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Abstract

It is common to assume that the latent space of a generative model is a lower-dimensional
Euclidean space. We instead endow the latent space with a Riemannian structure. Previ-
ous work endows this Riemannian structure by pulling back the Euclidean metric of the
observation space or the Fisher-Rao metric on the decoder distributions to the latent space.
We instead investigate pulling back the Wasserstein metric tensor on the decoder distribu-
tions to the latent space. We develop an efficient realization of this metric, and, through
proof of concept experiments, demonstrate that the approach is viable.

Keywords: Deep generative models; Wasserstein metric; Earth movers distance; Latent
space geometry.

1. Introduction

Deep generative models tackle the common problem of inferring a probability distribution
from example data. Generative adversarial networks (GANs) (Goodfellow et al., 2020) and
variational autoencoders (VAEs) (Kingma and Welling, 2013; Rezende et al., 2014) both
learn a lower-dimensional latent space and a mapping from that to the data space. This
latent space Z describes the data as a lower-dimensional manifold embedded in the data
space, X ⊂ RD. In light of this description and since X is an embedded submanifold, it
makes sense to treat Z as a manifold rather than a Euclidean space (Hauberg, 2018).

The geometry of Z is determined by the properties of the decoder distributions {pθ(·|z)|z ∈
Z}. Early work along this direction focus on the case where the decoder pθ(·|z) is Gaussian,
and pulls the Euclidean metric from data space into the latent space (Arvanitidis et al.,
2018). As classic differential geometry does not lend itself to stochastic models, Eklund
and Hauberg (2019) reinterpret the reparametrization trick (Kingma and Welling, 2013) as
a random projection, such that Gaussian decoders can be seen as spanning a deterministic
manifold in the product space of decoder mean and standard deviation. This then allows
us to define a Riemannian metric on Z.

Empirically, this approach has been demonstrated to work well on a range of tasks
(Arvanitidis et al., 2018; Kalatzis et al., 2020; Beik-Mohammadi et al., 2021), but it does
not generalize beyond Gaussian decoders. In practice, however, Gaussian decoders are
rarely used as the associated likelihood is not a good model for e.g. image data. Instead
discretized mixtures of logistics and similar likelihood models are used in contemporary
VAEs (Salimans et al., 2017; Maaløe et al., 2019).

To construct a more general framework, Arvantidis et al. (2022) recently proposed to
pull back an information metric from the space of decoder distributions to the latent space.
Specifically, this work pulled the Fisher-Rao metric over decoders into the latent space.
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While this provides a general approach, the Fisher-Rao metric disregards the original data
metric, which often comes with significant physical grounding. For example, the Fisher-Rao
metric over distributions of pixel intensities disregards that small intensity fluctuations are
less important than large ones.

In this paper, we investigate the use of Wasserstein metrics over the decoder distri-
butions. This elegantly combines the observation space metric with the stochasticity of
the decoder. We focus on the discretized mixture of logistics likelihood as this is the most
popular choice in the VAE literature. We propose an efficient algorithm for evaluating this
Wasserstein metric and demonstrate the feasibility of the approach.

2. Background

Variational autoencoders (Kingma and Welling, 2013; Rezende et al., 2014). In
the VAE setting, we have a latent variable model for our data. z ∈ Rd denotes the latent
variables in a low-dimensional Euclidean space and x ∈ X ⊂ RD denotes our observation
data which lies on a low-dimensional submanifold of a high-dimensional Euclidean space.
The VAE encoder maps points sampled from the dataset to an approximate posterior dis-
tribution, denoted by qϕ(z|x), on the latent space and the decoder maps points sampled
from the latent space to a decoder distribution, denoted by pθ(x|z), on the data space. We
also define a prior on the latent space denoted by p(z). The VAE learns its parameters by
maximizing the evidence lower bound (ELBO) which is a lower bound of the log-likelihood:

L(ϕ, θ) = Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)∥p(z)). (1)

Latent space information geometry (Arvantidis et al., 2022). The VAE decoder
function, h : Z → H, maps each point in the sample space to a parameter space H of a
probability distribution pθ(x|z) on X . In particular we have z 7→ η and the likelihood is
given by pθ(.|η). The function h that maps latents to parameters allows us to write the
likelihood as pθ(x|z). For two points z1 and z2 that are arbitrarily close, i.e. z2 = z1+ ϵ, we
can then define the distance between them to be

d2(z1, z2) = KL(p(·|z1) ∥ p(·|z2)). (2)

We can define length of curves in the latent space, γ : [0, 1] → Z to be:

l(γ) = lim
N→∞

N−1∑
n=1

√
KL(p(·|γ(n/N)) ∥ p(·|γ((n+1)/N))). (3)

Distances can then be defined as the length of the shortest connecting curves, i.e. d2(z1, z2) =
infγ l(γ). It can be shown that this notion of distance is a geodesic distance on a Riemannian
manifold. In particular, if we consider the space of parameters H equipped with the Fisher-
Rao metric, it can be shown that this infinitesimally coincides with the KL divergence,

IH(η) =

∫
X

[
∇η log p(x|η) · ∇η log p(x|η)⊤

]
p(x|η)dx. (4)

The decoder h : Z → H is a map where H is equipped with the Fisher-Rao metric.
Then we can equip Z by pulling back the Fisher-Rao metric along h given by: M(z) =
J⊤
h (z)IH(h(z))Jh(z), where Jh is the Jacobian of h.
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In the sequel, we will attempt to define a similar geometry on the latent space by
considering the Wasserstein distance instead of the KL divergence. We will then compute
geodesics on the latent space, similar to Eq. 3, and assess if they are sensible (Figure 1).

