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Abstract
Graph Neural Networks (GNNs) have demon-
strated remarkable performance in graph classifi-
cation tasks. However, ensuring the explainabil-
ity of their predictions remains a challenge. To
address this, graph rationalization methods have
been introduced to generate concise subsets of the
original graph, known as rationales, which serve
to explain the predictions made by GNNs. Exist-
ing rationalizations often rely on shortcuts in data
for prediction and rationale composition. In re-
sponse, de-shortcut rationalization methods have
been proposed, which commonly leverage coun-
terfactual augmentation to enhance data diversity
for mitigating the shortcut problem. Nevertheless,
these methods have predominantly focused on
centralized datasets and have not been extensively
explored in the Federated Learning (FL) scenarios.
To this end, in this paper, we propose a Federated
Graph Rationalization (FedGR) with anti-shortcut
augmentations to achieve self-explaining GNNs,
which involves two data augmenters. These aug-
menters are employed to produce client-specific
shortcut conflicted samples at each client, which
contributes to mitigating the shortcut problem un-
der the FL scenarios. Experiments on real-world
benchmarks and synthetic datasets validate the
effectiveness of FedGR under the FL scenarios.
Code is available at https://github.com/
yuelinan/Codes-of-FedGR.

1. Introduction
Graph Neural Networks (GNNs) have become ubiquitous in
graph classification tasks, demonstrating remarkable perfor-
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Figure 1. An example of the motif type prediction under the Feder-
ated Learning scenarios, where the House and Cycle are motif
labels, and Tree and Wheel are base subgraphs. (a) and (b) il-
lustrate the distribution of training data among distinct clients, each
employing client-specific shortcuts to make predictions. For in-
stance, Client C1 considers the co-occurrence of House with Wheel
as shortcuts, while Client Ck exhibits a greater co-occurrence of
House with Tree. These divergent shortcuts utilized by different
clients pose a challenge for the aggregated model to acquire an
appropriate representation required for accurate classification.

mance (Hu et al., 2020; Zhang et al., 2021; Yehudai et al.,
2021). Despite their success, GNNs applied to graph clas-
sification tasks still face challenges regarding the explain-
ability of their prediction results. Consequently, researchers
have actively explored methods to provide explanations for
GNNs. Among these methods, graph rationalization (Wu
et al., 2022; Fan et al., 2022; Sui et al., 2022; Li et al., 2022b)
methods have garnered increasing attention. These meth-
ods aim to generate task results while identifying a concise
subset of the original graph (i.e., the subgraph), referred to
as the rationale. This rationale typically consists of signifi-
cant nodes or edges that contribute to the prediction results.
By extracting and presenting this rationale, it can serve as
an explanation for the GNNs’ prediction results, achieving
self-explaining GNNs.

While rationalization methods have achieved promising re-
sults, (Chang et al., 2020; Wu et al., 2022) highlight certain
limitations associated with these approaches. They empha-
size that rationalization methods often rely on shortcuts
in the data to make predictions and construct rationales.
These shortcuts exhibit a correlation with the task results,
but lack any real causal relationship. Therefore, this cor-
relation is commonly referred to as a spurious correlation
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or bias. Taking Figure 1(a) for example, in the motif type
prediction, we predict the motif type based on the graph
that consists of motifs and bases subgraphs. In the train-
ing dataset, House-motifs frequently co-occur with Wheel
bases, while Cycle-motifs are commonly associated with
Tree. Graph rationalizations may exploit these statistical
dependencies instead of the actual association between mo-
tif type and labels to make predictions. These statistical
dependencies are classified as spurious correlations in this
particular dataset.

It is important to note that the existence of this spurious
correlation depends on the specific data distribution at hand.
Therefore, rationalization methods can achieve promising
task prediction performance in this distribution. However,
the identification of shortcuts as rationales diminishes the
reliability of the model’s results. Moreover, when faced
with out-of-distribution data, since the data distribution is
changed, the performance of these methods significantly
declines. For example, when faced with the Cycle-Wheel
data, graph rationalizations trained on the Figure 1(a) dataset
may incorrectly predict the motif type as House.

To this end, numerous approaches have been put forth to mit-
igate the issue of shortcut reliance in rationalization, referred
to as de-shortcut rationalization methods. Noteworthy, sev-
eral of these methods (e.g. DIR (Wu et al., 2022), RGDA
(Liu et al., 2023), and DisC (Fan et al., 2022)) facilitate the
data augmentation through counterfactual augmentations.
By generating multiple samples that deviate from the exist-
ing distribution, these models alleviate employing shortcuts
to make predictions within the current data distribution,
thereby enhancing prediction capabilities. However, it is im-
portant to acknowledge that the aforementioned techniques
primarily address the needs of centralized datasets. In the
context of distributed training for learning models, partic-
ularly in Federated Learning (FL) (McMahan et al., 2017;
Yang et al., 2019; Fu et al., 2022) scenarios, rationalization
methods have not been extensively explored.

Specifically, in the FL scenario, the collection of data by dif-
ferent clients varies, resulting in distinct data distributions
and the inclusion of different shortcuts within each client.
Simply aggregating rationalization models learned from lo-
cal clients to obtain a global model may lead to a significant
effectiveness gap compared to a model trained on a central-
ized dataset. As shown in Figure 1, different clients tend
to employ client-specific shortcuts for prediction. These
shortcuts vary across clients, such as client C1 utilizing the
co-occurrence between House and Wheel to predict the mo-
tif type, while client Ck relies on the co-occurrence between
House and Tree. This discrepancy in shortcut usage among
clients hinders the aggregated model’s ability to acquire ac-
curate representations necessary for effective classification.

To address the problem of local shortcuts and enhance the

generalization ability of rationalization in federated learning
scenarios, we propose a Federated Graph Rationalization
(FedGR) with anti-shortcut augmentations method to gen-
erate shortcut conflicted samples for prediction, which in-
volves two augmenters: the complement-aware augmenter
and difference-aware augmenter.

• For the complement-aware augmenter, we first partition
the graph into the rationale and the complement subgraph
(aka, the non-rationale subgraph). The rationale subgraph is
utilized to predict task results, while the complement serves
as a means for data augmentation. Specifically, we use a
contrastive learning approach (Oord et al., 2018) to satisfy
the sufficiency and independence principles (DeYoung et al.,
2020; Li et al., 2022c) of the rationalization. This approach
can promote the model to compose the invariant rationales
and make the complement be irrelevant to labels. Finally,
we introduce random permutations to the label-independent
complements and merge them with the rationale to generate
more shortcut conflicted samples. This augmentation can
break up the original data distributions (e.g., the statistical
dependencies between rationales and complements).

• Besides, to further explore anti-shortcut augmentations
in FL scenarios, we propose a difference-aware augmenter.
Initially, we develop a node feature masking technique that
perturbs the features of nodes while preserving the under-
lying graph structure, thereby generating new graph data.
Then, we enforce the generated data to go cross the decision
boundary of the local model while preserving the predic-
tions of the global model. This is based on the difference
between the local and global models in the FL scenario,
where local models are more prone to utilizing shortcuts
compared to global models when making predictions (Xu
et al., 2023). Finally, the generated graph data can be consid-
ered as the shortcut conflicted samples that do not conform
to the current client data distribution.

After obtaining shortcut conflicted samples through the two
data augmenters, FedGR mixes the original and generated
data to jointly make the task prediction and compose ratio-
nales. Experiments over real-world benchmarks (Hu et al.,
2020; Knyazev et al., 2019) and various synthetic datasets
(Wu et al., 2022) validate the effectiveness of FedGR.

2. Preliminaries
2.1. Problem Formulation

In this section, we present a formal definition of the graph
rationalization problem within the federated learning (FL)
scenario. Specifically, we consider a federated setting with
N clients denoted as {C1, C2,⋯, CN}, each having their
respective local private datasets {D1,D2,⋯,DN}. It is
important to note that the data distributions of different
clients are not equal, indicating variability among clients.
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Within each client Ck, for each graph-label pair (G, Y ) ∈
Dk, where G = (V, T ) contains V nodes and T edges, the
objective of local graph rationalization is two-folds. First, it
involves learning a mask variable M ∈ R∣V∣ with the separa-
tor function fsk(G) and node representations HG ∈ R∣V∣×d.
Subsequently, the rationale subgraph representation is ob-
tained as the element-wise multiplication between the mask
variable and the node representations, denoted as M⊙HG.
Finally, a predictor fpk

(M⊙HG) is learned to make pre-
dictions. The learning process involves finding the optimal
selector function f∗sk(⋅) and predictor function f∗pk

(⋅) that
minimize the cross-entropy loss, denoted by `(⋅), over the
graph-label pairs in the client’s dataset Dk:

f
∗
sk(⋅), f

∗
pk
(⋅) =

arg min
fsk ,fpk

E(G,Y )∼Dk
[` (fpk

(fsk(G)) , Y )] .

