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Abstract

Knowledge graph embeddings (KGEs) were001
originally developed to infer true but missing002
facts in incomplete knowledge repositories. In003
this paper, we link knowledge graph comple-004
tion and counterfactual reasoning via our new005
task CFKGR. We model the original world006
state as a knowledge graph, hypothetical scenar-007
ios as edges added to the graph, and plausible008
changes to the graph as inferences from logi-009
cal rules. We create corresponding benchmark010
datasets, which contain diverse hypothetical011
scenarios with plausible changes to the orig-012
inal knowledge graph and facts that should013
be retained. We develop COULDD, a general014
method for adapting existing knowledge graph015
embeddings given a hypothetical premise, and016
evaluate it on our benchmark. Our results in-017
dicate that KGEs learn patterns in the graph018
without explicit training. We further observe019
that KGEs adapted with COULDD solidly de-020
tect plausible counterfactual changes to the021
graph that follow these patterns. An evaluation022
on human-annotated data reveals that KGEs023
adapted with COULDD are mostly unable to024
recognize changes to the graph that do not fol-025
low learned inference rules. In contrast, Chat-026
GPT mostly outperforms KGEs in detecting027
plausible changes to the graph but has poor028
knowledge retention. In summary, CFKGR029
connects two previously distinct areas, namely030
KG completion and counterfactual reasoning.031

1 Introduction032

Reasoning about hypothetical situations (counter-033

factual reasoning) and anticipating the effects of a034

change in the current state of the world is central035

to human cognition (Rafetseder and Perner, 2014;036

Van Hoeck et al., 2015), and has been identified037

as a key concept in game theory (Aumann, 1995;038

Halpern, 1999) and agent-based systems (Icard039

et al., 2018; Parvaneh et al., 2020). It has even been040

argued that the capacity to reason about alternative041

configurations of the world could be a pre-requisite042

If Paris was the capital of Japan ...

(Paris, capital, Japan)

Paris would likely be in Asia
(Paris, continent, Asia)

Hypothetical Scenario World Knowledge

+

Elvis Presley would likely STILL be a musician
(Elvis Presley, occupation, musician)

Figure 1: A hypothetical scenario and its implications,
expressed in the language of knowledge graph triples

to the existence of free will and a sense of agency 043

(McCarthy, 2000; Kulakova et al., 2017). Recently, 044

there has been an increased interest in evaluating 045

and improving counterfactual reasoning of AI sys- 046

tems, in particular, large language models (LLMs) 047

(Qin et al., 2019; Frohberg and Binder, 2022; Li 048

et al., 2023). 049

Knowledge graphs (KGs) express rich informa- 050

tion about the world as an explicit collection of 051

triples, such as (Paris, capital, France), and knowl- 052

edge graph embeddings (KGEs) effectively infer 053

true but missing facts from incomplete knowledge 054

repositories (Hogan et al., 2021; Ji et al., 2021). 055

Yet, to the best of our knowledge, KGEs have not 056

been explored for counterfactual reasoning. 057

In this work, we link counterfactual reasoning to 058

knowledge graph completion (KGC) via our new 059

task CFKGR1 (CounterFactual KG Reasoning) 060

which requires models to classify the validity of 061

facts given a hypothetical scenario. CFKGR de- 062

scribes the original world state as a KG and hy- 063

pothetical scenarios as edges that are added to the 064

graph. The hypothetical scenario leads to the emer- 065

gence of new facts in the KG while leaving (most) 066

already existing ones intact. Figure 1 illustrates a 067

hypothetical scenario in which Paris is the capital 068

of Japan. To perform well on CFKGR, models 069

must be capable of detecting plausible additions 070

1The data and code is included in this submission and will
be made publicly available upon acceptance.
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to the graph, e.g., (Paris, continent, Asia), while071

maintaining knowledge of unaffected facts, e.g.,072

(Elvis Presley, occupation, musician). We create073

the first benchmark datasets for CFKGR, which074

are based on the CoDEx KGC benchmark (Safavi075

and Koutra, 2020) and provide diverse hypothet-076

ical scenarios with corresponding plausible addi-077

tions to the KG derived from inference rules (that078

were mined from the KG (Lajus et al., 2020)). We079

validate our data-generating process and underly-080

ing assumptions via thorough human annotation.081

Lastly, we introduce COULDD (COUnterfactual082

Reasoning with KnowLedge Graph EmbeDDings),083

a method which updates existing KGEs based on084

counterfactual information. COULDD follows a085

standard KGE training scheme using the hypotheti-086

cal scenario and negative sampling. Training stops087

once the hypothetical scenario is classified as valid.088

In our experiments, COULDD is initialized with089

five different KGE methods. We observe that it090

can detect plausible counterfactual changes to the091

graph that follow prominent inference patterns in092

the KG while maintaining performance on unaf-093

fected triples. We repeat the same experiments with094

ChatGPT, i.e., gpt-3.5-turbo, provided with similar095

prompts to human annotators. ChatGPT performs096

better at detecting plausible additions to the graph097

than most KGE-based methods but exhibits poor098

knowledge retention. Qualitative analysis of an-099

swers provided by ChatGPT shows that it largely100

failed to understand the task on retained facts as101

it tried to infer them from the provided informa-102

tion. Evaluating on human-annotated data leads to103

a drop in overall performance for KGEs and Chat-104

GPT alike. To summarize, our main contributions105

are as follows:106

• We propose CFKGR, a challenging task for107

counterfactual reasoning on KGs and cre-108

ate corresponding, partially human-verified,109

datasets, which we make publicly available.110

• We introduce COULDD, a general method for111

adapting existing KGE methods to make infer-112

ences given hypothetical scenarios and show113

that it improves reasoning on counterfactual114

graphs over pre-trained embeddings.115

• We compare counterfactual reasoning with116

KGEs to ChatGPT and show that ChatGPT117

outperforms KGEs in detecting plausible118

counterfactual inferences but struggles to re-119

call unrelated knowledge, unlike COULDD.120

2 CFKGR: Task Description 121

We introduce Counterfactual KG Reasoning 122

(CFKGR) a novel task to assess the ability of ma- 123

chine learning systems to reason in hypothetical 124

scenarios. CFKGR describes the originally ob- 125

served world state as a knowledge graph and in- 126

troduces hypothetical scenarios by adding previ- 127

ously unseen facts to the graph. To perform well 128

on CFKGR, models need to (1) identify plausible 129

changes to the original world state induced by the 130

hypothetical scenario and (2) understand which 131

facts are unaffected by the hypothetical scenario. 132

2.1 Definition of Counterfactual Graphs 133

Formally, CFKGR defines the original world state 134

via a knowledge graph G = {E ,R,F}, where E 135

andR denote the sets of entities and relations rep- 136

resented in the knowledge graph. The fact set F 137

represents our knowledge about the world as triples 138

(h, r, t) ∈ F ⊂ E ×R× E . We denote a hypothet- 139

ical scenario by a triple τ c := (h, r, t) /∈ F . The 140

counterfactual graph, in which τ c holds, is then 141

characterized by the fact set Fc := F \ F− ∪ F+, 142

where F+ denotes the facts that emerge given the 143

hypothetical scenario, and F− denotes facts that 144

contradict the scenario and cannot hold any longer. 145

We say τ c changes a triple τ if either τ ∈ F+ or 146

τ ∈ F−. 147

In the following, we formulate the assumptions 148

underlying our task. 149

Closed-world assumption. We adopt the standard 150

closed-world assumption (Reiter, 1978), which 151

states that facts that are not part of the KG, i.e., 152

τ /∈ F , are false. Thus, each τ /∈ F is a possible 153

hypothetical scenario in our setup. 154

Logic-world assumption. We assume that plau- 155

sible changes to the graph largely follow some 156

regularity and can hence be modeled via (poten- 157

tially very complex) logical rules. While available 158

rule sets have limited coverage and precision, we 159

can leverage them to model a subset of plausible 160

changes to a KG. By employing the logic-world 161

assumption, we can represent an approximation of 162

Fc via a set of rules and the original fact set. 163

2.2 Evaluation 164

We formulate CFKGR as a binary classification 165

task. Triples τ ∈ Fc receive label 1, while all other 166

triples are labeled 0. Since scoring all possible 167

triples is infeasible, we consider a smaller set of 168

carefully chosen test cases. Given a counterfactual 169
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Elvis Presley

Denmark

Danish

officiallanguage

citizen of

speaks

Europe continent

musician

occupation

Japan

Asia

continent

Korean

speaks

Walt Disney
speaks

educated
at

Brazilcontinent

continent

spouse

Instance Notation Original KG CF KG
Counterfactual τ c τ c /∈ F τ c ∈ Fc

Inference τ i τ i /∈ F τ i ∈ Fc

Unchanged (near) τn τn ∈ F τn ∈ Fc

Unchanged (far) τ f τ f ∈ F τ f ∈ Fc

Corruptions τh′ , τt′ , τr′ τh′ , τt′ , τr′ /∈ F τh′ , τt′ , τr′ /∈ Fc

Figure 2: Overview over the types of facts, given the hypothetical scenario that Elvis Presley is a citizen of Denmark.
The green edge (Elvis Presley, speaks, Danish) emerges from adding the blue edge (Elvis Presley, citizen of,
Denmark) to the knowledge graph. Purple and orange edges are present in the original KG and unaffected by the
scenario. Grey edges are neither present in the original nor the counterfactual knowledge graph.

