
DReSD: Dense Retrieval for Speculative Decoding

Anonymous ACL submission

Abstract

Speculative decoding (SD) accelerates Large001
Language Model (LLM) generation by using002
an efficient draft model to propose the next few003
tokens, which are verified by the LLM in a004
single forward call, reducing latency while pre-005
serving its outputs. We focus on retrieval-based006
SD where the draft model retrieves the next to-007
kens from a non-parametric datastore. Sparse008
retrieval (He et al., 2023, REST), which oper-009
ates on the surface form of strings, is currently010
the dominant paradigm due to its simplicity and011
scalability. However, its effectiveness is lim-012
ited due to the usage of short contexts and exact013
string matching. Instead, we introduce Dense014
Retrieval for Speculative Decoding (DReSD), a015
novel framework that uses approximate nearest016
neighbour search with contextualised token em-017
beddings to retrieve the most semantically rele-018
vant token sequences for SD. Extensive experi-019
ments show that DReSD achieves (on average)020
87% higher acceptance rates, 65% longer ac-021
cepted tokens and 19% faster generation speeds022
compared to sparse retrieval (REST).023

1 Introduction024

Generative transformers (Vaswani, 2017) are cur-025

rently the dominant artificial intelligence paradigm026

with recent LLMs scaled to tens (or even hun-027

dreds) of billions of parameters (Brown et al., 2020;028

Liu et al., 2024; Dubey et al., 2024). In spite of029

their strong capabilities, the auto-regressive nature030

of generation requires a costly forward pass for031

each new token. Various solutions have been pro-032

posed to accelerate LLMs such as Flash Atten-033

tion (Shah et al., 2024), Mixture of Experts (Fe-034

dus et al., 2022; Jacobs et al., 1991), Tensor Paral-035

lelism (Shoeybi et al., 2019), Linear Attention (Qin036

et al., 2024) and others. The focus of our work037

is Speculative Decoding (Leviathan et al., 2023),038

which seeks to accelerate generation by using an039

efficient draft model to propose the next few to-040

kens that are verified in a single forward call of the041

Figure 1: Fastest configurations for selected SD meth-
ods (greedy decoding), relative to auto-regressive gener-
ation (LLM), CL = CodeLlama, LC = Llama2-Chat.

LLM (Stern et al., 2018), guaranteeing its outputs. 042

While several viable SD paradigms exist (Xia et al., 043

2024; Zhang et al., 2024a; Ryu and Kim, 2024), 044

this work specifically focuses on retrieval-based 045

SD where a draft model retrieves token sequences 046

from a non-parametric datastore, usually a suffix 047

array/automaton. Sparse retrieval has established 048

itself as the dominant paradigm (He et al., 2023; 049

Yang et al., 2023; Saxena, 2023; Hu et al., 2024), 050

largely due to its simplicity and efficiency. How- 051

ever, we hypothesise that this approach suffers from 052

limitations such as lower precision due to the use 053

of short contexts and reduced recall due to exact 054

string matching. As an alternative, we introduce 055

Dense Retrieval for SD (DReSD) which seeks to 056

overcome these limitations by utilising approxi- 057

mate nearest neighbour search with contextualised 058

token representations. DReSD is a novel plug-and- 059

play SD framework based on semantic similarity 060

that shows significantly improved acceptance rates. 061

Through extensive experimentation, we identify 062

critical factors of dense retrieval and show how an 063

optimal configuration can accelerate generation by 064

up to 4.64x. Code and data available at url.com. 065

1

url.com


Summary of Contributions: We conduct a de-066

tailed comparative analysis of sparse and dense067

retrieval for SD in order to identify the critical fac-068

tors of effective dense retrieval. To address these,069

we propose a novel SD framework (for the first070

time, to our best knowledge) for easy LLM inte-071

gration. Results show that DReSD achieves (on072

average, across all experiments) 87% higher accep-073

tance rates, 65% longer accepted tokens and 19%074

faster generation compared to sparse retrieval.075

2 Background076

2.1 Speculative Decoding077

Let x represent the input tokens (x1, x2, ..., xt) such078

as a prompt and any tokens generated up to time079

step t. Auto-regressive generation requires a full080

forward pass through the model xt+1 = LLM(x)081

to decode every new token xt+1, which is very082

resource-intensive for large LLMs. Therefore, a083

smaller draft modelMDRAFT efficiently proposes084

k next tokens (xt+1, xt+2, ..., xt+k), denoted xd,085

which can then be verified with a single forward086

call xv = llm_verify(xd). Verification only accepts087

tokens xv that would have been generated by the088

LLM, irrespective of utilising SD. MDRAFT can089

be a small LLM (Miao et al., 2023), a retrieval-090

based model (He et al., 2023), a subset of LLM’s091

parameters called ‘draft heads’ (Cai et al., 2024; Li092

et al., 2024b; Ankner et al., 2024) or no auxiliary093

draft model at all, called ‘self-drafting’ (Mamou094

et al., 2024). Each paradigm has its trade-offs and095

the landscape is evolving rapidly (Xia et al., 2024;096

Zhang et al., 2024a; Ryu and Kim, 2024).097

2.2 Retrieval-based Speculative Decoding098

Since SD operates at the token level, it requires a099

continuous interaction betweenMDRAFT and the100

LLM. In retrieval-based SD, MDRAFT is repre-101

sented by a non-parametric, training-free, static102

or dynamic datastore from which next token se-103

quences are efficiently drafted and finally verified104

by the LLM. Retrieval-based SD can be broadly105

divided into sparse and dense retrieval.106

2.2.1 Sparse Retrieval for SD107

Sparse retrieval employs exact string matching1 to108

retrieve k next tokens (xt+1, xt+2, ..., xt+k) from109

the datastore, which contains a large body of pre-110

tokenized text similar to the target task(s), allowing111

1https://en.wikipedia.org/wiki/Suffix_array or
https://en.wikipedia.org/wiki/Suffix_automaton.