With a total of T communication rounds, the objective of
graph rationalization at the global level is to derive the
selector and predictor that satisfy the aggregation process:

Θ̂
s
=

N

∑
k=1

∣Dk∣
∑N

j=1 ∣Dj∣
Θ

s
k, Θ̂

p
=

N

∑
k=1

∣Dk∣
∑N

j=1 ∣Dj∣
Θ

p
k, (1)

where Θ̂
s is the parameters of the global selector fs(⋅), and

Θ̂
p is the parameters of the global predictor fp(⋅). Mean-

while, Θ
s
k represents the parameters of the selector fsk(⋅) in

client Ck, and Θ
p
k is the parameters of the predictor fpk

(⋅).

2.2. Vanilla Graph Rationalization

In this section, we present the detail of the framework of
vanilla graph rationalization in the general scenario, which
consists of the selector and the predictor.

Selector in Graph Rationalization. Considering the gen-
eral scenario, given (G, Y ) ∈ D, whereD is the dataset, the
process of generating rationales within the separator fs(⋅)
involves three key steps. Initially, an encoder GNNm(⋅)
is utilized to transform each node in graph G into a d-
dimensional vector. Simultaneously, the separator predicts
a probability distribution for selecting each node as part of
the rationale, denoted as:

M̃ = softmax (Wm (GNNm(G))) ,
where Wm ∈ R2×d represents a weight matrix.

Next, the separator samples binary values (0 or 1) from the
distribution M̃ = {m̃i}

∣V∣
1 to yield the mask variable M =

{mi}
∣V∣
1 . To enable differentiability during the sampling,

the Gumbel-softmax method (Jang et al., 2017) is used:

mi =
exp ((log (m̃i) + qi) /τ)

∑t exp ((log (m̃t) + qt) /τ)
,

where τ is a temperature hyperparameter, qi =

− log (− log (ui)), and ui is randomly sampled from a uni-

form distribution U(0, 1). Following this, an additional
GNN encoder, denoted as GNNG, is employed to obtain the
node representation HG from the graph G. The rationale
node representation is defined as the element-wise product
of the binary rationale mask M and the node representation
HG, expressed as M⊙HG. Similarly, the complement node
representation is computed as (1−M)⊙HG, representing
the nodes that are part of the non-rationale.

Predictor in Graph Rationalization. The predictor fp(⋅)
consists of a readout function and a classifier. Specifically,
we first use the readout function to yield the graph-level
rationale hr and complement he (i.e., the non-rationale)
subgraph representation:

hr = READOUT(M⊙HG),
he = READOUT((1 −M)⊙HG).

In this paper, we employ the mean pooling as the readout
operator. Finally, the classifier Φ(⋅) yields the task results
based solely on the rationale subgraphs:

Ŷr = Φ (hr) , Lr = E(G,Y )∼D [`(Ŷr, Y )] . (2)

Training and Inference. During the training, we introduce
a sparsity constraint on the probability M of being selected
as a rationale, as proposed in (Liu et al., 2022). This con-
straint aims to encourage the model to achieve a controlled
level of sparsity in the generated rationale subgraphs.:

Lsp =

»»»»»»»»»»»

1

∣M∣

∣M∣
∑
i=1

mi − α

»»»»»»»»»»»
, (3)

where α ∈ [0, 1] is a predefined sparsity level. Finally, the
overall objective of the vanilla graph rationalization is:

Lrat = Lr + λspLsp.

In the inference phase, we use hr for the prediction.

3. FedGR:Federated Graph Rationalization
with Anti-shortcut Augmentations

Similar to standard FL, training of FedGR requires alterna-
tive optimization between the two stages. More specifically,
the local update is performed on the client side, and global
aggregation is conducted on the server side. Besides, to
address local shortcut problems, we uniquely propose an
anti-shortcut augmentation method that aims to generate
several the shortcut conflicted samples for de-shortcut ra-
tionalization. As shown in Figure 2, the anti-shortcut data
augmentation method consists of two augmenters:

• First, based on the sufficiency and independence principles
(DeYoung et al., 2020; Li et al., 2022c) of the rationalization
method, for each client, we design a complement-aware aug-
menter to enhance the diversity of local data distributions.
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Figure 2. Architecture of FedGR, including the complement-
aware and the difference-aware augmenter.

• To further explore anti-shortcut data augmentation in fed-
erated scenarios, we propose an augmenter based on the
difference between the global and local models. The di-
versity of data distribution is enhanced by injecting global
information into local training.

3.1. Complement-aware Augmenter

In this section, we first introduce the sufficiency and inde-
pendence principle for rationalization. Then, we propose a
contrastive constraint to satisfy the above principles. Finally,
based on this, we derive a complement-aware augmenter
that composes counterfactual samples under different com-
plements to isolate shortcuts.

3.1.1. SUFFICIENCY AND INDEPENDENCE PRINCIPLE

Definition 3.1. Sufficiency Principle for Rationalization:

P (Y ∣ G) = P (Y ∣ R),

where the rationale R is sufficient to preserve the crucial
information inherent in G related to the label Y .

Definition 3.2. Independence Principle for Rationalization:

Y ⫫ E ∣ R,
where the label variable Y exhibits independence from the
complement variable of rationale, denoted asE, conditioned
on the rationale R. Among⫫ is probabilistic independence.

Guided by the sufficiency and independence principle, we
get the following objective to compose invariant rationales:

P (Y ∣ G) = P (Y ∣ R) s.t. Y ⫫ E ∣ R. (4)

To achieve Eq(4), we first employ the contrastive constraint:

Lc = − log
exp (h⊤r hg/τ)

exp (h⊤rhg/τ) +∑he∈E exp (h⊤r he/τ)
, (5)

where hg is the graph-level representation of G (i.e., hg =

READOUT(HG)), the set E encompasses all complement
representations present in the mini-batch data, and τ serves
as a temperature parameter.

By minimizing Eq(5), we can effectively push the represen-
tation of the complement he apart from that of the rationale
hr, ensuring the stability of the captured rationale irrespec-
tive of variations in its complement. This aligns with the
independence principle. Simultaneously, the rationale and
the original input G are drawn closer together, thus achiev-
ing the sufficiency principle. Finally, by combining Eq(2)
with Eq(5) (Lr + Lc), we can realize the objective stated in
Eq(4) (i.e., encompassing both the sufficiency and indepen-
dence principles).

3.1.2. IMPLEMENTION

After satisfying the sufficiency and independence principles,
we can pull R and G closer together while pushing R and
E, E and Y apart. Then, we derive the following equation:

P (Y ∣G) = P (Y ∣R) = P (Y ∣R,E) = P (Y ∣R, Ê), (6)

where Ê is sampled from the complement set randomly.

Based on Eq(6), we can achieve the complement-aware
augmenter. To be specific, in the client Ck, given a batch

{(Gk
i
, Yk

i)}B
i=1

and the corresponding rationale and com-

plement representation {(hi
rk ,h

i
ek)}

B

i=1
, we first randomly

sample a complement representation h
j
ek from the com-

plement set {hi
ek}

B

i=1
, where h

i
ek ≠ h

j
ek . Then, with the

concatenation of hi
rk and h

j
ek , the complement-aware aug-

mentation sample h
(i,j)
g̃i

can be expressed as:

h
(i,j)
g̃k

= h
i
rk + h

j
ek , (7)

where we have Ỹ (i,j)
k = Yk

i for the augmented sample (i.e.,
the class label of h(i,j)

g̃k
is identical to that of hj

gk ).

It is note that although this data augmentation is common in
rationalizations (Fan et al., 2022; Liu et al., 2022; Sui et al.,
2022; Liu et al., 2023), the fact that we use contrastive learn-
ing constraints to satisfy the independence and sufficiency
principles makes it more efficient. We have demonstrated
this opinion in section 4.3.

Finally, the augmented sample is input into the classifier
Φ(⋅) to yield task results, achieving P (Y ∣R, Ê) in Eq(6):

Ŷ
(i,j)
k = Φ (h(i,j)

g̃k
) , Le = E(Gk

i
,Yk

i)∼Dk
[`(Ŷ (i,j)

k , Ỹ
(i,j)
k )] .

3.1.3. TRAINING AND INFERENCE

During the training in the FL scenario, for each client Ck,
the overall objective of graph rationalization with the
complement-aware augmenter is formulated as:

Lk
com = Lrat + λcLc + λeLe,

where λc and λe are the adjusted hyperparameters.
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In the inference phase, only hrk is employed to yield the
task results without any augmentations.

Notably, since our approach can be applied to any local
model, it can be naturally applied to centralized scenarios.

3.2. Difference-aware Augmenter

In this section, to fully exploit the attributes of FL, we
propose a difference-aware augmenter to produce the anti-
shortcut samples by utilizing the difference between global
server model f t(⋅) and local client model f t−1

k (⋅) of the
client Ck in the (t)-th communication round.

