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Abstract

Natural language interaction with computers has been transformed by Large Lan-
guage Models (LLMs), which now serve as modern-day oracles capable of answer-
ing a wide range of queries. Unlike the single-turn interaction with the Delphic
oracle, LLMs support multi-turn dialogues where additional context can improve
responses. This paper focuses on identifying incompleteness and ambiguity in
user queries during multi-turn interactions with an LLM. Using a simple tagged
message exchange model between senders and receivers, we define these properties
based on the dialogue sequence. While these definitions help categorize datasets,
they cannot be used directly to detect incompleteness or ambiguity. To bridge this
gap, we explore the use of Embedding- and Text-based models as detectors. Our
experiments on benchmark datasets show that: (a) answer correctness correlates
strongly with the presence of incompleteness or ambiguity; (b) we can expect
datasets with a high proportion of such questions to have longer multi-turn interac-
tions; (c) effective detectors can be built using only the question and its context.
These findings suggest that our proposed approach offers a useful mechanism for
characterising datasets, and that trained detectors can be used to automatically
identify queries that need to be reformulated before presenting to an LLM.

1 Introduction

Imagine this conversation taking place in 1575. Pope Gregory XIII and the physician Luigi Lilio are
discussing dates for Easter:

G: Tell me, Luigi, in your calculation, will next year be a leap year?
LL: Yes Your Holiness, since is divisible in four equal parts.
G: I see. But then, 1500 would have been such a year.
LL: No Your Holiness. There is a correction made every century.
G: Good. I assume that the same correction will be applied in 1600, and it will not be a bisexstile year?
LL: (apologetically) No, Holy Father. There is a further correction once every 400 years, and 1600 will be

a bissextile year.
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We do not know whether the good doctor knew then–as we do now–that if the Holy Father had gone
on to ask about 4000 A.D., then a further correction would be needed. The point here is not about the
accuracy of the Gregorian calendar, but that if the questions or answers required multiple caveats,
then a back-and-forth dialogue would be only natural.

AI systems capable of natural conversation have long been anticipated, both in fiction and in reality.
Fictional portrayals often emphasize delivery (for voice) over complexity of content (“Tea. Earl Grey.
Recent advances in large language models (LLMs) have however shifted attention to the substance
and nature of interactions. LLMs are now integral to many human-computer interaction systems,
simulating human-like dialogue and providing intuitive responses to user queries [1].

Early conversational systems were limited to single-turn interactions and struggled with context [2].
Deep learning approaches addressed this by introducing contextual memory for multi-turn dialogue
[3]. Modern LLMs retain long conversational histories [4], leading to strong single-turn performance
[5, 6]. Techniques such as in-context learning allow even small amounts of feedback (clarificatory
examples or domain knowledge) to substantially improve accuracy [7, 8, 9]. These advances suggest
LLMs are well-suited for interactive dialogue [10].

Recent work seeks a finer-grained understanding of single vs. multi-turn interactions. For example,
Burggräf et al [11] analyze which interaction style drivers find more efficient and show that multi-
turn dialogue improves user satisfaction in an automotive setting. Studies emphasize the growing
importance of multi-turns in QA systems across domains [12]. To address the scarcity of multi-turn
data, Sorathiya et al [13] propose methods to adapt single-turn data for a multi-turn conversation
format and empower the training of medical dialogue systems. Baokui et al [14] also show a similar
framework that can transform data into multi-turn by linking context, replacing repeated entities with
pronouns, and maintaining logical flow without expensive manual effort.

Advancing this line of research, we aim to identify domain-agnostic patterns in human–LLM multi-
turn interactions. Three broad perspectives arise. A mathematical one views clarification as reducing
information-theoretic uncertainty. A technological one points to model limitations (e.g., positional
encoding). A behavioral one infers the need for feedback from the structure of the exchange. We
adopt this last view, focusing on two properties of interaction: (a) Incompleteness—when a question
lacks the information needed to provide any answer; and (b) Ambiguity—when a question permits
multiple plausible answers.

Although LLMs generate fluent text, they often misinterpret context, requiring clarificatory feedback.
Determining what clarification is needed often needs detecting incompleteness or ambiguity or both,
which current LLMs are not inherently designed to model [15]. To address incompleteness, Addlesee
and Damonte [16] design repair pipelines based on human recovery strategies, while Kumar and
Joshi [17] define incomplete questions as those missing topic, adjective, or interrogative components.
Ambiguity has been tackled through multiple approaches: graphical representations of query–answer
similarity, operator-scope overlap [18], span classification with RoBERTa [19], and LLM-based
injection of ambiguous patterns into relational tables [20]. Others treat it as uncertainty in intent [21].
Even so, language models lack a definitive pattern to detect these deficiencies as the context increases.
In this paper, we symbolically examine these two deficiencies in a question as properties deducible
from the messages exchanged between the human and LLM. For this, we need to first clarify the
interaction model we adopt.