for appropriate drafting. There are two types of 112

sparse retrieval datastores for SD. 113

A static datastore keeps its content unchanged 114

during inference. The most similar work (and our 115

main baseline) is Retrieval-based Speculative De- 116

coding (He et al., 2023, REST). REST matches the 117

longest possible suffix of the current context x, a 118

sequence of up to c tokens (xt−c, xt−c+1, ..., xt), to 119

exact token sequences (suffixes) in the datastore 120

to provide k draft candidates (xt+1, xt+2, ..., xt+k) 121

for LLM verification. The main limitation of exact 122

string matching is that minor perturbations in x will 123

result in a failure to retrieve useful candidate drafts. 124

A dynamic datastore keeps updating its content 125

continuously during inference (Yang et al., 2023; 126

Luo et al., 2024; Saxena, 2023), which means it 127

benefits from recently generated token sequences 128

that align well with the LLM, particularly for tasks 129

with repetitive texts. Combinations of static and dy- 130

namic datastores are also possible (Hu et al., 2024). 131

However, as the focus of our work is a systematic 132

‘apples to apples’ comparison of sparse and dense 133

retrieval, these methods are not appropriate for a 134

direct comparison with DReSD (or REST). We 135

aim to explore (for the first time) the comparative 136

efficacy of static datastores for the purpose of SD. 137

2.3 Dense Retrieval for SD 138

The key assumption behind DReSD is that seman- 139

tic similarity of contextualised token embeddings 140

should provide superior retrieval compared to ex- 141

act string matching. Therefore,MDRAFT is repre- 142

sented by a non-parametric datastore that employs 143

approximate nearest neighbour search (Shrivastava 144

and Li, 2014; Sun et al., 2023, ANNS) to match 145

the (full) current context x to similar contexts in 146

the datastore in order to draft the next tokens xd for 147

LLM verification. ANNS is a technique for finding 148

the closest data point(s) for a given query in a pos- 149

sibly high-dimensional vector space (Karpukhin 150

et al., 2020). Nearest Neighbour Speculative De- 151

coding (Li et al., 2024a, NEST) is the only work 152

using dense retrieval, to our best knowledge. How- 153

ever, its primary focus is retrieval augmented fu- 154

sion with attribution, not SD. NEST relies on ap- 155

proximate verification to fuse the LLM and the re- 156

trieved knowledge, which means the LLM outputs 157

are not guaranteed. Additionally, while NEST did 158

not consider exact verification in their experiments, 159

we can estimate from their results that minimal 160

speed-ups would be achieved under that setting. 161

2

https://en.wikipedia.org/wiki/Suffix_array
https://en.wikipedia.org/wiki/Suffix_automaton


Figure 2: A flowchart of the DReSD framework.

3 DReSD162

We now introduce Dense Retrieval for Speculative163

Decoding, shown in Figure 2 and Algorithm 1. Fo-164

cusing on the latter, the user prompt is tokenised in165

step 1 and embedded in step 2. Entering the loop166

(3), the embedding is normalised (4), then reduced167

(5) to optimise storage and compute requirements.168

After a second normalisation step (6), we query the169

datastore to retrieve the draft next tokens (7). They170

are verified by the LLM (8), returning the accepted171

token(s) and the embedding of the last accepted172

token. We append the accepted token(s) to the cur-173

rent context and begin a new iteration, which ends174

when we reach max length or the <EOS> token.175

Algorithm 1 DReSD: An algorithmic overview.

1: x← tokenizer(prompt)
2: v← LLM(x) ▷ Section 3.1.
3: while not(EOS ∨MAX_LEN) do
4: v← z_norm(v) ▷ Section 3.2.
5: vl ← PCA(v) ▷ Section 3.3.
6: vl ← m_norm(vl) ▷ Section 3.4.
7: xd ←MDRAFT(vl) ▷ Section 3.5.
8: v, xv ← batch_verify(xd) ▷ Section 3.6.
9: x← x+ xv ▷ Append xv

10: return x

3.1 Token Embeddings176

The initial step is to generate a contextualised token177

embedding v ← LLM(x) to represent the current178

state of the LLM that will be used to retrieve candi-179

dates for the next tokens. In DReSD, v is the last180

hidden state before the language modelling head2.181

As in standard SD, LLM(x) will also generate the182

2Alternative LLM components may be used for the current
state representation but this is out of the scope of this work.

