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Abstract

Online experimentation with interference is a common challenge in modern appli-
cations such as e-commerce and adaptive clinical trials in medicine. For example,
in online marketplaces, the revenue of a good depends on discounts applied to
competing goods. Statistical inference with interference is widely studied in the
offline setting, but far less is known about how to adaptively assign treatments to
minimize regret. We address this gap by studying a multi-armed bandit (MAB)
problem where a learner (e-commerce platform) sequentially assigns one of pos-
sible A actions (discounts) to N units (goods) over T rounds to minimize regret
(maximize revenue). Unlike traditional MAB problems, the reward of each unit
depends on the treatments assigned to other units, i.e., there is interference across
the underlying network of units. With A actions and N units, minimizing regret
is combinatorially difficult since the action space grows as AN . To overcome
this issue, we study a sparse network interference model, where the reward of a
unit is only affected by the treatments assigned to s neighboring units. We use
tools from discrete Fourier analysis to develop a sparse linear representation of the
unit-specific reward rn : [A]N → R, and propose simple, linear regression-based
algorithms to minimize regret. Importantly, our algorithms achieve provably low
regret both when the learner observes the interference neighborhood for all units
and when it is unknown. This significantly generalizes other works on this topic
which impose strict conditions on the strength of interference on a known network,
and also compare regret to a markedly weaker optimal action. Empirically, we
corroborate our theoretical findings via numerical simulations.

1 Introduction

Online experimentation is an indispensable tool for modern decision-makers in settings ranging from
e-commerce marketplaces [Li et al., 2016] to adaptive clinical trials in medicine [Durand et al., 2018].
Despite the wide-spread use of online experimentation to assign treatments to units (e.g., individuals,
subgroups, or goods), a significant challenge in these settings is that outcomes of one unit are often
affected by treatments assigned to other units. That is, there is interference across the underlying
network of units. For example, in e-commerce, the revenue for a given good depends on discounts
applied to related or competing goods. In medicine, an individual’s risk of disease depends not only
on their own vaccination status but also on that of others in their network.

∗The research presented in this paper was conducted independently and is entirely unrelated to the author’s
current appointment at Amazon.
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Figure 1: A visual representation of sparse network interference. In this toy example, we have N = 9 units,
and visualize the interference pattern. For unit 2 (orange), its outcomes are affected by the treatments of its
neighbours (blue) N (2) = {1, 2, 3, 6, 7}.

Network interference often invalidates standard tools and algorithms for the design and analysis of
experiments. While there has been significant work done to develop tools for statistical inference in
the offline setting (see Section 2), this problem has mostly been unaddressed in the online learning
setting. In this paper, we address this gap by studying the multi-armed bandit (MAB) problem with
network interference. We consider the setting where a learner (online marketplace) assigns one of
possible A ∈ N actions (varying discounts) to N units (goods) over T rounds to minimize average
regret. In our setting, the reward of a unit n ∈ [N ] := {1, . . . , N} depends on the actions assigned
to other units.2 With N units and A actions, achieving low regret is difficult since there are AN

possible treatment assignments. Naively applying typical MAB methods such as the upper confidence
bound (UCB) algorithm [Auer et al., 2002] leads to regret that scales as O(

√
ANT ), which can be

prohibitively large due to the exponential dependence on N . Further, without any assumptions on the
interference pattern, regret scaling as Ω̃(

√
ANT ) is unavoidable due to lower bounds from the MAB

literature [Lattimore and Szepesvári, 2020].

To overcome this issue, we consider a natural and widely-studied model of sparse network inter-
ference, where the reward rn : [A]N → R for unit n is affected by the treatment assignment of at
most s other units, i.e., neighbours. See Figure 1 for a visualization. Under this model, we provide
algorithms that provably achieve low regret both when the learner observes the network (i.e., the
learner knows the s neighbors for all units n), and when it is unknown. Our results allow for more
general interference patterns and define regret with respect to a significantly stronger comparator
policy than existing results in the literature.
Contributions.

(i) For each unit n ∈ [N ], we use the Fourier analysis of discrete functions to re-express its
reward rn : [A]N :→ R as a linear function in the Fourier basis with coefficients θn ∈ RAN

.
We show sparse network interference implies θn is As sparse for all n ∈ [N ]. This sparse
linear representation motivates a simple ‘explore-then-commit’ style algorithm that uniformly
explores actions, then fits a linear model to estimate unit-specific rewards (i.e., θn).