2 A Simple Messaging System for Interaction

In this section, we describe a message-based communication mechanism between a pair of agents.
Communication between agents consists of messages from a sending agent to a receiving agent.

Def. 1 (Messages) A message is a 3-tuple of the form (a,m, b) where a is the identifier of the sender;
b is the identifier of the receiver; and m is a finite length message-string.

There can be several further categories of message-strings; we list the prominent ones in Table 1. In
the rest of the paper, we omit the identifier n as long as the context is clear. In the above definitions,
s represents a sequence of message strings. However, in this paper, in ?(s) |s| = 1 (that is, only 1
question is allowed at a time). There can be multiple answers or even no answers for a question. That
is, in !(s), |s| ≥ 0. Additionally, in ⊤(s), we will require |s| ≥ 1. If ordering is unimportant, we will
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sometimes show s as a set instead of a sequence. In all cases, if |s| = 1, we will simply denote the
message by the singleton element, dispensing with the sequence (or set) notation.

Table 1: Categories of message strings and their descriptions

Category Message String Description
Termination m = □ Sender is terminating communication with the receiver.
Question m =?n(s) Sender sends question s with identifier n to the receiver.
Answer m =!n(s) Sender sends answer s with identifier n to the receiver.
Statement m = ⊤(s) Sender sends a statement s to the receiver.

A pair of back-and-forth message exchanges makes up a turn, and one or more such turns between
two agents form an interaction.

Def. 2 (Interaction) A (1-step) turn from agent a to agent b is the pair of messages (M1,M2), where
M1 = (a,m1, b), M2 = (b,m2, a), and m1 ̸= □. A k-step turn is the sequence ⟨T1, T2, · · · , Tk⟩,
where Ti (1 ≤ i ≤ k) is a 1-step turn from a to b. Similarly for 1-step and k-step turns from b to a.
We will call a sequence of 1 or more turns between a and b an interaction between a and b.

We note that each turn consists of a sequence of 2 messages. Thus, with every interaction consist-
ing of k turns ⟨T1, · · · , Tk⟩ there exists a corresponding sequence ⟨M1,M2, · · · ,M2k−1,M2k⟩
messages and ⟨m1,m2, · · · ,m2k−1,m2k⟩ message-strings. By construction the sequence
⟨m1,m3, . . . ,m2k−1⟩ will be from agent a to agent b, and ⟨m2,m4, . . . , m2k⟩ will be from agent b
We denote these as ⟨mab⟩ and ⟨mba⟩ for short. These interaction sequences allow us to define the
context for an agent. We assume any agent has access to a (possibly empty) set of prior statements,
which we call background knowledge.

Def. 3 (Context) Let a and b be agents with background knowledge Ba and Bb respectively, prior
to any interaction. Without loss of generality, let (T1, T2, · · · , Tk) be a k-step interaction from a to b.
We denote the context for a on the ith turn Ti as Ca,i = Ba ∪ {m1,m2, · · · ,m2i−2}, and the context
for b on the ith turn Cb,i = Bb ∪ {m1,m2, · · · ,m2i−1}.

In this paper, we are interested in question-answer sequences occurring in an interaction. These are
obtainable by examining the messages exchanged.

Def. 4 (Questions and Answers) Let (T1, · · · , Tk) be a k-step interaction between a and b, and
(m1,m2, · · · ,m2k−1,m2k) be the corresponding message-strings. Let mab and mba be the message-
string sequences from a to b and vice-versa. Let QAab be the sequence ((q1, a1), · · · , (qj , aj)) s.t.:
(1) for every (qi, ai) in QAab, ?αi(qi) ∈ mab; and (2) ai = ∪ !αi(s), where !αi(s) ∈ mba. We
will call QAab the question-answer sequence for the interaction between a and b. Similarly for a
question-answer sequence from b to a. It is sometimes helpful to identify the set of questions sent by a
to b, or Qab as = {Q : (Q, ·)in⟨QAab⟩}. A similar set of questions from b to a can also be identified.

We define a special agent ∆ called the oracle. The oracle’s answers are taken to be always correct.
The oracle is assumed to know everything.