3.2.1. LEARNING OF DIFFERENCE-AWARE
AUGMENTER

Assumption 3.3. In the FL scenario, given the global server
model f t(⋅) and the local model f t−1

k (⋅) generated in the
previous iteration, we assume that f t(⋅) exhibits a relatively
unbiased nature in comparison to f t−1

k (⋅) (Xu et al., 2023).

Based on Assumption 3.3, the goal of the difference-aware
augmentation is to generate an anti-shortcut sample G̃k for
the client Ck to satisfy the following conditions:

Condition 3.4. Given the bias model f t−1
k (⋅), the generated

sample G̃k and the label Yk are independent:

Yk ⫫ G̃k ∣ f t−1
k (⋅).

Condition 3.5. Given the unbias model f t(⋅), the gener-
ated sample G̃k and the label Yk are dependent:

Yk é G̃k ∣ f t(⋅).

Based on the above conditions, we employ the mutual infor-
mation (MI) to train the difference-aware augmenter Ψ(⋅):

max I(Yk; G̃k∣f t(⋅)) s.t. I(Yk; G̃k∣f t−1
k (⋅)) ≤ Ic, (8)

where I(X;Y ) represents the MI of X and Y variables,
and Ic is the information constraint. Since the MI is hard
to calculate, we give an equivalent tractable objective in
practical instantiation to achieve Eq(8):

min
Ψ
Ldiff =

min
Ψ

[`(f t(Ψ(Gk)), Yk)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
1©

−β`(f t−1
k (Ψ(Gk)), Yk)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

2©
]. (9)

Theorem 3.6. To train the difference-aware aug-
menter, minimizing term 1© in Eq(9) contributes to
max I(Yk; G̃k∣f t(⋅)); maximizing term 2© in Eq(9) con-
tributes to min I(Yk; G̃k∣f t−1

k (⋅)).

The proof of Theorem 3.6 is provided in Appendix A.
Remark 3.7. Eq(9) enables the transformation of the original
graph Gk in such a way that it goes across the decision
boundary of f t−1

k (⋅) while simultaneously maintaining the

prediction made by f t(⋅). This transformation can form the
anti-shortcut sample G̃k for the client Ck.

3.2.2. IMPLEMENTION

In this section, we present how to generate anti-shortcut sam-
ples in detail. Specifically, in a general scenario, given an
input graph G, we employ the difference-aware augmenter
Ψ(⋅) to generate a new graph G̃. Considering the complex-
ity of the graph structure, we do not perturb the edges of the
graph (i.e., adding or removing edges) to generate samples.
For simplicity, we employ a masking transformation on the
node features of the graph to generate the new graph.

Specifically, we assume that the node features of the input
graph G are represented by S = [s1,⋯, s∣V∣]T ∈ R∣V∣×dg ,
where each si ∈ Rdg corresponds to the dg-dimensional
feature vector of node i. To compute the mask probability
matrix M̃

s
∈ R∣V∣×dg , we employ the MLP model that

takes S as input and applies the sigmoid function σ(⋅) to
the output. Each entry M̃

s
ij in the resulting matrix M̃

s

represents the predicted probability of not setting the j-th
feature of node i to zero. Then, we utilize the Gumbel-
softmax method to sample the mask matrix M

s, where each
value is either 0 or 1. This process can be defined as follows:

M̃
s
= σ(MLP(S)),Ms

∼ Gumbel-softmax(M̃s).

Then, the new node feature matrix S̃ is computed as
S̃ = M

s ⊙ S. Finally, the generated sample G̃ retains
the same graph structure and label as the original sample G,
but utilizes the new node feature matrix S̃. In this paper, for
the client Ck, we denote this process as G̃k = Ψ(Gk) and
the generated dataset as D̃k.

3.2.3. TRAINING AND INFERENCE

In the clientCk, we first employ Eq(9) to train the difference-
aware augmenter Ψ(Gk). After the Ψ(Gk) is trained with
several training epochs, we freeze the augmenter Ψ(Gk)
and utilize it to infer the potential anti-shortcut sample G̃k.
Next, as shown in Figure 2, the generated sample can be
incorporated into the complement-aware augmenter, and the
corresponding objective is presented as L̃k

com. Finally, the
overall objective of FedGR with two data augmenters is:

Lfedgr = L
k
com + λdL̃

k
com. (10)

In the inference phase, only hrk is adopted to yield the task
results without any augmentations. The overall training
algorithm of FedGR is presented in Algorithm 1.

4. Experiments
To validate the effectiveness of FedGR, we design experi-
ments to address the following research questions:
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Table 1. Performance on the Synthetic Dataset and Real-world Dataset with the GIN backbone. More experimental results about FedGR
implemented with the GCN backbone are shown in Appendix E.1.

Spurious-Motif (ACC) OGB (AUC)
bias=0.5 bias=0.7 bias=0.9 MolHIV MolToxCast MolBBBP MolSIDER

GIN 0.3213 ± 0.0429 0.3489 ± 0.0442 0.2978 ± 0.0382 0.6927 ± 0.0308 0.6091 ± 0.0133 0.6226 ± 0.0133 0.5780 ± 0.0105
Vanilla GR 0.3182 ± 0.0353 0.3681 ± 0.0359 0.3031 ± 0.0291 0.6985 ± 0.0155 0.6111 ± 0.0055 0.6339 ± 0.0142 0.5774 ± 0.0175

DIR 0.3091 ± 0.0314 0.3298 ± 0.0148 0.2893 ± 0.0311 0.6731 ± 0.0337 0.6133 ± 0.0064 0.6245 ± 0.0098 0.5686 ± 0.0162
DisC 0.4418 ± 0.0182 0.4481 ± 0.0381 0.3579 ± 0.0471 0.7212 ± 0.0201 0.6274 ± 0.0018 0.6561 ± 0.0121 0.5869 ± 0.0142
CAL 0.4213 ± 0.0109 0.5289 ± 0.0087 0.4191 ± 0.0248 0.7039 ± 0.0113 0.6170 ± 0.0051 0.6575 ± 0.0076 0.5879 ± 0.0138

GSAT 0.4281 ± 0.0328 0.5259 ± 0.0381 0.4194 ± 0.0338 0.7149 ± 0.0226 0.6255 ± 0.0030 0.6555 ± 0.0085 0.5952 ± 0.0082
DARE 0.4483 ± 0.0193 0.4891 ± 0.0391 0.4288 ± 0.0977 0.7220 ± 0.0165 0.6289 ± 0.0059 0.6621 ± 0.0096 0.5886 ± 0.0113

InterRAT 0.4191 ± 0.0943 0.5283 ± 0.0935 0.4281 ± 0.0189 0.7026 ± 0.0092 0.6095 ± 0.0028 0.6426 ± 0.0223 0.5842 ± 0.0078
RGDA 0.4087 ± 0.0293 0.5089 ± 0.0198 0.4286 ± 0.0313 0.7246 ± 0.0085 0.6235 ± 0.0034 0.6605 ± 0.0157 0.5906 ± 0.0151

FedGR 0.4610 ± 0.0289 0.5538 ± 0.0398 0.4977 ± 0.0315 0.7387 ± 0.0186 0.6316 ± 0.0054 0.6690 ± 0.0174 0.6017 ± 0.0202
FedGR w/o diff 0.4493 ± 0.0238 0.5293 ± 0.0483 0.4333 ± 0.0471 0.7214 ± 0.0124 0.6222 ± 0.0055 0.6623 ± 0.0033 0.5886 ± 0.0047
FedGR w/o com 0.4571 ± 0.0372 0.5438 ± 0.0551 0.4682 ± 0.0388 0.7321 ± 0.0233 0.6298 ± 0.0035 0.6668 ± 0.0048 0.5978 ± 0.0021

• RQ1: How effective is FedGR in improving task predic-
tion and rationale extraction?

• RQ2: How well does the complement-aware augmenter
mitigate the shortcut problem?

• RQ3: Can the framework of FedGR with the difference-
aware augmenter contribute to the performance improve-
ment in existing de-shortcut rationalization methods?

• RQ4: What is the performance trajectory of FedGR dur-
ing the training process?

• RQ5: How FedGR scales with an increasing number of
clients?

4.1. Datasets

• Synthetic Dataset. This study utilizes the Spurious-Motif
dataset (Ying et al., 2019; Wu et al., 2022) as the synthetic
dataset for the motif type prediction. Each graph consists
of two subgraphs: the motif subgraph R and the base sub-
graphE. The motif subgraph represents the rationale for mo-
tif type prediction and includes three types: Cycle, House,
and Crane, denoted as R = {0, 1, 2}. Conversely, the base
subgraph varies according to the motif type and serves as
the complement, comprising three types: Tree, Ladder, and
Wheel, denoted as E = {0, 1, 2}. Figure 1 illustrates an
example of the Spurious-Motif dataset, such as House-Tree.