next token xt+1, which we additionally use to filter 183

retrieved candidate drafts. Even if all draft tokens 184

are rejected, xt+1 ensures that each SD iteration 185

produces at least one valid token. 186

3.2 Z-scores Normalisation 187

Before we perform dimensionality reduction, we 188

centre the empirical mean around 0 with a standard 189

deviation of 1 to reduce the correlation between dif- 190

ferent embedding dimensions (Ethayarajh, 2019; 191

Reimers and Gurevych, 2019), see Equation 1. We 192

randomly sample ∼1 million (full size) token em- 193

beddings V from the datastore to estimate the mean 194

and standard deviation for efficient inference. 195

v =
v − E[V]√
Var[V] + ϵ

(1) 196

3.3 Dimensionality Reduction 197

Using the full LLM hidden state v with thousands 198

of dimensions is not scalable. As such, data com- 199

pression and noise reduction are necessary steps for 200

DReSD to reduce storage requirements and acceler- 201

ate nearest neighbour search. Principal Component 202

Analysis (Shlens, 2014, PCA) is a highly effec- 203

tive and algorithmically simple solution for this, 204

allowing for efficient inference, too. We use PCA 205

to transform v into a low-dimensional vector vl 206

that captures the largest variation in the data, using 207

the first l principal components Wl by computing 208

vl ← vWl. We fit the PCA model on the same ∼1 209

million token embeddings V from section 3.2. 210

3.4 Magnitude Normalisation 211

We further standardise the embedding vl by scaling 212

each to have a unit length of 1 using Lp normali- 213

sation over the last dimension (columns), see Eq. 214

3



2. This is a standard transformation required for215

effective (dot product) nearest neighbour search.216

vl =
vl

max(∥vl∥2, ϵ)
(2)217

3.5 Datastore218

We utilise Scalable Nearest Neighbours3(Guo et al.,219

2020) for approximate nearest neighbour search220

(time complexity Ologn). The datastore D is for-221

matted as a key-value store fD : k 7→ v where222

k is a token embedding vtl at time step t and v is223

a sequence of the next N tokens (xt+1, ..., xt+N),224

obtained from datasets similar to the target task(s).225

Cosine similarity is used as a standard distance met-226

ric, see Equation 3. The next token xt+1 obtained227

from step 3.1 is used to filter drafts that do not start228

with xt+1, further enhancing retrieval accuracy.229

MDRAFT(vl) = fD(argmax
vtl∈D

sim(vl, v
t
l ))

sim(vl, v
t
l ) =

vl · vtl
max(∥vl∥2 · ∥vtl ∥2, ϵ)

(3)230

3.6 Batch Verification231

We use batch verification (Yang et al., 2024; Stew-232

art et al., 2024) for all experiments, which gener-233

alises standard SD verification to multiple drafts,234

see Figure 3. Batch verification has shown benefits235

for SD, particularly at lower batch sizes (Ni et al.,236

2024; Zhang et al., 2024b). As this requires a for-237

ward call to the LLM, we extract the embedding238

v from the last accepted token of xv to efficiently239

feed into the next iteration (step 8, Algorithm 1).240

Following our baseline, for nucleus and greedy gen-241

eration, we first sample tokens conditioned on the242

draft sequences, then accept the longest sequence243

that exactly matches the outputs of the LLM.244

Figure 3: An illustration of batch verification with 5
drafts (rows) with a length of 8 (columns). The EOS
id (0 in this example) is used as padding. The green
sequence is accepted, blue sequences are discarded.

3https://github.com/google-research/
google-research/tree/master/scann

4 Experimental Setup 245

4.1 Models 246

We evaluate methods on LLMs from the Llama2 247

family (Touvron et al., 2023), courtesy of Hugging- 248

face transformers (Wolf, 2019). Specifically, we 249

benchmark CodeLlama (7B and 13B), CodeLlama- 250

Instruct (7B) and Llama2-Chat (7B and 13B). The 251

MDRAFT for vanilla Speculative Decoding (with 252

a small LLM drafter) features Llama-Chat-68M4, 253

fine-tuned from Llama-68M (Miao et al., 2023). 254

4.2 Datasets and Tasks 255

We test models on 100 randomly selected CodeAl- 256

paca (Chaudhary, 2023) prompts, which include 257

code generation, debugging, explanation and other 258

code tasks. The datastore for this code assistant 259

is built from EvolInstructCode (Luo et al., 2023), 260

comprising ∼78K prompts with responses, trun- 261

cated to 1,024 max tokens. We also evaluate on 80 262

MT-Bench5 (Zheng et al., 2023) prompts (first turn 263

specifically, due to the compute required for the 264

number of experiments). The datastore for this gen- 265

eral personal assistant is built from a random subset 266

of 80K (‘train-sft’) UltraChat-200K6 (Ding et al., 267

2023) examples, prompts and responses truncated 268

to 1,024 max tokens, once again, first turn to limit 269

the scope of the long, multi-turn conversations. 270

Models EVOL MRR U-CHAT MRR

OOD datastores (Sec. 4.2.1)

CL-7B 30.9M 93.7 46.3M 97.5
CL-13B 30.9M 92.5 - -
LC-7B 30.9M 93.6 46.3M 97.9
LC-13B 30.9M 93.7 - -
CL-I-7B 30.9 93.9 46.3M 97.9

Sec. ID datastores (4.2.1)

CL-7B 19.3M 87.6 - -
CL-13B 19.3M 85.5 - -
LC-7B 19M 90.3 56.8M 75.2
LC-13B 19M 90.4 - -
CL-I-7B - - 57.2M 75.9

Table 1: Datastore sizes in tokens + corresponding MRR.
EVOL = EvolInstructCode, U-CHAT = UltraChat.