τ c /∈ F and a rule, we define:170

(1) a counterfactual inference τ i that follows from171

a rule and allows us to measure whether the model172

can correctly predict changes to the graph given τ c,173

(2) retained facts which are unaffected by the hy-174

pothetical scenario and should still be classified as175

valid in the counterfactual graph,176

(3) random head, tail, and relation corruptions177

of inferences and retained facts, which ensure that178

the model does not score unsolicited triples as valid179

additions. We denote the corruptions for a triple τ180

by τh′ , τt′ and τr′ .181

For (2), we distinguish between near facts τn,182

which are in the one-hop neighborhood of τ c, and183

far facts τ f , sampled from its complement. Fig-184

ure 2 illustrates a counterfactual scenario and its185

associated test cases.186

We use the following metrics to evaluate the187

performance on our benchmark. Concrete formula-188

tions of the scores are in Appendix A.189

(1) We compute the F1-score score over all test190

cases in the dataset to measure the overall predic-191

tive performance on counterfactual graphs.192

(2) We measure the accuracy on changed facts,193

i.e., triples that have a different label before and194

after the hypothetical scenario is introduced.195

(3) We compute the F1-score on unchanged facts,196

i.e., triples that have the same label before and after197

the hypothetical scenario is introduced.198

3 CFKGR: Dataset Creation199

For our dataset construction, we leverage rules200

found by rule mining systems, which capture201

prominent patterns in KGs. Automatically mined202

rules are compatible with the content of the KG and203

are known to be a useful tool for KGC (e.g., Meil- 204

icke et al., 2019; Sadeghian et al., 2019a). Since 205

there is no trivial way to reliably generate F−, we 206

only consider the addtions F+. Concretely, we 207

define F+ via mined composition rules of the form 208

(X, r1, Y ) ∧ (Y, r2, Z)→ (X, r3, Z) (1) 209

where r1, r2, r3 ∈ R. We refer to (X, r1, Y ) ∧ 210

(Y, r2, Z) as the rule body and (X, r3, Z) as the 211

inference. The triples (X, r1, Y ) and (Y, r2, Z) 212

are called the first and second body atom, respec- 213

tively. Replacing X , Y , and Z by concrete entities 214

x, y, z ∈ E creates an instantiation of the rule. In 215

the following, we will use the short-hand notation 216

(r1, r2, r3) to denote a rule as described in (1). We 217

choose composition rules since they are well stud- 218

ied in standard KG completion benchmarks (Safavi 219

and Koutra, 2020) and inferential benchmarks (Cao 220

et al., 2021; Liu et al., 2023). Moreover, compo- 221

sition rules, as given in (1), infer local changes. 222

This is desirable since most relevant changes in- 223

duced by a hypothetical scenario will occur in its 224

close neighborhood. We consider understanding 225

the implications induced by composition rules as a 226

first step to more general and complex hypothetical 227

reasoning. 228

3.1 Data Generating Process 229

In the following, we give a high-level overview 230

of our data generating process and focus on creat- 231

ing hypothetical scenarios for the first body atom 232

of a given rule. Appendix C provides a detailed 233

description and the full algorithm. 234

Given a knowledge graph and a rule set, we 235

generate several hypothetical scenarios for each 236

3



Rule: (X, country, Y)     (Y, part of, Z)     (X, continent, Z)

Moscow Russia Canda North America
country part of

continent

country

Figure 3: Creation of a hypothetical scenario.

rule by altering a fact in the KG such that it trig-237

gers the rule, as is illustrated in Figure 3. Con-238

cretely, for each rule (r1, r2, r3), we search for239

existing edges e1 := (x, r1, y) ∈ Ftrain and240

e2 := (ȳ, r2, z) ∈ Ftrain, ensuring that the re-241

sulting hypothetical scenario τ c := (x, r1, ȳ) and242

inference τ i := (x, r3, z) are not in the original243

KG. Sampling e1 and e2 without any constraints244

can however result in nonsensical scenarios and245

inferences. Hence, we ensure that the entities in τ c246

and τ i are suitable for the given relation by check-247

ing whether they were observed as a head or tail248

of said relation (depending on their position in the249

triple) in the original KG. Once suitable τ c and τ i250

are found, we randomly sample two near facts τn251

from the one-hop neighborhood2 of τ c and one far252

fact τ f from its complement.253

When creating head and tail corruptions of a254

given fact, we restrict the sample space since ran-255

dom corruptions, which tend to result in nonsensi-256

cal triples, have previously been shown to be easily257

detectable for KGE methods (Safavi and Koutra,258

2020). For head (tail) corruptions, we require that259

the replacements are also heads (tails) for the rela-260

tion in the original graph. For relation corruptions,261

we do not employ additional constraints.262

3.2 CFKGR-CoDEx263

Based on the procedure described in Section 3.1,264

we create the first benchmark datasets for CFKGR-265

based on the CoDEx knowledge graph completion266

benchmark (Safavi and Koutra, 2020). We choose267

CoDEx since it covers diverse content, uses eas-268

ily interpretable relations, and contains rich aux-269

iliary information, such as entity types. CoDEx270

provides three knowledge graphs of varying sizes271

(S, M, and L), collected from Wikidata (Vrandečić272

and Krötzsch, 2014) and corresponding compo-273

sition rules obtained by the rule-mining system274

Amie3 (Lajus et al., 2020). CoDEx-S and CoDEx-275

M additionally contain verified negative triples. An276

overview over the resources provided by CoDEx277

2Except for the context triggering the rule. This choice
was made due to the setup of the human dataset verification.

Valid Test
Rules Facts Rules Facts

CFKGR-CoDEx-S 5 3600 12 8848
CFKGR-CoDEx-M 5 3936 26 19584
CFKGR-CoDEx-L 5 4000 39 30064

Table 1: CFKGR dataset overview. "Rules" denotes
the number of rules that were used to create the dataset.
"Facts" is the total number of test cases.

can be found in Appendix B. 278

We leverage the available Amie3 patterns for 279

each CoDEx dataset as our rule set and create 280

at most 25 unique counterfactual triples per body 281

atom3 for each rule. We subsequently split them 282

into a validation and test set, ensuring that there 283

are no overlapping rules or counterfactuals between 284

validation and test. Table 1 provides statistics about 285

the created datasets. 286

In the following section, we will explore how 287

well the resulting test cases align with human coun- 288

terfactual reasoning. 289

3.3 Human Annotation 290

We validate our data generating process via human 291

annotation. For each of the 31 rules in CFKGR- 292

M, we verify 10 test instances (5 per atom4). We 293

annotate τ i, τ f , τn1 , τn2 and τ ir′ , and omit the re- 294

maining corruptions as their construction relies 295

on the commonly-used closed-world assumption 296

(Reiter, 1978). This results in 1530 annotated in- 297

stances, which were labeled by four to six indepen- 298

dent annotators5 as either likely (1), unlikely (0), 299

or unsure/too little information (-1), given verbal- 300

izations of the hypothetical scenario and context 301

triggering the respective inference rule. We observe 302

a Krippendorff’s alpha of 0.508, which indicates 303

moderate agreement (Landis and Koch, 1977). The 304

annotation guidelines are in Appendix D. Table 2 305

summarizes the annotation results. 306

Inferences seem to be the most difficult cate- 307

gory to annotate as they show the highest amount 308

of ties and "unsure/too little information" labels. 309

Moreover, we observe the highest number of de- 310

viations from our expected label for this test case. 311

This indicates that rules that were mined for fac- 312

3For some rules, our constraints only allow for fewer
unique counterfactuals.

4Except for one rule which only produced one unique coun-
terfactual according to our conditions for the second atom.

5All annotators have a Bachelor’s or Master’s degree in a
STEM field.
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Majority Vote Label
# Labeled Expected As expected 0 1 -1 Tied

Inference 306 1 59.5% 57 182 21 46
Far fact 306 1 99.7% 0 305 0 1
Near fact 612 1 95.4% 18 584 1 9
Relation corr. 306 0 86.3% 264 19 4 19

Table 2: Annotation results. "# Labeled" denotes the
number of annotated examples and "Expected" gives
the label assigned by our process. "As expected" gives
the percentage of samples for which the expected label
coincides with the majority vote.

tual knowledge graph completion cannot always313

be used for human-like counterfactual reasoning.314

On relation corruptions, we observe a noticeable315

number of inferences that are not implied by our316

rules, but are still considered valid by humans or317

are at least debatable. Possible explanations are318

the limited coverage of the rule set or unintuitive319

verbalizations. On the remaining categories, we320

obtain a label distribution that largely agrees with321

our assumptions.322

4 Counterfactual Reasoning with323

Knowledge Graph Embeddings324

KGE models find low-dimensional vector represen-325

tations for entities and relations while preserving326

the information contained in the KG. To judge the327

plausibility of a given triple, KGE models use a328

scoring function ϕ(h, r, t) : E × R × E → R. A329

triple is typically classified as valid if it satisfies330

ϕ(h, r, t) ≥ µr, for a relation-specific threshold331

µr ∈ R.332

Data: G = {E ,R,F}, data D, params θ0,
#iterations E, #samples N ,
LR α, thresholds µ1, µ2, ..., µ|R|

Result: CFKGR predictions
ŷ ← {}
foreach (τ c, Tτc) ∈ D do

θ ← θ0
for e ∈ {1, ..., E} do

S ← Sample N from Ftrain

B ← {τ c} ∪ S
θ ← Optimizer(Lθ(B), α)
if ϕθ(τ

c) ≥ µr then
break

ŷ ← ŷ ∪ {ϕθ(Tτc)}
return ŷ

Algorithm 1: COULDD training and predic-
tion. The short-hand notation ϕθ(Tτc) denotes
scoring all test cases associated with τ c and Lθ
denotes the cross-entropy loss.