To demonstrate that FedGR can mitigate the shortcut prob-
lem, we manually introduce the shortcuts into the Spurious-
Motif dataset. During the construction process, we sample
the motif subgraph uniformly and select the base subgraph
based on P (E) = b× I(E = R)+ 1−b

2
× I(E ≠ R), where

b controls the extent of data distributions, with higher values
indicating more significant shortcuts in the data. In this
study, three datasets are considered with b = {0.5, 0.7, 0.9}.
Next, we distribute the constructed dataset to N clients by

the unbalanced partition algorithm Latent Dirichlet Alloca-
tion (LDA) (He et al., 2020; 2021). Specifically, a hetero-
geneous partition is generated by sampling pi ∼ DirN(γ),
allocating a proportion pi,n of training instances for class i
to each local client. In this paper, N is set to 3 and γ to 3.
Finally, to ensure fair evaluation, a de-biased (balanced)
dataset is created for the test set by setting b = 1

3
.

• OGB. For real-world datasets, we utilize the Open Graph
Benchmark (OGB) (Hu et al., 2020) as datasets, including
MolHIV, MolToxCast, MolBBBP, and MolSIDER. To en-
sure a fair evaluation, we first adopt the default scaffold
splitting method in OGB to partition the datasets into train-
ing, validation, and test sets. Then, we employ the LDA
the further distribute the training set to 4 clients with γ = 4,
where all clients share the same test set.

Details of dataset statistics are shown in Appendix D.

4.2. Comparison Methods and Experimental Setup

Comparison Methods. Although graph rationalization
methods are widely studied, they are not fully explored
in FL scenarios. To this end, we transfer the following ra-
tionalization methods that are used in centralized scenarios
to FL scenarios by the aggregation approach of Eq(1), in-
cluding Vanilla GR in section 2.2, DIR (Wu et al., 2022),
DisC (Fan et al., 2022), CAL (Sui et al., 2022), GSAT (Miao
et al., 2022), DARE (Yue et al., 2022), InterRAT (Yue et al.,
2023) and RGDA (Liu et al., 2023). Detailed descriptions
of comparison methods are shown in Appendix C.1.

Besides, in the comparative analysis, several conventional
GNN architectures are considered for classification tasks,
including GCN (Kipf & Welling, 2017) and GIN (Xu et al.,
2019). Meanwhile, we employ both GCN and GIN as the
backbone of FedGR and other baselines.

Experimental Setup. During the evaluation phase, we em-
ploy the ACC metric to evaluate the task prediction perfor-
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Precision@5 on Spurious-Motif 
with GIN as the graph encoder.

Precision@5 on Spurious-Motif 
with GCN as the graph encoder.

Figure 3. Results of Precision@5 between extracted rationales and
the ground-truth rationales on Spurious-Motif.

mance for the Spurious-Motif and AUC for OGB. Then,
since the Spurious-Motif dataset includes ground-truth ratio-
nales, the precision of the extracted rationales is evaluated
using the Precision@5 metric. Precision@5 measures the
accuracy of the top 5 extracted rationales compared to the
ground truth rationales. All methods, including the FedGR
approach and other baselines, are trained on a single A100
GPU with 5 different random seeds. The reported test per-
formance includes the mean results and standard deviations
obtained from the epoch that achieves the highest valida-
tion prediction performance. Detailed experimental and
hyperparameter setups can be found in Appendix C.2.

4.3. Overall Performance (RQ1).

Performance of the Task Prediction. To evaluate the ef-
fectiveness of FedGR, a comparative analysis is conducted
against various baseline methods in the task prediction.
Specifically, examining Table 1 reveals that FedGR exhibits
optimal performance, thereby highlighting the effectiveness
of the two proposed data augmenters. Besides, it is ob-
served that certain de-shortcut methods (e.g. DIR, CAL,
and InterRAT) demonstrate similar performance to the tra-
ditional GIN, suggesting that de-shortcut models designed
for centralized scenarios may not be well-suited for direct
implementation in FL scenarios. This underscores the impor-
tance of exploring the de-shortcut rationalization approaches
within FL settings. Furthermore, several data augmentation-
based methods (e.g. RGDA and DisC) exhibit sub-optimal
performance, illustrating the benefits of employing coun-
terfactual data augmentation approaches in mitigating the
shortcut problem within FL scenarios. Consequently, an
in-depth investigation (ablation study) is conducted to as-
sess the impact of the proposed complement-aware and
difference-aware augmenters on the effectiveness of FedGR.

Ablation Study. We first exclude the difference-aware aug-
menter and retain only the complement-aware augmenter,
denoting it as FedGR w/o diff. As shown in Table 1, we find
that FedGR w/o diff surpasses the baseline methods. Among
them, DisC, CAL and RGDA employ the similar counter-
factual data augmentation method as the complement-aware
augmenter (i.e., Eq(7)). However, our method performs bet-

Figure 4. Performance on the Real-world Dataset.

ter than them, and the reason is that compared to these meth-
ods, the contrastive learning constraint we used satisfies the
sufficiency and independence principles of rationalizations.

Besides, we also remove the complement-aware augmenter
while keeping the difference-aware augmenter. This variant
is referred to as FedGR w/o com. Table 1 reveals that
FedGR w/o com performs better than FedGR w/o diff. This
result can be attributed to the fact that the difference-aware
augmenter, compared to the complement-aware augmenter,
more fully exploits the properties of FL, which utilizes
the global model to assist the local model for removing
shortcuts. This finding once again highlights the necessity
of exploring de-shortcut rationalization within FL scenarios.

Performance of the Rationale Extraction. Furthermore,
to delve deeper into the ability of FedGR to capture the
true rationales rather than relying on shortcuts, we conduct
experiments on the Spurious-Motif dataset, which contains
the ground rationales. In Figure 3, we present Precision@5
that measures the precision of the top 5 extracted rationales
compared to the ground truth. From the figure, we find
that regardless of the degree of bias in Spurious-Motif, the
rationales extracted by FedGR are more accurate compared
to the baseline method, thereby demonstrating the capability
of FedGR to overcome shortcuts and provide more reliable
rationales. Besides, in Appendix E.6, we provide several
visualized rationales extracted by FedGR in Spurious-Motif.

4.4. Performance of Complement-aware augmenter in
centralized scenarios (RQ2).

In section 4.3, we validate the effectiveness of the
complement-aware augmenter (referred to as CaA) through
ablation experiments. In this section, we further investigate
the performance of CaA. Specifically, in section 3, we state
that CaA can be naturally applied to centralized scenarios.
Therefore, we make experiments on the centralized scenar-
ios with the GIN backbone, and the results are presented
in Figure 4. From the observation, we find that CaA out-
performs baselines, illustrating that our complement-aware
augmenter is effective in both the centralized and FL sce-
narios. Then, we also remove the contrastive constraint (i.e.,
Lc) and denote it as CaA w/o cl. From the figure, we can ob-
serve that CaA w/o cl has a significant decrease compared to
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Table 2. Structural Generalizability of FedGR with the GIN back-
bone. Each rationalization method in FedGR is highlighted in gray.

MolHIV MolToxCast MolBBBP MolSIDER

DisC 0.7212 0.6274 0.6561 0.5869
DisC+FedGR 0.7313 (↑1.01%) 0.6301 (↑0.27%) 0.6618 (↑0.57%) 0.5942 (↑0.73%)
RGDA 0.7246 0.6235 0.6605 0.5906
RGDA+FedGR 0.7344 (↑0.98%) 0.6326 (↑0.91%) 0.6673 (↑0.68%) 0.6008 (↑1.02%)
GSAT 0.7149 0.6255 0.6555 0.5952
GSAT+FedGR 0.7267 (↑1.18%) 0.6293 (↑0.38%) 0.6628 (↑0.73%) 0.5980 (↑0.28%)
InterRAT 0.7026 0.6095 0.6426 0.5842
InterRAT+FedGR 0.7193 (↑1.67%) 0.6245 (↑1.50%) 0.6587 (↑1.61%) 0.5927 (↑0.85%)
DARE 0.7220 0.6289 0.6621 0.5886
DARE+FedGR 0.7291 (↑0.71%) 0.6331 (↑0.42%) 0.6686 (↑0.65%) 0.5945 (↑0.59%)

complement-aware augmenter and performs similarly to the
GSAT and DisC baselines. This observation illustrates the
effectiveness of employing contrastive learning constraints
to satisfy the principles of sufficiency and independence
of rationalization for extracting faithful rationales. More
experimental results are shown in Appendix E.2.

4.5. Structural Generalizability of FedGR (RQ3).

From Figure 2, we can observe that our two data augmenters
are decoupled from the model structure. This insight leads to
an interesting research question: Can our difference-aware
augmenter enhance the performance of other rationalization
methods in FL scenarios? To investigate this, we replace the
complement-aware augmenter in FedGR with DisC, RGDA,
GSAT, InterRAT and DARE, and conduct experiments on
the OGB dataset. From Table 2, we observe a consistent im-
provement in performance across all rationalization methods
when our difference-aware augmenter is employed. This
finding suggests that our FedGR framework possesses gen-
eralizability and can effectively aid other rationalization
methods in achieving better performance in FL scenarios.
More experimental results are shown in Appendix E.3.

