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ABSTRACT

The neural combinatorial optimization (NCO) method has shown great potential
for solving routing problems without requiring expert knowledge. However, exist-
ing constructive NCO methods still struggle to solve large-scale instances, which
significantly limits their application prospects. To address these crucial shortcom-
ings, this work proposes a novel Instance-Conditioned Adaptation Model (ICAM)
for better large-scale generalization of neural routing solvers. In particular, we de-
sign a simple yet efficient instance-conditioned adaptation function to significantly
improve the generalization performance of existing NCO models with a small time
and memory overhead. In addition, with a systematic investigation on the perfor-
mance of information incorporation between different attention mechanisms, we
further propose a powerful yet low-complexity instance-conditioned adaptation
module to generate better solutions for instances across different scales. Experi-
mental results show that our proposed method is capable of obtaining promising
results with a very fast inference time in solving Traveling Salesman Problems
(TSPs), Capacitated Vehicle Routing Problems (CVRPs) and Asymmetric Trav-
eling Salesman Problems (ATSPs). To the best of our knowledge, our model
achieves state-of-the-art performance among all RL-based constructive methods
for TSPs and ATSPs with up to 1,000 nodes and extends state-of-the-art perfor-
mance to 5,000 nodes on CVRP instances, and our method also generalizes well
to solve cross-distribution instances.

1 INTRODUCTION

The Vehicle Routing Problem (VRP) plays a crucial role in various logistics and delivery applica-
tions, where the solution quality directly affects the transportation cost and service efficiency (Tiwari
& Sharma), 2023} |[Sar & Ghadimil 2023)). However, efficiently solving VRPs is a challenging task
due to their NP-hard nature. Over the past few decades, extensive heuristic algorithms, such as
LKH3 (Helsgaun, 2017) and HGS (Vidal, 2022), have been proposed to address different VRP vari-
ants. Although these approaches have shown promising results for specific problems, the algorithm
designs heavily rely on expert knowledge and a deep understanding of each problem. Moreover, the
runtime required for a heuristic algorithm often increases exponentially as the problem scale grows.
These limitations greatly hinder the practical application of classical heuristic algorithms.

Over the past few years, different neural combinatorial optimization (NCO) methods have been
explored to solve various routing problems (Li et al., 2022} [Bengio et all 2021). In this work,
we focus on the constructive NCO method (also known as the end-to-end method) that builds a
learning-based model to directly construct an approximate solution for a given instance without any
expert knowledge (Vinyals et al.,|2015; Kool et al.,|2019; Kwon et al.,[2020). These methods usually
have a faster runtime compared to classical heuristic algorithms, making them a desirable choice to
tackle real-world problems with real-time requirements. Existing constructive NCO methods can be
divided into two categories: supervised learning (SL)-based (Vinyals et al., 2015; Xiao et al., [2024)
and reinforcement learning (RL)-based ones (Nazari et al.,[2018; Bello et al.l|2016). The SL-based
method requires a lot of problem instances with labels (i.e., the optimal solutions of these instances)
as its training data. However, it could be extremely hard to obtain sufficient optimal solutions for
some complex problems, which impedes its practicality. RL-based methods can learn NCO models
by repeatedly interacting with the environment without any labeled data. Nevertheless, due to the
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(a) TSP instance with 100 nodes. (b) TSP instance with 1, 000 nodes.

Figure 1: Comparison of two TSP instances and their optimal solutions with different scales (Left:
Instance, Right: Solution). The patterns and geometric structures are quite different for these in-
stances. In this work, we propose a powerful Instance-Conditioned Adaptation Model (ICAM) to
leverage these instance-specific patterns to directly generate promising solutions for instances across
quite different scales.

high memory and computational overhead, it is unrealistic to train the RL-based NCO model directly
on large-scale problem instances.

Current RL-based NCO methods typically train the model on small-scale instances (e.g., with 100
nodes) (Kool et al} [2019; Kwon et al.,[2020) and then generalize it to tackle larger-scale instances
(e.g., with 1,000 nodes). Although these models demonstrate good performance on instances of
similar scales to the ones they were trained on, they struggle to generate reasonable good solutions
for instances with much larger scales. Recently, two different types of attempts have been explored
to address the crucial limitation of RL-based NCO on large-scale generalization. The first one is
to perform an extra search procedure on model inference to improve the quality of solution over
greedy generation Hottung et al.| (2022)); |Choo et al.| (2022)). However, this approach typically re-
quires expert-designed search strategies and can be time-consuming when dealing with large-scale
problems. The second approach is to train the model on instances of varying scales |Khalil et al.
(2017); (Cao et al.| (2021)); Zhou et al.| (2023)). However, learning cross-scale features effectively for
better generalization performance remains a key challenge for NCO methods.

In solving routing problems, some recent works reveal that incorporating auxiliary information (e.g.,
node-to-node distances) in training can improve the model’s convergence efficiency and final per-
formance (Son et al.| |2023; Jin et al.l 2023} |Li et al., 2023a; |Gao et al., [2024; Wang et al., [2024)).
However, regarding the information incorporation strategy, existing methods either simply utilize
the node-to-node distances to bias the output score in the decoding phase (Son et al., 2023; Jin
et al.,[2023; [Wang et al.| 2024) or refine the information via a complex policy (Li et al.l 2023a; Gao
et al.| [2024). Some recent methods, such as ELG (Gao et al.| [2024) and DAR (Wang et al., |[2024),
have shown good performance on large-scale routing instances. However, for routing instances with
different scales, the general RL-based methods cannot truly capture instance-specific features ac-
cording to the changes in geometric structures, which results in still unsatisfactory generalization
performance.

In this work, we propose a powerful Instance-Conditioned Adaptation Model (ICAM) to improve
the large-scale generalization performance for RL-based NCO. Our contributions can be summa-
rized as follows:

* We design a simple yet efficient instance-conditioned adaptation function to adaptively
incorporate the geometric structure of cross-scale instances with a small computational
overhead.

* We propose a powerful yet low-complexity Adaptation Attention Free Module (AAFM) to
explicitly capture instance-specific features into the NCO inference process.

* We conduct a thorough experimental study to show ICAM can achieve promising general-
ization performance on different large-scale TSP, CVRP, and ATSP instances with a very
fast inference time.
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Table 1: Comparison between our ICAM and existing RL-based neural vehicle routing solvers with
information incorporation.

. . Information Module Varying-scale
Neural Vehicle Routing Solvers Scale Node-to-node distances | Embeddingt Attention Compatibility Training
S2V-DON (Khalil et al.|[2017) X X X X X v
DAN (Cao et al.|2021) X X X X X v
SCA (Kim et al.|[2022) v X v X X X
Meta-AM (Manchanda et al.||2022) X X X X X v
Pointerformer (Jin et al.|[2023) X v X Vi X x
Meta-SAGE (Son et al.||2023) v v v X v X
FER (Li et al.|[2023a) X v v X X X
Omni_VRP (Zhou et al.|[2023) X X X X X v
ELG (Gao et al.|[2024) X v X X v X
DAR (Wang et al.|[2024) X v X X v v
ICAM (Ours) | v v | v v v | v

* The embedding includes node embedding and context embedding. In FER, the information is used to refine node embeddings via an
extra network, and SCA and Meta-SAGE use the scale information to update context embedding. Unlike them, ICAM updates node
embeddings by incorporating information into the attention calculations in the encoding phase.

In Pointerformer, node-to-node distances are used in the attention calculation of the decoder but are not employed in the encoder.

2  INSTANCE-CONDITIONED ADAPTATION

2.1 MOTIVATION AND KEY IDEA

For solving routing problems, the instance-specific pattern could be very helpful in finding a better
solution for each instance. As shown in Figure [T} with different numbers of nodes, the geomet-
ric structures of two instances and their optimal solutions are quite different, which could provide
valuable information for the solvers. For classic heuristic algorithms, the node-to-node distance
information has been utilized to adapt the search behaviors for different instances (Yu et al., 2009;
Arnold & Sorensenl, 2019)).

The instance-specific information has also been leveraged by different RL-based NCO methods as
shown in Table [I] However, they still struggle to achieve a satisfying generalization performance,
especially for large-scale instances. We provide a detailed review of different information incor-
poration strategies in Appendix [A] By systematically analyzing the existing works, we find that
the following three aspects are very important in properly incorporating the instance-conditioned
information into the NCO model:

 Effectively Leverage Instance-conditioned Information: Given the diverse geomet-
ric structures and patterns of instances across different scales, effectively capturing the
instance-specific features (e.g., distance and scale) is crucial for achieving good general-
ization performance.

* Multiple Modules Integration: Incorporating instance-conditioned information into mul-
tiple modules (e.g., embedding, attention, and compatibility) can make the model better
aware of instance-specific information throughout the solution construction process.

» Expanding Training Scale: Training the NCO model on instances with a large scale range
is very helpful in learning more scale-independent features, thereby achieving better large-
scale generalization performance.

In the following subsections, we describe in detail how the proposed ICAM effectively obtains a
better generalization performance on routing instances with different scales.

2.2 INSTANCE-CONDITIONED ADAPTATION FUNCTION

In this work, we propose a straightforward yet efficient instance-conditioned adaptation function
f(IV, d;;) to incorporate the instance-specific information into the NCO model:
f(N,di;) = —a-logy N -d;; Vi,jel,...,N, (1)

where N is the scale information (e.g., the total number of nodes), d;; represents the distance be-
tween node ¢ and node j, and o > 0 is the learnable parameter. We take the logarithm for scale [NV
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to avoid extremely high values on large-scale instances. According to the definition, this adaptation
function should have a larger score for a nearer distance d;;. As shown in Figure 2| by providing
f(NV,d;;) in the whole neural solution construction process, the model is expected to be better aware
of the instance-specific information and hence generate a better solution for each instance.

It can be seen that the proposed function imposes only one learnable parameter to enable the model
to automatically learn the degree of adaptability across varying-scale instances. Compared with
recent works that also incorporate auxiliary information, our function has the following advantages:

* We effectively leverage scale and node-to-node distances that are specific to the instances
to incorporate the geometric structures of cross-scale instances.

* By incurring small time and memory overhead, the function enables the model to keep a
high efficiency when facing large-scale instances.