We propose COULDD (COUnterfactual Rea- 333

soning With KnowLedge Graph EmbeDDings), a 334

general method for adapting existing knowledge 335

graph embeddings given hypothetical scenarios. 336

COULDD is initialized from existing embeddings 337

trained on the original KG. For each hypothetical 338

scenario, these embeddings are updated and subse- 339

quently evaluated on the corresponding test cases. 340

COULDD’s update scheme only minimally 341

changes standard KGE training: In each iteration, 342

the existing embeddings are fine-tuned on a batch 343

consisting of the counterfactual triple τ c and N ad- 344

ditional randomly sampled edges from the training 345

graph. Negative training examples are generated 346

by randomly corrupting the head and tail entities of 347

each triple in the batch. Updates are done with the 348

standard cross-entropy loss. Once the counterfac- 349

tual triple τ c exceeds the classification threshold, 350

the training is stopped in order to avoid an exces- 351

sive perturbation of the pre-trained embeddings6. 352

Importantly, COULDD only requires access to 353

the counterfactual triple τ c and the original fact 354

set F and does not need additional task-specific 355

training data or information about the rules used to 356

generate CFKGR datasets. As a result, COULDD 357

can also be applied in rule-free evaluation se- 358

tups. Algorithm 1 provides a formal description of 359

COULDD. 360

5 Experiments 361

In the following, we conduct two types of ex- 362

periments: First, we evaluate pre-trained KGEs, 363

COULDD, and ChatGPT on our CFKGR datasets 364

with expected labels to assess whether the methods 365

can apply inference rules found by a rule mining 366

system in hypothetical scenarios. In our second set 367

of experiments, we evaluate on human-labeled data 368

to check whether the methods also capture human 369

reasoning, which does not necessarily align with 370

mined inference rules (see Section 3.3). 371

5.1 General Setups 372

We use the five pre-trained CoDEx link-prediction 373

models as initializations for COULDD7. Further 374

details about the KGE methods are in Appendix E. 375

For COULDD, we tune the learning rate (α) 376

and number of additional samples per batch (N ) 377

on the respective CFKGR validation set, based on 378

6Note that there is no traditional validation set for the
individual updates on which we could perform early stopping.

7The config files for the models are available at https:
//github.com/tsafavi/codex
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CFKGR-CoDEx-S CFKGR-CoDEx-M CFKGR-CoDEx-L
F1 Changed Unchanged F1 Changed Unchanged F1 Changed Unchanged

RESCAL 60.82 27.12 63.28 63.05 21.57 66.92 53.84 71.47 49.64
COULDD-RESCAL 61.68 ± 0.14 32.48 ± 0.73 63.48 ± 0.16 63.85 ± 0.08 26.23 ± 0.16 67.16 ± 0.07 53.94 ± 0.02 84.56 ± 0.35 48.18 ± 0.06

TransE 58.94 23.15 61.87 53.61 23.61 55.83 49.23 66.31 45.37
COULDD-TransE 60.49 ± 0.12 26.8 ± 0.81 63.16 ± 0.09 53.91 ± 0.05 26.06 ± 0.25 55.79 ± 0.06 52.6 ± 0.06 76.56 ± 0.25 47.77 ± 0.04

ComplEx 62.45 29.11 64.90 65.69 11.60 71.83 58.44 65.51 55.26
COULDD-ComplEx 67.76 ± 0.3 37.94 ± 0.67 69.95 ± 0.29 66.78 ± 0.06 34.67 ± 0.23 69.21 ± 0.07 59.44 ± 0.02 82.95 ± 0.26 54.25 ± 0.02

ConvE 61.04 16.64 65.39 56.83 13.15 61.37 55.56 61.84 52.58
COULDD-ConvE 61.51 ± 0.11 16.96 ± 0.72 65.92 ± 0.12 52.69 ± 0.16 17.04 ± 0.16 56.09 ± 0.16 60.6 ± 0.17 45.53 ± 0.61 60.29 ± 0.14

TuckER 64.25 15.01 69.40 65.21 13.15 70.98 52.87 76.74 48.05
COULDD-TuckER 66.03 ± 0.13 35.99 ± 1.0 68.09 ± 0.19 66.09 ± 0.17 43.69 ± 0.38 66.95 ± 0.17 53.53 ± 0.04 88.47 ± 0.34 47.49 ± 0.02

gpt-3.5-turbo 47.81 68.9 40.20 36.06 52.12 31.16 45.74 52.10 40.89

Table 3: Test performance of pre-trained embeddings and COULDD on CFKGR. For COULDD, we report the mean
and standard deviation across 5 runs. Bold entries denote the best performance between pre-trained KGEs and their
counterpart trained with COULDD. The best results on the dataset are underlined. For all scores, higher is better.

the best overall F1, and set the maximum num-379

ber of update steps (E) to 20. We carry over the380

remaining hyperparameters from the pre-trained381

CoDEx models (Safavi and Koutra, 2020). Further382

details regarding the hyperparameters are in Ap-383

pendix F.2. Optimization is performed using Adam384

(Kingma and Ba, 2014), or Adagrad (Duchi et al.,385

2011), depending on the original model configu-386

ration. The relation-specific decision thresholds387

are carried over from the CoDEx triple classifica-388

tion benchmark. Since no negatives are provided389

for CoDEx-L, we generate one random tail corrup-390

tion per validation triple (as in (Safavi and Koutra,391

2020)) for threshold tuning. During training, we392

sample 100 negative examples per triple (50 head393

and 50 tail corruptions), as this was effective in394

previous work (Trouillon et al., 2016; Kotnis and395

Nastase, 2017).396

We implement our experiments using LibKGE397

(Broscheit et al., 2020) and Optuna (Akiba et al.,398

2019). For experiments with ChatGPT, i.e., gpt-399

3.5-turbo, we use the OpenAI API and temperature400

0. Find the used prompts and an example of input401

and output in Appendix F.3.402

5.2 Results403

Table 3 contains the results. A detailed evaluation404

per test case can be found in Appendix G. First, we405

observe that the KGE performances on CFKGR-406

CoDEx-L differ noticeably from CFKGR-CoDEx-407

S and CFKGR-CoDEx-M. This is likely due to408

lower threshold quality resulting from the absence409

of hard negative triples for CoDEx-L.410

COULDD achieves the best results in terms of411

overall F1-score on all datasets. In particular,412

COULDD noticeably improves the performance413

on changed facts over the pre-trained embeddings,414

except for ConvE. Importantly, we do not observe 415

a case where applying COULDD leads to catas- 416

trophic forgetting. In fact, the additional update 417

steps made by COULDD improve the scores on 418

unchanged facts in many cases. 419

In terms of overall F1-score, COULDD-ComplEx 420

achieves the best results averaged across the three 421

datasets. On changed facts, COULDD-TuckER is 422

the best-performing KGE method, likely because 423

TuckER is well-suited for modeling compositional 424

relations (Safavi and Koutra, 2020). ChatGPT 425

achieves the best scores on changed facts on two 426

out of three datasets. However, it generally does 427

not perform well on unchanged facts. Possible 428

reasons are that it misses background knowledge 429

present in the KG or does not understand the task 430

on these instances. 431

In summary, we observe that COULDD consis- 432

tently improves performance over the pre-trained 433

embeddings, overall and on changed facts in partic- 434

ular, and does not strongly degrade performance on 435

unchanged facts. This indicates that COULDD can 436

be used to infer plausible counterfactual changes 437

to the graph when they follow prominent patterns 438

in the KG. 439

5.3 Case Study on CoDEx-M 440

To better understand the results shown in Table 3, 441

we conduct a case study on CoDEx-M for which 442

we have a human-annotated CFKGR subset. In 443

particular, we want to assess how well the pre- 444

trained CoDEx models perform factual reasoning 445

with composition rules and how an evaluation on 446

human-assigned labels affects our results. The 447

main results are presented in Table 4. Table 12 448

in the appendix presents a confusion matrix per test 449

type for COULDD and ChatGPT. 450
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CFKGR-CoDEx-M* CoDEx-M (filtered)
F1 (E) F1 (H) Changed (E) Changed (H) Unchanged (E) Unchanged (H) Overall Rule-wise