4.6. Training Process of FedGR (RQ4).

In this section, we investigate the training process of FedGR
and Vanilla GR in Figure 5. Specifically, we take GIN as the
backbone and present the AUC changes of the global and
local model of FedGR and Vanilla GR on MolSIDER test
set with communication rounds. Among them, the global
model of FedGR and Vanilla GR are our main models that
are tested in Table 1, and we only show one client’s local
model (i.e., Client1) in Figure 5. The performance of other
local clients can be found in Appendix E.4. From the fig-
ure, we find that the Vanilla GR global model performs
better than its local model Client1, which is consistent with
Assumption 3.3 that local models are relatively biased com-
pared to the global one. Besides, we also find that both local
and global FedGR surpass Vanilla GR, which illustrates
that data augmentations in FedGR can isolate shortcuts to
compose faithful rationales and make predictions effectively.

0 2 4 6 8 10 12 14 16 18
Communication Round

0.45

0.50

0.55

0.60

0.65
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C

FedGR global
FedGR Client1
Vanilla GR global
Vanilla GR Client1

Figure 5. Training process of FedGR and Vanilla GR on Mol-
SIDER, where the test set is considered as an unbiased test set.
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FedGR global
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DARE
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Figure 6. Performance of FedGR with different number of clients
on MolSIDER.

4.7. Scalability of FedGR (RQ5).

Scalability is a critical factor in federated learning, and
understanding the method’s performance under such condi-
tions would be valuable. Therefore, we conduct experiments
by increasing the number of clients, and then experimental
results are shown in Figure 6. From the figure, we can find
that FedGR outperforms baselines as the number of clients
increases, which demonstrates the scalability of FedGR.

5. Related Work
5.1. Graph Rationalization.

The success of GNNs has led to an increased research
focus on the explainability of graph classification tasks
(Veličković et al., 2017; Chen et al., 2022; Zhang et al.,
2022; Li et al., 2022a; Yang et al., 2022; Peng et al., 2024;
Yue et al., 2024). Among them, graph rationalization meth-
ods have gained significant attention. (Wu et al., 2022)
first proposed a framework which involved dividing the
graph into rationale and non-rationale subgraphs and us-
ing the rationale for prediction. Meanwhile, since (Chang
et al., 2020) have shown that rationalization methods tend
to exploit potential shortcuts in the data for prediction, (Wu
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et al., 2022) further proposed to discover invariant rationales.
They utilized the structures of the non-rationale subgraphs
as distinct environments and combined the rationale with
different environments to generate new counterfactual sam-
ples. Based on this framework, several works have been
developed (Fan et al., 2022; Liu et al., 2022; Sui et al., 2022;
Li et al., 2022b). The main difference is that DIR explicitly
considered non-rationale subgraph structures as potential
environments while other methods used the non-rationale
subgraph representations. Besides, many research works
have started with the structures of rationalizations (Yu et al.,
2021; Miao et al., 2022; Seo et al., 2023). Among them,
(Yue et al., 2022) proposed a self-guided framework that to
extract rationales by encapsulating sufficient information
from the input. While rationalization methods have been ex-
tensively explored on centralized datasets, their applications
to FL scenarios are not well explored.

5.2. Federated Learning.

Federated Learning (FL) algorithms (McMahan et al., 2017;
Yang et al., 2019; Tan et al., 2022) have gained significant
attention due to their ability to address data security and pri-
vacy concerns. Recently, there has been a growing interest
in developing methods to eliminate spurious correlations
in the training data. (Ezzeldin et al., 2023) proposed a FL
framework aimed at mitigating the spurious correlations and
preventing the trained model from being biased towards a
particular demographic group. (Xu et al., 2023) introduced
a bias-eliminating augmentation method in the FL setting.
They identified and introduced desirable causal and shortcut
attributes to augmented samples, aiming to reduce spurious
correlations. While these methods have shown promising
results in addressing spurious correlations, the problem of
shortcuts in rationalization methods in FL scenarios remains
relatively unexplored.

6. Conclusion
In this paper, we proposed a Federated Graph Rational-
ization (FedGR) with anti-shortcut augmentations method
to achieve self-explaining GNNs. The method includes
two types of augmenters: the complement-aware and the
difference-aware augmenter, which are designed to generate
shortcut conflicted samples to further address the problem
of local shortcuts. For complement-aware augmenter, we
first partitioned the graph into the rationale and comple-
ment subgraphs. Then, conditioned on satisfying the suffi-
ciency and independence principles of rationalization, we
randomly permuted the complement with the rationale to
conduct shortcut conflicted samples. For difference-aware
augmenter, it utilized the assumption that local models were
more likely to utilize shortcuts compared to global models
when making predictions. It generated shortcut conflicted

samples that cross the decision boundary of the local model
while preserving the predictions of the global model. Fi-
nally, we employed all anti-shortcut samples to yield the
task results and compose rationales. Experimental results
have clearly demonstrated the effectiveness of FedGR.
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Impact Statement
There is a growing interest in the field of explaining the
results of graph classification generated by GNNs. Graph ra-
tionalizations have emerged as a means to provide intuitive
explanations supporting the prediction results. The advan-
tage of FedGR over the other rationalization approaches
is that it can eliminate shortcuts or spurious correlations
in data, thereby composing faithful rationales. More es-
sentially, since our method removes shortcuts from data in
federated scenarios, it can be applied to multiple decision-
critical and privacy-sensitive systems, such as the healthcare
system. Furthermore, it is crucial to note that our method
solely provides suggestions for decision-making and en-
hances the credibility of model predictions, while refraining
from interfering with real-world decision-making processes.
Overall, we believe the positive influence of our work out-
weighs the potential negative impacts.
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A. Proof of Theorem 3.6
Theorem 3.6. To train the difference-aware augmenter, minimizing term 1© in Eq(9) contributes to max I(Yk; G̃k∣f t(⋅));
maximizing term 2© in Eq(9) contributes to min I(Yk; G̃k∣f t−1

k (⋅)).

Proof. According to the objective of Eq(8), equivalently, with the introduction of a Lagrange multiplier β, we can maximize
the objective:

max I(Yk; G̃k ∣ f t(⋅)) − βI(Yk; G̃k ∣ f t−1
k (⋅))

=max
Ψ

I(Yk; Ψ(Gk) ∣ f t(⋅)) − βI(Yk; Ψ(Gk) ∣ f t−1
k (⋅)). (11)

Then, to calculate Eq(11), we should calculate the conditional mutual information. Below, we present how to calculate it
with a general form:

I(Y ;X ∣ E) = H(Y ∣ E) −H(Y ∣ E,X)
= H(Y ) −H(Y ∣ E,X)
⇒ −H(Y ∣ E,X).

(12)

where H(⋅) denotes the entropy and Y is the given label.

Based on Eq(12), we can have:

I(Yk; Ψ(Gk) ∣ f t(⋅))⇒ −H(Yk ∣ f t(⋅),Ψ(Gk)) = −H(Yk ∣ f t(Ψ(Gk))),
I(Yk; Ψ(Gk) ∣ f t−1

k (⋅))⇒ −H(Yk ∣ f t−1
k (⋅),Ψ(Gk)) = −H(Yk ∣ f t−1

k (Ψ(Gk))).
(13)

By incorporating Eq(13) into Eq(11), we can achieve:

max
Ψ

I(Yk; Ψ(Gk) ∣ f t(⋅)) − βI(Yk; Ψ(Gk) ∣ f t−1
k (⋅))

⇒max
Ψ
−H(Yk ∣ f t(Ψ(Gk))) + βH(Yk ∣ f t−1

k (Ψ(Gk)))

=min
Ψ

[`(f t(Ψ(Gk)), Yk) − β`(f t−1
k (Ψ(Gk)), Yk)],

which finishes the proof.

B. Training algorithm of FedGR
The overall training algorithm of FedGR with anti-shortcut augmentations is presented in Algorithm 1.

C. Comparison Methods and Experimental Setups
In this section, we present the detailed description of comparison methods and experimental setups.

C.1. Comparison Methods

Although graph rationalization methods are widely studied, these methods are not fully explored in federated scenarios. For
a fair comparison, we transfer the following rationalization methods that are employed in centralized scenarios to federated
scenarios with the aggregation approach of Eq(1):

• Vanilla GR denotes the vanilla graph rationalization method presented in section 2.2.

• DIR (Wu et al., 2022) conducts interventions on the training distribution to create multiple counterfactual samples to
compose rationales.