4https://huggingface.co/Felladrin/
Llama-68M-Chat-v1

5https://huggingface.co/datasets/
HuggingFaceH4/mt_bench_prompts

6https://huggingface.co/datasets/
HuggingFaceH4/ultrachat_200k

4

https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://huggingface.co/Felladrin/Llama-68M-Chat-v1
https://huggingface.co/Felladrin/Llama-68M-Chat-v1
https://huggingface.co/datasets/HuggingFaceH4/mt_bench_prompts
https://huggingface.co/datasets/HuggingFaceH4/mt_bench_prompts
https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k


4.2.1 In-Distribution Data271

The datasets used to populate the datastore are of-272

ten generated by some version of ChatGPT7 whose273

outputs are not necessarily representative of the274

target LLM (Llama2). That is, the datastore out-275

puts are out-of-distribution (OOD) with respect276

to the LLM. As this divergence increases, the ac-277

ceptance rates and decoding speeds are expected to278

decrease. To investigate the effect of in-distribution279

(ID) token sequences, we generate responses for280

each LLM and use those to populate the datastore.281

We refer to Llama2 responses as the ID datastore282

and ChatGPT responses as the OOD datastore.283

4.3 Metrics284

Hardware Dependent metrics are heavily influ-285

enced by the choice, availability and optimisation286

level of hardware components. Nevertheless, in287

order to provide indicative walltime improvements,288

we use tokens-per-second (abbreviated to TPS) as289

the standard metric, reporting the median of three290

runs. TPS is measured on a single NVIDIA V100291

(32GB) GPU with 96 CPUs and 500GB of RAM.292

Hardware Independent metrics are more appro-293

priate for algorithmic comparisons that are indepen-294

dent of optimisation tricks and hardware quality.295

Mean Acceptance Rate (MAR) is the number of296

tokens drafted divided by the number of tokens297

accepted by the LLM. MAR is computed at the298

prompt level, then averaged over all prompts.299

Retrieval Only We also conduct intrinsic evalua-300

tion to assess the quality of the nearest neighbour301

search. We use Mean Reciprocal Rank, shown in302

Equation 4, where ranki is the position of the cor-303

rect item and N is the number of embeddings in the304

datastore (a score of 1 equates to perfect retrieval8).305

MRR =
1

N

N∑
i=1

1

ranki
(4)306

5 Results307

We provide reference metrics for auto-regressive308

decoding with the base LLM, vanilla speculative de-309

coding (Leviathan et al., 2023) and Prompt Lookup310

Decoding (PLD), a dynamic retrieval method that311

uses the current input tokens for drafting (Saxena,312

7https://platform.openai.com/docs/
api-reference

8A presence of duplicate embeddings in a large datastore
can lead to lower scores, even with near-perfect retrieval.

Figure 4: Mean Acceptance Rates (MAR) for the Code
Assistant. Suffix "-I" denotes the ID datastore setting.

2023). Our main point of reference is REST (He 313

et al., 2023), which is created from the same data 314

as DReSD. For all experiments, we generate up to 315

128 new tokens per prompt. 316

5.1 Mean Acceptance Rates 317

We first examine the average acceptance rates in 318

a highly controlled setting where the draft lengths 319

are as identical as possible. This is to test our core 320

assumption that, all things being equal, dense re- 321

trieval would more accurately match the current 322

context to useful sequences of next tokens in the 323

datastore, relative to sparse retrieval. The hypothe- 324

sis is confirmed in Figure 4 as significantly higher 325

MAR for DReSD, on average 87% higher. This 326

translates to fewer verification calls due to longer 327

accepted drafts, on average 65% longer than REST. 328

5.2 Effective Dense Retrieval 329

Sparse retrieval libraries had been highly optimised 330

over time9, therefore, a high-performing datastore 331

is a critical component of DReSD. It is imperative 332

to maximise the algorithmic efficiency of DReSD 333

to amortise the relatively higher cost of “vanilla” 334

dense retrieval. Reducing the large dimensional- 335

ity10 of LLM hidden states while preserving the 336

most informative features is a top priority. Fig- 337

ure 5 shows the cumulative explained variance ra- 338

tio for the first 256 principal components from 339

which we select 64 after a dimensionality abla- 340

tion. Table 2 shows that retaining more than 64 341

principal components provides no meaningful im- 342

provement in downstream metrics. The pre-PCA 343

9https://github.com/FasterDecoding/REST
10https://pypi.org/project/torch-pca/

5

https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference
https://github.com/FasterDecoding/REST
https://pypi.org/project/torch-pca/


Figure 5: Cumulative Explained Variance Ratio for a
256-dimensional PCA model. We use the first 64 dims.

(Equation 1) and post-PCA (Equation 2) normalisa-344

tion steps are particularly important since the MRR345

scores sharply drop without these transformations.346

The most remarkable observation is that select-347

ing just over 1% of the 4096 to 5120 dimensional348

LLM hidden state features is enough to capture349

between 30%-40% of explained variance in PCA,350

and achieves such strong retrieval performance (see351

MRR, in Table 1 and 2). There is a surprisingly352

high degree of redundancy in the LLM hidden state353

in terms of the minimum features required for ef-354

fective dense retrieval, an important discovery for355

the feasibility of DReSD and any future work.356

Metrics 32D 64D 96D 128D

MAR 20.1 22.5 22.8 23
Calls 37 34.6 34.7 34.5
TPS 32 35 36 35

MRR 85.5 93.6 94.2 94.2

Table 2: An ablation of PCA dimensionality reduction.
‘Calls’ = the average number of LLM verification calls.

