinks. In the loss function lossv as defined in Eq. (10), we replace αv by the
expression as in Eq. (32), so that the loss function becomes a function of (α̃v,β,m), denoted as

l̃ossv(α̃v,β,m) = lossv(αv,β),

We then consider the total loss as the average of the losses on each non-trigger token, weighted by
its proportion in the stable distribution {πv}v∈V , given by

l̃oss(α̃,β,m) =
∑

v∈V\T

πv · l̃ossv(α̃v,β,m). (33)

Proposition B.1. Assume ξv ≥ 0 for any v, {Wkβk}k∈V are not all equal, and ρ > 0. Fix β = 0, and
consider the gradient flow of l̃oss(α̃,β,m) over α̃ and m. With any initial value α̃v(0) > 0 for any v and
m(0) > 0, we have that

ṁ(t) = O
( log t√

tm3

)
.
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Proof of Proposition B.1. The chain rule gives that

˙̃αv(t) = α̇v ·
m+ ρ√

m2 + 2mρ+ 1
,

and
ṁ(t) =

V∑
v=1

{
α̇vα̃v ·

dLayerNorm(Res⟨s⟩)

dt

}
.

With the initial values, ṁ(t) ≥ 0 and ˙̃αv(t) ≥ 0. We have m(t) ≥ 0 for any t. Hence,
˙̃αv ∈ [ρα̇v, α̇v].

Therefore, α̃ = 2−1 log t1+ r̃(t)with r̃(t) uniformly bounded over time. Furthermore, we have that

ṁ(t) =

V∑
v=1

{
α̇vα̃v ·

dLayerNorm(Res⟨s⟩)

dt

}
= O

( log t√
t

)
· 1− ρ2

(m2 + 2mρ+ 1)3/2

= O
( log t√

tm3

)
.

This proves Proposition B.1.

We use simulation to demonstrate the effect of Adam. We train the scalar m using Adam with
gradient dm = log t/[

√
tm3]. We set β1 = 0.9, β2 = 0.999, weight decay= 10−8, and the learning

rate lr = 0.3. Figure 15 presents the training dynamics of m. We observe the linear growth after a
warming-up phase. In contrast, when trained by SGD with learning rate lr = 0.3,m remains small.
The results match transformer models on BB-task as in Figure 7c.
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Figure 15: With the gradient formula in Proposition B.1, Adam causes linear growth of m.
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C. Ablations
C.1. Experimental details
Weprovidemore details for experiments in Section 2. We train transformerswith positional embed-
ding, pre-layer norm, SoftMax activation in attn, and ReLU activation in mlp. We use Adam with
constant learning rate 0.0003, β1 = 0.9, β2 = 0.99, ε = 10−8, and a weight decay of 0.01. We choose
a learning rate of 0.03 for the SGD. In each training step, we resample from the BB task with a batch
size of B = 512 and sequence length N = 256. Unless otherwise specified, the model is trained for
10, 000 steps. Results are consistent across different random seeds.

C.2. Additional attention plots of a 1-layer transformer trained on the BB task
We provide more attention plots of the 1-layer transformer on sequences other than those shown in
Figure 2b. Figure 16 presents more attention-weight heat maps of the one-layer transformer model
trained on the BB task. All attention maps show the attention sink phenomenon. Some non-trigger
tokens present attention patterns other than attention sink. For example, trigger tokens serve as
attention sinks in some inputs in Figure 16c.
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Figure 16: Additional attention plots of the one-layer transformer trained on the Bigram-Backcopy task.