• DisC (Fan et al., 2022) designs a disentangling method to learn the causal and shortcut substructures within the graph
data. By synthesizing counterfactual training samples, DisC aims to further de-correlate causal and shortcut variables,
mitigating the influence of shortcuts.
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Algorithm 1 Training algorithm of FedGR
1: Server Executes:
2: Initialize the warm-up communication round Tw as 1, the communication round T , the epoch E, the numbers of

clients N and the shared global/local model f0(⋅).
3: for each communication round t=1 to Tw + T do
4: for each client id k=1 to N in parallel do
5: if t ≤ Tw then
6: ClientUpdate(k,f t−1

k (⋅)).
7: else
8: ClientUpdate(k,f t−1

k (⋅),f t(⋅)).
9: end if

10: end for
11: Receive all local updated model: {f tk(⋅)}

N

k=1
.

12: Perform aggregation by Eq.(1) to get f t+1(⋅).
13: end for
14: ClientUpdate(k, f

t−1
k (⋅), f

t(⋅)=None):
15: for epoch e=1 to E do
16: if f t(⋅) is None then
17: Update local model by Eq.(8).
18: else
19: 1. Train difference-aware augmenter Ψ(⋅) by Eq.(9).
20: 2. Employ the freezed Ψ(⋅) to generate G̃k for each Gk.
21: 3. Update local model with the mixed data by Eq.(10).
22: end if
23: end for
24: Return local parameters f tk(⋅) to server.

• CAL (Sui et al., 2022) discovers the causal rationales and mitigates the confounding effect of shortcuts with a causal
attention learning strategy.

• GSAT (Miao et al., 2022) introduces stochasticity to block label-irrelevant information in the graph and selectively
identifies label-relevant subgraphs. This method is guided by the information bottleneck principle (Tishby et al., 2000;
Alemi et al., 2017) to extract interpretable and relevant rationales.

• DARE (Yue et al., 2022) introduces a self-guided method with the disentanglement operation with the mutual information
minimization to encapsulate sufficient information from the input to extract rationales. Although DARE is designed for
explaining natural language understanding (NLU) tasks, we can naturally apply it to explain GNNs.

• InterRAT (Yue et al., 2023) develops an interventional rationalization to remove the spurious correlations in data and
further discover the causal rationales with the backdoor adjustment method (Glymour et al., 2016; Wang et al., 2020).
Similar to DARE, we transfer InterRAT from NLU to graph-level classifications.

• RGDA (Liu et al., 2023) propose a general counterfactual data augmentation of the graph node classification and graph-
level classification. In this paper, we employ RGDA for the graph-level classification, which generates counterfactual
samples by combining the causal substructure with the shortcut substructure.

Besides, in the comparative analysis, several conventional GNN architectures are considered for classification tasks, including
GCN (Kipf & Welling, 2017) and GIN (Xu et al., 2019). Meanwhile, we employ both GCN and GIN as the backbone of
FedGR and other baselines.

C.2. Experimental Setups

In all experimental settings, the values of the hyperparameters λsp, λc, λe and λd are uniformly set to 0.01, 1.0, 1.0 and
1.0, respectively. The hidden dimensionality d is 32 for the Spurious-Motif dataset, and 128 for the OGB dataset. The
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Table 3. Statistics of Spurious-Motif Datasets. Among them, different clients share the same valid and test set.

Spurious-Motif
b=0.5 b=0.7 b=0.9

Client1/Client2/Client3/Val/Test 377/662/1961/3,000/6,000 377/662/1,961/3,000/6,000 377/662/1,961/3,000/6,000
Classes 3 3 3

Avg. Nodes 18.60/18.29/18.48/18.50/88.80 18.73/18.27/18.8/18.50/88.80 19.02/18.54/18.66/18.50/88.80
Avg. Edges 27.72/27.31/27.55/27.54/125.14 28.29/27.3/28.05/27.54/125.14 28.74/27.63/27.81/27.54/125.14

Table 4. Statistics of OGB Datasets.

MolHIV MolToxCast

Client1/Client2/Client3/Client4/Val/Test 9,380/6,148/10,113/7,260/4,113/4,113 871/614/3,819/1,556/858/858
Classes 2 617

Avg. Nodes 25.31/25.32/25.15/25.27/27.79/25.27 16.41/16.86/16.63/16.91/26.17/28.19
Avg. Edges 54.19/54.2/53.89/54.15/61.05/55.59 32.91/33.93/33.45/33.99/56.09/60.71

MolBBBP MolSIDER

Client1/Client2/Client3/Client4/Val/Test 472/299/325/535/204/204 422/333/201/185/143/143
Classes 2 27

Avg. Nodes 22.44/22.15/22.34/22.81/33.20/27.51 28.85/30.96/30.97/29.7/43.24/53.27
Avg. Edges 48.42/47.53/48.05/49.19/71.84/59.75 60.53/64.77/64.87/62.25/91.85/112.66

original node feature dimensionality dg is 4 for the Spurious-Motif dataset, and 9 for the OGB dataset. During the training
process, we employ the Adam optimizer (Kingma & Ba, 2014) with a learning rate initialized as 1e-2 for the Spurious-Motif,
and 1e-3 for the OGB dataset. We set the predefined sparsity α as 0.1 for MolHIV, 0.5 for MolSIDER, MolToxCast and
MolBBBP, and 0.4 for other datasets. The communication round T is 20 and the epoch in each communication is 10, for a
total of 200 iterations.

D. Data Statistics
We evaluate our FedGR on three synthetic datasets from Spurious-Motif (Ying et al., 2019; Wu et al., 2022), and four
real-world datasets from Open Graph Benchmark (OGB) (Hu et al., 2020). Details of dataset statistics are summarized in
Table 3 and Table 4. Among them, in the Spurious-Motif dataset, different clients share the same valid and test set.

E. More Experimental Results
E.1. Performance of FedGR with both the GIN and GCN backbone

To assess the efficacy of FedGR, we conduct a comparative analysis against various baseline methods in the task prediction.
The results are presented in Table 5. The findings demonstrate that FedGR achieves optimal performance, highlighting the
effectiveness of the two proposed data augmenters.

Additionally, it is worth noting that certain de-shortcut methods, such as DIR, CAL, and InterRAT, exhibit comparable
performance to the traditional GIN and GCN models. This suggests that de-shortcut models designed for centralized
scenarios may not be suitable for direct application in federated learning (FL) scenarios. Consequently, it emphasizes the
significance of exploring de-shortcut rationalization approaches specifically tailored for FL settings.

Moreover, several data augmentation-based methods, including RGDA and DisC, demonstrate sub-optimal performance.
This highlights the advantages of employing counterfactual data augmentation approaches in mitigating the shortcut problem
that arises within FL scenarios.
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Table 5. Performance on the Synthetic Dataset and Real-world Dataset in FL scenarios.

Spurious-Motif (ACC) OGB (AUC)
bias=0.5 bias=0.7 bias=0.9 MolHIV MolToxCast MolBBBP MolSIDER

G
IN

is
th

e
ba

ck
bo

ne

GIN 0.3213 ± 0.0429 0.3489 ± 0.0442 0.2978 ± 0.0382 0.6927 ± 0.0308 0.6091 ± 0.0133 0.6226 ± 0.0133 0.5780 ± 0.0105
Vanilla GR 0.3182 ± 0.0353 0.3681 ± 0.0359 0.3031 ± 0.0291 0.6985 ± 0.0155 0.6111 ± 0.0055 0.6339 ± 0.0142 0.5774 ± 0.0175

DIR 0.3091 ± 0.0314 0.3298 ± 0.0148 0.2893 ± 0.0311 0.6731 ± 0.0337 0.6133 ± 0.0064 0.6245 ± 0.0098 0.5686 ± 0.0162
DisC 0.4418 ± 0.0182 0.4481 ± 0.0381 0.3579 ± 0.0471 0.7212 ± 0.0201 0.6274 ± 0.0018 0.6561 ± 0.0121 0.5869 ± 0.0142
CAL 0.4213 ± 0.0109 0.5289 ± 0.0087 0.4191 ± 0.0248 0.7039 ± 0.0113 0.6170 ± 0.0051 0.6575 ± 0.0076 0.5879 ± 0.0138

GSAT 0.4281 ± 0.0328 0.5259 ± 0.0381 0.4194 ± 0.0338 0.7149 ± 0.0226 0.6255 ± 0.0030 0.6555 ± 0.0085 0.5952 ± 0.0082
DARE 0.4483 ± 0.0193 0.4891 ± 0.0391 0.4288 ± 0.0977 0.7220 ± 0.0165 0.6289 ± 0.0059 0.6621 ± 0.0096 0.5886 ± 0.0113

InterRAT 0.4191 ± 0.0943 0.5283 ± 0.0935 0.4281 ± 0.0189 0.7026 ± 0.0092 0.6095 ± 0.0028 0.6426 ± 0.0223 0.5842 ± 0.0078
RGDA 0.4087 ± 0.0293 0.5089 ± 0.0198 0.4286 ± 0.0313 0.7246 ± 0.0085 0.6235 ± 0.0034 0.6605 ± 0.0157 0.5906 ± 0.0151