5.3 Importance of Datastore Alignment357

Another critical component of retrieval-based SD is358

datastore alignment, which we split into a) prompt359

alignment, b) response alignment, and c) sam-360

pling alignment. These multiplicatively influence361

overall effectiveness, which means that poor align-362

ment in any of them can adversely impact perfor-363

mance. Let us examine why in more detail.364

Prompt alignment is typically satisfied by pop-365

ulating the datastore with prompts highly related366

to the target task(s) such as code, maths or general367

Figure 6: Mean Acceptance Rates with high (CodeAl-
paca, "-C") & low (MT-Bench, "-M") prompt alignment.

question answering. After a brief qualitative assess- 368

ment, this appears to have been reasonably satisfied 369

for the code assistant, however, only to some de- 370

gree for MT-Bench tasks. Despite strong response 371

alignment (ID datastore) and retrieval (MRR, Ta- 372

ble 1), the poor prompt alignment leads to lower 373

acceptance rates (see Figure 6), relative to CodeAl- 374

paca. Since this result reflects prior findings (He 375

et al., 2023), we think that choosing a more prompt- 376

aligned dataset will result in faster decoding. In any 377

case, dense retrieval (DReSD) outperforms sparse 378

retrieval (REST) by ∼90% in Figure 6. 379

Response alignment is the similarity of outputs 380

between the LLM and the model(s) that generated 381

the datastore, i.e. draft sequences with a low prob- 382

ability under the LLM lead to high rejection rates 383

and slow decoding speeds, regardless of the capa- 384

bilities of the model(s) that generated the datastore. 385

A qualitative comparison of Llama2 (ID datastore) 386

and ChatGPT (OOD datastore) responses reveals 387

significant differences in writing styles, knowledge 388

depth and response lengths. The effects of these 389

differences can be observed in Figures 1, 4 and 9 390

by comparing methods with and without the suffix 391

"-I", showing that the ID datastore has a strong 392

positive effect in all cases. For example, MAR in- 393

creased by ∼70% on average for CodeAlpaca with 394

an ID datastore despite being ∼40% smaller than 395

the OOD datastore, emphasising the importance of 396

response alignment over sheer data quantity. 397

Sampling alignment refers to the similarity of 398

hyperparameters with which the datastore content 399

was generated and the sampling hyperparameters at 400

inference time. For instance, in Figure 9 (left), the 401

best speed-ups were achieved with greedy sampling 402

6



Figure 7: Investigating the impact of increasing draft lengths (left) and the number of drafts (right) on MAR, TPS
and LLM verification calls, using a greedy datastore with greedy generation on code assistant tasks (CodeAlpaca).

Figure 8: MAR for "-I" = ID datastore (nucleus genera-
tion) with "-N" = nucleus and "-G" greedy sampling.

and a ‘greedy’ datastore. In contrast, nucleus sam-403

pling (temperature=0.7, p=0.9511) with a ‘greedy’404

datastore resulted in lower speed-ups (Figure 9,405

right). In another ablation (Figure 8), the ID datas-406

tore was generated with nucleus sampling, using 3407

responses of up to 128 tokens per prompt (see Table408

1 for final datastore sizes). There was no significant409

difference between MAR scores with greedy or nu-410

cleus sampling this time. In summary, the more411

permissive the sampling parameters are, e.g. a high412

temperature, the greater the LLM’s expressivity413

that will need to be covered by the datastore. This414

is particularly the case for open-ended tasks such415

as creative writing where the number of ‘correct’416

responses is usually much greater than in a coding417

or maths task, for example. In contrast, low temper-418

ature sampling can achieve fast decoding speeds419

with a much smaller ‘greedy’ datastore.420

11Nucleus hyperparameters are the same in all experiments.

5.4 Optimal Draft Shape 421

The final critical factor for achieving high decod- 422

ing performance is the shape of the draft because 423

each additional token sent for verification increases 424

the cost of the LLM forward pass (see Figure 3 425

for an illustration of a 5 x 8 draft). While REST 426

outputs drafts that encode shallow and wide trees 427

(10 x 6, on average, cannot be altered), DReSD 428

can modify this shape to potentially achieve higher 429

speed-ups. For instance, when the draft shape is 430

matched to REST, DReSD outperforms it by 15% 431

to 28% with nucleus sampling and 10% to 29% 432

with greedy decoding (TPS, Figure 9). Switching 433

to the ID datastore (suffix "-I"), the margins are 434

slightly smaller, 2% to 15% for nucleus sampling 435

and 4% to 20% for greedy generation. However, 436

the optimal REST draft (wide and shallow) is not 437

necessarily optimal for DReSD (narrow and deep). 438

Therefore, we investigate the optimal draft shape 439

using an ablation of the number and the length 440

of drafts with a ’greedy’ ID datastore and greedy 441

decoding, shown in Figure 7. The number of drafts 442

is fixed to 10 for ‘Impact of Draft Length’ (left) 443

and the length of each draft is fixed to 10 tokens for 444

‘Impact of the Number of Drafts’ (right). Based on 445

the findings of this ablation, the best configurations 446

are DReSD-IBN (10 x 10), yielding between 10% 447

and 23% speed-up relative to REST for nucleus 448

sampling and DReSD-IBG, (3 x 20), yielding 42% 449

to 218% faster speeds for greedy decoding. As a 450

general principle: 1) we should increase the draft 451

length for higher acceptance rates and vice versa, 452

and 2) include fewer drafts for greedy generation 453

but more drafts (shorter) for nucleus sampling. 454

7



Figure 9: TPS metrics for a selection of LLMs and configs: "-G" = greedy decoding, "-I" = uses ID datastore (greedy
generation), "-N" = nucleus sampling, "-B" = our best setup (see section 5.5), LLM = auto-regressive generation.