(ii) With known interference (i.e., the learner knows the s neighbors for all n ∈ [N ]), our algorithm
exploits this knowledge to estimate rn by performing ordinary least squares (OLS) locally (i.e.,
per unit) on the Fourier basis elements where θn is non-zero. Our analysis establishes regret
Õ((AsT )2/3) for this algorithm.

(iii) With unknown interference, we use the Lasso instead of OLS locally which adapts to sparsity
of θn and establish regret Õ(N1/3(AsT )2/3). We argue this T 2/3 scaling cannot be improved.

(iv) Numerical simulations with network interference show our method outperforms baselines.

2 Related Work

Causal inference and bandits with interference. The problem of learning causal effects in the
presence of cross-unit interference has received significant study from the causal inference com-

2For any positive integer x, we let [x] := {1, . . . x}.
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munity (see [Bajari et al., 2023] for a thorough overview). Cross-unit interference violates basic
assumptions for causal identifiability, invalidating standard designs and analyses.3 As a result, authors
have developed methodologies for estimating causal effects under several models of interference
such as intra-group interference [Hudgens and Halloran, 2008, Rosenbaum, 2007], interference
neighborhoods [Gao and Ding, 2023, Ugander et al., 2013, Bhattacharya et al., 2020, Yu et al., 2022,
Cen et al., 2022], in bipartite graphs representative of modern online markets [Pouget-Abadie et al.,
2019, Bajari et al., 2021, 2023], in panel data settings [Agarwal et al., 2022] as well as under a general
model of interference, generally encoded via “exposure mappings” [Aronow, 2012, Aronow and
Samii, 2017]. Despite this large literature, there is much less work on learning with interference in
online settings. Jia et al. [2024] take an important step towards addressing this gap by studying MABs
with network interference, but assume a known, grid-like interference pattern, where the strength
of the interference decays as the ℓ1 distance between units grows. Moreover, their focus – unlike
ours – is on establishing regret rates with respect to the best constant policy, i.e. the best policy that
assigns each unit the same treatment. We also note that the authors consider a setting more closely
aligned with the adversarial bandit literature, whereas the results in this paper are closer to those in
the stochastic bandit literature. See Section 3 for a detailed description of these differences.

Bandits with high-dimensional action spaces. In MAB problems, regret is typically lower bounded
by Ω̃(

√
#Actions · T ), where #Actions = AN in our setting. Typically, this curse of dimensionality

is addressed by sparsity constraints on the rewards, where only a small fraction of actions have
non-zero rewards [Kwon et al., 2017, Abbasi-Yadkori et al., 2012, Hao et al., 2020]. Particularly
relevant to this paper is the work of Hao et al. [2020] who consider sparse linear bandits. The
authors utilize a “explore-then-commit” style algorithm to uniformly explore actions before using the
Lasso to estimate the sparse linear parameter. We utilize a similar algorithm but allow for arbitrary
interaction between neighboring units, instead using discrete Fourier analysis to linearly represent
rewards [Negahban and Shah, 2012, O’Donnell, 2014, Agarwal et al., 2023]. This is similar to
kernel bandits [Srinivas et al., 2009, Chowdhury and Gopalan, 2017, Whitehouse et al., 2024], which
assume there exists a feature map such that the rewards can be linearly represented (non-sparsely) in a
high-dimensional reproducing kernel Hilbert space. Also related are stochastic combinatorial bandits
[Chen et al., 2013, Cesa-Bianchi and Lugosi, 2012], in which the action space is assumed to be a
subset of {0, 1}N but rewards are typically inherently assumed to be linear in treatment assignments.
That is, these works typically assume the reward r = ⟨θ,a⟩ for a ∈ {0, 1}N , with valid actions a
often having at most s non-zero components. Our work (with A = 2), considers an arbitrary function
r : {0, 1}N → R, but explicitly constructs a feature map via discrete Fourier analysis such that
rewards can be represented linearly.

3 Model & Background

In this section, we first describe the problem setting, and our notion of regret. Then, we introduce
the requisite background on discrete Fourier analysis that we will use to motivate our algorithm and
theoretical analysis. Last, we introduce the model that we study in this paper. Throughout this paper,
we use boldface to represent vectors and matrices.