FedGR 0.4610 ± 0.0289 0.5538 ± 0.0398 0.4977 ± 0.0315 0.7387 ± 0.0186 0.6316 ± 0.0054 0.6690 ± 0.0174 0.6017 ± 0.0202
FedGR w/o diff 0.4493 ± 0.0238 0.5293 ± 0.0483 0.4333 ± 0.0471 0.7214 ± 0.0124 0.6222 ± 0.0055 0.6623 ± 0.0033 0.5886 ± 0.0047
FedGR w/o com 0.4571 ± 0.0372 0.5438 ± 0.0551 0.4682 ± 0.0388 0.7321 ± 0.0233 0.6298 ± 0.0035 0.6668 ± 0.0048 0.5978 ± 0.0021

G
C

N
is

th
e

ba
ck

bo
ne

GCN 0.3491 ± 0.0211 0.3348 ± 0.0384 0.3081 ± 0.0392 0.6983 ± 0.0154 0.6059 ± 0.0074 0.6380 ± 0.0143 0.5747 ± 0.0092
Vanilla GR 0.3219 ± 0.0401 0.3589 ± 0.0292 0.3024 ± 0.0487 0.6998 ± 0.0111 0.6043 ± 0.0149 0.6393 ± 0.0080 0.5718 ± 0.0108

DIR 0.3148 ± 0.0392 0.3173 ± 0.0471 0.2973 ± 0.0357 0.6912 ± 0.0103 0.5863 ± 0.0022 0.6282 ± 0.0136 0.5673 ± 0.0172
DisC 0.4369 ± 0.0486 0.4584 ± 0.0378 0.3673 ± 0.0931 0.7342 ± 0.0186 0.6171 ± 0.0094 0.6406 ± 0.0039 0.5894 ± 0.0076
CAL 0.4438 ± 0.0477 0.5173 ± 0.0462 0.4284 ± 0.0832 0.7485 ± 0.0127 0.6205 ± 0.0046 0.6524 ± 0.0257 0.5957 ± 0.0116

GSAT 0.4394 ± 0.0915 0.5383 ± 0.0326 0.4398 ± 0.0534 0.7457 ± 0.0079 0.6125 ± 0.0032 0.6536 ± 0.0085 0.6004 ± 0.0246
DARE 0.4472 ± 0.0471 0.4782 ± 0.0474 0.4327 ± 0.0372 0.7424 ± 0.0368 0.6094 ± 0.0089 0.6416 ± 0.0159 0.5968 ± 0.0292

InterRAT 0.4064 ± 0.0471 0.5173 ± 0.0347 0.4377 ± 0.0362 0.7180 ± 0.0284 0.6079 ± 0.0095 0.6398 ± 0.0098 0.5827 ± 0.0083
RGDA 0.4187 ± 0.0375 0.4987 ± 0.0744 0.4377 ± 0.0432 0.7293 ± 0.0166 0.6197 ± 0.0049 0.6456 ± 0.0061 0.5958 ± 0.0143

FedGR 0.4580 ± 0.0531 0.5526 ± 0.0624 0.4918 ± 0.0619 0.7571 ± 0.0104 0.6282 ± 0.0092 0.6693 ± 0.0149 0.6093 ± 0.0039
FedGR w/o diff 0.4488 ± 0.0831 0.5219 ± 0.0739 0.4485 ± 0.0365 0.7489 ± 0.0172 0.6188 ± 0.0038 0.6575 ± 0.0024 0.5983 ± 0.0035
FedGR w/o com 0.4521 ± 0.0464 0.5397 ± 0.0348 0.4771 ± 0.0492 0.7532 ± 0.0143 0.6254 ± 0.0042 0.6645 ± 0.0044 0.6032 ± 0.0073

Table 6. Performance on the Synthetic Dataset and Real-world Datasets in centralized scenarios.

Spurious-Motif (ACC) OGB (AUC)
bias=0.5 bias=0.7 bias=0.9 MolHIV MolToxCast MolBBBP MolSIDER

G
IN

is
th

e
ba

ck
bo

ne

GIN 0.3950 ± 0.0471 0.3872 ± 0.0531 0.3768 ± 0.0447 0.7447 ± 0.0293 0.6521 ± 0.0172 0.6584 ± 0.0224 0.5977 ± 0.0176
Vanilla GR 0.4528 ± 0.0384 0.4971 ± 0.0482 0.4218 ± 0.0363 0.7324 ± 0.0131 0.6475 ± 0.0067 0.6579 ± 0.0045 0.5883 ± 0.0194

DIR 0.4444 ± 0.0621 0.4891 ± 0.0761 0.4131 ± 0.0652 0.6303 ± 0.0607 0.5451 ± 0.0092 0.6460 ± 0.0139 0.4989 ± 0.0115
DisC 0.4585 ± 0.0660 0.4885 ± 0.1154 0.3859 ± 0.0400 0.7731 ± 0.0101 0.6662 ± 0.0089 0.6963 ± 0.0206 0.5846 ± 0.0169
CAL 0.4734 ± 0.0681 0.5541 ± 0.0323 0.4474 ± 0.0128 0.7339 ± 0.0077 0.6476 ± 0.0066 0.6582 ± 0.0397 0.5965 ± 0.0116

GSAT 0.4517 ± 0.0422 0.5567 ± 0.0458 0.4732 ± 0.0367 0.7524 ± 0.0166 0.6174 ± 0.0069 0.6722 ± 0.0197 0.6041 ± 0.0096
DARE 0.4843 ± 0.1080 0.4002 ± 0.0404 0.4331 ± 0.0631 0.7836 ± 0.0015 0.6677 ± 0.0058 0.6820 ± 0.0246 0.5921 ± 0.0260

InterRAT 0.4628 ± 0.0234 0.5182 ± 0.0214 0.4983 ± 0.0523 0.7446 ± 0.0131 0.6531 ± 0.0045 0.6753 ± 0.0034 0.5821 ± 0.0031
RGDA 0.4251 ± 0.0458 0.5331 ± 0.1509 0.4568 ± 0.0779 0.7714 ± 0.0153 0.6694 ± 0.0043 0.6953 ± 0.0229 0.5864 ± 0.0052

CaA 0.4963 ± 0.0311 0.5678 ± 0.0482 0.5518 ± 0.0318 0.7896 ± 0.0088 0.6716 ± 0.0021 0.6986 ± 0.0081 0.6056 ± 0.0172
CaA w/o cl 0.4567 ± 0.0563 0.5486 ± 0.0522 0.4532 ± 0.0724 0.7563 ± 0.0248 0.6593 ± 0.0038 0.6753 ± 0.0040 0.5853 ± 0.0131

G
C

N
is

th
e

ba
ck

bo
ne

GCN 0.4091 ± 0.0398 0.3772 ± 0.0763 0.3566 ± 0.0323 0.7128 ± 0.0188 0.6497 ± 0.0114 0.6665 ± 0.0242 0.6108 ± 0.0075
Vanilla GR 0.4434 ± 0.0518 0.4513 ± 0.0558 0.4482 ± 0.0359 0.7421 ± 0.0144 0.6482 ± 0.0034 0.6631 ± 0.0074 0.5857 ± 0.0064

DIR 0.4281 ± 0.0520 0.4471 ± 0.0312 0.4588 ± 0.0840 0.4258 ± 0.1084 0.5077 ± 0.0094 0.5069 ± 0.1099 0.5224 ± 0.0243
DisC 0.4698 ± 0.0408 0.4312 ± 0.0358 0.4713 ± 0.1390 0.7791 ± 0.0137 0.6626 ± 0.0055 0.7061 ± 0.0105 0.6110 ± 0.0091
CAL 0.4245 ± 0.0152 0.4355 ± 0.0278 0.3654 ± 0.0064 0.7501 ± 0.0094 0.6006 ± 0.0031 0.6635 ± 0.0257 0.5559 ± 0.0151

GSAT 0.3630 ± 0.0444 0.3601 ± 0.0419 0.3929 ± 0.0289 0.7598 ± 0.0085 0.6124 ± 0.0082 0.6437 ± 0.0082 0.6179 ± 0.0041
DARE 0.4609 ± 0.0648 0.5035 ± 0.0247 0.4494 ± 0.0526 0.7523 ± 0.0041 0.6618 ± 0.0065 0.6823 ± 0.0068 0.6192 ± 0.0079

InterRAT 0.4521 ± 0.0471 0.5211 ± 0.0578 0.4379 ± 0.0345 0.7583 ± 0.0137 0.6583 ± 0.0048 0.6519 ± 0.0063 0.5938 ± 0.0038
RGDA 0.4687 ± 0.0855 0.5467 ± 0.0742 0.4651 ± 0.0881 0.7816 ± 0.0079 0.6622 ± 0.0045 0.6970 ± 0.0089 0.6133 ± 0.0239

CaA 0.4831 ± 0.0571 0.5793 ± 0.0284 0.5128 ± 0.0482 0.7857 ± 0.0043 0.6664 ± 0.0040 0.6949 ± 0.0072 0.6212 ± 0.0102
CaA w/o cl 0.4682 ± 0.0783 0.5461 ± 0.0641 0.4521 ± 0.0739 0.7498 ± 0.0139 0.6558 ± 0.0057 0.6637 ± 0.0048 0.6085 ± 0.0146
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Table 7. Structural Generalizability of FedGR. Each rationalization method in FedGR is highlighted with a gray background.