Remark 1 (Interaction with the Oracle) We note the following special features of the oracle: 1. ∆
knows everything up to the present, including the content of conversations between any non-oracular
agents; 2. Only a 1-step interaction is allowed between a non-oracular agent a and ∆. The interaction
consists of a turn T where: T = ((a, ?q,∆), (∆, !(s), a)); or T = ((a, ?q,∆), (∆,□, a)). 3. The
answer(s) provided by ∆ are always correct.

The oracle allows us to categorize questions and answers as incomplete and ambiguous.

Def. 5 (Incomplete Question) Without loss of generality, let (T1, T2, · · · , Tk) be a k-step interaction
from a to b. Let Cb,i denote the context for b on the ith turn. Let Ti = ((a, ?(q), b), ·), where agent a
sends question q to b. Let ((b, ?(q),∆), (∆, !(s), b)) be an interaction between b and ∆. If s = □,
we conclude that q is incomplete. In such a case, we will also say it is incomplete for b given Cb,i.
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That is, a question is incomplete, if the oracle does not give an answer. This is because if the oracle
cannot provide a correct answer, neither can b. Similarly:

Def. 6 (Ambiguous Question) Without loss of generality, let (T1, T2, · · · , Tk) be a k-step interac-
tion from a to b. Let Cb,i denote the context for b on the ith turn. Let Ti = ((a, ?(q), b), ·), where
agent a sends question q to b. Let ((b, ?(q),∆), (∆, !(s), b)) be an interaction between b and ∆. If
|s| > 1 then we say q is ambiguous. In such a case, we will also say q is ambiguous for b given Cb,i.

That is, a question is ambiguous if the oracle returns more than one answer. (we assume that questions
that are either incomplete or ambiguous, but not both at once). We are still left with the impractical
requirement of needing to consult the oracle to decide whether a question is one or the other. We
propose the following tests to detect the possible presence of incompleteness and ambiguity using
just the interaction sequence between non-oracular agents.

Def. 7 (Possibly Incomplete Question) Let I = (T1, T2, · · · , Tk) be a k-step interaction between
a and b. Let Ti = ((a, ?α(q), b), (b, ?β(s1), a)); where ?β(s1) asks for missing data which adds in-
formation to the existing information in the question, and Ti+1 = ((a, !β(s2), b), (b, s3, a)), where s3
can be any statement. Then we will say q is a possibly incomplete question given I; or (equivalently)
interaction I between a and b has a possibly incomplete question on turn i.

Def. 8 (Possibly Ambiguous Question) Let I = (T1, T2, · · · , Tk) be a k-step interaction between
a and b. Let Ti = ((a, ?α(q), b), (b, !α(s1), a)); where !α(s1) either answers incorrectly or clarifies
the interpretation of the existing question and Ti+1 = ((a,⊤(s2), b), (b, s3, a)). Then we will say
q is a possibly ambiguous question given I; or (equivalently) interaction I between a and b has a
possibly ambiguous question on turn i.

These definitions for incompleteness and ambiguity can only be used with message-sequences with
at least one additional turn after the question has been sent. In practice, if we want to intervene
automatically to mitigate these properties, then we need to be able to identify the properties simply
from the question and the prior context.

Def. 9 (Detector Function) Let I = (T1, T2, · · · , Tk) be a k-step interaction between a and b. Let
Ti = ((a, ?α(q), b), (b, ?β(s1), a)). Let Ca,i denote the context for a on the ith turn. A detector
function is the classifier:

h(q|Ca,i) =


incomplete if q is possibly incomplete given I
ambiguous if q is possibly ambiguous given I
normal otherwise

That is, the detector is a function that classifies a question into one of 3 categories, just based on the
question and context of the sender up to the question. In the experiments described next, we will
construct detector functions using (training) data from some standard benchmarks.

3 Empirical Evaluation

Using benchmark datasets, our experimental goals are to answer the following concerning the
“starter-question” posed by the human to an LLM:

(A) What is the relation between answer-correctness on a dataset and starter-question deficiency
(measured by the proportion of incomplete or ambiguous starter-questions)?

(B) What is the relation between multi-turn interactions’ length and starter-question deficiency?

(C) Can we build good detectors for possibly incomplete and possibly ambiguous starter-
questions, using only the question and its prior context (if any)?