Less Is More Todemonstrate Typle 2: Comparison on TSP1000 instances with different

the superiority of our proposed  jngance-specific information incorporation approaches.
function f(N,d;;), we report

its performance on solving the

TSP1000 instances using the Method |Params | Avg.memory ~ Gap Time
seminal POMO model (Kwon] POMO 1.27M | 107.50MB 25.916% 63.80s
et all [2020), and compare POMO + dist. 1.27M | 124.22MB  22.696% 83.85s

it with three typical informa- POMO + « * dist. 1.27M | 12422MB  14.517% 86.23s
tion incorporation approaches: POMO + Local policy | 1.30M | 163.44MB 14.821% 130.26s
(1) Simple node-to-node dis- POMO + f(N,d;;) |1.27M| 124.22MB 10.812% 86.92s
tances (Jin et al. |2023; [Wang
et al.,[2024); (2) Node-to-node distances with a bias coefficient « introduced (Son et al., 2023)); and
(3) An extra local policy as adopted in|Gao et al[(2024). As shown in Table[2] our proposed function
can significantly improve the generalization performance of the original model with a small time and
memory overhead. For detailed experimental settings and results, please refer to Appendix

2.3 INSTANCE-CONDITIONED ADAPTATION MODEL

In addition to the instance-conditioned adaptation function, the NCO model structure is also crucial
to achieve a promising generalization performance. Most existing models adopt the encoder-decoder
structure, which is developed from Transformer (Kool et al.l 2019} |Gao et al.| [2024). Without
loss of generality, taking well-known POMO (Kwon et al., [2020) as an example, this subsection
briefly reviews the prevailing neural solution construction pipeline and discusses how to efficiently
incorporate the instance-specific information.

Rethinking Attention Mechanism in NCOs Given an instance S = {s;}~ ,, s; represents the
features of each node (e.g., the coordinates of each city in TSPs). These features are transformed

into initial embeddings H () = (hgo), ceey hg\(;)) via a linear projection. The initial embeddings pass
through L attention layers to get node embeddings H() = (th), e ,hs\f)). The attention layer
consists of a Multi-Head Attention (MHA) sub-layer (Vaswani et al., [2017) and a Feed-Forward
(FF) sub-layer. During the decoding process, POMO model generates a solution in an autoregressive
manner. For the example of TSP, in the ¢-step construction, the context embedding is composed of

the first visited node embedding and the last visited node embedding, i.e., hf o) = [hg,f), h,(ﬂl ]. The

new context embedding ﬁ‘é o) is then obtained via the MHA operation on hf o) and H")_ Finally, the
model yields the selection probability for each unvisited node pg(7; = ¢ | S, 7m1..—1) by calculating
compatibility on hfc) and H(F),

From the above description, MHA operation is the core component of Transformer-like NCO mod-
els. In the mode of self-attention, MHA performs a scaled dot-product attention for each head. The
self-attention calculation is written as

Q=XxW?, K=xwK v=xw", )
KT
Attention(Q, K, V') = softmax (%) V, 3)

4
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Adaptation Attention Free Module

Compatibility with Adaptation Bias

f(N, d,-,-) = —axlog,N * d;;

Encoder
(LX)
+
H®
Decoder
Instance-Conditioned Adaptation Bias Matrix Policy
Varying-scale Instances Instance-Conditioned Adaptation Model Adaptive Solutions

Figure 2: The proposed ICAM. Taking the TSP as an example, comprehensive instance-conditioned
information is incorporated into the whole solution construction process. ICAM solves the specific
instance by adaptively updating the corresponding adaptation bias matrix. Specifically, we utilize
AAFM to replace all MHA operations and combine f (NN, d;;) with the compatibility calculation.

where X represents the input, We, WE and WV are three learning matrices, and dj, is the di-
mension for K. In a Transformer-based NCO model, the MHA incurs primary memory usage and
computational cost. In addition, the MHA calculation is not convenient for capturing the relationship
between nodes. It cannot directly take advantage of the pair-wise distances between nodes.

Adaptation Attention Free Module As shown in Figure 2] the proposed ICAM is also developed
from the encoder-decoder structure, we remove all high-complexity MHA operations in both the en-
coder and decoder, and replace them with the proposed novel module, named Adaptation Attention
Free Module (AAFM). AAFM is based on the AFT-full operation (Zhai et al.l 2021)), which offers
more excellent speed and memory efficiency than MHA. Further details about AFT are available in
Appendix |Cl As shown in Figure 3| the proposed AAFM can be expressed as

exp(A)(exp(K) © V)

AARM(Q. K V. 4) = 0(Q) 0 — s (K]

“4)

where @, K,V are also separately obtained via Equation (2)), o represents Sigmoid function, ® rep-
resents the element-wise product, and A = {a;;}, Vi, j € 1,..., N denotes the pair-wise adaptation
bias computed by our adaptation function f(N, d;;) in Equation (E])

Through the proposed AAFM, the model is enabled to learn instance-specific knowledge via up-
dating pair-wise adaptation biases. Unlike traditional MHA-based NCO models, AAFM-based
ICAM explicitly captures relative position biases between different nodes via adaptation function
f(IV,d;;). This ability to maintain direct interaction between any two nodes in the context is a ma-
jor advantage of AAFM. Furthermore, AAFM exhibits a lower computational overhead than MHA,
resulting in a lower complexity and faster model.

To investigate the effectiveness of AAFM compared to MHA for information integration, we train
two different models in the same settings, both adding the proposed adaptation function. The only
difference between the two models is the attention mechanism (AAFM vs. MHA). For detailed
analysis and experimental results, please refer to Appendix [D]

Compatibility with Adaptation Bias To further improve the solving performance, we integrate
f(N,d;;) into the compatibility calculation (Son et al., [2023; |Gao et al., [2024). The new compati-
bility u; can be expressed as

B{c (h{")" o
ut = ¢ .tanh(T +ap—1;) ifi & {m._1} ’ )
—00 otherwise



Under review as a conference paper at ICLR 2025

Scale

Node-to-node distances o o

-

] o i) ; PR
— T :
[ Linear ] [ Linear ] [ Linear ] l

Q21 |Gz | ... |G2N [ Exp J [ Exp J [SigmoidJ

A1 | Q12 | ... Qv

ani (@2 | ... |GNN MatMul Mul
A€ RVN K € RV%dn V € RV*dn Q € RV l
o o 3 4
[ Adaptation Attention Free Module ] ]
3
'

v e v )
|

\

Figure 3: The proposed AAFM.

Ui
po(mi =1i| S, mu—1)= —x

Zj:l eu; ,

where £ is the clipping parameter, fl‘éc) and h'" are calculated via AAFM instead of MHA. ar—1,

)

represents the adaptation bias between each remaining node and the current node.

(6)

3 EXPERIMENTS

In this section, we conduct a comprehensive comparison between ICAM and other classical and
learning-based solvers using Traveling Salesman Problem (TSP), Capacitated Vehicle Routing Prob-
lem (CVRP), and Asymmetric Traveling Salesman Problem (ATSP) instances of different scales.

Problem Setting For all problems, the instances of training and testing are generated randomly.
Specifically, we generate the instances with a setup as prescribed in [Kool et al.|(2019) for TSPs and
CVRPs, and we follow the data generation method in MatNet (Kwon et al., [2021) for ATSP. For
the test set, unless stated otherwise, we generate 10, 000 instances for the 100-node case and 128
instances for cases with the scale is 200, 500, etc., the scale is up to 5,000 for TSP and CVRP and
1,000 for ATSP[H Specifically, for capacity settings in CVRP, we follow the approach in|Luo et al.
(2023)) for scale < 1,000 and |Hou et al.|(2022) for scale >1, 000, respectively.

Model Setting Our proposed function f(XN,d;;) and AAFM are adaptable to different models
according to the specific problem. For TSPs and CVRPs, ICAM is developed from the well-known
POMO model (Kwon et al., [2020). Considering the specificity of ATSPs, we replace the backbone
network with MatNet (Kwon et al., 2021). More details about the model architecture can be found
in Appendix [E] For all experiments, the embedding dimension is set to 128, and the dimension of
the feed-forward layer is set to 512. We set the number of attention layers in the encoder to IQH
The clipping parameter £ = 50 in Equation (5) for better training convergence (Jin et al., 2023). We
train and test all experiments using a single NVIDIA GeForce RTX 3090 GPU with 24GB memory.

Training For all models, we use Adam (Kingma & Bal 2014) as the optimizer and the initial
learning rate 7 is set to 10~%. Every epoch, we process 1,000 batches for all problems. For each
instance, N different solutions are always generated in parallel, following in [Kwon et al.| (2020).

"For ATSP, due to memory constraints, we are unable to generate instances with scale > 1000 under the
data generation method of MatNet, so the maximum scale for testing is 1, 000.

For ATSP model, the 12-layer encoder represents two independent 6-layer encoders, following MatNet
architecture (Kwon et al.,2021)
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To enable the model to be aware of the scale information better and simultaneously learn various
pair-wise biases of training instances at different scales, we develop a three-stage training scheme to
enable the proposed ICAM to incorporate instance-conditioned information more effectively. The
detailed settings of proposed three-stage training scheme are as follows:

1. Stage 1: Warming-up on Small-scale Instances. Initially, the model is trained for several
epochs on small-scale instances. We use instances for a scale of 100 to train corresponding
models for 100 epochs. Due to memory constraints, we set different batch sizes for dif-
ferent problems: 256 for (A)TSP and 128 for CVRP. Additionally, the capacity for CVRP
instances are fixed at 50. A warm-up training can make the model more stable in the sub-
sequent varying-scale training.

2. Stage 2: Learning on Varying-scale Instances. In the second stage, we train the model
on varying-scale instances for much longer epochs, and for each batch, the scale N is
randomly sampled from the discrete uniform distribution Unif([100,500]) for all problems.
Considering GPU memory constraints, we decrease the batch size with the scale increases.
For (A)TSP, the batch size bs = [160 x (1%°)?]. In the case of CVRP, the batch size
bs = [128 x (13?)?]. We train the TSP model for 2,200 epochs and CVRP model for 700
epochs in this stage. For ATSP model, the training duration is 100 epochs attributed to the
fast convergence. Furthermore, the capacity of each batch is consistently set by randomly
sampling from Unif([50,100]) for CVRP. Under the POMO structure, N trajectories are
constructed in parallel for each instance during training. The loss function (denoted as
Lpomo) used in the first and second stages is the same as in POMO (Kwon et al., [2020).

3. Stage 3: Top-k Elite Training. In the third stage, we want the model to focus more on the
best k trajectories among all IV trajectories. To achieve this, we design a new loss Lrop,
Ltop only focus on the k best trajectories out of IV trajectories (See Equation ). We
combine Lo, With Lponmo as the joint loss in the training of the third stage, i.e.,

Lioint = Lrpomo + B - Lrrop- @)

where 8 € [0,1] is a coefficient balancing the original loss and the new loss, 8 and k are
set to 0.1 and 20, respectively. We adjust the learning rate 7 to 10~° across all models to
enhance model convergence and training stability. The training period is standardized to
200 epochs for all models, and other settings are consistent with the second stage.