C.3. Statics and dynamics of the simplified model in Theorem 2
We provide simulations that justify our model simplifications in Section 2. We pretrrain the simpli-
fied model structure in Figure 5 with several modifications: (1) we use a trainable mlp-layer with
randomGaussian initialization; (2) we take Val⟨s⟩ = Oβ, withO ∈ RV×V and β ∈ RV . BothO and
β are trainable. Empirically, with a trainable mlp layer but without the trainable matrix O, Val⟨s⟩
becomes a non-negligible bias term instead of converging to zero. Collectively, we update parame-
ters mlp,O, α, β, λ, and ξ using Adam with a learning rate of 0.03. Figure 17 and 18 present statics
and dynamics that match the observations in the one-layer transformer.
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Figure 17: The simplified model structure trained on the BB task.
C.4. The Bigram-Backcopy task without the ⟨s⟩ token.
We train a one-layer transformer on the BB task without the ⟨s⟩ token. Figure 19 shows that the
initial token is not a sink token. Instead, trigger tokens and delimiter tokens seem to become sink
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Figure 18: The dynamics of the simplified model structure trained on the BB task. The horizontal axis is
logarithmatically scaled after steps 400. The excess risk curves match the one-layer transformer. The logit
curve is close to the logarithmic growth predicted in Theorem 2.

tokens. In particular, the observation that delimiter tokens become extremematches the observation
in LLMs that delimiter tokens may also become extreme tokens (cf. Appendix G.2).
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Figure 19: Attention weights and value state norms of a one-layer transformer trained on the BB task without
the ⟨s⟩ token.
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D. More Attention Heads in Dormant and Active Phase
We demonstrate a head with clear active-dormant mechanism in Figure 8. In this section, we present
twomore active-dormant heads in Llama 2-7B-Base, in Figures 20 and 21, which aremore difficult to
interpret than Layer 16 Head 25, but become dormant on some inputs and remain active on others.
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Figure 20: Layer 16 Head 20 of Llama 2-7B-Base. We do not observe difference between the Wikipedia data
and the Github data.
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Figure 21: Layer 16 Head 28 of Llama 2-7B-Base. The head is more dormant on the GitHub data, and more
active on the Wikipedia data.
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E. Fine-Grained Static Mechanisms for Extreme-Token
Phenomena

In this section, we identify more fine-grained static mechanisms for extreme-token phenomena in
Llama 3.1-8B-Base. To do this, we identify circuits for the origin of attention sinks and small value
states. Then, using ablation studies, we study the origin ofmassive norms. Again, we use the generic
test phrase “⟨s⟩ Summer is warm. Winter is cold.”

sSummer is warm. Winter is cold.
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Figure 22: A visualization of attention heads at Layer 0 of Llama 3.1-8B-Base. Notice that many heads have
the attention sink property, even at Layer 0 without any cross-token interaction. As usual, the test phrase is
“Summer is warm. Winter is cold.” The most clear attention sink is Head 31.
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(b) Correlations between key states.
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Figure 23: Correlations between query states and key states at Layer 0 Head 31 of Llama 3.1-8B-Base. We
observe that the key state of ⟨s⟩ have low correlation with other key states, but high correlation with other
query states. Meanwhile, all semantically meaningful (i.e., not delimiter) tokens have highly correlated key
states.

Attention sinks and global contextual semantics. There are many attention heads that exhibit
attention sinks at layer 0, and the ⟨s⟩ token is always the sink token (see Figure 22). From now on
until the end of this section, we restrict our attention to Head 31 of Layer 0, which is an attention
sink. These attention sinks are caused by two linear-algebraic factors, demonstrated in Figure 23.

1. The key state of the ⟨s⟩ token has small dot product with all other key states.
2. The query states of all tokens are nearly orthogonal to the key states of all tokens except the

⟨s⟩ token.
These two facts combine to ensure that the key state of the ⟨s⟩ token is picked out by each query
state, causing the attention sink. Since these query and key states are produced without any cross-
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token interaction, the alignment of different states is caused purely by the token’s global importance
ormeaning imparted via pretraining. The ⟨s⟩ token has no semantic meaning in the context of prose
tokens, so its key state is not aligned with key states of meaningful prose tokens. Also, delimiter
tokens, often considered secondary attention sinks (cf. Appendix G.2), have the most aligned key
states to the key state of the ⟨s⟩ token, and are also the tokens with the least semantic meaning in the
prose context. Thus, we identify that, at least in this restricted example, query state and key state
alignment depends heavily on the contextual semantics of the token.