In (A) and (B), a starter-question is taken to be deficient if it is identified as being possibly incomplete
or possibly ambiguous using Defns. 7 and 8. Recall that this requires information from the first 2
turns. In contrast, (C) attempts to do this using just the message sent from the human to the LLM.
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3.1 Materials

Datasets: In our empirical study, we evaluate the QA systems on six datasets with different character-
istics. 1) SQuAD (Stanford Question Answering Dataset), which is a widely used dataset for machine
reading comprehension, consisting of over 100K questions based on Wikipedia articles[22, 23]. 2)
NQ-open (Natural Questions open), which is a large-scale benchmark, featuring open domain real
user queries and answers annotated from Wikipedia articles [24]. 3) AmbigNQ dataset is designed
to handle ambiguous questions, focusing on event and entity references, covering 14,042 NQ-open
questions[25, 24]. 4) ShARC (Shaping Answers with Rules through Conversation), a multi-turn
dataset that focuses on 32K task-oriented conversations with reasoning covering multiple domains
[26]. 5) MultiWOZ (Multi-domain Wizard-of-Oz), a dataset covering multiple domains such as
hotels, restaurants, and taxis with 8438 task-oriented dialogues [27]. 6) MedDialog covers 0.26
million conversations between patients and doctors curated to understand real-world medical queries
[28]. The first, fourth, and fifth datasets include questions along with the relevant context to provide
answers, while the first, third, and sixth datasets consist of question-answer pairs.

Algorithms and Machines: We use the following models and software: (a) GPT-3.5-Turbo, GPT-4o,
and Llama-4-Scout: LLMs used to test question labeling in single and multiple-turn interaction
settings. (b) text-embedding-3-large: OpenAI embedding model to compute vector representations
for the question and context. All implementations are in Python 3.10, with API calls to the model
engine. Our experiments are conducted on a workstation based on Linux (Ubuntu 22.04) with 256GB
of RAM, an Intel i9 processor, and an NVIDIA A5000 graphics processor with 24GB of memory.

3.2 Method

3.2.1 Preliminaries

IA Diagram and Opacity of Datasets: An IA Diagram depicts incompleteness and ambiguity in
datasets. Let D be a set of interactions I = (T1, . . . , Tk) with k ≥ 1 turns, and Ii,j = (Ti, . . . , Tj),
j ≤ k. We define Di,j = {Ii,j : I ∈ D}. Any Di,j maps to (i, a) ∈ [0, 1]2, with i the fraction
of (sub-)sequences with incomplete questions, a the fraction with ambiguous ones. The following
quadrants are helpful: Q1 = [0, 0.5]2 (low-i,low-a), Q2 = [0, 0.5]×(0.5, 1], Q3 = (0.5, 1]× [0, 0.5],

and Q4 = (0.5, 1]2 (high-i,high-a). For d⃗ = (i, a), opacity defined as ||d⃗||√
2

, is a normalized
(incompleteness, ambiguity) measure. In the definitions we use, a question cannot be both (possibly)
incomplete and (possibly) ambiguous, i+a ≤ 1 ⇒ ||d⃗|| ≤ 1 and the maximum opacity of a dataset is
1/

√
2 ≈ 0.71. Here, only D1,2 (starter question) is used to estimate incompleteness and ambiguities

(Fig. 1 and Table.2).

Dataset I A Opacity
SQuAD 0.00 0.08 0.06
NQ-Open 0.02 0.17 0.12
AmbigNQ 0.01 0.36 0.25

ShARC 0.28 0.61 0.47
MultiWOZ 0.21 0.75 0.55

MedDialog 0.92 0.08 0.65

Table 2: Estimates of proportions of in-
completeness I and ambiguity A

Figure 1: Corresponding IA diagram. Estimates are of
“starter-questions”, obtained using D1,2 for each dataset D

Constructing Detectors: Before we construct detectors, we randomly partition each dataset into a
set of sequences constituting a training set and interactions constituting a test set. We consider two
classification configurations: (i) a three-class setting, where y ∈ incomplete, ambiguous, normal; and
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(ii) a two-class setting, where the incomplete and ambiguous categories are combined into a single
deficient class, contrasted against the normal class.

Embedding-based detectors: Interaction data are converted into (x, y) pairs for training and testing.
Here, x is the embedding of the starter question plus any prior context, computed using OpenAI’s
text-embedding-3-large model with embedding dimension 3072, which produces an embedding
of shape (N, 3072), where N is the total number of instances. Embedding-based detectors are trained
on the resulting pairs. Here we construct detectors using: (a) MLPs; (b) Random Forests (RF); and (c)
XGBoost (XGB). Given the relatively modest size of the instances, these methods provide a balanced
trade-off between accuracy, generalization, and resource efficiency. The MLP consists of two fully
connected hidden layers with ReLU activation functions, followed by a softmax output layer for
classification. The network is optimized using the Adam optimizer. The RF model is an ensemble of
100 decision trees, with bootstrapped samples and randomized feature selection. XGB, a gradient
boosting–based classifier, is configured for multi-class classification with an objective function set to
binary:logistic or multi:softmax. Here, we assess whether simple embedding-based detectors can
serve as viable alternatives to more resource-intensive text-based approaches.