Note that for each problem, we use the same model on all scales and distributions. For more details
about the model and training settings, please refer to Appendix

Baseline We compare ICAM with the following methods: (1) Classical solver: Concorde (Ap-
plegate et al., 2006), LKH3 (Helsgaun, 2017), HGS (Vidal, [2022) and OR-Tools (Perron &
Furnon, [2023); (2) Constructive NCO: POMO (Kwon et al.l 2020), MatNet (Kwon et al.,
2021), MDAM (Xin et all 2021), ELG (Gao et al., 2024), Pointerformer (Jin et al.l 2023),
Omni_VRP (Zhou et al., 2023), BQ (Drakulic et al.l 2023), LEHD (Luo et al., [2023) and IN-
ViT (Fang et al., 2024); (3) Two-stage NCO: Att-GCN+MCTS (Fu et al., 2021), DIMES (Qiu
et al., [2022)), TAM (Hou et al.l 2022), SO (Cheng et al., |2023), DIFUSCO (Sun & Yang, [2023)),
H-TSP (Pan et al.,[2023), T2T (Li et al.,|2023b)) and GLOP (Ye et al.,[2024).

Metrics and Inference We use objective values of different solutions, optimality gaps, and total
inference times to evaluate each method. Specifically, the optimality gap measures the discrepancy
between the solutions generated by learning and non-learning methods and the optimal solutions,
which are obtained using LKH3 for all problems. Note that times for classical solvers, which run
on a single CPU, and for learning-based methods, which utilize GPUs, are inherently different.
Therefore, these times should not be directly compared.

For most NCO baseline methods, we directly execute the source code provided by authors using
default settings. Note that the results marked with an asterisk (*) are directly obtained from corre-
sponding papers. For INViT, we use the INViT-3V model, and the instance augmentation is unified
to augx 8, which is consistent with other methods. For TSPs and CVRPs, following [Kwon et al.
(2020), we report three types of results: using a single trajectory, the best result from multiple
trajectories, and results derived from instance augmentation. For ATSPs, we remove instance aug-
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mentation and only report the best result from multiple trajectories using a greedy strategy rather
than sampled ones as adopted by MatNet.

Results on VRPs with Scale < 1,000 The experimental results on TSP, CVRP and ATSP with
uniform distribution and scale < 1,000 are reported in Table E} Our method stands out for con-
sistently delivering superior inference performance, complemented by remarkably fast inference
times, across various problem instances. Although it cannot surpass Att-GCN+MCTS on TSP100,
POMO on CVRP100, and MatNet on ATSP100, the time it consumes is significantly less, such as
Att-GCN+MCTS takes 15 minutes compared to our 37 seconds and MatNet requires over an hour
compared to our 7s. On TSP1, 000, our model impressively reduces the optimality gap to less than
3% in just 2 seconds. When switching to a multi-greedy strategy, the optimality gap further narrows
to 1.9% in 30 seconds. With the instance augmentation, ICAM can achieve the optimality gap of
1.58% in less than 4 minutes. For a fair comparison, we have adjusted the number of RRC interac-
tion for LEHD and the width of beam search for BQ such that all methods have a similar inference
time. According to the results, ICAM can obtain a better generalization performance than LEHD
and RRC on most comparisons. To the best of our knowledge, for TSP, CVRP and ATSP up to 1, 000
nodes, ICAM shows state-of-the-art performance among all RL-based constructive NCO methods.

Results on Cross-distribution VRP Instances We use the TSP/CVRP1, 000 datasets with rota-
tion and explosion distributions to evaluate the cross-distribution performance of ICAM. As shown
in Table d] ICAM can still achieve the best performance on specific distribution instances and the
fastest speed of all comparable models. These results confirm that the same adaptation function
f(IV,d;;) can perform well across problem instances with different distributions.

Results on VRPs with Scale >1,000 We also conduct experiments on instances for TSP and
CVRP with larger scales, the instance augmentation is not employed for all methods due to com-
putational efficiency. As shown in Table 5] for CVRP on all instances except for CVRP3K, ICAM
outperforms all comparable methods, including INViT, GLOP with LKH3 solver and all TAM vari-
ants. ICAM is slightly worse than SL-based LEHD on CVRP3K, it consumes much more solving
time than ICAM. However, the superiority of ICAM is not so obvious on TSP instances with scale
>1K (see Appendix [G). Our performance is slightly worse than the two SL-based BQ and LEHD.
INVIT shows remarkable performance on TSP instances with scale >1,000 thanks to the small
search space at each construction step. Nevertheless, except for TSPSK, we achieve the second best
results in RL-based constructive methods. We are slightly worse than ELG on TSP5K instances, but
ELG requires a longer (4 x) runtime due to its heavy local policy at each construction step. Overall,
our method still has a good large-scale generalization.

Results on Benchmark Dataset We further evaluate the performance using well-known bench-
mark datasets from CVRPLIB Set-X (Uchoa et al., 2017) with scale < 1000, Set-XXL (Arnold
et al.,|2019) with scale € [3000, 7000], and TSPLIB (Reinelt, [1991) with scale < 5000. The results
are presented in Appendix [H] showing that ICAM achieves the best performance of all scale ranges
in Set-X and Set-XXL. In TSPLIB datasets with scale < 1000, our method is slightly worse than
SL-based models (i.e., BQ and LEHD) and ELG, which has a heavy local policy at each construc-
tion step. In TSPLIB datasets with scale >1000, ICAM can also obtain competitive performance.
Notably, ICAM has the shortest average time on TSPLIB datasets with scale < 5000 among all
models. These results also show the outstanding generalization of ICAM. To the best of our knowl-
edge, ICAM achieves the best performance among all constructive methods in the Set-X with scale
< 1000 and CVRPLIB Set-XXL (Arnold et al., 2019) with scale € [3000, 7000].

4 ABLATION STUDY

To demonstrate the efficiency of ICAM, we conduct a detailed ablation study, mainly including:

1. Effects of components of adaptation function (see Appendix [L.I));
2. Effects of adaptation function (see Appendix [[.2);

3. Effects of different stages (see Appendix [[.3));

4. Effects of deeper encoder (see Appendix [L.4);
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Table 3: Experimental results on routing problems (TSP, CVRP, and ATSP) with uniform distribu-
tion and scale < 1, 000.

TSP100 TSP200 TSP500 TSP1000
Method Obyj. Gap Time Obj. Gap Time Ob;. Gap Time Obyj. Gap Time
LKH3 7.7632  0.000% 56m 10.7036 0.000% 4m 16.5215  0.000% 32m 23.1199 0.000% 8.2h
Concorde 7.7632 0.000% 34m 10.7036 0.000% 3m 16.5215  0.000% 32m 23.1199 0.000% 7.8h
Att-GCN+MCTS* 7.7638 0.037% 15m 10.8139 0.884% 2m 16.9655 2.537% 6m 23.8634 3.224% 13m
DIMES AS+MCTS* - - - - - - 16.84 1.76% 2.15h 23.69 2.46% 4.62h
SO-mixed* — — — 10.7873 0.636% 21.3m | 16.9431 2.401% 32m 23.7656 2.800% 55.5m
DIFUSCO greedy+2-opt* 7.78 0.24% - — — - 16.80 1.49% 3.65m 23.56 1.90% 12.06m
T2T sampling* - - - - - - 17.02 2.84% 15.98m 24.72 6.92% 53.92m
H-TSP — — — — — — 17.549  6.220% 23s 24.7180 6.912% 47s
GLOP (more revisions) 7.7668 0.046% 1.9h 10.7735 0.653% 42s 16.8826  2.186% 1.6m 23.8403 3.116% 3.3m
BQ greedy 7.7903 0.349% 1.8m 10.7644 0.568% 9s 16.7165 1.180% 46s 23.6452 2.272% 1.9m
BQ bs4 7.7691 0.076%  4.3m | 10.7321 0.266 % 21s 16.6530  0.796% 1.9m 23.5090 1.683% 4.6m
LEHD greedy 7.8080  0.577% 27s 10.7956 0.859% 2s 16.7792  1.560% 16s 23.8523 3.168% 1.6m
LEHD RRC10 7.7746 0.146% 1.8m 10.7431 0.369% 8s 16.6702  0.900% 1.2m 23.5894 2.031% 5.5m
MDAM bs50 7.7933 0.388% 21m 109173 1.996% 3m 18.1843  10.065% 11m 27.8306  20.375% 44m
POMO augx8 77736 0.134% Im 10.8677 1.534% 5s 20.1871  22.187% 1.1m 32.4997  40.570% 8.5m
ELG augx8 7.7807 0.225% 3m 10.8620 1.480% 13s 17.6544  6.857% 2.3m 25.5769  10.627% 15.4m
Pointerformer aug x 8 7.7759 0.163% 49s 10.7796 0.710% 11s 17.0854 3.413% 53s 24.7990 7.263% 6.4m
ICAM single trajec. 7.8328  0.897% 2s 10.8255 1.139% <lIs 16.7777  1.551% Is 23.7976 2.931% 2s
ICAM 7.7991 0.462% Ss 10.7753 0.669% <ls 16.6978  1.067% 4s 23.5608 1.907% 28s
ICAM augx8 7.7747 0.148% 37s 10.7385 0.326% 3s 16.6488 0.771% 38s 23.4854 1.581% 3.8m
CVRP100 CVRP200 CVRP500 CVRP1000
Method Obyj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
LKH3 15.6465  0.000% 12h 20.1726 0.000% 2.1h | 37.2291  0.000% 5.5h 37.0904 0.000% 7.1h
HGS 155632  -0.533%  4.5h 19.9455  -1.126% 1.4h | 36.5611 -1.794% 4h 36.2884  -2.162% 5.3h
GLOP-G (LKH3) | - - -] - - -] - - — | 396507 6903%  1.7m
BQ greedy 16.0730  2.726% 1.8m 20.7722 2.972% 10s 38.4383  3.248% 47s 39.2757 5.892% 1.9m
BQ bs4 15.9073 1.667% 4.3m 20.4879 1.563% 22s 37.8951 1.789% 1.9m 38.5503 3.936% 4.7m
LEHD greedy 16.2173  3.648% 30s 20.8407 3.312% 2s 38.4125  3.178% 17s 38.9122 4.912% 1.6m
LEHD RRC10 158892  1.551%  2.2m | 20.4638 1.443% 9s 37.8564  1.685% 1.5m 38.5287 3.878% 4.3m
MDAM bs50 159924 2211% 25m 21.0409 4.304% 3m 41.1376  10.498% 12m 47.4068  27.814% 47m
POMO augx8 15.7544  0.689% 1.2m | 21.1542 4.866% 6s 44.6379  19.901% 1.2m 84.8978 128.894%  9.8m
ELG augx8 158382  1.225%  4.4m | 20.6787 2.509% 19s 39.2602  5.456% 3m 413046  11.362% 19.4m
ICAM single trajec. 16.1868  3.453% 2s 20.7509 2.867% <ls | 37.9594 1.962% Is 38.9709 5.070% 2s
ICAM 15.9386  1.867% Ts 20.5185 1.715% 1s 37.6040  1.007% 5s 38.4170 3.577% 35s
ICAM augx8 15.8720  1.442% 47s 20.4334 1.293% 4s 37.4858  0.689% 42s 38.2370 3.091% 4.5m
ATSP100 ATSP200 ATSP500 ATSP1000
Method Oby;. Gap Time Obj. Gap Time Ob;. Gap Time Oby;. Gap Time
LKH3 1.5777  0.000%  17.4m 1.6000 0.000% 28s 1.6108  0.000% 2.3m 1.6157 0.000% 9m
OR-Tools 1.8297 15973%  1.0h 1.9209 20.056% 4m 2.0040 24.410% 35.9m 2.0419 26.379% 3.1h
GLOP | 17705 12220% 23m | 1.9915 24.472% 19s | 2207  36.986% 24s | 23263 43.980% 528
MatNet x 128 1.5838  0.385% 1.1h 3.6894  130.588% 4. 3 m . - =
ICAM 1.6531 4.782% 7s 1.6886 5.537% 1 7343 7.664 % 1 8580 14.994% 34s
Table 4: Experimental results on cross-distribution generalization.