3.1 Problem Set-up

We consider an agent that sequentially interacts with an environment consisting of N individual
units over a series of T rounds. We index units n ∈ [N ], and rounds t ∈ [T ]. At each time step t,
the agent simultaneously administers each unit n action (or treatment) a ∈ [A]. Let ant denote the
treatment received by unit n at time step t, and let at = (a1t, . . . , aNt) ∈ [A]N denote the entire
treatment vector. Each unit n possesses an unknown reward mapping rn : [A]N → [0, 1]. Note that
we allow the reward for a given unit n to depend on the treatments assigned to all other units, i.e., we
allow for cross-unit interference. After assigning a treatment to all units in round t, the agent then
observes the noisy reward for unit n as Rnt = rn(at) + ϵnt. Denote the vector of observed rewards
as Rt := (R1t . . . RNt). We assume the following standard condition on the noise ϵnt.

Assumption 1. (ϵnt : n ∈ [N ], t ∈ [T ]) is a collection of mutually independent 1-sub-Gaussian
random variables.

3Specifically, it violates the stable unit treatment value assumption (SUTVA) [Rubin, 1978].
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Regret. To measure the performance of the learning agent, we define the average reward function
r̄ : [A]N → [0, 1] by r̄(a) = 1

N

∑N
n=1 rn(a). Then, for a sequence of (potentially random) treatment

assignments a1 . . .aT , the regret at the horizon time T is defined as the quantity

RegT =

T∑
t=1

r̄(a∗)−
T∑

t=1

r̄(at), (1)

where a∗ ∈ argmaxa∈[A]N r̄(a). In Sections 4 and 5, we provide and analyse algorithms that achieve
small regret with high probability.

Comparison to other works. Previous works studying network bandits such as Jia et al. [2024]
measure regret with respect to the best constant action a′ := argmaxa∈[A] r̄(a1) where 1 ∈
RN denotes the all 1 vector of dimension N . We compare regret to the optimal action a∗ ∈
argmaxa∈[A]N r̄(a), which is combinatorially more difficult to minimize since the policy space is
exponentially larger (AN vs A). Our setup is also different than the traditional MAB setting since
the agent in this problem does not observe a single scalar reward, but one for each unit (similar to
semi-bandit feedback in the combinatorial bandits literature [Cesa-Bianchi and Lugosi, 2012]). As
we show later, this crucially allows us to exploit local, unit-specific information that allow for better
regret rates.

3.2 Background on Discrete Fourier Analysis

In this section, we provide background on discrete Fourier analysis, which we heavily employ in both
our algorithm and analysis. Specifically, these Fourier-analytic tools provide a linear representation
of the discrete unit-specific rewards rn : [A]N → [0, 1], which will allow us to leverage well-studied
linear bandit algorithms. For the rest of paper, assume A is a power of 2. If instead, if 2ℓ < A < 2ℓ+1

for some ℓ ≥ 0, we can redundantly encode actions to obtain A′ = 2ℓ+1 total treatments. As seen
later, this encoding does not affect the overall regret.

Boolean encoding of action space. Since by assumption A is a power of 2, every action
a ∈ [A] can be uniquely represented as a binary number using log2(A) bits. Explicitly, let
ṽ(a) = (ṽ1(a), . . . ṽlog2(A)(a)) ∈ {0, 1}log2(A) denote this vectorized binary representation. For
ease of analysis, we use the Boolean representation instead v(a) = 2ṽ(a) − 1 ∈ {−1, 1}log2 A.
For a ∈ [A]N , define v(a) = (v(a1), . . . ,v(aN )) ∈ {−1, 1}N log2(A). Note each action a ∈ [A]N

corresponds to a unique Boolean vector v(a).

Boolean representation of discrete functions. Let F = {f : [A]N → R} and FBool = {f̃ :
{−1, 1}N log2(A) → R} be the collection of all real-values functions defined on the set [A]N

and {−1, 1}N log2(A) respectively. Since every a ∈ [A]N has a uniquely Boolean representation
v(a) ∈ {−1, 1}N log2(A), the set of functions F can be naturally identified within FBool. Specifically,
any f ∈ F can be identified with the function f̃ ∈ FBool by f(·) = f̃(v(·)).
Fourier series of Boolean functions. This identification is key for our use since the space of Boolean
functions admits a number of attractive properties.