MolHIV MolToxCast MolBBBP MolSIDER

G
IN

is
th

e
ba

ck
bo

ne

DisC 0.7212 0.6274 0.6561 0.5869
DisC+FedGR 0.7313 (↑1.01%) 0.6301 (↑0.27%) 0.6618 (↑0.57%) 0.5942 (↑0.73%)
RGDA 0.7246 0.6235 0.6605 0.5906
RGDA+FedGR 0.7344 (↑0.98%) 0.6326 (↑0.91%) 0.6673 (↑0.68%) 0.6008 (↑1.02%)
GSAT 0.7149 0.6255 0.6555 0.5952
GSAT+FedGR 0.7267 (↑1.18%) 0.6293 (↑0.38%) 0.6628 (↑0.73%) 0.5980 (↑0.28%)
InterRAT 0.7026 0.6095 0.6426 0.5842
InterRAT+FedGR 0.7193 (↑1.67%) 0.6245 (↑1.50%) 0.6587 (↑1.61%) 0.5927 (↑0.85%)
DARE 0.7220 0.6289 0.6621 0.5886
DARE+FedGR 0.7291 (↑0.71%) 0.6331 (↑0.42%) 0.6686 (↑0.65%) 0.5945 (↑0.59%)

G
C

N
is

th
e

ba
ck

bo
ne

DisC 0.7342 0.6171 0.6406 0.5894
DisC+FedGR 0.7467 (↑1.25%) 0.6203 (↑0.32%) 0.6488 (↑0.82%) 0.5965 (↑0.71%)
RGDA 0.7293 0.6197 0.6456 0.5958
RGDA+FedGR 0.7381 (↑0.88%) 0.6254 (↑0.57%) 0.6568 (↑1.12%) 0.6032 (↑ 0.74%)
GSAT 0.7457 0.6125 0.6536 0.6004
GSAT+FedGR 0.7419 (↓ 0.38%) 0.6234 (↑1.09%) 0.6635 (↑0.99%) 0.6077 (↑0.73%)
InterRAT 0.7180 0.6079 0.6398 0.5827
InterRAT+FedGR 0.7346 (↑1.66%) 0.6183 (↑1.04%) 0.6578 (↑ 1.80%) 0.5967 (↑1.40%)
DARE 0.7424 0.6094 0.6416 0.5968
DARE+FedGR 0.7491 (↑0.67%) 0.6172 (↑0.78%) 0.6587 (↑1.71%) 0.6043 (↑0.75%)

E.2. Performance of Complement-aware augmenter in centralized scenarios

In section 4.3, we validate the effectiveness of the complement-aware augmenter (referred to as CaA) through ablation
experiments. In this section, we delve further into the performance of CaA. Specifically, in section 3, we mention that CaA
can be naturally applied to centralized scenarios. To investigate this, we conduct experiments on centralized scenarios, and
the results are presented in Table 6.

Upon observation, we find that our approach consistently outperforms the baselines in the centralized scenarios. This result
demonstrates the effectiveness of our complement-aware augmenter in both the centralized and federated learning (FL)
scenarios. Furthermore, we conduct experiments by removing the contrastive constraint (denoted as CaA w/o cl). From the
table, we can observe that CaA w/o cl exhibits a significant decrease in performance compared to the complement-aware
augmenter, performing similarly to the GSAT and DisC baselines. This finding highlights the importance of incorporating
contrastive learning constraints to satisfy the principles of sufficiency and independence in rationalization methods.

E.3. Structural Generalizability of FedGR

To investigate that FedGR can contribute to the performance improvements in existing rationale-based methods, we conducte
experiments on the OGB dataset by replacing the complement-aware augmenter in FedGR with DisC, RGDA, GSAT,
InterRAT, and DARE. The results are presented in Table 7.

Upon analyzing the table, we observe a consistent improvement in performance across all rationalization methods when
our difference-aware augmenter is employed in the FedGR framework. This finding highlights the generalizability of our
FedGR approach and its ability to effectively enhance the performance of other rationale-based methods in FL scenarios.

E.4. Training Process of FedGR

In this section, we delve into the training process of FedGR and Vanilla GR, as depicted in Figure 7. The experiments are
conducted using GIN as the backbone, and we present the changes in AUC for the global and local models of FedGR and
Vanilla GR on the MolSIDER test set across communication rounds. It is important to note that the global models of FedGR
and Vanilla GR are the main models evaluated in Table 1 and Table 6.

Analyzing the figure, we observe that the global model of Vanilla GR outperforms all of its local models. This finding aligns
with Assumption 3.3 that local models tend to exhibit relatively higher bias compared to the global model. Furthermore,
we notice that both the local and global models of FedGR surpass Vanilla GR in terms of performance. This observation
highlights the efficacy of the data augmentations utilized in FedGR, which can isolate shortcuts and compose faithful
rationales, thereby enabling effective predictions.
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Figure 7. Training process of FedGR and Vanilla GR on Mol-SIDER, where the test set is considered as an unbiased test set.

E.5. Why the performance of DIR in the centralized scenario is lower than in the FL scenario?

Although DIR trained by federated dataset (DIR-fed) outperforms DIR trained by centralized dataset (DIR-center) on the
OGB dataset, we also find that on the Spurious-Motif dataset, DIR-center performs higher than DIR-fed. Based on the above
observation, we argue that one possible reason is due to the dataset itself. To this end, we additionally add experiments on
other datasets, such as Graph-SST2 (Wu et al., 2022) and MNIST-75sp (Knyazev et al., 2019) datasets, where the training
set is partitioned into 4 clients with γ = 4.

Table 8. The performance of DIR in both Graph-SST2 and MNIST-75sp datasets under the centralized and federated scenarios, where
DIR is implemented with GIN.

GIN is the backbone Graph-SST2(ACC) MNIST-75sp(ACC)

DIR-fed 0.7877 ± 0.0282 0.1384 ± 0.0394
DIR-center 0.8083 ± 0.0115 0.1893 ± 0.0458

From Table 8, we observe that DIR-center performs higher than DIR-fed on both Graph-SST2 and MNIST-75sp datasets.
Therefore, we can conclude the problem of DIR’s results may be caused by the dataset itself.

Besides, we also implement our FedGR on these two datasets.

Table 9. Performance on the Graph-SST2 and MNIST-75sp datasets in FL scenarios.

GIN is the backbone Graph-SST2(ACC) MNIST-75sp(ACC)

GIN 0.7921 ± 0.0028 0.1123 ± 0.0039
VanillaGR 0.7783 ± 0.0129 0.1134 ± 0.0068

DIR 0.7877 ± 0.0282 0.1384 ± 0.0394
DisC 0.8124 ± 0.0086 0.1308 ± 0.0184
CAL 0.8173 ± 0.0138 0.1347 ± 0.0038

GSAT 0.8283 ± 0.0080 0.1239 ± 0.0128
DARE 0.8219 ± 0.0238 0.1402 ± 0.0238

InterRAT 0.8192 ± 0.0048 0.1303 ± 0.0093
RGDA 0.8247 ± 0.0057 0.1455 ± 0.0129
FedGR 0.8313 ± 0.0069 0.1683 ± 0.0135

E.6. Case Study

In this section, we first present the visualization of FedGR, which is trained in Spurious-Motif (bias=0.9) on the test set.
Specifically, Figure 8 shows several rationale subgraphs extracted by FedGR (GIN serves as the backbone). Among them,
each graph consists of a motif type (Cycle, House and Crane) and a base (Tree, Wheel and Ladder). The highlighted navy
blue nodes represent selected rationale nodes1. Meanwhile, we assume that if there is an edge between the two identified
nodes, we visualize this edge as the red lines. From the figure, we can observe that FedGR successfully extracts more

1In this paper, when the probability of predicting a node as part of rationales m̃i to be greater than 0.55, we take the node as part of
rationales.
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accurate rationales for prediction. These visualizations highlight the effectiveness of the FedGR in composing accurate and
faithful rationales from graph data, thereby enhancing the model’s explainability and overall performance.

Cycle-Tree Cycle-Wheel Cycle-Ladder

House-Tree House-Wheel House-Ladder

Crane-Tree Crane-Wheel Crane-Ladder

Figure 8. Visualization of FedGR rationale subgraphs.
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