TSP1000, Rotation TSP1000, Explosion CVRP1000, Rotation CVRP1000, Explosion

Method Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time

Optimal | 17.20 (0.00%) — | 15.63(0.00%) — | 32.49(0.00%) — | 32.31(0.00%) -

POMO augx8 24.58 (42.84%) 8.5m | 22.70(45.24%) 8.5m | 64.22(97.64%) 10.2m | 59.52 (84.24%) 11.0m
Omni_VRP+FS* | 19.53(14.30%) 49.9m | 17.75(13.38%) 49.9m | 35.60 (10.26%) 56.8m | 35.25(10.45%) 56.8m

ELG augx$ 19.09(10.97%) 15.6m | 17.37 (11.16%) 13.7m | 37.04(14.00%) 20.Im | 36.48(12.92%) 20.5m
ICAM 18.97 (10.28%)  28s | 17.35(10.99%) 28s | 34.72(6.86%)  36s | 34.67(7.31%)  36s
ICAM augx8 18.81(9.34%)  3.8m | 17.17 (9.86%) 3.8m | 34.54 (6.28%) 4.6m | 34.50 (6.79%) 4.5m

© All datasets are obtained from Omni_VRP(Zhou et al.|[2023) and contain 128 instances, and the runtime marked with an asterisk
(*) is proportionally adjusted (128/1000) to match the size of our test datasets.

Effects of larger training scale (See Appendix [[.3);
Effects of different « settings (See Appendix [L.6));
Parameter settings in the third stage (see Appendix [[7);
ICAM vs. POMO with three-stage training scheme (see Appendix [L.8));

Comparison under the same training setting (see Appendix [L.9);
The performance of POMO-Adaptation (see Appendix [[.10);

»—
NS

—

Complexity analysis (see Appendix [.TT).
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Table 5: Comparison on CVRP with scale >1,000. “Avg.time” represents the average time per
instance.

CVRP2000 CVRP3000 CVRP4000 CVRP5000

Method Obj. (Gap) Avg.time(s) Obj. (Gap) Avg.time(s) Obj. (Gap) Avg.time(s) Obj. (Gap) Avg.time(s)
LKH3* | 64.93 (0.00%) 20.29 | 89.90 (0.00%) 41.10 | 118.03 (0.00%) 80.24 | 175.66 (0.00%) 151.64
TAM-AM* 74.31 (14.45%) 2.2 - - - - 17222 (-1.96%) 11.78
TAM-LKH3* 64.78 (-0.23%) 5.63 — — — — 144.64 (-17.66%) 17.19
TAM-HGS* - - - - - - 142.83 (-18.69%) 30.23
GLOP-G (LKH3) 63.02 (-2.94%) 1.34 88.32 (-1.76%) 2.12 114.20 (-3.25%) 3.25 140.35 (-20.10%) 4.45
LEHD greedy 61.58 (-5.16%) 5.69 86.96 (-3.27%) 18.39 112.64 (-4.57%) 44.28 138.17 (-21.34%) 87.12
BQ greedy 62.59 (-3.61%) 1.83 88.40 (-1.67%) 4.65 114.15 (-3.29%) 11.50 139.84 (-20.39%) 27.63
INVIT-3V greedy 67.35(3.73%) 25.15 94.63(5.26%) 42.77 120.49( 2.09%) 62.63 146.61(-16.54%) 86.47
ELG 67.54(4.02%) 11.43 94.42 (5.03%) 30.21 120.10 (1.75%) 66.59 145.31 (-17.28%) 121.57
ICAM single trajec. | 62.38 (-3.93%) 0.04 89.06 (-0.93%) 0.10 115.09 (-2.49%) 0.19 140.25 (-20.16%) 0.28
ICAM 61.34 (-5.53%) 2.20 87.20 (-3.00%) 6.42 112.20 (-4.94%) 15.50 136.93 (-22.05%) 29.16

7 The total number of CVRP instances for each scale is 100, following |Hou et al.|(2022). Except for CVRP3K/4K instances, the optimal values are from the
original paper(Hou et al.|[2022).

Capturing Instance-specific Features Given the diverse variations in patterns and geometric
structures across different scales, we argue that instance-conditioned adaptation is crucial for im-
proving the generalization of NCOs. ICAM can capture deeper instance-specific features than exist-
ing models. This is one of the notable contributions of ICAM. For more detailed discussions, please
refer to Appendix

Efficient Inference Strategies for Different Models To further improve performance, many
search-based inference strategies are developed for NCO models. For example, BQ employs beam
search, while LEHD uses the Random Re-Construct (RRC). These strategies also improve the per-
formance of ICAM, but the improvement is not as significant as BQ and LEHD. We report the key
results with different search-based decoding methods in Appendix [K]for better discussion.

5 CONCLUSION, LIMITATION, AND FUTURE WORK

Conclusion In this work, we have proposed a novel ICAM to improve large-scale generalization
for RL-based NCO. we design a simple yet efficient instance-conditioned adaptation function to
significantly improve the generalization performance of existing NCO models with a small time
and memory overhead. Further, the instance-conditioned information is more effectively incorpo-
rated into the whole neural solution construction process via a powerful yet low-complexity AAFM
and the new compatibility calculation. The experimental results on various TSP, CVRP and ATSP
instances show that ICAM achieves promising generalization abilities compared with other repre-
sentative methods.

Limitation and Future Work Although ICAM demonstrates superior performance with greedy
decoding, we have observed its poor applicability to other complex inference strategies (e.g., RRC
and beam search). In the future, we will develop a suitable inference strategy for I[CAM.
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A RELATED WORK

A.1 NON-CONDITIONED NCO

Most NCO methods are trained on a fixed scale (e.g., 100 nodes), they usually perform well on
the instances with the scale trained on, but their performance could drop dramatically on instances
with different scales (Kwon et al., 2020; |Xin et al., |2020; 2021). To mitigate the poor general-
ization performance, an extra search procedure is usually required to find a better solution. Some
widely used search methods include beam search (Joshi et al., [ 2019;|Choo et al., [2022)), Monte Carlo
tree search (MCTS) (Xing & Tu, [2020; [Fu et al.l [2021} |Q1u et al.l [2022; Sun & Yang, 2023), and
active search (Bello et al.| |2016; |[Hottung et al.| [2022). However, these procedures are very time-
consuming, could still perform poorly on instances with quite different scales, and might require
expert-designed strategies on a specific problem (e.g., MCTS for TSP). Recently, some two-stage
approaches (Kim et al. 2021} |Hou et al.l 2022} |Li et al.| 2021} [Pan et al., 2023} |Cheng et al.| [2023;
Ye et al., 2024) have been proposed. Although these methods have better generalization abilities,
they usually require expert-designed solvers and ignore the dependency between two stages, which
makes model design difficult, especially for non-expert users.

A.2 VARYING-SCALE TRAINING IN NCO

Directly training the NCO model on instances with different scales is another popular way to im-
prove its generalization performance. Expanding the training scale can bring a broader range of
cross-scale data. Training using these data enables the model to learn more scale-independent fea-
tures, thereby achieving better large-scale generalization performance. This straightforward ap-
proach can be traced back to [Vinyals et al. (2015) and |[Khalil et al.| (2017), which try to train
the model on instances with varying scales to improve solving performance. Furthermore, [Joshi
et al.| (2020) systematically tests the generalization performance of NCO models by training on dif-
ferent TSP instances with 20-50 nodes. Subsequently, a series of works have been developed to
utilize the varying-scale training scheme to improve their own NCO models’ generalization perfor-
mance (Lisicki et al.l 2020; |Cao et al., 2021; [Manchanda et al., |2022; Zhou et al.l 2023). Similar
to the varying-scale training scheme, a few SL-based NCO methods learn to construct partial solu-
tions with various scales during training and achieve a robust generalization performance (Luo et al.,
2023} Drakulic et al., 2023). [Wang et al.| (2024)) train the NCO model on varying-scale instances
to obtain a better generalization performance. Nevertheless, in real-world applications, it could be
very difficult to obtain high-quality labeled solutions for SL-based model training. RL-based models
also face the challenge of efficiently capturing cross-scale features from varying-scale training data,
which severely hinders their generalization ability on large-scale problems.