RESCAL 89.1 87.3 21.8 14.1 97.2 96.2 92.7 84.7
COULDD-RESCAL 88.8 ± 0.2 86.8 ± 0.2 25.2 ± 0.7 16.5 ± 0.6 96.5 ± 0.2 95.3 ± 0.2 − −
TransE 81.0 79.7 22.3 17.8 88.5 87.3 91.3 80.3
COULDD-TransE 80.5 ± 0.1 79.3 ± 0.1 24.1 ± 0.3 20.4 ± 0.4 87.6 ± 0.1 86.9 ± 0.1 − −
ComplEx 88.7 87.1 10.6 3.8 98.3 97.4 96.0 77.8
COULDD-ComplEx 91.9 ± 0.1 90.2 ± 0.2 38.0 ± 1.0 30.8 ± 1.0 98.3 ± 0.1 97.3 ± 0.1 − −
ConvE 83.7 82.3 15.4 10.3 92.4 91.6 89.3 79.7
COULDD-ConvE 78.1 ± 0.6 76.9 ± 0.7 16.8 ± 1.0 13.2 ± 0.8 86.1 ± 0.6 85.4 ± 0.7 − −
TuckER 89.0 87.7 13.8 8.1 98.2 97.5 96.4 90.3
COULDD-TuckER 92.7 ± 0.1 90.7 ± 0.1 43.7 ± 0.6 34.8 ± 0.7 98.4 ± 0.1 97.2 ± 0.1 − −

gpt-3.5-turbo 64.0 63.5 53.7 55.1 62.6 62.3 − −

Table 4: Case study on CFKGR-CoDEx-M* with expected (E) and human-assigned (H) labels and performance on
the filtered CoDEx-M test set. "Overall" describes the accuracy across all inferences. "Rule-wise" gives the average
accuracy per rule. Bold entries denote the best performance between pre-trained KGEs and their counterpart trained
with COULDD. The best results on the dataset are underlined. For all scores, higher is better.

5.3.1 Inference Rules in Factual Contexts451

Achieving good performance on changed triples in452

Table 3 requires (1) a logical adaption to the hypo-453

thetical scenario and (2) the application of compo-454

sition rules that generated the test inferences. We455

attempt to disentangle these factors by investigating456

whether the CoDEx models captured regularities457

during pre-training also expressed in the Amie3458

rules and can apply them in factual scenarios.459

Setup. We filter the original CoDEx-M test set for460

triples that can be inferred by applying the mined461

Amie3 rules to the training set. We only keep triples462

that stem from rules that cover at least five triples463

in the test set to obtain sensible estimates for the464

rule-wise performances. This results in a filtered465

test set of 551 instances inferred from 10 rules.466

Results. We notice that the performance on the467

filtered CoDEx-M test set is consistently high for468

all pre-trained KGE methods. This indicates that469

they learned the mined inference patterns during470

training and lower performances observed in Ta-471

ble 3 are likely due to insufficient adaption to the472

hypothetical scenario. Appendix H.2 gives a full473

overview of rule-wise performances.474

5.3.2 Evaluation with Manual Labels475

Setup. We create a subset of the CFKGR-CoDEx-476

M test set, denoted by CFKGR-CoDEx-M*,477

which solely consists of instances that were manu-478

ally labeled as described in Section 3.3. We filter479

out test cases for which less than three annotators480

agreed or the majority vote label was "unsure/too481

little information". This results in a dataset com-482

posed of 256 hypothetical scenarios and a total of483

1171 test cases. The complete label distribution per484

test case can be found in Appendix H.1.485

Results. First, we note that the overall F1-score and 486

performance on unchanged facts greatly differ from 487

the numbers observed for the unfiltered set in Table 488

3. This is due to the omission of most corruptions 489

as they were not manually labeled. We observe a 490

consistent performance drop for KGE-based meth- 491

ods when evaluating on human-assigned labels in- 492

stead of expected labels for all metrics. Judging 493

from the confusion matrix in Table 12, COULDD 494

cannot reliably identify false inferences that follow 495

from patterns from the KG, but are invalid accord- 496

ing to the annotators. Moreover, it classifies most 497

outdated facts, which are no longer valid given the 498

hypothetical scenario, as positive. 499

For ChatGPT, we observe slightly reduced overall 500

performance when evaluating with human-assigned 501

labels. However, ChatGPT’s score improves on 502

changed facts for human-assigned labels. A closer 503

look at the confusion matrix reveals that Chat- 504

GPT performs better at detecting outdated facts 505

and false inferences than KGEs. However, as ob- 506

served before, ChatGPT tends to misclassify facts 507

that should be retained. A qualitative inspection 508

reveals that ChatGPT largely misunderstands the 509

task on such triples: instead of answering whether 510

they STILL hold given the hypothetical scenario, it 511

tries to infer them. Table 5 gives an example. 512

6 Related Work 513

Inferential KGC Benchmarks. Rule-based in- 514

ferential benchmarks for KGC (Liu et al., 2023; 515

Cao et al., 2021) assess a method’s ability to learn 516

implict rule patterns and use them to predict in- 517

ferences in the test set based on evidence in the 518

training set. Cao et al. (2021) create an inferential 519

7



Hypothetical: Joe Frazier (human) died in Moscow (city with millions of inhabitants, largest city, capital)
Context: Joe Frazier (human) was cast in Encino Man (film)
Statement: Is it then still plausible that E-40 (human) has the occupation actor (profession, artist), given that this is the case in the real world?

Answer by ChatGPT: unlikely
Explanation by ChatGPT: The hypothetical scenario states that Joe Frazier died in Moscow, which is a city with millions of inhabitants.

This fact is not the case in the real world. The context mentions that Joe Frazier was cast in the film Encino Man.
Since the statement is ’Is it then STILL plausible that E-40 has the occupation actor?’,
we need to consider if the hypothetical scenario makes it plausible for E-40 to have the occupation of an actor.
However, the context does not provide any specific information about E-40 or his occupation.
Therefore, we cannot determine the plausibility of E-40 being an actor based on the given information. Hence, the statement is unlikely.

Table 5: Example prompt and corresponding answer produced by ChatGPT on CFKGR-CoDEx-M*.

test set for CoDEx-M based on a rule set mined520

by AnyBurl (Meilicke et al., 2019), akin to our521

experiments in Section 5.3.1, and also find that522

pre-trained KGEs have strong inferential reasoning523

capabilities.524

Counterfactual Graph Learning. Leveraging525

counterfactuals in graph learning is an emerging526

field of research (Guo et al., 2023). Counterfactuals527

have recently been utilized to ensure the fairness528

of graph-based systems with respect to sensitive529

node attributes (Agarwal et al., 2021; Ma et al.,530

2022; Zhang et al., 2021), improve interpretabil-531

ity by generating counterfactual explanations for532

predictions (Lucic, 2022; Numeroso and Bacciu,533

2021; Prado-Romero et al., 2022; Xu et al., 2022),534

and enhance link prediction performance on the535

graph as-is (Chang et al., 2023; Lu et al., 2023; Shi536

et al., 2022; Wang et al., 2021; Zhao et al., 2022).537

Our work does not fall into any of the above cat-538

egories and instead focuses on making predictions539

in a counterfactual graph.540

CF Reasoning Benchmarks for LLMs. Several541

datasets and evaluation schemes have been pro-542

posed for assessing the counterfactual reasoning543

capabilities of LLMs. Qin et al. (2019) introduce544

the task of counterfactual story rewriting, in which545

LLMs have to minimally revise a given story with546

respect to a counterfactual event. The CRASS547

benchmark challenges LLMs to select a valid con-548

sequence given a questionized counterfactual con-549

ditional in a multiple-choice setting (Frohberg and550

Binder, 2022). Li et al. (2023) present LLMs with551

a hypothetical premise and two possible comple-552

tions for a corresponding statement, one of which553

is valid in the real world while the other holds in554

the hypothetical scenario.555

In contrast, CFKGR poses a binary classification556

task based on the knowledge contained in a KG.557

7 Discussion558

Comparison with Human CF Reasoning. Our559

labeling efforts and experiments show that coun-560

terfactual reasoning on KGs is a challenging task. 561

Both KGEs and ChatGPT leave much headroom 562

for improvement on CFKGR. Moreover, even hu- 563

mans find it difficult to judge the plausibility of KG- 564

based counterfactual statements, especially when 565

they involve unfamiliar situations. For instance, "If 566

Meg White was a member of Girls Aloud, would 567

Jack White be part of Girls Aloud?" is a question 568

that most humans likely do not ask themselves. 569

Still, automatic systems can be presented with and 570

evaluated on a wide range of possible scenarios, 571

even if those are implausible or hard to imagine for 572

humans. 573

Advantage of KG-based Benchmarks. KGs are 574

a powerful tool for defining hypothetical scenarios 575

and their consequences. The rich world knowledge 576

stored in KGs allows to create interesting case- 577

specific inferences. In the example question above, 578

would the judegement change if we replace "Girls 579

Aloud" by a band that is not a girl group? This 580

is an aspect missing from current counterfactual 581

reasoning benchmarks for LLMs (Frohberg and 582

Binder, 2022; Li et al., 2023), as they mostly handle 583

generic entities. 584

8 Conclusion 585

This work introduces the novel task CFKGR, which 586

requires models to reason on a counterfactual KG. 587

By utilizing the world knowledge stored in KGs, 588

we create datasets consisting of diverse hypotheti- 589

cal scenarios and their implications, as defined by 590

inference rules. Further, we propose COULDD, 591

a general method for counterfactual reasoning on 592

KGs and evaluate its effectiveness on automatically 593

generated and human-annotated data. We extend 594

our experiments to ChatGPT and find that it gener- 595

ally outperforms COULDD at making counterfac- 596

tual inferences. However, ChatGPT largely does 597

not recognize which facts are invariant to the hy- 598

pothetical scenario. Both COULDD and ChatGPT 599

leave much headroom on the task, highlighting the 600

difficulty of CFKGR. 601
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9 Limitations602