3. Wasserstein Distance

Recently the Wasserstein distance, from the field of optimal transport, has been attracting
increasing attention. Optimal transport theory provides a way of defining a Wasserstein
metric tensor, which gives the space of probability distributions an infinite-dimensional
Riemannian differential structure (Ambrosio and Gigli, 2013; Li, 2022) and it can be shown
that the Wasserstein distance can be seen as the geodesic distance on this manifold. An
attractive property of the Wasserstein distance is that it reflects the underlying ground
metric on the sample space. This gives us reason to think that pulling back the Wasserstein
metric to the latent space would better reflect the geometry since it takes into account both
the distance between decoder distributions and the distance in the sample space.

The Wasserstein distance between multi-dimensional continuous probability distribu-
tions is generally intractable (Peyré et al., 2019). And while there are algorithms to ap-
proximate the Wasserstein distance between multi-dimensional discrete distributions, such
as the Sinkhorn algorithm (Sinkhorn and Knopp, 1967), they are computationally expensive.
However, a closed-form formula exists for the special case of Wasserstein-1 distance between
1-dimensional discrete distributions. In this case, the Wasserstein-1 distance is equivalent to
the Earth movers distance (Levina and Bickel, 2001). For two discrete distributions, p and q
of length N the distance is

Figure 1: The intrinsic
geodesic γ and the Eu-
clidean shortest path l.

W1(p, q) =
N∑
i=1

|φi|, where φi =
i∑

j=1

(pj − qj). (5)

Furthermore, it can be shown that for product measures, we
have

W 2
1 (⊗n

i=1µi,⊗n
i=1νi) =

n∑
i=1

W 2
1 (µi, νi). (6)

Jointly, Eqs. 5 and 6 allow us to compute and backpropagate
through the Wasserstein distance in some specific setting. This
in turn allows us to compute geodesics in the latent space under
the pull-back Wasserstein metric.

We specifically consider a VAE with a decoder that outputs
a discretized logistic distribution to generate images, similarly to Salimans et al. (2017)
and Maaløe et al. (2019). As is common in VAEs, we consider data dimensions to be
conditionally independent, i.e. pθ(x|z) =

∏D
i=1 pθ(xi|z). Each pixel is modeled as a discrete

random variable taking values in one of 256 bins. Given two images, the Wasserstein distance
between corresponding pixels can be computed using Eq. 5, and the Wasserstein distance
between the two images can be computed using Eq. 6. Then we can use an approximation
of the length of a curve as in Eq. 3 to compute the shortest path (geodesic) between two
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points,

l(γ) = lim
N→∞

N−1∑
n=1

W1(p(.|γ(n/N)), p(.|γ((n+1)/N))). (7)

We parametrize curves γ as cubic splines and minimize curve energy using gradient-based
optimization. This is realized with the StochMan library (Detlefsen et al., 2021).

4. Experiments

Figure 2: Latent Wasserstein
geodesics.

We train a VAE with a discretized logistic decoder on
the dataset and compute geodesics on the latent space
equipped with the pull-back of the Wasserstein metric.

We train these VAEs on a subset of the MNIST
dataset composed of only the digits with some specific
label and Z ⊂ R2. Figure 2 shows the geodesics on the
latent space learned by VAE computed using Eq. 7. We
see the geodesics lie inside the latent space.

We also train the VAE on the entire MNIST dataset
with Z ⊂ R30. We compute a geodesic on this latent
space and decode various points lying on this geodesic
and we compare it with linear interpolation in the space
of images. As illustrated in Figure 3, the images on the
geodesic are plausible members of the dataset, whereas the images on the linear interpolation
don’t always lie on the dataset(See Appendix Section A for more examples).

Figure 3: The top row shows images that lie on the geodesic connecting two examples from
MNIST and the bottom row shows images lying on the linear interpolant connecting them.

5. Discussion

We have presented an efficient algorithm for computing latent space geodesics under the
pull-back Wasserstein metric associated with discrete decoders. This both allows for having
a deterministic metric in a stochastic model and for incorporating the observation space
metric, thereby getting the best parts of existing geometries (Arvanitidis et al., 2018; Arvan-
tidis et al., 2022). The presented work is, however, early with several aspects still missing
investigation. Previous studies have, both theoretically and empirically, demonstrated that
the uncertainty of the decoder plays a crucial role akin to the topology of the learned
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manifold (Hauberg, 2018; Detlefsen et al., 2022). We did not investigate this aspect here.
Furthermore, in the present study, we have only investigated how to compute the geodesic
connecting two latent points. While this is important, many other geometric tools are cur-
rently missing. Perhaps most elementary, we have not provided explicit access to the latent
space metric. These, and more questions, will be investigated in future work.
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Appendix A. Comparison of geodesics and linear interpolants

We present various examples of comparisons between images lying on a geodesic and the
image lying on the linear interpolant between two images.
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Figure 4: In these figures the top row shows the images that lie on the geodesic connecting
two images of MNIST and the bottom row are the images that lie on the linear interpolant
connecting the two images
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