A.3 INFORMATION-CONDITIONED NCO

Recently, several works have indicated that incorporating auxiliary information (e.g., the distance
between each pair of nodes for VRPs) can facilitate model training and improve solving perfor-
mance. In [Kim et al.| (2022), the scale-related feature is added to the context embedding of the
decoder to make the model scale-aware during the decoding phase. [Jin et al.| (2023)), [Son et al.
(2023)) and Wang et al.| (2024) use the distance to bias the output score in the decoding phase,
thereby guiding the model toward more efficient exploration. Especially, |Gao et al.[(2024) employ
a local policy network to catch distance knowledge and integrate it into the compatibility calcula-
tion, and in |Li et al.[(2023a), the distance-related feature is utilized to refine node embeddings to
improve the model exploration. None of them incorporate the information into the whole neural so-
lution construction process and fail to achieve satisfactory generalization performance on large-scale
1nstances.
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B COMPARISON BETWEEN DIFFERENT INCORPORATION APPROACHES

To demonstrate the superiority of our function f(N,d;;), TSP as an example, we train various
models in the same training settings, the only difference between these models is the incorporation
approaches with auxiliary information. Without loss of generality, in this experiment, all comparable
models are developed from a well-known NCO model, that is POMO (Kwon et al., [2020). We train
all models for 100 epochs, every epoch, we process 1, 000 batches, and the batch size bs = 64 for
all models. The incorporation approaches mainly include:

» Simple node-to-node distances (Jin et al., 2023} [Wang et al., [2024);

¢ Node-to-node distances with a bias coefficient « introduced (Son et al., [2023);

* An extra local policy as adopted in|Gao et al.| (2024));

* Our proposed adaptation function f(N, d;;).
We incorporate the above four approaches into all attention calculations in both the encoder and
decoder, respectively. Moreover, we also combine them with the compatibility calculation in the

decoder (Gao et al., 2024} Wang et al.,2024). Considering the special design of MHA, the way that
we integrate the four approaches with Self-Attention in MHA can be expressed as

Attention(Q, K, V) = softma <QKT +G> V. 8)
s £y = X )

Vi,
where G = {g;;}, Vi,j € 1,..., N denotes the value via different incorporation approaches. Note

that the clipping parameter is changed to 50 for better training convergence (Jin et al., |2023), and
the rest of model parameters are consistent with the original POMO model.

Table 6: Comparison between different incorporation approaches. ”Avg.memory” represents the
average memory usage per instance.

TSP500
Avg.memory Gap Time

TSP1000
Avg.memory Gap Time

Model
Params

TSP100
Avg.memory Gap Time

TSP200

Method Avg.memory Gap Time

POMO 1.27M 1.47MB 1.318%  7.68s 5.11MB 4.216% 1.08s 28.09MB 14.946%  8.34s 107.50MB  25.916% 63.80s
POMO + dist. 1.27M 1.77MB 0.924%  9.00s 6.02MB 3.461% 1.21s 32.62MB 13.194%  10.42s 12422MB  22.696%  83.85s
POMO + a *dist. 1.27M 1.77MB 0.843%  9.14s 6.02MB 2913% 1.25s 32.62MB 9.550% 10.75s | 124.22MB 14517%  86.23s
POMO + Local policy | 1.30M 3.29MB 0.659% 23.82s 9.6IMB 2.730%  2.23s 45.55MB 9.587% 18.80s | 163.44MB 14.821%  130.26s
POMO + f(N.d;;) 1.27M 1.77MB 0.774%  9.16s 6.02MB 2442% 1.25s 32.62MB 7.208%  11.18s 12422MB  10.812%  86.92s

As shown in Table@, on TSP100 instances, POMO with our proposed function f(IV, d;;) performs
slightly worse than POMO with an extra local policy as adopted in|Gao et al.[(2024]), but it takes more
than twice as long as ours. In addition, the generalization is significantly improved even with the
simple addition of only a « parameter, and replacing the incorporation approach with our function
f(NV,d;;) further improves its generalization performance. These impressive results highlight the
effectiveness of our proposed function f(N,d;;), compared with other approaches, our proposed
function significantly improves the generalization of the original model with a very small time and
memory overhead.
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C ATTENTION FREE TRANSFORMER

As a linear attention approximation mechanism, AFT (Zhai et al., 2021)) offers more excellent speed
and memory efficiency than MHA operation. AFT has multiple versions, and the basic version is
called AFT-full. Given the input X, AFT first transforms it to obtain @, K, V' by the corresponding
linear projection operation, respectively. The calculation of AFT-full can be expressed as

Q=Xxwe, K=xwEK v=xw", 9)
S exp (K +wi ) © V;

Yoy exp (K + wi )
where WQ, %748 , WYV are three learnable matrices, ® is the element-wise product, o denotes the
nonlinear function applied to the query @, default function is Sigmoid, w € RY*¥ is the pair-wise
position biases, and each w; ; is a scalar. In AFT, the model automatically updates pair-wise position
biases w, which is used to quantify the importance of the relative position information. A detailed
complexity analysis comparing AFT-full with other variants is provided in Table

Yi=0(Q:)© 10)

Table 7: Complexity comparison of AFT-Full and other AFT variants. Here N, d, s denote the
sequence length, feature dimension, and local window size.

Model Time Space
Transformer O(N?2d) O(N?% + Nd)
AFT-full O(N?d) Nd)

o(
AFT-simple O(Nd) O(Nd)
AFT-local O(Nsd), s< N O(Nd)
AFT-conv O(Nsd), s< N O(Nd)

As shown in Table[7] the basic version of AFT outlined in Equation (I0) is called AFT-full and is
the version that we adopt. AFT includes three additional variants: AFT-local, AFT-simple and AFT-
conv. Owing to the removal of the multi-head mechanism, compared to the traditional Transformer,
AFT exhibits reduced memory usage and increased speed during both the training and testing. Fur-
ther details are available in the related work section mentioned above.

D AFT vs. MHA

In language modeling, the relation (e.g., semantic difference) between two tokens is difficult to
represent directly by position bias w; ;. According to|Zhai et al.| (2021), AFT obtains competitive
performance but is still worse than the basic MHA operation.

However, taking the routing problem as an example, the relation between two nodes can be directly
represented by only the distance information computed from the node coordinates, just as a tradi-
tional heuristic solver (e.g., LKH3 (Helsgaun, 2017))) can solve a specific instance by only inputting
the distance-based adjacency matrix. In classic neural vehicle routing solvers using MHA, e.g.,
POMO(Kwon et al.||2020), the relation between two nodes is computed by mapping the node coor-
dinates into a high-dimensional hidden space. In short, MHA cannot directly take advantage of the
pair-wise distances between nodes.

Unlike traditional MHA operation, AFT can explicitly capture the relative position bias between
different nodes via a pair-wise position bias matrix w. This ability to maintain direct interaction
between any two nodes in the context is a major advantage of AFT. The explicit relative position
information is valuable to achieve better solving performance. In fact, AFT can also be viewed as a
specialized form of MHA, where each feature dimension is treated as an individual head.

To investigate the effectiveness of AFT compared to MHA in information integration, we train a
new ICAM that replaces AAFM with the standard MHA, denoted as ICAM-MHA. ICAM-MHA is
trained in exactly the same settings, including three-stage training, the adaptation function, model
structure, and hyperparameters. The only difference between the two models is the attention mech-
anism (AAFM vs. MHA). The way that we integrate the adaptation function f(N,d;;) with Self-
Attention in MHA can be found in Equation (8).
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Table 8: Comparison of the AFT and MHA on TSP instances with different scales.

TSP100 TSP200 TSP500 TSP1000
Method Obj. Gap Time Ob;j. Gap Time Ob;j. Gap Time Obj. Gap Time
Concorde | 77632 0.000% 34m | 10.7036  0.000%

3m | 165215 0.000% 32m | 23.1199 0.000% 7.8h
ICAM-MHA | 7.8061 0.552%  10s | 10.7922 0.828% Is 16.7613  1.452% I1s | 237193 2.593% 1.5m
ICAM 7.7991  0.462% Ss 10.7753  0.669% <1s | 16.6978 1.067% 4s 23.5608 1.907%  28s

As can be seen from the results in Table [§] ICAM-MHA also has good large-scale generalization
performance, this again demonstrates the effectiveness of proposed adaptation function and three-
stage training scheme. Further, we can observe replacing MHA with AAFM can further improve
performance while significantly reducing running time. The advantages of ICAM over ICAM-MHA
become more significant as the problem scale increases. The good scalability performance of ICAM
may stem from the ability of AFT to integrate instance-conditioned information more efficiently.
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E MODEL ARCHITECTURE

ICAM for TSPs and CVRPs For the TSP and CVRP models, ICAM is an improvement based on
POMO model (Kwon et al.,[2020). We remove all the MHA calculations in POMO (including both
the encoder and decoder) and replace them with our proposed AAFM. Additionally, as shown in
Equation (@), in the decoding phase, we modify the compatibility calculation by adding our adapta-
tion function f(V, d;;) to the original calculation, following the approach in [Gao et al.[(2024) and
Son et al.| (2023), so as to improve the model performance further. Finally, we expand the number of
encoder layers to 12 to generate better node embeddings. Note that since the heavy encoder is only
called once for solution construction, there is no obvious time difference between the models with
12-layer and 6-layer Encoder.

ICAM for ATSPs For ATSP instances, the node coordinates are not available. Considering the
special nature of ATSP, we use MatNet as the backbone network for ATSP model. Compared with
the original MatNet proposed by |[Kwon et al.|(2021), our improvements are mainly as follows:

1. In original MatNet, for initial embeddings, zero-vectors and one-hot vectors are used to
embed nodes in A and nodes in B (or vice versa), respectively. However, since the embed-
ding dimension is set to 256, this approach fails to enable MatNet to generalize to ATSP
instances with more than 256 nodes efficiently. We change the dimension of the input
feature to 50, i.e., the distance of the 50 nearest nodes to each node in row and column
elements, respectively. Further, these features are transformed into different initial embed-
dings H(®) = (hgo), ceey hg\(,))) via different 128-dimension linear projections in 6-layer
row encoder and 6-layer column encoder, respectively.

2. we also utilize AAFM to replace attention operations, including Mixed-score attention,
which is proposed by MatNet in the encoding phase, and MHA operation in the decoding
phase.

3. Moreover, we also combine our proposed adaptation function f(V, d;;) with the compati-
bility calculation in the decoding phase.

For the ATSP model, the rest of the model architecture is consistent with MatNet, the details about
MatNet can be found in |[Kwon et al.|(2021)).

F HYPERPARAMETER AND TRAINING SETTINGS

Model Hyperparameter Settings The detailed information about the hyperparameter settings can
be found in Table[9] Note that for the ATSP and CVRP models, we have implemented the gradient
clipping technique to prevent the risk of exploding gradients.

Training The loss function (denoted as Lpono) used in the first and second stages is the same as
in POMO (Kwon et al., |2020). According to Kwon et al.| (2020), POMO is trained by the REIN-
FORCE (Williams| [1992), and it uses gradient ascent with an approximation in Equation (II)). The
gradient ascent with an approximation of the loss function can be written as

1 . )
Vo Lpomo (0 —NZZ | i) = b (Sm) Vo logpg (7" | Sm) , (11)

Spn) = NZR Sn)  foralli. (12)

where R (’R’i | Sm) represents the total reward (e.g., the negative value of tour length) of instance
S, given a specific solution 7r¢. Equation (12) is a shared baseline as adopted in Kwon et al.| (2020).
In the third stage, we want the model to focus more on the best k trajectories among all N trajecto-
ries. To achieve this, we design a new loss Lo, and its gradient ascent can be expressed as

B k

1 ,
Vo Lrop(0 B—ZZ 7| ) — b (Sm) Ve logp (m° | Sm) - (13)
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Table 9: Model hyperparameter settings in experiments.