(1) Hilbert space. FBool forms a Hilbert space defined by the following inner product: for any
h, g ∈ FBool, ⟨h, g⟩B = A−N

∑
x∈{−1,1}N log2(A) h(x)g(x). This inner product induces the norm

⟨h, h⟩B := ∥h∥2B = A−N
∑

x∈{−1,1}p h2(x).

(2) Simple orthonormal basis. For each subset S ⊂ [N log2(A)], define a basis function χS(x) =∏
i∈S xi where xi is the ith coefficient of x ∈ {−1, 1}N log2(A). One can verify that for any

S ⊂ [N log2(A)], ∥χS∥B = 1, and that ⟨χS , χS′⟩B = 0 for any S′ ̸= S. Since |{χS : S ⊂
[N log2(A)]}| = AN , the functions χS are an orthonormal basis of Fbool. We refer to χS as the
Fourier character for the subset S.

(3) Linear Fourier expansion of FBool. Any h ∈ Fbool can be expanded via the following Fourier
decomposition: h(x) =

∑
S⊂[N log2(A)] θSχS(x), where the Fourier coefficient θS is given by θS =

⟨h, χS⟩B . For h ∈ FBool, we refer to θh = (θS : S ⊂ [N log2(A)]) ∈ RAN

as the vector of Fourier
coefficients associated with it. For x ∈ {−1, 1}N log2(A), let χ(x) = (χS(x) : S ∈ [N log2(A))]) ∈
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{−1, 1}AN

be the vector of associated Fourier character outputs. For a ∈ [A]N , abbreviate χS(v(a))
and χ(v(a)) as χS(a) and χ(a) respectively.

3.3 Model: Sparse Network Interference

The unit-specific reward function rn : [A]N → R can be equivalently viewed as a real-valued Boolean
function over the hypercube {−1, 1}N log2(A). That is, rn takes as input a vector of actions a ∈ [A]N ,
converts it to a Boolean vector v(a) ∈ {−1, 1}N log2(A), and outputs a reward rn(a). From the
discussion in Section 3.2, we can represent unit n’s reward as rn(a) =

∑
S⊂[N log2(A)] θn,SχS(a) =

⟨θn,χ(a)⟩, where θn = (θn,S : S ⊆ N log2(A)) ∈ RAN

is a vector of Fourier coefficients.

Without any assumptions on the nature of the interference pattern, achieving low regret is impossible
since it requires estimating AN Fourier coefficients per unit. To overcome this fundamental challenge,
we impose a natural structure on the interference pattern which assumes that the reward rn only
depends on the the treatment assignment of a subset of s units. This assumption is often observed in
practice, e.g., the revenue of a good does not depend on discounts applied to all other goods, but only
those applied to similar or related ones.
Assumption 2. (Sparse Network Interference) For any unit n ∈ [N ], there exists a neighborhood
N (n) ⊂ [N ] of size |N (n)| ≤ s such that rn(a) = rn(b) for all a,b ∈ {−1, 1}N log2 A satisfying
(am : m ∈ N (n)) = (bm : m ∈ N (n)).

We typically assume that n ∈ N (n), i.e. unit n’s reward depends on its own treatment. This model
allows for completely arbitrary interference between these s units, generalizing the results of Jia et al.
[2024] who allow for interaction between all N units but assume the strength of interference decays
with a particular notion of distance between units. Next, we show using our Fourier analytic tools,
that Assumption 2 implies that the reward can be re-expressed as a sparse linear model. We prove the
following in Appendix A.
Proposition 3.1. Let Assumption 2 hold. Then, for any unit n, and action a ∈ [A]N , we have the
following representation of the reward rn(a) = ⟨θn,χ(a)⟩, where ∥θn∥0 ≤ As.4

Proposition 3.1 shows sparse network interference implies θn is As sparse with non-zero coordinates
corresponding to the interactions of treatments between units in N (n). Indeed, the Boolean encoding
v(a) can be represented as blocks of log2(A) dimensional Boolean vectors:

v(a) = (v(a)1:log2(A)︸ ︷︷ ︸
Unit 1’s treatment

, . . . ,v(a)(i−1) log2(A)+1:i log2(A)︸ ︷︷ ︸
Unit i’s treatment

, . . . ,v(a)(N−1) log2(A)+1:N log2(A)︸ ︷︷ ︸
Unit N ’s treatment

).