(a) Value-state drains at Layer 0
Head 31 of Llama 3.1-8B-Base.
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(b) Ablation study on the cause of
the residual state peak in Llama 3.1-8B-Base.
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Figure 24: Left (a): Value-state drains at Layer 0 Head 31 of Llama 3.1-8B-Base. We observe that the value
state associated with ⟨s⟩ is already much smaller than every other semantically meaningful token, and still
smaller than the delimiter tokens in the same sentence. Right (b): Ablation study on the cause of the residual
state peak in Llama 3.1-8B-Base. We perform a series of ablations to understand which components of the
network promote the residual state peaks. We find that ablating either the MLP at layer 0 or the MLP at layer
1 is sufficient to remove the residual state peak phenomenon, while no other layer-level ablation can do it.

Value-state drains. The value states of the ⟨s⟩ token at Layer 0 Head 31 are already near zero, as
demonstrated in Figure 24a. While the delimiter tokens, which are less semantically meaningful in
the prose context, have smaller value states than the rest, they are not as small as the value state of
the ⟨s⟩ token which is guaranteed to not have any semantics.
Residual state peaks. Residual state peaks are caused by the first two layers’ MLPs. In particular,
we perform several ablations, comparing between the residual state norms in a later layer (24) of an
un-edited forward pass versus forward passes where we force the output of either multiple layers,
a single layer, an attention block, or an MLP to be zero (and hence remove its contribution from the
residual stream). As shown in Figure 24b, ablating either Layer 0’s or Layer 1’s MLP is sufficient to
remove the residual state peak. In particular, the second-largest token at Layer 24 in each ablation
(including the original setup) has norm between 29 and 38, so the interventions ensure that all
tokens have similar size.
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F. Extreme-Token Phenomena Over Many Samples
In this section we show that the extreme-token phenomena, and our predictions from the BBmodel,
exhibit in prompts other than “Summer is warm. Winter is cold.” To this end, we use 128 samples
from the Wikipedia dataset, each truncated to 8 tokens. Figure 25 provides aggregate statistics
of extreme-token phenomena in Llama 3.1-8B, which are similar to the fine-grained statistics over a
single prompt from Figure 1. Figure 26 provides aggregate statistics of the development of extreme-
token phenomena over the training dynamics of OLMo, which are similar to the fine-grained statis-
tics over a single prompt from Figure 9 and Figure 10.
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Figure 25: Extreme token phenomena over many samples in Llama 3.1-8B-Base. Left (a): Let A
be the attention weight tensor, of shape (batch size=128, # heads=32, # tokens=8, # tokens=8)
at Layer 24 of Llama 3.1-8B-Base. We calculate the tensor A, of shape
(batch size=128, # heads=32, # tokens=8), which measures the average attention mass on the
key tokens, by the following calculation: Abhj