TSP CVRP ATSP
Optimizer Adam
Clipping parameter 50
Initial learning rate 1074
Learning rate of stage 3 107°
Initial o value 1
Loss function of stage 1 & 2 Lpomo
Loss function of stage 3 L oint
Parameter /3 of stage 3 0.1
Parameter k of stage 3 20
The number of encoder layer 12
Embedding dimension 128
Feed forward dimension 512
Batches of each epoch 1,000
Scale of stage 1 100
Scale of stage 2 & 3 [100, 500]
Epochs of stage 1 100
Epochs of stage 3 200
Epochs of stage 2 2,200 700 100
Capacity of stage 1 — 50 —
Capacity of stage 2 & 3 — [50, 100] -
Batch size of stage 1 256 128 256
Batch size of stage 2 & 3 [160 x (40)?]  [128 x (499)?]  [160 x (12)?]
Gradient clipping — max_norm=9 max_norm=s
Weight decay — - 106
Total epochs 2,500 1,000 400

We combine Lo, with Lpowmo as the joint loss in the training of the third stage via Equation .

G RESULTS ON TSP INSTANCES WITH SCALE >1, 000

As shown in Table although ICAM equipped with adaptation biases demonstrates excellent per-
formance and efficient inference speeds when solving TSP instances with no more than 1000 nodes,
the influence of adaptation biases begins to gradually diminish as the problem scale expands beyond
1000 nodes. This phenomenon reveals an important research direction: to maintain and enhance
the performance in solving larger-scale TSP instances, it is necessary to explore new strategies or
improve existing adaptation strategy. This ensures that the model can effectively extend to larger
problem spaces while maintaining its efficient solution-generation capabilities.

Table 10: Comparison on TSP instances with scale >1, 000.

TSP2K TSP3K TSP4K TSP5K

Method Ob;j. Gap Avg.time (s) | Obj. Gap Avg.time (s) | Obj. Gap Avg.time (s) | Obj. Gap Avg.time (s)
LKH3 | 3245 0.000% 144.67 | 39.60  0.000% 176.13 | 45.66  0.000% 45546 | 50.94  0.000% 710.39
LEHD greedy 3471  6.979% 5.60 4379  10.558% 18.66 5179 13.428% 43.88 5921 16.237% 85.78
BQ greedy 34.03 4.859% 1.39 42,69 7.794% 3.95 50.69 11.008% 10.50 5812 14.106% 25.19
INVIiT-3V greedy | 34.64  6.757% 21.17 4231  6.838% 36.23 48.84  6.965% 53.82 5452 7.035% 74.77
POMO 50.89  56.847% 4.70 65.05 64.252% 14.68 7733 69.370% 35.12 88.28  73.308% 64.46
ELG 37.12  14.408% 8.17 4588 15.855% 23.78 5335 16.834% 54.27 59.90  17.594% 101.94
ICAM 34.37  5.934% 1.80 4439 12.082% 5.62 53.00 16.075% 12.93 60.28  18.338% 24.51
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H RESULTS ON BENCHMARK DATASET

We further evaluate the performance using well-known benchmark datasets from CVRPLIB
Set-X (Uchoa et al.l 2017) (see Table @) Set-XXL(Arnold et all 2019)(see Table @) and
TSPLIB (Reinelt, [1991) (see Table @ and Table @ The results marked with an asterisk (*) are
directly obtained from the original papers. Note that for scale >1000, instance augmentation is not
employed for all methods due to computational efficiency.

Table 11: Experimental results on TSPLIB(Reinelt, |1991) with scale < 1000.

N <200 200<N < 500 | 500<N <1000 Total Avg.time

Method (29 instances) | (13 instances) (6 instances) (48 instances)

LEHD greedy 1.92% 3.10% 4.05% 2.51% 0.83s
BQ greedy 2.15% 4.35% 4.54% 3.04% 2.24s
POMO augx 8 2.02% 15.25% 31.68% 9.31% 0.33s
INVIT-3V augx8 3.42% 6.44% 8.65% 4.89% 2.74s
ELG augx8 1.18% 4.34% 8.73% 2.98% 0.72s
ICAM 4.65% 5.77% 12.61% 5.95% 0.17s
ICAM augx8 2.38% 4.57% 10.64% 4.00% 0.22s

Table 12: Experimental results on CVRPLIB Set-X(Uchoa et al., 2017) with scale < 1000.

N <200 200<N < 500 | 500<N < 1000 Total Avg.time

Method (22 instances) | (46 instances) (32 instances) (100 instances)

LEHD greedy 11.35% 9.45% 17.74% 12.52% 1.58s
BQ greedy* - - — 9.94% -
POMO augx8 6.90% 15.04% 40.81% 21.49% 1.00s
INVIiT-3V augx8 9.30% 11.99% 12.18% 11.46% 6.07s
ELG augx8 4.51% 5.52% 7.80% 6.03% 2.56s
ICAM 5.14% 4.44% 5.17% 4.83% 0.37s
ICAM augx8 4.41% 3.92% 4.70 % 4.28 % 0.56s

Table 13: Experimental results on TSPLIB (Reinelt, |1991) with scale < 5, 000.

3000 <N < 4000
(2 instances)

4000 <N < 5000
(1 instances)

1000 <N < 2000

2000 <N < 3000
Method (15 instances)

1000 <N < 5000 | Avg.time
(4 instances)

(22 instances)

LEHD 10.54% 10.93% 13.49% 19.05% 1127% 12.3s
BQ ‘ 9.712% ‘ 11.58% ‘ 24.15% ‘ 20.35% ‘ 11.85% ‘ 8.9s
POMO 62.76% 64.12% 106.61% 66.64% 67.17% 6.5
INViT 12.38% 9.11% 12.80% 7.32% 11.60% 38.9s
ELG 12.99% 10.23% 15.02% 16.11% 12.82% 11.2s
ICAM 13.28% 9.88% 14.03% 16.79% 12.89% 2.8

Table 14: Experimental results on CVRPLIB Set-XXL (Arnold et al., 2019) with scale €
[3000, 7000].

Antwerpl Antwerp2 Leuvenl Leuven2 Total Avg.time
Method | (N = 6000) | (N =7000) | (N =3000) | (N =4000) | N € [3000,7000]
LEHD 14.66% 22.77% 16.60% 34.86% 22.22% 155.3s
BQ 16.48% 27.67% 18.53% 30.70% 23.34% 30.0s
POMO 673.00% 482.98% 496.50% 1036.64% 672.28% 101.9s
INVIT 15.40% 27.75% 13.71% 26.08% 20.74% 90.9s
ELG 13.31% 25.53% 16.45% 23.25% 19.63% 163.3s
ICAM 8.00% 21.66 % 9.22% 15.09% 13.49% 39.9s
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I ABLATION STUDY

Please note that, unless stated otherwise, the results presented in the ablation study reflect the best
result from multiple trajectories. We do not employ instance augmentation in the ablation study, and
the performance on TSP instances is used as the primary criterion for evaluation.

1.1 EFFECTS OF COMPONENTS OF ADAPTATION FUNCTION

In our adaptation function, except for the fundamental scale and pair-wise distance information, we
additionally impose a learnable parameter as well as instance scales. To better illustrate the effec-
tiveness of this function, we conduct ablation experiments for the components, and the experimental
results are shown in Table The results show that both a learnable parameter o and scale N can
significantly improve the model performance.

Table 15: Comparison between component settings on TSP instances with different scales.

| TSP100 | TSP200 | TSP500 | TSP1000

w/o learnable « 0.546% 1.124% | 2.785% 5.232%
w/o scale 0.512% | 0.866% | 2.036% 4.236%
w/ learnable « + scale | 0.462% 0.669% | 1.067 % 1.907 %

1.2 EFFECTS OF ADAPTATION FUNCTION

Table 16: The detailed ablation study on instance-conditioned adaptation function. Here AFM
denotes that AAFM removes the adaptation bias, and CAB is the compatibility with the adaptation
bias.

| TSP100 | TSP200 | TSP500 | TSP1000

AFM 1.395% | 2.280% | 4.890% | 8.872%
AFM+CAB 0.956% | 1.733% | 4.081% | 7.090%
AAFM 0.514% | 0.720% | 1.135% | 2.241%

AAFM+CAB | 0.462% | 0.669% | 1.067% | 1.907%

Given that we apply the adaptation function outlined in Equation (I)) to both the AAFM and the sub-
sequent compatibility calculation, we conducted three different experiments to validate the efficacy
of this function. The data presented in Table|16|indicates a notable enhancement in the solving per-
formance across various scales when instance-conditioned information is integrated into the model.
This improvement emphasizes the importance of including detailed, fine-grained information in the
model. It also highlights the critical role of explicit instance-conditioned information in improving
the adaptability and generalization capabilities of RL-based models. In particular, the incorporation
of richer instance-conditioned information allows the model to more effectively comprehend and
address the challenges, especially in the context of large-scale problems.

1.3 EFFECTS OF DIFFERENT STAGES

Our training is divided into three different stages, each contributing significantly to the overall effec-
tiveness, the performance improvements achieved at each stage are detailed in Table After the
first stage, which uses only short training epochs, the model performs outstanding performance with
small-scale instances but underperforms when dealing with large-scale instances. After the second
stage, there is a marked improvement in the ability to solve large-scale instances. By the end of the
final stage, the overall performance is further improved. Notably, in our ICAM, the capability to
tackle small-scale instances is not affected despite the instance scales varying during the training.
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Table 17: Comparsion between different stages on TSP instances with different scales.

| TSP100 | TSP200 | TSP500 | TSP1000

After stage 1 | 0.514% | 1.856% | 7.732% | 12.637%
After stage 2 | 0.662% | 0.993% | 1.515% | 2.716%
After stage 3 | 0.462% | 0.669% | 1.067% | 1.907%

1.4 EFFECTS OF DEEPER ENCODER

Table 18: The ablation study of encoder layers on TSP instances with different scales. Note that ”L”
represents encoder layers, e.g., "ICAM-6L" denotes the ICAM model using a 6-layer encoder.