Unit n’s reward depends on a small collection of these blocks, those indexed by its neighbors. Define

B(n) :=
{
i ∈ [N log2(A)] : i ∈ [(m− 1) log2(A) + 1 : m log2(A)] for some m ∈ N (n)

}
.

B(n) contains the indices of v(a) corresponding to treatments of units m ∈ N (n) and the non-zero
entries of θn are indexed by subsets S ⊂ B(n). E.g., consider N = 3, A = 2, with N (1) = {1, 2}.
Then B(1) = {1, 2} and S ⊂ B(n) = {∅, {1}, {2}, {1, 2}}, where ∅ is the empty set.

Graphical interpretation. Assumption 2 can be interpreted graphically as follows. Let G = ([N ], E)
denote a directed graph over the N units, where E ⊆ [N ]× [N ] denotes the edges of G. For unit n,
we add to the edge set E a directed edge (n,m) for each m ∈ N (n), thus justifying calling N (n) the
neighborhood of n. That is, unit n’s reward is affected by the treatment of another unit m only if
there is a directed edge from n to m. See Figure 1 for an example of a network graph G.

4 Network Multi-Armed Bandits with Known Interference

We now present our algorithms and regret bounds when the interference pattern is known, i.e. the
learner observes G and knows N (n) for each unit n. The unknown case is analysed in Section 5.
Assuming knowledge of G is reasonable in e-commerce, where the platform (learner) assigning
discounts (treatments) to goods (units) understands the underlying similarity between goods.

4For a vector x ∈ Rd, we define ∥x∥0 :=
∑d

i=1 1(xi ̸= 0)
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Our algorithm requires the following additional notation: for a ∈ [A]N , let χa(Bn) = (χS(a) : S ⊂
B(n)) ∈ {−1, 1}As

, where χS(a) are the Fourier characteristics corresponding to subsets of B(n).
Further, let U([A]N ) denote the uniform discrete distribution on the action space [A]N .

Algorithm 1 Network Explore-Then-Commit with Known Interference

1: Input: Time horizon T , exploration steps E, interference graph G = ([N ], E).
2: Sample a1, . . . ,aE ∼i.i.d. U

(
[A]N

)
3: Observe reward vectors Rt = (R1t, · · · , RNt) for t ∈ [E], where Rnt = ⟨θn,χ(at)⟩+ ϵnt.
4: for n ∈ [N ] do
5: Let Xn = (χai(Bn) : i ∈ [E]) ∈ {−1, 1}E×As

// χa(Bn) = (χS(a) : S ⊂ B(n))
6: Let Yn = (Rn1, . . . , RnE).
7: Set θ̃n := argminθ∈RAs ∥ Yn −Xnθ∥22
8: Define θ̂n by θ̂nS = θ̃nS if S ⊂ B(n) else set θ̂nS = 0. // Coordinates of θ̃n

indexed by subsets of B(n)
9: Set θ̂ := N−1

∑N
n=1 θ̂n.

10: Play â := argmaxa∈[A]N ⟨θ̂,χ(a)⟩ for the T − E remaining rounds.

Algorithm 1 is a “explore-then-commit” style which operates in two phases. First, the learner assigns
units treatments uniformly at random for E rounds, and observes rewards for each unit. In the second
phase, the algorithm performs least squares regressions of the observed rewards against χa(Bn)
for each unit n. This is because when G is known, the learner knows the positions of the non-zero
elements of θn which are precisely the subsets of B(n), Once the estimates θ̂n are obtained for each
unit, they are aggregated to estimate the average reward for each action a ∈ [A]N . In the remaining
T − E rounds, the learner greedily plays the action with the highest estimated average reward.

Determining exploration length E. Theoretically, we detail the length of E below to achieve low
regret in Theorem 4.1. Practically, the learner can continue to explore and assess the error of the
learnt θ̂n via cross-validation (CV). Once the CV error for all units falls below a (user-specified)
threshold, commit to the action with highest average reward. We use this approach for selecting E in
our simulations in Section 6.