The type of rules that we examine is arguably lim-603

ited. We consider understanding the implications604

induced by composition rules as a first step to605

more general and complex hypothetical reasoning.606

Moreover, while the set of outdated facts F− is607

a key component for defining the counterfactual608

KG, there is no trivial way for generating them reli-609

ably without appropriate rules or extensive human610

verification. Most rules defined for KGs are how-611

ever Horn clauses (e.g., Lajus et al., 2020; Meilicke612

et al., 2019; Sadeghian et al., 2019b), which can-613

not express negation in the head atom. Hence, we614

focus on the addditons F+ in this work.615

Verbalizing KG triples, in a way that is intuitive616

to humans, is not an easy task. We did our best to617

find suitable verbalizations by consulting Wikidata618

definitions and ParaRel (Elazar et al., 2021). Still,619

unintuitve verbalizations and missing context from620

the KG (with respect to how relations are used)621

might have influenced our annotation results and622

ChatGPT experiments.623

Lastly, KGs can contain erroneous or outdated624

facts and automatically constructed CFKGR exam-625

ples might rely on these facts. It is possible that626

such instances impacted the performance of Chat-627

GPT on our benchmark. However, we estimate628

that such cases are rare and, as a result, the effect629

should be negligible.630

10 Ethics Statement631

We used well-established and publicly available632

resources to build our datasets and method. We use633

the CoDEx knowledge graph and LibKGE, which634

are both published under the MIT license. The635

config files for the pre-trained models used in our636

experiments are all available on the CoDEx github637

repository8.638

The counterfactual situations included in our639

datasets are randomly generated and purely hy-640

pothetical. They do not convey any implications641

about the real-world entities referenced in them.642

Nevertheless, the created instances could be biased643

towards certain entities due their occurrence in the644

original knowledge graphs.645

We recruited annotators on a voluntary basis. We646

do not publish any information that could be used to647

identify the labelers and our data does not contain648

any personal information regarding the annotators.649

8https://github.com/tsafavi/codex
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A Evaluation Metrics 887

This section gives the concrete formulas for the
metrics used in Table 3 and Table 4. We denote the
full evaluation dataset by
D := {(τ c1 , Tτc1 ), (τ

c
2 , Tτc2 ), ..., (τ

c
n, Tτcn)}, where

τ cj denote hypothetical scenarios and Tτcj are the
corresponding test cases. For any arbitrary fact τ ,
we assign two binary labels: The label yτ indicates
whether τ is in the original fact set F (yτ = 1 if
τ ∈ F and 0 otherwise). The label ycτ denotes the
membership of fact τ to the fact set of the coun-
terfactual graph Fτcj

(ycτ = 1 if τ ∈ Fτcj
and 0

otherwise). Lastly, ŷcτ denotes the binary predic-
tion made for ycτ .
F1: For this metric, we consider all test cases of all
hypothetical scenarios without any restrictions. It
gives an overall indiction of the predictive perfor-
mance on the fact set of the counterfactual graph.
We choose the F1-score due to the imbalanced label
distribution of our constructed test cases.

F1 =
2tp

2tp+ fn+ fp
,

where tp =
n∑

j=1

∑
τ∈Tτc

j

I(ycτ = 1 ∧ ŷcτ = 1), 888

fn =
n∑

j=1

∑
τ∈Tτc

j

I(ycτ = 1 ∧ ŷcτ = 0), 889

fp =
n∑

j=1

∑
τ∈Tτc

j

I(ycτ = 0 ∧ ŷcτ = 1) 890

891
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Changed: We denote the set of changed892

facts in Tτcj by T ∗
τcj

. Formally,893

T ∗
τcj

:= {τ ∈ Tτcj : (yτ = 0 ∧ ycτ = 1) ∨894

(yτ = 1 ∧ ycτ = 0)}.895

Intuitively, T ∗
τcj

is comprised of facts that were
not present in the original graph but emerge in the
counterfactual KG or vice versa. We compute the
accuracy on these cases with respect to ycτ .

Changed =
t̃p

t̃p+ f̃n+ f̃p+ t̃n
,

where t̃p =
n∑

j=1

∑
τ∈T ∗

τc
j

I(ycτ = 1 ∧ ŷcτ = 1),896

f̃n =
n∑

j=1

∑
τ∈T ∗

τc
j

I(ycτ = 1 ∧ ŷcτ = 0),897

f̃p =
n∑

j=1

∑
τ∈T ∗

τc
j

I(ycτ = 0 ∧ ŷcτ = 1),898

t̃n =
n∑

j=1

∑
τ∈T ∗

τc
j

I(ycτ = 0 ∧ ŷcτ = 0)899

Note that in the case of automatically generated la-900

bels (Table 3 and CFKGR-CoDEx-M* (Expected)901

in Table 4), T ∗
τcj

only consists of emerging facts902

and hence the ground truth labels ycτ are always903

positive. In these cases, the above accuracy is904

equivalent to the recall on T ∗
τcj

.905

906

Unchanged:907

T τcj
denotes the set of unchanged facts in Tτcj .908

Formally,909

T τcj
:= {τ ∈ Tτcj : (yτ = 0 ∧ ycτ = 0) ∨910

(yτ = 1 ∧ ycτ = 1)}.911

Intuitively, Tτcj is comprised of facts that do not
change their label between F and Fτcj

. We com-
pute the F1-score on such instances due to their
imbalanced label distribution in our constructed
test cases.

Unchanged =
2tp

2tp+ fn+ fp
,

where tp =
n∑

j=1

∑
τ∈T τc

j

I(ycτ = 1 ∧ ŷcτ = 1),912

fn =
n∑

j=1

∑
τ∈T τc

j

I(ycτ = 1 ∧ ŷcτ = 0),913

fp =
n∑

j=1

∑
τ∈T τc

j

I(ycτ = 0 ∧ ŷcτ = 1)914

|E| |R| |Ftrain| |Fval| |Ftest| Negatives

S 2034 42 32888 1827 1828 Yes
M 17050 51 185584 10310 10311 Yes
L 77951 69 551193 30622 30622 No

Table 6: Overview of CoDEx datasets (Safavi and
Koutra, 2020).

B CoDEx Resources 915

We use the CoDEx knowledge graph completion 916

benchmark (Safavi and Koutra, 2020), which is 917

comprised of three knowledge graphs (S, M, L) 918

collected from Wikidata based on seed entities and 919

relations for 13 differernt domains (e.g., media and 920

entertainment, politics, science). Table 6 porvides 921

an overview over the resources provided by CoDEx. 922

923

C Details of Dataset Creation 924

This section contains details of the CFKGR dataset 925

creation that were omitted in Section 3 due to space 926

constraints and gives a full algorithmic description 927

of the procedure. 928

C.1 Formal Description 929

Section 3 provides a high-level description on how 930

we create CFKGR test instances based on the first 931

body atom of a rule. This section provides a more 932

formal version of the employed constraints and 933

covers the case where the second body atom is 934

selected for creating the hypothetical scenario. 935

In the following, we define an atom variable to 936

distinguish between hypotheticals from the first 937

(atom=1) versus the second atom (atom=2). The 938

general setup stays the same, whether we create 939

hypotheticals from the first or second atom: Given 940

a rule (r1, r2, r3), we search for existing edges 941

e1 := (x, r1, y) ∈ Ftrain and e2 := (ȳ, r2, z) ∈ 942

Ftrain, such that τ c := (x, r1, ȳ) /∈ F and τ i := 943

(x, r3, z) /∈ F . We employ the following con- 944

straints I1, I2, and I3 when sampling e1 and e2. 945

I1: if atom = 1: ∃a ∈ E : (a, r1, ȳ) ∈ F , 946

if atom = 2: ∃b ∈ E : (y, r2, b) ∈ F 947

I2: ∃c ∈ E : (x, r3, c) ∈ F 948

I3: ∃d ∈ E : (d, r3, z) ∈ F 949

The above constraints ensure that the constructed 950

triples τ c and τ i have sensible entities for the given 951

relation. 952

When corrupting a given triple (h, r, t), we employ 953

the constraints C1, C2 and C3 for finding corrup- 954

tions h′, r′, t′. 955
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C1: ∃a ∈ E : (h′, r, a) ∈ F956

C2: ∃b ∈ E : (b, r, t′) ∈ F957

C3: (h′, r, t), (h, r, t′), (h, r′, t) /∈ F ∪ F+
∆ ,958

where F+
∆ denotes the set of inferences made by959

all rules in our rule set, given the hypothetical sce-960

nario.961

C1 and C2 promote challenging head and tail cor-962

ruptions, which cannot trivially be identified due to963

the triples being nonsensical. C3 ensures that the964

generated relation corruptions are not implied by965

the given hypothetical scenario and our rule set.966

Data: knowledge graph G = {E ,R,F},
inference rule δ,
# of CFs to generate per atom M

Result: CFKGR instances for rule δj
Dδ ← {}
for atom ∈ {1, 2} do

for n ∈ {1, ...,M} do
Randomly sample
(x, r1, y) and (ȳ, r2, z) from Ftrain,
according to I1, I2, I3, I4
if atom = 1 then

τ c ← (x, r1, ȳ)
else

τ c ← (y, r2, z)
τ i ← (x, r3, z)
Sample τn1 , τn2 from N1(τ

c)

Sample τ f from F \ N1(τ
c)

Create corruptions for τ i, τn1 , τn2 , τ f

according to C1, C2, C3
Tτc ← {τ c, τ i, τn1 , τn2 , τ f ,

τ ih′ , τ ir′ , τ
i
t′ , ..., τ fh′ , τ

f
r′ , τ

f
t′ }

Dδ ← Dδ ∪ {(τ c, Tτc)}
Algorithm 2: Creation of CFKGR instances.