TSP100 TSP200 TSP500 TSP1000
Method Model Params Gap Time Gap Time Gap Time Gap Time
POMO-6L | 1.27M | 0.365% 8s | 2.274% Is | 24.053% 9s | 42.114% 1.Im
ICAM-6L 1.15M 0.442% Ss 0.722%  <1s | 1.328% 4s 2422%  28s
ICAM-12L 2.24M 0.462% 5s 1 0.669% <l1s | 1.067% 4s 1.907%  28s

The Performance with Deeper Encoder: We have conducted an ablation study of ICAM with
6 and 12 layers, respectively. From these results, we can see that a deeper encoder structure helps
the model perform better in larger-scale instances. The ICAM-6L can already significantly outper-
form the POMO in larger-scale TSP instances with fewer parameters. Furthermore, ICAM-12L can
outperform ICAM-6L in large-scale instances.

The Time with Deeper Encoder: Due to our 12-layer encoder, we have more parameters than
ICAM-6L. However, since the heavy encoder is only called once for the solution construction pro-
cess, there is no obvious time difference between the models with 12-layer and 6-layer Encoder. Our
ICAM method achieves a lower inference time for all TSPs than the POMO model.

1.5 EFFECTS OF LARGER TRAINING SCALE

Table 19: Comparison between different training scales on TSP instances with different scales.

Training Scale N | TSP100 | TSP200 | TSP500 | TSP1000
N € Unif([100,200]) | 0.241% | 0.461% | 1.538% | 7.053%
N € Unif([100,500]) | 0.462% | 0.669% | 1.067% | 1.907%
Training Scale NV ‘ CVRP100 ‘ CVRP200 ‘ CVRP500 ‘ CVRP1000
N € Unif([100, 200]) 1.542% 1.405% 1.558% 6.300%
N € Unif([100,500]) | 1.867% | 1.715% | 1.007% | 3.577%

To investigate the effectiveness of training scales, we train a new model in a smaller training scale, in
which the training scale IV is randomly sampled from Unif([100,200]). The comparison results are
provided in Table[I9] we can find that when we train a model on larger-scale instances, the model
can obtain better performance in solving larger-scale instances. By training on larger instances,
the model can see richer geometric structures and thus learn decision-making patterns for different
instances, the scale diversity allows the model to perform well when facing larger-scale instances.

Similar to the experiment on TSP, we compare our proposed model with two different training scales
(Unif([100,200]) or Unif([100,500])). According to the results shown in Table[T9] we can find that
when we train a CVRP model on larger-scale instances, the CVRP model can also perform better in
solving larger-scale instances. This observation is consistent with that for the TSP model.
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1.6 EFFECTS OF DIFFERENT ov SETTINGS

Table 20: Comparison under different « settings on TSP instances with different scales. Note that
all models are trained 500 epochs (i.e., 400 epochs of stage 2).

| TSP100 | TSP200 | TSP500 | TSP1000

w/a=0.1 1.558% | 2.841% | 6.246% | 10.304%
w/a=0.5 1.077% | 2.216% | 4.797% | 8.023%
w/ia=1 0.843% | 1.729% | 3.898% | 6.513%
w/ o =2 0.820% | 1.553% | 3.229% | 5.979%
w/a=5 1.024% | 1.572% | 2.840% | 5.046%

w/ learnable o | 0.845% | 1.397% | 2.381% | 4.371%

To demonstrate the impact of the learnable parameter, we have conducted an ablation study on the
value of the parameter a. Since fixed o >5 will cause the exploding gradients, we keep the «
value at a maximum of 5. Due to the time limit, all models are trained with 500 epochs and the
results are shown in Table[20] the model with a learned parameter « can significantly outperform its
counterparts with different fixed parameters.

1.7 PARAMETER SETTINGS IN STAGE 3

In the third stage, we manually adjust the S and k values as specified in Equation . The exper-
imental results for two settings involving different values are presented in Table When trained
using Ljoint as outlined in Equation (]ﬂ), our model shows further improved performance. We ob-
serve no significant performance variation among different models at various k£ values when using
the multi-greedy search strategy. However, increasing the g coefficients while yielding a marginal
improvement in performance with the multi-greedy strategy notably diminishes the solving effi-
ciency in the single-trajectory mode. Given the challenges in generating N trajectories for a single
instance as the instance scale increases, we are focusing on optimizing the model effectiveness,
specifically in the single trajectory mode, to obtain the best possible performance. To avoid harming
the performance under the single trajectory, we set k and 3 to 20 and 0.1, respectively.

Table 21: Comparsion between different parameters in the third stage on TSP1000 instances.

single trajectory multiple trajectory
=0 p=01 p=05 p=09| =0 p=01 p=05 =09

2.039% 1907% 1.859% 1.875%

k=20 | 299% 2931% 3.423% 3.480%
k=150 - 3.060% 3.123%  3.328% - 1.935% 1.892% 1.857%
k =100 — 2979% 3.201% 3.343% - 1.948% 1.899%  1.899%

1.8 ICAM vs. POMO wITH THREE-STAGE TRAINING SCHEME

To improve the ability to be aware of scale, we implement a varying-scale training scheme. Given
that most of our problem models are an advancement over the POMO framework, we ensure a fair
comparison by training a new POMO model using our three-stage training settings (i.e., trained on
100 to 500 nodes).

The comparison of POMO and our ICAM is provided in Table 22]to investigate the effectiveness
of the proposed adaptation function. In our three-stage training scheme, POMO also obtains better
generalization compared to the original model, but it is still outperformed by ICAM. According to
the results, after 2500 epochs, the POMO model can obtain an optimality gap of 6.6% in TSP1000
instances. However, ICAM only requires 110 epochs to obtain a similar performance (i.e., only
10 epochs of varying-scale training) and achieve a gap of less than 2% after a complete training
process. It is well known that during the training process, the later the training period, the slower
the model performance improves. Therefore, this performance gain is significant but not merely a
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marginal improvement. In contrast to POMO, ICAM excels in capturing cross-scale features and
perceiving instance-conditioned information, this ability notably enhances model performance in
solving problems across various scales.

Table 22: Comparison of ICAM and POMO with the same training settings on TSP and CVRP
instances with different scales.

TSP100 TSP200 TSP500 TSP1000
Method Obj. Gap Time Oby;. Gap Time Obj. Gap Time Obyj. Gap Time
Concorde | 77632 0.000%  34m | 10.7036  0.000% 3m | 165215 0.000%  32m | 23.1199 0.000% 7.8h
POMO 7.7915  0.365% 8s 10.9470  2.274% 1s 20.4955 24.053%  9s 32.8566  42.114% 1.lm
POMO-ThreeStage | 7.8957  1.707% 8s 10.9085  1.914% Is 17.0488  3.192% 9s 24.6453 6.598% I.Im
ICAM 77991  0.462% 5s 10.7753  0.669% <1s | 16.6978 1.067% 4s 23.5608  1.907% 28s
CVRP100 CVRP200 CVRP500 CVRP1000
Method Ob;. Gap Time Ob;j. Gap Time Ob;. Gap Time Ob;j. Gap Time
LKH3 | 15.6465 0.000%  12h | 20.1726  0.000%  2.1h | 37.2291  0.000%  5.5h | 37.0904 0.000% 7.1h
POMO 15.8368 1.217%  10s | 21.3529 5.851% Is | 482247 29.535% 10s | 143.1178 285.862% 1.2m
POMO-ThreeStage | 16.0199  2.386% 10s | 20.6401 2.318% Is 37.8624  1.701% 10s | 38.9679 5.062% 1.2m
ICAM 15.9386  1.867% 7s 20.5185 1.715% 1s | 37.6040 1.007% Ss 38.4170 3.577% 35s

1.9 COMPARISON UNDER THE SAME TRAINING SETTING

We have now conducted the same varying-scale training with 200 epochs (VST200) for both our
proposed ICAM as well as the representative RL-based POMO and ELG baselines. The SL-based
LEHD and BQ are not included in this experiment since it is difficult to obtain high-quality solutions
for a large amount of instances up to 500 nodes.

Table 23: Experimental results on TSPs and CVRPs with uniform distribution and scale < 1,000.
Here, VSTn denotes this model is trained for n epochs on varying-scale instances.

TSP100 TSP200 TSP500 TSP1000
Method Ob;. Gap Time Oby;. Gap Time Ob;. Gap Time Ob;. Gap Time
LKH3 ‘ 77632 0.000%  56m | 10.7036  0.000%  4m ‘ 16.5215  0.000%  32m ‘ 23.1199 0.000% 8.2h

10.9470  2.274% Is 20.4955 24.053% 9s 32.8566  42.114% 1.Im
11.0624  3.352% Is 17.5485  6.216% 9s 25.8064 11.620%  1.1m
109512 2.313% 2s 17.8223  7.874% 17s 25.7991 11.588% 2m
10.8920  1.760% 2s 17.1632  3.884% 17s 24.7273 6.953% 2m

10.8859 1.703%  <l1s | 17.1075  3.547% 4s 24.6161 6.472% 28s
10.8492 1.360% <l1s | 16.9311 2.479% 4s 24.1331 4.382% 28s

POMO-Original | 7.7915  0.365% 8s
POMO-VST200 | 7.9820  2.818% 8s
ELG-Original 7.8128  0.638% 22s
ELG-VST200 7.8429 1.027% 22s

ICAM-VST20 7.8394  0.982% Ss
ICAM-VST200 7.8284  0.840% Ss

‘ CVRP100
\

CVRP200 CVRP500 CVRP1000
Method Ob;. Gap Time Oby;. Gap Time Ob;. Gap Time Obj. Gap Time
LKH3 15.6465 0.000%  12h | 20.1726  0.000%  2.1h | 37.2291 0.000%  5.5h | 37.0904 0.000% 7.1h

21.3529  5.851% Is | 48.2247 29.535%  10s | 143.1178 285.862% 1.2m
20.8046  3.133% Is 38.3320  2.962% 10s | 40.1454 8.237% 1.2m
20.8618  3.417% 3s 39.6746  6.569% 23s | 42.0760  13.442%  2.4m
20.8045 3.132% 3s 38.3940  3.129% 23s 39.7601 7.198%  2.4m

38.1647  2.513% S5s 39.3221 6.017% 35s
379161 1.845% 5s 39.0220 5.208% 35s

POMO-Original | 15.8368 1.217% 10s
POMO-VST200 | 16.1019  2.911% 10s
ELG-Original 159855  2.166%  34s
ELG-VST200 16.1121  2.975%  34s

ICAM-VST20 ‘16.0496 2.576% 7s 20.7434  2.830% Is

ICAM-VST200 | 16.0240 2.413% 7s 20.6464 2.349% Is

As shown in Table 23] our proposed varying-scale training (VST) method can also significantly im-
prove the generalization performance of POMO and ELG. For example, ELG-VST200 can obtain a
6.9% optimality gap on TSP1000 while the gap is 11.588% for the original ELG. However, it should
be emphasized that our proposed ICAM can achieve a better generalization after only 20 epochs of
varying-scale training. Given the substantial variations in patterns and geometric structures across
different-scale routing instances, we argue this stems from a better instance-conditioned adaptation
of ICAM. These experimental results and analyses have been added in Appendix [J]

1.10 THE PERFORMANCE OF POMO-ADAPTATION

We conduct an ablation study on the three-stage training for POMO equipped with our proposed
adaption function. According to Table[24] the adaption function and three-stage training scheme can
significantly improve the generalization performance of POMO on large-scale problem instances.
However, ICAM still performs better than POMO-Adaptation, both in terms of inference time and
solution lengths.
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Table 24: Experimental results of POMO using the three-stage training scheme and the adaptation
function on TSP instances.