4.1 Regret Analysis

Here, we establish high-probability regret bounds of Algorithm 1 using O(·) notation. We prove the
following in Appendix B.
Theorem 4.1. Suppose Assumptions 1 and 2 hold. For T = Ω

(
A2s[log(2N/δ) + s log(A)]

)
and

any failure probability δ ∈ (0, 1), Algorithm 1 run with E := (TAs)2/3
[
log
(
N
δ

)
+ s log (A)

]1/3
satisfies

RegT = O
(
[s log(A/δ)]

1/3
(TAs)2/3

)
,

with probability at least 1− δ.

Establishing Theorem 4.1 requires trading-off the exploration time E to accurately estimate θn with
the exploitation time. It also requires T to be large enough such that we can accurately estimate θn.
Next, we compare regret of Algorithm 1 to other methods, ignoring any dependencies on logarithmic
factors to ease the discussion.

Comparison to other approaches.

(a) Naïve MAB learner. A naïve learner who treats the entire network of units as a single multi-
armed bandit system with AN actions will obtain regret Õ(

√
TAN ). For sparse networks with

s ≪ N and T ≪ AN , our regret bound is significantly tighter.
(b) Global estimation. An alternate algorithm would be to estimate Fourier coefficients θ :=

1/N
∑N

i=1 θn of r̄ directly rather than estimate each θn (i.e., rn) individually. That is, perform

6



the least squares regression by compressing the observed, unit-specific rewards into Rt :=

N−1
∑N

n=1 Rtn. An analysis similar to the one presented in Appendix B would yield rate of
Õ(s1/3(TNAs)2/3), which suffers an additional N2/3 cost as compared to Theorem 4.1.

(c) Jia et al. [2024]. Comparing regret to this work is difficult because they assume decaying
interference strength on a grid-like network structure and establish regret only with respect to
the best constant action, i.e., a′ := argmaxa∈[A] r̄(a1). We also note that the framework of Jia
et al. [2024] is closer to that of adversarial bandits, whereas our framework is closer to that of
stochastic bandits.

5 Network Multi-Armed Bandits with Unknown Interference

Next, we consider the case in which the underlying network G governing interference is not known.
We present Algorithm 2, which extends Algorithm 1 to account for the fact that the learner does not
observe the network graph G and thus does not know N (n) for all n. Unknown network interference
is common in medical trials, e.g., vaccine roll-outs where an individual’s social network (i.e., G) is
unavailable to the learner.

Algorithm 2 Network Explore-Then-Commit with Unknown Interference

1: Input: Time horizon T , exploration steps E, regularization parameter λ > 0
2: Sample a1, . . . ,aE ∼i.i.d. U

(
[A]N

)
3: Observe reward vectors Rt = (R1t, · · · , RNt) for t ∈ [E], where Rnt = ⟨θn,χ(at)⟩+ ϵnt.
4: Let X = (χ(ai) : i ∈ [E]) ∈ {−1, 1}E×AN

5: for n ∈ [N ] do
6: Let Yn := (Rn1, . . . , RnE).
7: Set θ̂n := argminθ∈RAN

{
1
2E ∥Xθ −Yn∥22 + λ∥θ∥1

}
8: Set θ̂ := N−1

∑N
n=1 θ̂n.

9: Play â := argmaxa∈[A]N ⟨θ̂,χ(a)⟩ for the T − E remaining rounds.

Algorithm 2 is similar to Algorithm 1, but differs in how it learns θn. Since G is unknown, the
learner cannot identify the Fourier characteristics which correspond to the non-zero elements of θn.
Therefore, we regress against the entire Fourier characteristic χ(a), using Lasso instead of ordinary
least squares to adapt to the underlying sparsity of θn. A similar CV approach, as discussed after
Algorithm 1, can be used to determine both the exploration length E, and regularization parameter λ.

Low-order interactions. When AN is very large, the computational cost of running the Lasso can
be large. Further, if the underlying network is indeed believed to be sparse, one can regress against
all characteristics χS where |S| ≤ d. A similar approach is explored in Yu et al. [2022]. In practice,
one can choose degree d via CV.