Text-based detector: A detector can be constructed with a language model, directly using the text of
a question and any prior context. We treat the class-label arising as a result of completing the sentence
given a question and it’s context (“the label of question ⟨q⟩ given context ⟨c⟩ is . . . ”). The context can
be enriched by the addition of a small number of questions with prior labels (the “few-shot” setting)
(See Appendix A.1 for the prompts). We distinguish two ways to construct the few-shots: (a) Direct
class sampling: selecting a fixed number of examples directly from each class; (b) k-NN retrieval:
using similarity-based retrieval to select the k nearest training examples for a given test instance (we
use cosine similarity to find the k training instances most similar to the test instance). These instances
are used as few-shot for classification (See Table. 7 for detailed comparison). We evaluate the best of
these configurations against zero-shot.

3.2.2 Evaluation

Let h represent a human agent posing questions and λ denote the LLM used to answer the questions.
We assume datasets D1, D2, . . . , Dn, each consisting of a set of (q, a) pairs, where q denotes a
question string, and a denotes a (correct) answer string (any initial context is assumed to be part of
the question string). The method adopted to answer questions (A)–(C) in Sec. 3 follows:

1. Randomly split Di into training and test subsets (Di,tr and Di,te). Construct aforemen-
tioned detectors fδ using training data

⋃n
i=1 Di,tr, where δ ∈ {MLP,RF,XGB,LLM −

ZS,LLM − FS} ("ZS" and "FS" refers to zero-shot and few-shot respectively);
2. For each dataset d ∈ {D1, . . . , Dn}:

(a) Let d(k) = {(q, a, I) : (q, a) ∈ d, I is an interaction between h and λ}. We assume
I to be restricted to k-turns if the correct answer is not obtained (here, k is 3)

(b) Obtain accuracy for j = 1 . . . k turns using the interaction information in d(k):
i. Let Correctd,j = {(q, a, I) : (q, a, I) ∈ d(k), |I| =

j, I ends with a correct answer}
ii. Accd,j = |Correctd,j |/|d|

(c) For each (q, a, (T1, T2, . . . , Tk)) ∈ d(k):
i. Obtain estimates of incompleteness (I), ambiguity(A), and hence opacity using
(T1, T2) and Defns. 7, 8 (I = A = 0, if k = 1);

ii. Obtain estimates of incompleteness, ambiguity and hence opacity using (T1) and
fδ (the detectors).

iii. If (q, a) ∈ dte then update estimates of cross-comparison between labels obtained
using Defns. 7, 8 against the labels obtained using fδ

(d) Answer questions (A)–(C) using the estimates in Step 2.(c)ii above

Additional relevant experimental details are provided in Appendix A section of this paper.

4 Results

The principal experimental results are in Figs. 2, 3 and in Tables. 3, 4. Key findings include:
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(F1) There is very strong evidence of a negative association between the opacity of a dataset and
the accuracy of the answer from the LLM on the first turn (Spearman’s rank correlation
between the two variables RS = −1.0, p < 0.01).

(F2) There is strong evidence of a positive association between opacity of a dataset and the error
in the LLM’s answer after 3 turns (RS == 0.94, p < 0.05);1

(F3) Reasonably accurate detectors can be constructed using embeddings of question from the first
turn of the interaction. There is no significant difference in accuracy among the embedding-
based classifiers, and their accuracies are significantly higher than those of the text-based
classifiers. (p < 0.01). There is significant evidence of a very strong positive association
between the actual and the predicted Opacity of the dataset (RS = +1.0, p < 0.01).

Using opacity of a dataset as an aggregate measure of the deficiency of a dataset (based on the
proportion of incompleteness or ambiguous starter questions identified using Defns. 7 and 8), we now
turn to questions (A)–(C) in Sec. 3. Finding F1 is directly relevant to question (A). It suggests that
more deficient datasets are likely to have lower answer-accuracy. F2 is indirectly relevant to question
(B). If it is reasonable to assume that the error in LLM-response at any point in a multi-turn interaction
is directly related to the number of additional turns needed to correctly answer the starter-question,
then F2 suggests that more deficient datasets are likely to have longer interactions. F3 directly relates
to question (C). It suggests that the deficiency of a dataset can be predicted with reasonable accuracy
using the starter-question and any prior context available. The strong positive association suggests,
we would arrive at the same conclusions regarding (A) and (B) if the opacity based on the detector’s
prediction was used as a proxy for those obtained from Defns. 7 and 8.