Models SD PLD REST DReSD

CL-7B 1.63x 2.21x 3.79x 5.47x
LC-7B 1.32x 1.11x 2.89x 4.11x
CL-13B 1.40x 1.93x 2.60x 5.67x
LC-13B 1.33x 1.27x 2.13x 3.33x

Average 1.42x 1.63x 2.85x 4.64x

Table 3: Average speed-ups relative to auto-regressive
generation on the code assistant tasks (CodeAlpaca).

5.5 Walltime Improvements455

Table 3 provides the speed-up ratios for vanilla456

SD with Llama-Chat-68M, Prompt Lookup De-457

coding (dynamic sparse retrieval), REST (static458

sparse retrieval) and DReSD (static dense retrieval).459

The averages show that every SD method acceler-460

ates standard auto-regressive LLM generation by at461

least 40%, with higher speed-ups observed for the462

’smaller’ 7B models. PLD is most effective for very463

repetitive outputs, which can be a property of the464

task and/or the model. For example, CodeLlama465

(not instruction-tuned), has a tendency to produce466

repetitive texts, particularly on code assistant tasks.467

This is why the effectiveness of PLD drops sharply468

for instruction-tuned models. Our best configura-469

tion for REST, shown in Figure 9 with suffix "-IG",470

gives an average 2.85x speed-up. DReSD using471

drafts of shape (3 x 20 tokens) and the ID datastore472

(suffix "-IBG") averaged a remarkable 4.64x im-473

provement over auto-regressive decoding. Figure474

1 provides a visual summary of these configura-475

tions in relation to other baseline methods. The476

speed-ups on MT-Bench are relatively more mod-477

est, up to ∼1.52x, due to poor prompt alignment 478

discussed earlier (5.3). Still, DReSD significantly 479

outperformed REST, which achieved only ∼1.15x 480

speed-up with the same dataset(s). This confirms 481

our hypothesis that dense retrieval is the superior 482

search paradigm for speculative decoding. 483

6 Conclusions 484

We have presented a comparative analysis of dense 485

and sparse retrieval for speculative decoding in 486

order to identify and overcome the limitations of 487

the dominant (sparse) paradigm. To address these, 488

we have introduced DReSD, Dense Retrieval for 489

Speculative Decoding, a novel framework that re- 490

trieves candidate drafts from a non-parametric data- 491

store based on semantic similarity (via approximate 492

nearest neighbour search) instead of exact string 493

matching. DReSD introduces a scalable and effec- 494

tive dense retrieval protocol that can easily integrate 495

into modern LLMs. Exhaustive comparisons using 496

several model and task configurations have demon- 497

strated that DReSD achieves (on average across all 498

settings) 87% higher acceptance rates, 65% longer 499

accepted tokens and 19% faster generation speeds 500

compared to sparse retrieval (REST). This is en- 501

abled by three critical factors: a) a fast and accurate 502

dense retrieval via dimensionality reduction and 503

dual normalisation of LLM embeddings, b) a care- 504

ful datastore alignment (particularly the ID datas- 505

tore) with high acceptance rates, longer drafts and 506

fewer LLM calls, c) an optimal draft shape explored 507

via careful ablations that enabled up to 4.64x aver- 508

age speed-ups over baseline auto-regressive gener- 509

ation. We hope that our findings will enable new 510

retrieval-based SD methodologies in the future. 511

8



7 Limitations512

We acknowledge that sparse retrieval methods typi-513

cally have lower storage and preprocessing require-514

ments, which can make their adoption more fea-515

sible for low compute budgets compared to our516

proposed methodology. Simultaneously, we recog-517

nise the lack of software and/or hardware optimisa-518

tion for DReSD that could fully realise its potential519

in terms of faster decoding speeds compared to520

the highly optimised sparse retrieval libraries. Fi-521

nally, related work has shown that combinations of522

dynamic and static retrieval may bring complemen-523

tary strengths to the overall approach, therefore,524

DReSD could be extended to such hybrid specula-525

tive decoding version in future work.526

References527

Zachary Ankner, Rishab Parthasarathy, Aniruddha528
Nrusimha, Christopher Rinard, Jonathan Ragan-529
Kelley, and William Brandon. 2024. Hydra:530
Sequentially-dependent draft heads for medusa de-531
coding. arXiv preprint arXiv:2402.05109.532

Tom Brown, Benjamin Mann, Nick Ryder, Melanie533
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind534
Neelakantan, Pranav Shyam, Girish Sastry, Amanda535
Askell, et al. 2020. Language models are few-shot536
learners. Advances in neural information processing537
systems, 33:1877–1901.538

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,539
Jason D Lee, Deming Chen, and Tri Dao. 2024.540
Medusa: Simple llm inference acceleration frame-541
work with multiple decoding heads. arXiv preprint542
arXiv:2401.10774.543

Sahil Chaudhary. 2023. Code alpaca: An instruction-544
following llama model for code generation. https:545
//github.com/sahil280114/codealpaca.546

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi547
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,548
and Bowen Zhou. 2023. Enhancing chat language549
models by scaling high-quality instructional conver-550
sations. Preprint, arXiv:2305.14233.551

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,552
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,553
Akhil Mathur, Alan Schelten, Amy Yang, Angela554
Fan, et al. 2024. The llama 3 herd of models. arXiv555
preprint arXiv:2407.21783.556