C.2 Additional Constraints for P361 and P463967

For counterfactual triples τ c using the relation P361968

("part of") or P463 ("member of"), we introduce969

an additional condition when sampling e1 and e2970

based on entity types in order to avoid nonsensical971

hypothetical scenarios, such as (Iraq, part of, The972

Quarrymen). Entity types are available for every973

entity in the CoDEx dataset (Safavi and Koutra,974

2020) and provide additional information regarding975

the entity. For instance, "France" is associated with976

the entity type "country" (among others) and "7B"977

is tagged as a "musical group". We denote the set978

of entity types associated with an entity e ∈ E by979

type(e). We define the following constraint:980

I4: type(ȳ) ∩ type(y) ̸= {},981

if atom = 1 and r1 ∈ {P361, P463} or 982

if atom = 2 and r2 ∈ {P361, P463} 983

This condition heuristically ensures that the entity 984

that replaces the original head/tail of a triple to 985

create a hypothetical scenario is of a similar type as 986

the original entity. In the example above, (Iraq, part 987

of, The Quarrymen) is no longer a valid generation 988

when the above constraint is enforced, since the 989

"The Quarrymen" shares no entity type with the 990

original tail "Middle East". 991

C.3 Algorithm 992

Algorithm 2 describes the dataset creation for 993

CFKGR. N1(τ
c) denotes the one-hop neighbor- 994

hood of τ c, excluding the context triggering the 995

rule. The remaining notation follows Sections 2 996

and 3. 997

D Human Dataset Verification 998

This section details the guidelines provided to the 999

annotators and their recruitment. 1000

D.1 Annotator Recruitment and 1001

Demographic 1002

We recruited annotators on a voluntary basis (most 1003

of which are part of our institution) and did not 1004

offer financial compensation. Labelers were made 1005

aware that their annotations will be used and pub- 1006

lished in a scientific paper. 1007

We recruited thirteen annotators in total, twelve 1008

of which have at least a Master’s degree in STEM, 1009

while the remaining has a Bachelor’s degree. 1010

D.2 Annotation Guidelines 1011

The main goal of the task is to judge the 1012

plausibility of presented statements, given a hy- 1013

pothetical scenario and potentially relevant context. 1014

1015

Each annotation prompt presented to you 1016

will consist of the following elements: 1017

1018

1) a hypothetical scenario, which you should 1019

assume to be true 1020

2) a context, which gives additional information 1021

regarding the entities in the scenario 1022

3) a statement, which should be labeled as "likely", 1023

"unlikely", or "unsure/too little information" 1024

1025

Please assign the label "likely" if you think 1026

the presented statement is likely to hold given the 1027

hypothetical scenario, the context, and your world 1028
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knowledge. Assign "unlikely" if you do not think1029

so. Assign the label "unsure/too little information"1030

if you cannot confidently judge the plausibility of1031

the statement based on the presented information.1032

1033

Expressions in parenthess denote entity types,1034

which provide additional information for each1035

entity. They can be helpful when reason-1036

ing with lesser-known entities. For instance,1037

the entity ’7B’ is associated with the entity type1038

’musical group’ to clarify that ’7B’ refers to a band.1039

1040

Each statement follows the general structure1041

’Is it then plausible that ..., given that this IS NOT1042

the case in the real world?’ or ’Is it then STILL1043

plausible that ..., given that this IS the case in the1044

real world?’. Please pay attention to this difference1045

when labeling.1046

1047

1048

Example 1:1049

1050

Hypothetical scenario: Paris (city with mil-1051

lions of inhabitants, city, big city) is located in1052

Japan (island nation, sovereign state, country)1053

1054

Context: Japan (island nation, sovereign state,1055

country) is part of the continent Asia (continent,1056

continental area and surrounding islands)1057

1058

Question: Is it then plausible that Paris (city with1059

millions of inhabitants, city, big city) belongs to1060

the continent Asia (continent, continental area and1061

surrounding islands), given that this is not the case1062

in the real world?1063

1064

Example 2:1065

1066

In some cases, the statement you are pre-1067

sented with might not have a strong, obvious1068

connection to the hypothetical scenario (such as1069

shared entities). This is intended and should not1070

affect your annotation. For instance, you might1071

encounter an example similar to the following:1072

1073

Hypothetical scenario: Paris (city with mil-1074

lions of inhabitants, city, big city) is located in1075

Japan (island nation, sovereign state, country)1076

1077

Context: Japan (island nation, sovereign state,1078

country) is part of the continent Asia (continent,1079

continental area and surrounding islands) 1080

1081

Question: Is it then still plausible that English 1082

(modern language, natural language, language) is 1083

the official language of United Kingdom (country, 1084

sovereign state, island nation), given that this is the 1085

case in the real world? 1086

1087

If you believe that this statement is still 1088

plausible in a world where Paris is in Japan, assign 1089

’likely’. If you think otherwise or cannot make 1090

a decision based on the presented information, 1091

assign ’unlikely’ or ’unsure/too little information’ 1092

respectively. 1093

1094

Example 3: 1095

1096

The statements might not be sensible for all 1097

examples. For instance, you could come across a 1098

statement like: 1099

1100

Hypothetical scenario: Paris (city with mil- 1101

lions of inhabitants, city, big city) is located in 1102

Japan (island nation, sovereign state, country) 1103

1104

Context: Japan (island nation, sovereign state, 1105

country) is part of the continent Asia (continent, 1106

continental area and surrounding islands) 1107

1108

Question: Is it then plausible that Paris (city 1109

with millions of inhabitants, city, big city) is the 1110

unmarried partner of Asia (continent, continental 1111

area and surrounding islands), given that this is not 1112

the case in the real world? 1113

1114

These examples are intentional and you should 1115

annotate them according to the same scheme as the 1116

other examples. 1117

E KGE Methods 1118

TransE (Bordes et al., 2013) treats relations as 1119

translations in the embedding space. It finds em- 1120

bedding vectors h, r, t ∈ Rde such that h + r ≈ t 1121

for (h, r, t) ∈ F , and uses the scoring function 1122

ϕ(h, r, t) = −||h + r − t||2. ComplEx (Trouil- 1123

lon et al., 2016) maps entities and relations to the 1124

complex space and leverages the scoring function 1125

ϕ(h, r, t) = Re(⟨r,h, t̄⟩), where h, r, t ∈ Cde 1126

and t̄ denotes the complex conjugate of t. Com- 1127

plEx is particularly well-suited for modeling an- 1128

tisymmetric relations (e.g., "part of"). RESCAL 1129
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(Nickel et al., 2011) represents the fact set as a1130