Dataset (I, A) Opacity Turn (j) Accuracy

SQuAD (0.00,0.08) 0.06 1 0.92
2 0.95
3 0.97

NQ-open (0.02,0.17) 0.12 1 0.81
2 0.87
3 0.89

AmbigNQ (0.01,0.36) 0.26 1 0.63
2 0.69
3 0.78

ShARC (0.28,0.61) 0.48 1 0.11
2 0.60
3 0.83

MultiWOZ (0.21,0.75) 0.55 1 0.04
2 0.25
3 0.48

Med (0.92,0.08) 0.66 1 0.00
Dialog 2 0.18

3 0.26

Table 3: Deficiency is measured by incomplete-
ness (I) and ambiguity (A). Opacity combines
(I, A) into a single score. Accuracy is the frac-
tion of correct interactions after turn j.

Figure 2: Opacity vs Accuracy on the first turn

Figure 3: Opacity vs Error on the third turn.

The following additional aspects of the experiments are noteworthy:

Datasets. SQuAD, NQ-open, and AmbigNQ are largely fact-based. As expected, their opacities
are low, and correct answers are usually obtained in one turn. AmbigNQ, however, was derived
from NQ-open by deliberately introducing ambiguity, which is reflected in its much higher opacity
(Table.3); thus, correct answers are less likely in a single turn. MedDialog is particularly challenging,
with very high opacity, since questions often lack the necessary symptoms.

Context. Context (Def.3) reduces incompleteness and ambiguity in two ways. First, removing
initial context raises the proportion of incomplete or ambiguous questions (Table 6 in the Appendix;

1The slight drop is due to the unusually high number of interactions in ShARC terminating after the 2nd turn.
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Table 4: (a) Accuracy of detectors with the standard deviation; and (b) Comparison of predicted and
actual deficiencies of the test datasets for 2- and 3-class detectors. Each entry compares (I, A) values
obtained using proposed definitions on the first two turns and predictions obtained using the MLP
3-class detector. Differences from the Actual values in Table 3 arise because values (b) are computed
from the test data.

(a)

Type Detector Accuracy

2-class 3-class

Embedding
MLP 0.80(0.02) 0.74(0.02)
RF 0.78(0.02) 0.70(0.02)
XGB 0.81(0.02) 0.73(0.02)

Text
LLM-ZS 0.68(0.02) 0.51(0.02)
LLM-FS 0.71(0.02) 0.60(0.02)

(b)

Dataset (I,A) Opacity

Actual Predicted Actual Predicted

SQuAD (0.00,0.10) (0.02,0.12) 0.07 0.09
NQ-open (0.10,0.15) (0.17,0.07) 0.13 0.13
AmbigNQ (0.05,0.32) (0.02,0.32) 0.23 0.23
ShARC (0.20,0.42) (0.15,0.35) 0.33 0.27
MultiWOZ (0.32,0.62) (0.40,0.52) 0.49 0.46
MedDialog (0.90,0.10) (0.97,0.02) 0.64 0.69

MedDialog, AmbigNQ, and NQ-Open are excluded as they have none). Second, as interaction length
increases, more context becomes available. Adding turns as initial context lowers the proportion of
incomplete and ambiguous questions (Table 5), enabling many to be resolved in a single turn.

LLMs. To test LLM-dependence, we repeated the runs (originally with GPT-3.5-Turbo) using
Llama-4-Scout (Table 5). As the turns increase, the model receives more context. The column
Accuracy reports the proportion of correct answers after the corresponding number of turns. A
clear negative association is observed between opacity and accuracy over successive turns. We also
compared various LLM models as text-based detectors, and the k-NN-based few-shot approach with
Llama-4-Scout achieved the highest accuracy (Table 7 in Appendix). The trends remain consistent,
suggesting our conclusions about Questions (A)–(C) generalize across models.

Table 5: Comparison of GPT-3.5-Turbo and Llama-4-Scout across datasets, showing how larger
context (k) affects proportions of incomplete and ambiguous interactions (per Defns.7, 8).