Kawin Ethayarajh. 2019. How contextual are contextu-557
alized word representations? Comparing the geom-558
etry of BERT, ELMo, and GPT-2 embeddings. In559
Proceedings of the 2019 Conference on Empirical560
Methods in Natural Language Processing and the561
9th International Joint Conference on Natural Lan-562
guage Processing (EMNLP-IJCNLP), pages 55–65,563

Hong Kong, China. Association for Computational 564
Linguistics. 565

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 566
Switch transformers: Scaling to trillion parameter 567
models with simple and efficient sparsity. Journal of 568
Machine Learning Research, 23(120):1–39. 569

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, 570
David Simcha, Felix Chern, and Sanjiv Kumar. 2020. 571
Accelerating large-scale inference with anisotropic 572
vector quantization. In International Conference on 573
Machine Learning. 574

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, 575
and Di He. 2023. Rest: Retrieval-based speculative 576
decoding. arXiv preprint arXiv:2311.08252. 577

Yuxuan Hu, Ke Wang, Jing Zhang, Cuiping Li, and 578
Hong Chen. 2024. Sam decoding: Speculative 579
decoding via suffix automaton. arXiv preprint 580
arXiv:2411.10666. 581

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, 582
and Geoffrey E Hinton. 1991. Adaptive mixtures of 583
local experts. Neural computation, 3(1):79–87. 584

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick 585
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 586
Wen-tau Yih. 2020. Dense passage retrieval for 587
open-domain question answering. arXiv preprint 588
arXiv:2004.04906. 589

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 590
2023. Fast inference from transformers via spec- 591
ulative decoding. In International Conference on 592
Machine Learning, pages 19274–19286. PMLR. 593

Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen, 594
Jimmy Lin, Wen-tau Yih, and Xi Victoria Lin. 595
2024a. Nearest neighbor speculative decoding 596
for llm generation and attribution. arXiv preprint 597
arXiv:2405.19325. 598

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang 599
Zhang. 2024b. Eagle: Speculative sampling re- 600
quires rethinking feature uncertainty. arXiv preprint 601
arXiv:2401.15077. 602

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, 603
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi 604
Deng, Chenyu Zhang, Chong Ruan, et al. 2024. 605
Deepseek-v3 technical report. arXiv preprint 606
arXiv:2412.19437. 607

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming 608
Zhang, Xuanyu Zhang, Qing Yang, Dongliang Xu, 609
and Wanxiang Che. 2024. Turning trash into treasure: 610
Accelerating inference of large language models with 611
token recycling. arXiv preprint arXiv:2408.08696. 612

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- 613
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 614
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder: 615
Empowering code large language models with evol- 616
instruct. arXiv preprint arXiv:2306.08568. 617

9

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1908.10396


Jonathan Mamou, Oren Pereg, Daniel Korat, Moshe618
Berchansky, Nadav Timor, Moshe Wasserblat, and619
Roy Schwartz. 2024. Accelerating speculative decod-620
ing using dynamic speculation length. arXiv preprint621
arXiv:2405.04304.622

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xin-623
hao Cheng, Zeyu Wang, Zhengxin Zhang, Rae624
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang625
Shi, et al. 2023. Specinfer: Accelerating genera-626
tive large language model serving with tree-based627
speculative inference and verification. arXiv preprint628
arXiv:2305.09781.629

Yunsheng Ni, Chuanjian Liu, Yehui Tang, Kai Han, and630
Yunhe Wang. 2024. Ems-sd: Efficient multi-sample631
speculative decoding for accelerating large language632
models. arXiv preprint arXiv:2405.07542.633

Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weix-634
uan Sun, and Yiran Zhong. 2024. Lightning attention-635
2: A free lunch for handling unlimited sequence636
lengths in large language models. arXiv preprint637
arXiv:2401.04658.638

Nils Reimers and Iryna Gurevych. 2019. Sentence-639
BERT: Sentence embeddings using Siamese BERT-640
networks. In Proceedings of the 2019 Conference on641
Empirical Methods in Natural Language Processing642
and the 9th International Joint Conference on Natu-643
ral Language Processing (EMNLP-IJCNLP), pages644
3982–3992, Hong Kong, China. Association for Com-645
putational Linguistics.646

Hyun Ryu and Eric Kim. 2024. Closer look at efficient647
inference methods: A survey of speculative decoding.648
arXiv preprint arXiv:2411.13157.649

Apoorv Saxena. 2023. Prompt lookup decoding.650

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay651
Thakkar, Pradeep Ramani, and Tri Dao. 2024.652
Flashattention-3: Fast and accurate attention with653
asynchrony and low-precision. arXiv preprint654
arXiv:2407.08608.655

Jonathon Shlens. 2014. A tutorial on principal compo-656
nent analysis. arXiv preprint arXiv:1404.1100.657

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,658
Patrick LeGresley, Jared Casper, and Bryan Catan-659
zaro. 2019. Megatron-lm: Training multi-billion660
parameter language models using model parallelism.661
arXiv preprint arXiv:1909.08053.662

Anshumali Shrivastava and Ping Li. 2014. Asymmetric663
lsh (alsh) for sublinear time maximum inner prod-664
uct search (mips). Advances in neural information665
processing systems, 27.666

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.667
2018. Blockwise parallel decoding for deep autore-668
gressive models. Advances in Neural Information669
Processing Systems, 31.670