three-dimensional tensor X with Xi,j,r = 1 if (i, r,1131

j) ∈ F and Xi,j,r = 0 otherwise. Representations1132

for entities and relations are obtained via a low-1133

rank factorization Xr ≈ ERrE
T , E ∈ R|E|×de ,1134

Rr ∈ Rde×de . The score of a given triple is com-1135

puted as ϕ(h, r, t) = hTRrt, where h and t are1136

the rows of E corresponding to h and t. Similarly,1137

TuckER (Balazevic et al., 2019) leverages Tucker1138

decomposition (Tucker, 1966) to find representa-1139

tions h, t ∈ Rde , r ∈ Rdr , as well as a core tensor1140

W ∈ Rde×dr×de which allows sharing knowledge1141

between all entity and relation embeddings. The1142

scores are defined as ϕ(h, r, t) =W×1h×2r×3t,1143

where ×i denotes the tensor product along the i-th1144

mode. TuckER was shown to be effective for mod-1145

eling compositional relations (Safavi and Koutra,1146

2020). ConvE (Dettmers et al., 2018) is a con-1147

volutional architecture described by ϕ(h, r, t) =1148

f(vec(f([Mh;Mr]∗ω))W)t, where Mh and Mr1149

are 2D-reshapings of entity and relation embed-1150

dings, ω describes the convolutional filters, and1151

vec denotes vectorization (Ji et al., 2021).1152

F Experimental Setting1153

F.1 Implementation and Runtime Details1154

We run our experiments on a single Tesla V1001155

GPU with 16GB of memory on a Nvidia DGX11156

server. COULDD hyperparameter tuning takes be-1157

tween around 35 minutes and 50 minutes and a1158

run on the test set takes between 3 and 15 minutes,1159

depending on the model and dataset.1160

For KGE embeddings, we use the pre-trained1161

CoDEx models (Safavi and Koutra, 2020), which1162

were trained using LibKGE (Broscheit et al., 2020).1163

For our experiments with COULDD, we slightly1164

adapt the LibKGE implementation, to allow for our1165

propsed training scheme. For hyperparameter opti-1166

mization, we use the GridSampler implemented1167

in optuna (Akiba et al., 2019) (version 3.3.0). For1168

computing performance metrics (F1, accuracy, con-1169

fusion matrix), we use scikit-learn (version 1.3.0).1170

All results are reproducible with seed 0.1171

F.2 Hyperparameters1172

Table 8 lists the hyperparameters used for our1173

experiments 3. Bold parameters were tuned for1174

COULDD on a validation set via grid search, while1175

the remaining parameters were carried over from1176

the pre-trained models provided by Safavi and1177

Koutra (2020). For further details on the pre-1178

trained models, please refer to Safavi and Koutra 1179

(2020). The learning rate (α) was tuned in the 1180

range of {0.001, 0.01, 0.1, 0.15, 0.2}. The number 1181

of additional samples (N ) was chosen in the range 1182

of {0, 127, 255, 511, 1023} for all models except 1183

ConvE. For ConvE, the range is reduced to 1184

{127, 255, 511, 1023} because of its BatchNorm 1185

layer. 1186

F.3 GPT Experimental Setup 1187

We used the OpenAI API, and always used the 1188

model gpt-3.5-turbo and set the temperature to 0. 1189

The given system prompt, prompt templates, as 1190

well as an input and output example are given in 1191

Table 9. 1192

G Evaluation per Test Type 1193

Table 10 provides the perfomance per test case for 1194

the results in Table 3. 1195

H Case Study on CoDEx-M 1196

H.1 CFKGR-CoDEx-M* Label Distribution 1197

Table 7 gives the label distribution of expected 1198

labels, according to our assumptions, and majority 1199

vote labels on CFKGR-CoDEx-M*.

Expected (E) Human (H)

0 1 0 1

τ i 0 188 33 155
τ f 0 255 0 255
τn 0 497 16 481
τ ir′ 231 0 217 14

Table 7: Label distribution in the CFKGR-CoDEx-M*
test set with expected labels (E) and human-assigned
(H) labels.

1200

H.2 Rule-wise performance on filtered 1201

CoDEx-M 1202

In Section 5.3.1, we pose the question how well 1203

the pre-trained CoDEx models can apply the com- 1204

position rules mined by Amie3 on regular, non- 1205

hypothetical test cases. Table 11 provides informa- 1206

tion about the peformance on individual rules. 1207

H.3 Confusion matrix on 1208

CFKGR-CoDEx-M* 1209

Table 12 gives the confusion matrix for COULDD 1210

and ChatGPT on CFKGR-CoDEx-M* with manu- 1211

ally assigned labels. 1212
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RESCAL TransE ComplEx ConvE TuckER
CFKGR-CoDEx-S
Embedding size 512 512 512 256 512
Reciprocal No Yes Yes Yes Yes
Optimizer Adagrad Adagrad Adam Adagrad Adagrad
Regularization

Type l3 l2 None l3 l1
Entity embeddings 2.18× 10−10 1.32× 10−7 9.58× 10−13 3.11× 10−15 3.47× 10−15

Relation embedding 3.37× 10−14 3.72× 10−18 0.0229 4.68× 10−9 3.43× 10−14

Frequency weighting False False True True True
Dropout

Entity embeddings 0.0 0.0 0.0793 0.0 0.1895
Relation embeddings 0.0804 0.0 0.0564 0.0 0.0
Feature map (ConvE) - - - 0.2062 -
Projection (ConvE) - - - 0.1709 -

Additional samples (N ) 127 255 127 255 225
Learning rate (α) 0.01 0.01 0.1 0.001 0.01
CFKGR-CoDEx-M
Embedding size 256 512 512 512 512
Reciprocal Yes Yes Yes Yes Yes
Optimizer Adagrad Adagrad Adagrad Adagrad Adagrad
Regularization

Type l2 l2 l3 l1 l1
Entity embeddings 9.56× 10−7 1.32× 10−7 1.34× 10−10 1.37× 10−10 3.47× 10−15

Relation embedding 2.56× 10−17 3.72× 10−18 6.38× 10−16 4.72× 10−10 3.4× 10−14

Frequency weighting False False True True True
Dropout

Entity embeddings 0.0 0.0 0.1196 0.0 0.1895
Relation embeddings 0.0 0.0 0.3602 0.0348 0.0
Feature map (ConvE) - - - 0.3042 -
Projection (ConvE) - - - 0.2343 -

Additional samples (N ) 255 511 0 511 1023
Learning rate (α) 0.01 0.01 0.1 0.001 0.01
CFKGR-CoDEx-L
Embedding size 128 128 128 256 256
Reciprocal No Yes Yes Yes No
Optimizer Adagrad Adam Adagrad Adagrad Adagrad
Regularization

Type l2 l2 l2 l1 l2
Entity embeddings 2.01× 10−16 7.98× 10−14 2.01× 10−16 6.10× 10−16 8.06× 10−11

Relation embedding 3.52× 10−13 3.42× 10−9 3.52× 10−13 1.03× 10−16 7.19× 10−19

Frequency weighting True False True True True
Dropout

Entity embeddings 0.0 0.0 0.0 0.0064 0.1606
Relation embeddings 0.0 0.0 0.0 0.0 0.0857
Feature map (ConvE) - - - 0.1530 -
Projection (ConvE) - - - 0.4192 -

Additional samples (N ) 0 1023 0 127 127
Learning rate (α) 0.1 0.2 0.2 0.01 0.01

Table 8: Hyperparameters for COULDD experiments. Bold hyperparameters were tuned by us. The remaining are
taken from the original CoDEx paper (Safavi and Koutra, 2020) and kept the same for our experiments.
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System Prompt You are a helpful, honest data labeler who classifies the plausibility of a hypothetical
scenario.
You will be presented:
Hypothetical scenario: This fact is wrong in the real world, but you assume it is true
in the current hypothetical world.
Context: It is true in the hypothetical world, and gives additional information you can
use to reason about the plausibility of the presented statement
A statement which is supposed to be labeled as ’likely’ or ’unlikely’.

Each statement follows the general structure ’Is it then plausible that ..., given that
this IS NOT the case in the real world?’ or ’Is it then STILL plausible that ..., given
that this IS the case in the real world?’. Please pay attention to this difference when
labeling.

Statement Template {{ Statement }}

Return ’likely’ if you think the presented statement is likely to hold given the hypo-
thetical scenario, the context, and your world knowledge.
- If a fact was "the case" in the real world, respond ’likely’ if the hypothetical scenario
does not make it implausible
- If a fact was "not the case" in the real world, respond ’likely’ if the hypothetical
scenario makes it plausible.
Return ’unlikely’ only if the presented statement is unlikely to hold given the hypo-
thetical scenario, the context, and your world knowledge.
- If a fact was "the case" in the real world, respond ’unlikely’ if the hypothetical
scenario makes it implausible.
- If a fact was "not the case" in the real world, respond ’unlikely’ if the hypothetical
scenario does not make it plausible.

If The hypothetical scenario and the context do not provide any specific information
for the statement, respond ’unlikely’ given that the statement is "not the case in the
real world" and ’likely’ if the statement "is the case in the real world".

Respond with a JSON. First, include a explanation of your reasoning in the ’explana-
tion’ field and give then an answer in the ’answer’ field.

Example Statement Hypothetical scenario: Julio Iglesias (human) is married to Rachel Weisz (human)

Context: Rachel Weisz (human) is a citizen of United Kingdom (island nation, Com-
monwealth realm, sovereign state)

Is it then plausible that Julio Iglesias (human) is a citizen of United Kingdom (colonial
power, island nation, country), given that this is not the case in the real world?

Original Label Unlikely

Expected Label (in CF KG) Likely

Example Output {
"explanation": "Based on the hypothetical scenario and the context provided, it is
plausible that Julio Iglesias (human) is a citizen of United Kingdom (colonial power,
island nation, country). The context states that Rachel Weisz (human) is a citizen of
United Kingdom, which implies that she has citizenship in the country. Since Julio
Iglesias is married to Rachel Weisz in the hypothetical scenario, it is likely that he
would also have acquired citizenship in the United Kingdom through marriage.",
"answer": "likely"
}

Table 9: The table shows how ChatGPT was used. It includes templates and an example scenario with the provided
output.
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τ i τ f τ ih′ τ fh′ τnh′ τn τ ir′ τ fr′ τnr′ τ it′ τ ft′ τnt′
Dataset Method