Context from GPT-3.5-Turbo Llama-4-Scout

Dataset Turn (k) Incomplete Ambiguous Accuracy Opacity Incomplete Ambiguous Accuracy Opacity

SQuAD 1 0.00 0.08 0.92 0.06 0.01 0.06 0.93 0.04
2 0.00 0.05 0.95 0.04 0.01 0.05 0.94 0.04
3 0.00 0.03 0.97 0.02 0.01 0.03 0.96 0.02

NQ-open 1 0.02 0.17 0.81 0.12 0.13 0.19 0.68 0.16
2 0.00 0.13 0.87 0.09 0.07 0.07 0.86 0.07
3 0.00 0.11 0.89 0.08 0.06 0.08 0.86 0.07

AmbigNQ 1 0.01 0.36 0.63 0.26 0.18 0.25 0.57 0.22
2 0.00 0.31 0.69 0.22 0.10 0.13 0.77 0.12
3 0.00 0.22 0.78 0.16 0.05 0.13 0.82 0.10

ShARC 1 0.28 0.61 0.11 0.48 0.57 0.29 0.14 0.45
2 0.02 0.38 0.60 0.27 0.09 0.22 0.69 0.17
3 0.01 0.16 0.83 0.11 0.02 0.13 0.85 0.09

MultiWOZ 1 0.21 0.75 0.04 0.55 0.55 0.38 0.07 0.47
2 0.19 0.56 0.25 0.42 0.29 0.49 0.22 0.40
3 0.18 0.34 0.48 0.27 0.17 0.34 0.49 0.27

MedDialog 1 0.92 0.08 0.00 0.65 0.92 0.08 0.00 0.65
2 0.21 0.61 0.18 0.46 0.50 0.40 0.10 0.45
3 0.18 0.56 0.26 0.42 0.19 0.52 0.29 0.39

5 Conclusion

Our focus is on natural language QA systems. Natural language interfaces have long been sought,
and substantial recent progress has come with LLMs. Even so, challenges remain to identify
when an interaction requires clarificatory feedback using conversational turns, particularly to detect
incompleteness and ambiguity in questions. We treat these as properties of exchanged messages and
propose an aggregate measure, opacity, capturing their prevalence. High-opacity datasets are those
where interactions often begin with incomplete or ambiguous questions. Empirically, such datasets
yield weaker initial answers and longer interactions. We show that an MLP-based detector can identify
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problematic starter questions with ≈ 75% accuracy. The detector yields opacity estimates close to the
definitions, as sentence-level errors smooth out. Having such detector enables us to develop mitigation
strategies, such as agents that reformulate questions. There are several ways in which the work
here could be extended. More datasets should be tested, and agent-based pipelines could combine
a detector of the kind we have constructed with a reasoning agent to repair defects, possibly with
retrieval-augmented methods [29]. Our current experiments address only starter questions, but the
definitions extend to later turns, where issues may further degrade response quality. Conceptually, we
assumed incompleteness and ambiguity are mutually exclusive, but they may co-occur. Generalizing
the definitions would allow a finer-grained analysis of multi-turn LLM interactions.
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A Appendix

A.1 Experimental Details

Initial Context

We examine the role of initial context or background knowledge, which can resolve incompleteness
and ambiguity in the question. We perform this experiment on SQuAD, ShARC, and MultiWOZ,
which were accompanied by the supporting context using GPT-3.5-turbo, and we observe that the
initial context helps in reducing deficiencies at a certain level (See Table 6). But to improve it further,
we have to incorporate turn-based context.

Table 6: Role of initial context on the proportions of incomplete and ambiguous questions.

Dataset Initial Incomplete Ambiguous Correct
(d) Context (PId) (PAd) (after 1 turn)

SQuAD No 0.09 0.45 0.46
Yes 0.00 0.08 0.92

ShARC No 0.63 0.27 0.10
Yes 0.28 0.61 0.11

MultiWOZ No 0.83 0.15 0.02
Yes 0.21 0.75 0.04

11



Human classification of Incompleteness and Ambiguity

We make API calls to GPT-3.5-Turbo and Llama-4-scout with the temperature set to 0.7, as it
provides a balanced trade-off between creativity and reliability while generating text [30]. Using the
question and context, we assemble a prompt with instructions. The LLM uses this prompt to generate
responses. We, as human agents, respond with clarification to improve the quality and accuracy of
the final answer. For the quantitative comparison, the proportions PId and PAd are compared to
assess the alignment of the model’s responses with predefined patterns (Table. 5). This comparison
provides insights into the distribution of interactions across different categories that seek multiple
interactions. Since incomplete and ambiguous questions are only properties defined on interactions
with at least 2 turns, PAd = PId will be 0 if all questions can be answered correctly in 1 turn. For
questions requiring longer interactions, we estimate the proportion of multi-turn interactions in which
the question initiating the interaction is either incomplete or ambiguous (to the extent defined by
Defns. 7 and 8).