Lawrence Stewart, Matthew Trager, Sujan Kumar 671
Gonugondla, and Stefano Soatto. 2024. The n- 672
grammys: Accelerating autoregressive inference with 673
learning-free batched speculation. arXiv preprint 674
arXiv:2411.03786. 675

Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, 676
and Sanjiv Kumar. 2023. Soar: Improved indexing 677
for approximate nearest neighbor search. In Neural 678
Information Processing Systems. 679

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 680
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 681
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 682
Bhosale, et al. 2023. Llama 2: Open founda- 683
tion and fine-tuned chat models. arXiv preprint 684
arXiv:2307.09288. 685

A Vaswani. 2017. Attention is all you need. Advances 686
in Neural Information Processing Systems. 687

T Wolf. 2019. Huggingface’s transformers: State-of- 688
the-art natural language processing. arXiv preprint 689
arXiv:1910.03771. 690

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, 691
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and 692
Zhifang Sui. 2024. Unlocking efficiency in large 693
language model inference: A comprehensive sur- 694
vey of speculative decoding. arXiv preprint 695
arXiv:2401.07851. 696

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin 697
Jiang, Linjun Yang, Rangan Majumder, and Furu 698
Wei. 2023. Inference with reference: Lossless ac- 699
celeration of large language models. arXiv preprint 700
arXiv:2304.04487. 701

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. 702
2024. Multi-candidate speculative decoding. arXiv 703
preprint arXiv:2401.06706. 704

Chen Zhang, Zhuorui Liu, and Dawei Song. 2024a. Be- 705
yond the speculative game: A survey of speculative 706
execution in large language models. arXiv preprint 707
arXiv:2404.14897. 708

Zhihao Zhang, Alan Zhu, Lijie Yang, Yihua Xu, Lanting 709
Li, Phitchaya Mangpo Phothilimthana, and Zhihao 710
Jia. 2024b. Accelerating retrieval-augmented lan- 711
guage model serving with speculation. arXiv preprint 712
arXiv:2401.14021. 713

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 714
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 715
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 716
Judging llm-as-a-judge with mt-bench and chatbot 717
arena. Advances in Neural Information Processing 718
Systems, 36:46595–46623. 719

A Appendix 720

The following tables contain the results used to 721

generate the bar charts in the paper. 722

10

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://github.com/apoorvumang/prompt-lookup-decoding/
https://arxiv.org/abs/2404.00774
https://arxiv.org/abs/2404.00774
https://arxiv.org/abs/2404.00774


TPS CodeLlama-7B Llama2-Chat-7B CodeLlama-13B Llama2-Chat-13B

LLM 19 19 15 15
SD 31 25 21 20
PLD 42 21 29 19
REST 72 55 39 32
DReSD 104 78 85 50

Table 4: Fastest configurations for a selection of meth-
ods (greedy decoding), relative to auto-regressive gener-
ation (LLM), CL = CodeLlama, LC = Llama2-Chat.

MAR CodeLlama-7B Llama2-Chat-7B CodeLlama-13B Llama2-Chat-13B

SD 29.6 17.8 18.9 19.1
PLD 32.7 10.0 22.4 12.7
REST 28.1 18.0 20.3 17.9
DReSD 45.5 31.9 32.4 32.9
REST-I 33.4 35.0 27.0 29.5
DReSD-I 49.4 48.1 51.3 46.3

Table 5: Mean Acceptance Rates (MAR) for the Code
Assistant. Suffix "-I" denotes the ID datastore setting.

TPS CodeLlama-7B Llama2-Chat-7B CodeLlama-13B Llama2-Chat-13B

REST-G 32 27 19 17
DReSD-G 37 32 21 22
REST-IG 72 55 39 32
DReSD-IG 75 61 47 36
DReSD-IBG 104 78 85 50

REST-N 34 28 19 18
DReSD-N 39 36 22 22
REST-IN 45 48 26 27
DReSD-IN 48 49 30 30
DReSD-IBN 52 53 32 33

Table 6: Tokens-per-second for a selection of LLMs
and configurations: "-G" = greedy decoding, "-I" =
uses the ID datastore, "-N" = nucleus sampling, "-B" =
our best setup (see section 5.5), LLM = auto-regressive
generation.

MAR CodeLlama-Instruct-7B Llama2-Chat-7B

REST-C 16.7 18.0
REST-M 9.3 8.0

DReSD-C 29.0 31.9
DReSD-M 18.5 17.3

Table 7: Mean Acceptance Rates with high (CodeAl-
paca, "-C") & low (MT-Bench, "-M") prompt alignment.

MAR CodeLlama-Instruct-7B Llama2-Chat-7B

REST-IG 10.0 8.4
DReSD-IG 25.2 22.4
REST-IN 11.0 9.4
DReSD-IN 25.3 23.4

Table 8: Mean Accepted Rates with an ID datastore "-I",
nucleus sampling "-N" and greedy "-G" decoding.

11


	Introduction
	Background
	Speculative Decoding
	Retrieval-based Speculative Decoding
	Sparse Retrieval for SD

	Dense Retrieval for SD

	DReSD
	Token Embeddings
	Z-scores Normalisation
	Dimensionality Reduction
	Magnitude Normalisation
	Datastore
	Batch Verification

	Experimental Setup
	Models
	Datasets and Tasks
	In-Distribution Data

	Metrics

	Results
	Mean Acceptance Rates
	Effective Dense Retrieval
	Importance of Datastore Alignment
	Optimal Draft Shape
	Walltime Improvements

	Conclusions
	Limitations
	Appendix