CFKGR-CoDEx-S RESCAL 27.12 99.46 73.78 39.24 56.6 98.55 94.94 94.21 94.76 79.57 51.54 61.66
COULDD-RESCAL 32.48 ± 0.73 99.28 ± 0.2 73.82 ± 1.04 43.15 ± 1.19 55.5 ± 0.53 98.17 ± 0.16 94.86 ± 0.25 94.5 ± 0.25 94.47 ± 0.11 79.78 ± 0.56 54.32 ± 0.41 61.95 ± 0.16
TransE 23.15 95.84 78.84 32.91 55.70 90.78 97.11 95.48 93.94 86.80 52.80 68.72
COULDD-TransE 26.8 ± 0.81 94.39 ± 0.26 82.78 ± 0.29 36.56 ± 0.31 58.16 ± 0.21 89.84 ± 0.21 97.11 ± 0.16 95.66 ± 0.11 93.96 ± 0.04 88.28 ± 0.81 58.37 ± 0.27 71.57 ± 0.07
ComplEx 29.11 98.73 72.15 44.12 58.14 98.82 96.2 97.11 96.20 79.39 56.06 64.65
COULDD-ComplEx 37.94 ± 0.67 93.31 ± 0.66 84.27 ± 0.98 63.83 ± 0.68 71.32 ± 0.85 94.27 ± 0.19 95.77 ± 0.14 97.0 ± 0.14 96.42 ± 0.11 79.06 ± 1.52 72.12 ± 1.3 74.21 ± 0.66
ConvE 16.64 97.65 81.19 43.76 65.46 93.67 96.56 91.32 87.79 92.95 53.53 73.78
COULDD-ConvE 16.96 ± 0.72 97.22 ± 0.18 82.21 ± 0.18 45.53 ± 0.4 65.23 ± 0.41 93.49 ± 0.27 96.6 ± 0.07 91.72 ± 0.07 87.58 ± 0.17 93.56 ± 0.18 55.15 ± 0.49 75.8 ± 0.15
TuckER 15.01 98.37 83.73 45.39 71.34 98.55 95.3 96.93 94.21 89.33 54.79 73.69
COULDD-TuckER 35.99 ± 1.0 97.72 ± 0.54 78.23 ± 0.29 48.1 ± 1.23 67.09 ± 0.56 98.61 ± 0.07 94.29 ± 0.22 96.93 ± 0.23 93.35 ± 0.15 83.11 ± 0.63 58.59 ± 0.62 74.23 ± 0.3

CFKGR-CoDEx-M RESCAL 21.57 97.96 79.41 46.90 68.10 95.75 91.18 91.42 91.30 87.01 58.50 75.57
COULDD-RESCAL 26.23 ± 0.16 96.44 ± 0.19 81.44 ± 0.14 48.91 ± 0.25 70.14 ± 0.27 94.49 ± 0.19 91.23 ± 0.08 91.47 ± 0.23 91.31 ± 0.09 87.19 ± 0.16 59.54 ± 0.32 76.41 ± 0.12
TransE 23.61 88.56 76.31 36.11 62.50 75.37 92.97 92.89 89.26 86.19 53.84 70.14
COULDD-TransE 26.06 ± 0.25 85.85 ± 0.18 76.83 ± 0.27 38.94 ± 0.18 63.68 ± 0.16 74.31 ± 0.14 92.78 ± 0.1 93.17 ± 0.04 89.31 ± 0.03 86.75 ± 0.14 57.63 ± 0.27 70.92 ± 0.09
ComplEx 11.60 97.96 89.38 49.02 75.08 97.55 93.63 94.61 92.65 94.69 59.56 80.39
COULDD-ComplEx 34.67 ± 0.23 97.96 ± 0.0 79.17 ± 0.53 48.95 ± 0.08 69.58 ± 0.21 97.21 ± 0.1 93.09 ± 0.11 94.59 ± 0.03 92.34 ± 0.07 90.36 ± 0.31 59.48 ± 0.05 79.01 ± 0.09
ConvE 13.15 93.06 87.09 41.91 67.97 81.78 95.1 88.32 84.76 94.12 53.68 77.33
COULDD-ConvE 17.04 ± 0.16 84.72 ± 0.45 85.38 ± 0.25 43.94 ± 0.1 68.84 ± 0.42 71.49 ± 0.35 92.4 ± 0.14 86.18 ± 0.61 81.66 ± 0.4 93.5 ± 0.4 54.31 ± 0.59 79.52 ± 0.17
TuckER 13.15 97.96 88.4 50.74 76.76 97.14 92.48 91.18 88.77 95.02 58.33 80.8
COULDD-TuckER 43.69 ± 0.38 98.33 ± 0.11 73.14 ± 0.54 44.07 ± 0.58 67.06 ± 0.18 97.99 ± 0.11 91.99 ± 0.32 90.87 ± 0.46 87.57 ± 0.11 90.1 ± 0.38 58.27 ± 0.68 78.7 ± 0.15

CFKGR-CoDEx-L RESCAL 71.47 99.89 32.09 18.09 23.39 99.63 68.92 74.08 72.88 51.52 53.91 51.41
COULDD-RESCAL 84.56 ± 0.35 99.89 ± 0.0 32.37 ± 0.58 18.16 ± 0.07 23.15 ± 0.14 95.58 ± 0.21 69.2 ± 0.48 74.09 ± 0.07 69.94 ± 0.23 45.71 ± 0.54 53.87 ± 0.07 51.61 ± 0.21
TransE 66.31 99.41 30.07 18.31 20.68 99.25 79.4 48.00 40.82 48.96 46.89 44.97
COULDD-TransE 76.56 ± 0.25 98.99 ± 0.1 30.47 ± 0.55 27.87 ± 0.66 22.47 ± 0.21 99.35 ± 0.06 77.54 ± 0.18 53.22 ± 0.35 43.67 ± 0.19 58.12 ± 0.3 60.04 ± 0.82 55.93 ± 0.37
ComplEx 65.51 99.57 36.14 27.25 33.02 99.44 90.47 84.62 83.93 58.91 64.93 61.07
COULDD-ComplEx 82.95 ± 0.26 99.57 ± 0.0 31.73 ± 0.13 27.29 ± 0.04 29.44 ± 0.09 99.53 ± 0.04 89.03 ± 0.12 84.57 ± 0.03 83.25 ± 0.09 55.5 ± 0.29 64.84 ± 0.07 59.68 ± 0.14
ConvE 61.84 99.52 41.35 36.46 40.66 99.18 91.06 61.63 53.54 61.58 63.70 60.32
COULDD-ConvE 45.53 ± 0.61 94.5 ± 0.36 61.25 ± 0.59 53.79 ± 0.3 57.2 ± 0.47 95.32 ± 0.18 93.18 ± 0.31 73.72 ± 0.73 67.2 ± 0.54 79.45 ± 0.36 78.11 ± 0.42 75.53 ± 0.51
TuckER 76.74 99.79 27.46 14.74 22.78 99.65 75.36 63.23 62.03 53.33 50.56 49.92
COULDD-TuckER 88.47 ± 0.34 99.74 ± 0.07 25.92 ± 0.52 15.94 ± 0.23 19.58 ± 0.29 99.68 ± 0.04 72.59 ± 0.33 64.14 ± 0.44 61.29 ± 0.21 50.07 ± 0.29 52.84 ± 0.14 48.13 ± 0.54

Table 10: Accuracy by test type of pre-trained embeddings and COULDD on CFKGR. For COULDD, we report the
mean and standard deviation across 5 runs.

Support PCA # Test RESCAL TransE ComplEx ConvE TuckER

(founded by, citizenship, country) 64 0.826 5 1.000 1.000 0.400 1.000 0.800
(place of death, official language, languages spoken) 836 0.818 36 0.972 0.972 1.000 0.944 1.000
(place of birth, official language, languages spoken) 665 0.790 23 1.000 0.826 1.000 0.826 0.957
(spouse, citizenship, citizenship) 682 0.661 15 0.933 0.933 0.867 0.733 0.933
(citizenship, official language, languages spoken) 9937 0.543 416 0.962 0.918 0.993 0.901 0.978
(country, continent, continent) 100 0.427 5 0.200 0.000 0.200 0.000 0.600
(cast member, citizenship, country of origin) 1464 0.406 87 0.805 0.943 0.920 0.931 0.931
(headquarters location, country, country) 82 0.297 6 1.000 0.833 1.000 0.833 0.833
(located in, country, country) 137 0.346 5 0.600 0.600 0.400 0.800 1.000
(cast member, place of death, narrative location) 87 0.134 6 1.000 1.000 1.000 1.000 1.000

Table 11: Rule-wise performance on the filtered test set of CoDEx-M (Table 4). "Support" denotes the number of
instantions of the rule in the full KG. "PCA" is the PCA confidence as computed by Amie3. "# Test" denotes the
number of inferences in the test set.

CFKGR-CoDEx-M (H)

τ i τ f τn τr′

TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP
COULDD-RESCAL 13.2 19.8 127.4 27.6 0.0 0.0 8.2 246.8 0.0 16.0 24.0 457.0 199.8 17.2 11.0 3.0
COULDD-TransE 17.0 16.0 125.6 29.4 0.0 0.0 31.6 223.4 6.4 9.6 116.8 364.2 204.8 12.2 12.0 2.0
COULDD-ComplEx 15.4 17.6 101.0 54.0 0.0 0.0 4.0 251.0 2.4 13.6 7.4 473.6 205.4 11.6 13.4 0.6
COULDD-ConvE 18.2 14.8 138.2 16.8 0.0 0.0 35.2 219.8 5.4 10.6 128.4 352.6 200.2 16.8 11.8 2.2
COULDD-TuckER 13.2 19.8 92.6 62.4 0.0 0.0 3.4 251.6 0.0 16.0 8.2 472.8 206.8 10.2 12.0 2.0

gpt-3.5-turbo 21 12 66 89 0 0 188 67 10 6 169 312 127 90 11 3

Table 12: Performance analysis per test type on CFKGR-CoDEx-M with human-assigned labels. For COULDD,
the reported values are averaged over 5 model runs.
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