.
= 1

n−j

∑n
i=j Abhij . We expect, for an attention sink

head h on sample b, that Abh0 is large, and Abhj is small for all j ≥ 1. We indeed see this by plotting
the distribution of A:,:,j for each j, which shows that almost all attention mass is concentrated
on the ⟨s⟩token with high probability, showing the same thing as the individual attention head
analysis in Figure 1 (a). Middle (b), Right (c): We do the same computations as Figure 1 (b) and
(c), averaged over the 128 samples.
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(a) Attention weights (L24).
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(b) Attention logits (L24).
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(c) Value state norms (L24).
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(d) Residual norms (L24).
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Figure 26: Dynamics of extreme-token phenomena in layer 24 over many samples in the training trajectory
of OLMo-7B. For this experiment, as in Section 3.2, for each sample and attention headwe designate two atten-
tion sink tokens as the two tokens with the largest average attention mass Abhj (see Figure 25 for definition).
We then study the dynamics of sink tokens versus non-sink tokens. In these experiments we observe that token
0 is (almost) always a sink token, which we discuss further in Appendix G.2. Top left (a): The average attention
scores Abhj for j as a sink token versus non-sink tokens. We observe that attention sinks form in nearly all
heads and samples: the attention mass on top tokens nearly always sums to 1, and moreover the sinks develop
relatively early in training. Top right (b): We observe that the normalized attention logits of non-sink tokens
initially increase until the formation of an attention sink, and then approximately converge to a stable phase
with similar logits on token 0. Bottom left (c): We observe that the value states of all tokens except the first
sink token (token 0) rapidly converges to steady state, while the first sink token has a much lower value state
norm than all other tokens. Bottom right (d): We observe that the norm of the residual state of token 0 increases
linearly during pretraining, while all other tokens’ residual states do not. Our results mirror and confirm the
single-sample detailed analysis conducted in Section 3.2.
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G. Assorted Caveats
G.1. Multiple attention sinks vs. one attention sink
As we have seen, attention heads in the BB task (Section 2), Llama 2-7B-Base (Section 3.1), and
OLMo (Section 3.2) exhibit multiple sink tokens. That is, when heads in these models are dormant,
they tend to have two sink tokens. For the LLMs in this group, at least on prose data, the ⟨s⟩ token as
well as the initial delimiter token (e.g., representing . or ;) are sink tokens. Meanwhile, Llama-3.1-
8B-Base (Section 3) only ever has one attention sink on prose data, and the ⟨s⟩ token is always the
sink token. Here, we offer a possible explanation of this phenomenon. For the BB task, multiple sink
tokens are necessary to solve the task. For LLMs, we believe this distinctionmay be explained by the
relative proportion of coding data, in which delimiters have a greater semantic meaning than prose,
within the training set. For instance, OLMo was trained on DOLMA [49], which has around 411B
coding tokens. Meanwhile, Llama 2 used at most (2T× 0.08 =) 0.16T coding tokens. Finally, Llama
3.1 used around (15.6T × 0.17 =) 2.6T coding tokens [15]. On top of the raw count being larger,
coding tokens are a larger proportion of the whole pretrtraining dataset for Llama 3.1 compared to
other model families. Thus, during training, the presence of delimiters would not be considered
unhelpful towards next-token prediction, since such delimiters carry plenty of semantics in a wide
variety of cases. Our earlier hypothesis in Section 3.1 proposes that only tokenswhich lack semantics
in almost all cases are made to be sink tokens. This could be a reason for the distinction.

G.2. The role of a fixed ⟨s⟩ token in the Active-Dormant mechanism
Some models, such as OLMo, are not trained with a ⟨s⟩ token. Despite this, the initial token of the
input still frequently develops into a sink token. We can study the effect of positional encoding of
the tokens on the attention sink phenomenon by shuffling the tokens before inputting them into
the transformer, and observing how and why attention sinks form. If we do this with the phrase
“Summer is warm⟨period⟩Winter is cold⟨period⟩” with OLMo, we observe that at Layer 24, there
are many attention sink heads where the first token and first delimiter token share attention mass,
even if the sentence is jumbled up and makes no grammatical sense. This points towards the ob-
servation that without a ⟨s⟩ token, the attention sink formation uses both positional data and, to a
greater degree, the semantic data of each token. We leave studying this effect in greater detail to
future work.

Figure 27: Attention sinks with shuffled input in Layer 24 of OLMo. In order to understand the impact
of positional encodings when there is no ⟨s⟩ token, we shuffle the input of the test string “Summer is warm.
Winter is cold.” in OLMo. We observe that there is still an attention sink on token 0, despite it being a random
token that does not usually start sentences or phrases (since it is uncapitalized). This shows that the positional
embedding, say via RoPE, has a large impact on the formation of attention sinks—when the semantics of each
token have switched positions, the attention sink still forms on the zeroth token.
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