Language Model Selection as Detectors

We compare three LLMs here: GPT-3.5-turbo, GPT-4o, and Llama-4-Scout. Model performance is
evaluated by tuning hyperparameters such as temperature, class-wise few-shot, and k-NN examples.
In our experiments, we find the optimal configuration at a temperature of 0.0 with four shots per class
and top-5 similar examples. We compare these configurations with zero-shot in Table 7. We select
the model with the highest accuracy and the least delay, which is LLaMA-4-Scout with K-NN based
few-shot.

Table 7: LLM performance across different few-shot approaches. Accuracy (%) and time per sample
(min) are reported for zero-shot (ZS) and few-shot (FS): class-wise samples and k-NN retrieval,
highlighting the trade-off between accuracy and computation.

2-class 3-class

Approach Model Accuracy Time per Sample Accuracy Time per Sample

ZS
GPT-3.5-turbo 61.38 0.71 49.70 0.80
GPT-4o 69.00 0.83 49.57 1.17
Llama-4-Scout 68.00 0.17 51.00 0.17

FS
GPT-3.5-turboo 52.58 0.71 54.08 0.74
GPT-4o 61.59 0.76 57.08 1.13
Llama-4-Scout 64.59 0.18 51.86 0.41

FS k-NN
GPT-3.5-turbo 68.24 0.69 60.30 0.78
GPT-4o 69.30 0.80 57.51 1.01
Llama-4-Scout 71.24 0.15 60.18 0.16

We employ the following prompts for 2 and 3-class problems:

Zero-shot Prompt

prompt_2_class =
f"""You are a text classifier.
Classify the given question as either
'normal' or 'deficient'.

Question: {question}
Context: {context}

Answer with only one word:
'normal' or 'deficient'

Answer:"""

prompt_3_class =
f"""You are a text classifier.
Classify the given question as
'normal' or 'incomplete' or 'ambiguous'.

Question: {question}
Context: {context}

Answer with only one word:
'normal' or 'incomplete' or 'ambiguous'

Answer:"""

Few-shot Prompt
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prompt_2_class =
f"""You are a text classifier.
Based on the examples below,
classify the given question
as either 'normal' or 'deficient'.

Examples: {example_text}
Now classify this text.

Question: {question}
Context: {context}

Must answer with only one word:
'normal' or 'deficient'

Answer:"""

prompt_3_class =
f"""You are a text classifier.
Based on the examples below,
classify the given question
as 'normal' or 'incomplete' or 'ambiguous'

Examples: {example_text}
Now classify this text.

Question: {question}
Context: {context}

Must answer with only one word:
'normal' or 'incomplete' or 'ambiguous'

Answer:"""

A.2 Examples: Incompleteness and Ambiguity in LLM-Human interaction

Tables 8 and 9 illustrate interaction examples from the ShARC dataset between a human agent and an
LLM. The Table 8 highlights an example of an incomplete question. It shows how the model requests
for clarification due to lack of specificity in the question to provide a precise response. The Table 9
illustrates an ambiguous question. It shows how the model initially provides an incorrect response,
and corrects it based on the human agent’s input.

Table 8: Snippet from ShARC dataset: Incomplete Question. The highlighted span in question
represents the source of Incompleteness.

Data sample
Question Does this country have social security agreements with

the UK?
Context Other countries with UK benefits arrangements. The

following countries have social security agreements
with the UK: Kosovo, Mauritius, Montenegro, and
New Zealand.

Agent response
LLM Which country are you referring to?
Human Agent Montenegro.
LLM (Revised) Yes.

Table 9: Snippet from ShARC dataset: Ambiguous Question. The highlighted span in context
represents the source of ambiguity.

Data sample
Question Can I get Housing Benefit?
Context If you’re single and under 35, you can only get Hous-

ing Benefit for bed-sit accommodation or a single room
in shared accommodation.

Agent response
LLM Yes, if you’re single and under 35, you can get Housing

Benefit for bed-sit accommodation or a single room in
shared accommodation.

Human Agent No, I am not single and under 35.
LLM (Revised) No.

13


	Introduction
	A Simple Messaging System for Interaction
	Empirical Evaluation
	Materials
	Method
	Preliminaries
	Evaluation


	Results
	Conclusion
	Appendix
	Experimental Details
	Examples: Incompleteness and Ambiguity in LLM-Human interaction