TSP100 TSP200 TSP500 TSP1000
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
Concorde | 77632 0.000%  34m | 10.7036 0.000%  3m | 165215 0.000%  32m | 23.1199  0.000% 7.8h
POMO-Original 7.7915  0.365% 8s 10.9470  2.274% Is | 204955 24.053%  9s 32.8566 42.114% 1.1m

POMO-Adaptation (Stagel) 7.9803  2.796% 9s 11.1303  3.986% Is 18.3123  10.839%  11s | 269251 16.459% 1.4m
POMO-Adaptation (Stagel,2) 8.0135  3.224% 9s 11.0151  2.910% Is 17.1872  4.030% Ils | 24.6219  6.496% 1.4m
POMO-Adaptation (Stagel,2,3) | 7.9906  2.929% 9s 10.9634  2.428% Is 17.0508  3.204% Ils | 242849  5.039% 1.4m

ICAM (Stagel,2,3) | 77991 0.462% 5s | 107753 0.669% <ls | 16.6978 1.067% 4s | 23.5608 1.907% 28s

1.11 COMPLEXITY ANALYSIS

As shown in Table[25] we report the model size, memory usage per instance, and total inference time
for different RL-based constructive models. We report the complexity of the model under adopting
the multi-greedy strategy. For GPU memory, we report the average GPU memory usage per instance
of each method for each problem. Due to our 12-layer encoder, we have more parameters than
POMO and ELG. However, since the heavy encoder is only called once for solution construction,
our ICAM method achieves the lowest memory usage and the fastest inference time for all TSPs.

Table 25: Comparison between ICAM and existing works in model details. ”Avg.memory” repre-
sents the average memory usage per instance. N and %k denote the scale and the number of local
neighbors, respectively.

Time Space TSP100 TSP200 TSP500 TSP1000
Method | Model Params complexity complexity Avg.memory Time | Avg.memory Time | Avg.memory Time | Avg.memory Time
POMO 1.27M O(N?) O(N?) 1.62MB 8s 5.40MB Is 28.82MB 9s 108.97MB  1.Im
ELG 1.27M O(N®+ N%k) | O(N? + Nk) 2.63MB 22s 6.29MB 2s 32.84MB 17s 126.57MB 2m
ICAM 2.24M O(N?) O(N?) 0.89MB Ss 2.61IMB <ls 13.52MB 4s 51.69MB 28s
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Figure 4: Comparison of cosine similarity between node embeddings generated by the encoders
of different models and actual pair-wise distance with different scales. It is noteworthy that darker
shades indicate lower similarity. If the node embeddings can successfully capture the instance-
specific features, its similarity matrix should share some similar patterns with the normalized inverse

distance matrix.

J CAPTURING INSTANCE-SPECIFIC FEATURES

While various approaches have been explored for integrating auxiliary information, current RL-
based NCO methods still struggle to achieve a satisfying generalization performance, especially
for large-scale instances. The RL-based models generally adopt a heavy encoder and light decoder
structure, where the quality of node embeddings generated by the encoder plays a pivotal role in
overall performance. Given the diverse geometric structures and patterns of instances across dif-
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ferent scales, we argue that the ability of node embeddings to adaptively capture instance-specific
features across varying-scale instances is critical to improving the generalization performance.

To check whether the node embeddings can successfully capture the instance-specific features, we
calculate the correlation between pair-wise node features by using the cosine similarity between
node embeddings generated by the encoder. The cosine similarity calculation is defined as:

dim
€; - €5 . k=1 €ik X €5k

max(ledl - lesll2e€) (/S 2, x /S0 €2,0)
€ “,

where ¢; and e; represent the embeddings generated by the encoder of node ¢ and node j, respec-
tively, dim is the embedding dimension, € is a small value to avoid division by zero (e = le — 8 in
this work). It is easy to check the range of Similarity(e;, e;) is [—1, 1]. A similarity value 1 means
the two compared embeddings are exactly the same, a value —1 means they are in the opposite di-
rection. Once we have this similarity matrix for embeddings, we can compare it with the distance
matrix of nodes to check whether they share similar patterns. For an easy visualization compari-

son, we can calculate the inverse distance matrix with the component dij = max; ; d;; — d;; and

Similarity(e;, e;) = (14)

further normalize the whole matrix to the range [—1, 1] via dt j=2- m — 1, where a value
i,j

czij = 1 means node i and node i are at exactly the same location, and d;; = ;7 = —1 means they are far
away from each other. In this way, if the node embeddings can successfully capture the instance-
specific features, its similarity matrix should share some similar patterns with the normalized inverse
distance matrix.

We have conducted a case study on TSP to demonstrate the instance-conditioned adaptation ability
for different models, where the results are shown in Figure ] According to the results, the repre-
sentative RL-based models (i.e., ELG and POMO) all fail to effectively capture instance-specific
features in their node embeddings. On the other hand, our proposed ICAM can generate instance-
conditioned node embeddings, of which the embedding correlation matrix shares similar patterns
with the original distance matrix. These results clearly show that ICAM can successfully capture
instance-specific features in its embeddings, which leads to its promising generalization perfor-
mance.
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K COMPARSION OF DIFFERENT INFERENCE STRATEGIES

Table 26: Experimental results with different inference strategies on TSP instances.

TSP100 TSP200 TSP500 TSP1000

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Ob;. Gap Time
Concorde | 77632 0.000%  34m | 10.7036 0.000% 3m | 16.5215 0.000%  32m | 23.1199 0.000%  7.8h

BQ greedy 7.7903  0.349%  1.8m | 10.7644 0.568% 9s 16.7165 1.180% 46s | 23.6452 2.272% 1.9m
BQ bs16 77644 0.016% 27.5m | 10.7175 0.130%  2m | 16.6171 0.579% 11.9m | 23.4323 1.351% 29.4m
LEHD greedy 7.8080 0.577% 27s 10.7956  0.859% 2s 16.7792  1.560% 16s | 23.8523 3.168%  1.6m
LEHD RRC100 | 7.7640 0.010%  16m | 10.7096 0.056% 1.2m | 16.5784 0.344% 8.7m | 23.3971 1.199% 48.6m
ICAM 7.7991  0.462% S5s 10.7753  0.669% <ls | 16.6978 1.067% 4s 23.5608 1.907% 28s

ICAMRRCI00 | 7.7950 0.409%  2.4m | 10.7696 0.616% 14s | 16.6886 1.012% 2.4m | 23.5488 1.855% 16.8m
ICAM bs16 77915 0.365% 13m | 10.7672 0.594%  14s | 16.6889 1.013% 1.5m | 23.5436 1.833% 10.5m

As detailed in Table we can see that upon attempting to replace the instance augmentation strat-
egy with beam search or RRC strategies, it is observed that there is no significant improvement in
the performance of our model. However, incorporating RRC technology into the LEHD model and
implementing beam search technology into the BQ model both result in substantial enhancements
to the performance of respective models.

We think that different model structures could require different structure-specific search-based de-
coding methods for efficient inference. For example, LEHD is a heavy decoder model that learns
to construct partial solutions in a supervised learning manner. Therefore, the search method based
on random partial solution reconstruction (RRC) could work pretty well with LEHD. On the other
hand, BQ uses the bisimulation quotienting approach to reduce the state space of the MDP formula-
tion for the combinatorial optimization problem, which exploits the symmetries of each problem for
efficient problem-solving. The beam search approach can further leverage the reduced state space
learned by BQ, and hence lead to promising search performance. Our proposed ICAM model lever-
ages instance-conditioned information for efficient solution construction. However, RRC and beam
search do not consider this information, which leads to a relatively smaller improvement. The design
of an efficient search-based decoding method for ICAM is an important future work.

L LICENSES FOR USED RESOURCES

Table 27: List of licenses for the codes and datasets we used in this work

Resource | Type | Link | License

Concorde (Applegate et al. 20006 Code https://github.com/jvkersch/pyconcorde BSD 3-Clause License

LKH3 (Helsgaun| 2017 Code | |http://webhoteld.ruc.dk/-keld/research/LKH-3/ Available for academic research use
HGS (Vidal {2022 Code github.com/chkwon/PyHygese MIT License

OR-Tools (Perron & Furnon2023; Code github.com/google/or-tools Apache-2.0 License

H-TSP (Pan et al. {2023 Code github.com/Learning4Optimization-HUST/H-TSP Available for academic research use
GLOP (Ye et al 12024 Code ||https://github.com/henry-yeh/GLOP MIT License

POMO (Kwon et al. 12020 Code ||https://github.com/yd-kwon/POMO/tree/master/NEW_py_ver MIT License

ELG (Gao et al.; 2024 Code 0. com/gaocrr/ELG MIT License

Pointerformer {Jin et al.12023] Code .com/pointerformer/pointerformer Available for academic research use
MDAM (Xin et al. /2021 Code .com/liangxinedu/MDAM MIT License

Omni_VRP{Zhou et al.z 202 Code .com/RoyalSkye/Omni—VRP MIT License

INViT (Fang et al.1 Code ht .com/Kasumigacka-Utaha/INViT Available for academic research use
LEHD (Luo et al. 12013 Code ||https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD Available for any non-commercial use
BQ {Drakulic et al.|2023] Code ||https://github.com/naver/bg-nco CC BY-NC-SA 4.0 license
Cross-distribution TSPs(Zhou et al.£2023 Dataset | https://github.com/RoyalSkye/Omni-VRP/tree/main/data/TSP/Size Distribution MIT License

Cross-distribution CVRPs{Zhou et al.{2023] | Dataset | https://github.com/RoyalSkye/Omni-VRP/tree/main/data/CVRP/Size_Distribution|| MIT License

TSPLIB (Reinelt1991] Dataset | |http://comopt .ifi.uni-heidelberq.de/software/TSPLIBY5/ Available for any non-commercial use
CVRPLIB {Uchoa et al.J2017] Dataset | |http://vrp.galgos.inf.puc-rio.br/index.php/en/ Available for academic research use

We list the used existing codes and datasets in Table[27] and all of them are open-sourced resources

for academic usage.
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