Partially observed network graph G. In many settings, network interference graphs G are partially
observed. For example, on e-commerce platforms, interference patterns between established classes
of goods is well-understood, but might be less so for newer products. Our framework can naturally
be adapted to this setting by running Algorithm 1 on the observed portion of G, and Algorithm 2 on
the unobserved graph. Specifically, if N (n) is observed for unit n, replace the Lasso in line 7 of
Algorithm 2 with OLS (i.e., line 8) in Algorithm 1.

5.1 Regret Analysis

We now establish high-probability bounds on the regret for Algorithm 2 in Theorem 5.1. We prove
the following in Appendix C.
Theorem 5.1. Suppose Assumptions 1 and 2 hold, and assume T = Ω(A2s [log(N/δ) +N log(A)]).
Then, with failure probability δ ∈ (0, 1), Algorithm 2 run with λ = 4

√
E−1 log(2AN ) +

4
√
E−1 log

(
2N
δ

)
where E := (TAs)2/3

[
log
(
N
δ

)
+N log(A)

]1/3
satisfies

RegT = O
(
[N log(A/δ)]

1/3
(TAs)2/3

)
7



with probability at least 1− δ.

We note the regret bound requires the horizon T to be sufficiently large in order to learn the network
graph G — a necessary detail in order to ensure Lasso convergence. This is because the proof of
Theorem 5.1 requires establishing that the matrix of Fourier coefficients for the sampled actions (i.e.,
design matrix X) satisfies the the necessary regularity conditions to learn θn accurately. Specifically,
we show that X is incoherent, i.e., approximately orthogonal, with high probability. See Appendix
C for a formal definition of incoherence, and Rigollet and Hütter [2023], Wainwright [2019] for a
detailed study of the Lasso.

Comparison to other approaches. Algorithm 2 achieves the same dependence in A, s, T as in the
known interference case, but pays a factor of N1/3 as compared to s1/3. This additional cost which
is logarithmic in the ambient dimension AN is typical in sparse online learning. This regret rate is
still significantly lower than naïve approaches that scale as O(

√
ANT ) when one assumes T is much

smaller then AN . Further, as argued before, estimating per-unit rewards (i.e., θn) results in lower
regret as compared to directly estimating r̄ by a factor of N2/3.

Dependence on horizon T . Generally, the dependence on T cannot be improved. Hao et al. [2020]
lower bound regret for sparse linear bandits as Ω̃((sparsity ·T )2/3), i.e., Ω̃((As ·T )2/3) in our setting.
They show improved dependence on T can only be achieved under stronger assumptions on the size
of non-zero coefficients of θn.

6 Simulations

In this section, we perform simulations to empirically validate our algorithms and theoretical findings.
We compare Algorithms 1 and 2 to UCB. We could not compare to Jia et al. [2024] since we did not
find a public implementation. For our Algorithms, we choose all hyper-parameters via 3-fold CV,
and use the scikit-learn implementation of the Lasso. Code for our methods and experiments
can be found at https://github.com/aagarwal1996/NetworkMAB. Our experimental setup and
results are described below.

Data Generating Process. We generate interference patterns with varying number of units N ∈
{5, . . . , 10}, and A = 2. For each N , we use s = 4. We generate rewards rn = ⟨θn,χ(a)⟩, where
the non-zero elements of θn (i.e., θn,S for S ⊂ Bn) are drawn uniform from [0, 1]. We normalize
rewards so that they are contained in [0, 1], and add 1 sub-gaussian noise to sampled rewards. We
measure regret as we vary T , and set a max horizon of Tmax = 10 · 2N for each N . Classical MAB
algorithms need the horizon T to satisfy T > 2N since they first explore by pulling all 2N arms. We
emphasize that these time horizons scaling as T = C · AN are often unreasonable in practice, as
even for A = 2 and N = 100 there would already be ≈ 1.27e30 actions to explore. We include such
large time horizons for the sake of making a complete comparison. Our methods circumvent the need
for exponentially large exploration times by effectively exploiting sparsity.

Results. We plot the regret at the maximum horizon time as a function of N , and the cumulative
regret as we vary T for N = 13 in Figure 2 below. Our results are averaged over 5 repetitions, with
shaded regions representing 1 standard deviation measured across repetitions. Algorithms 1 and 2 are
denoted by Network MAB (Known) and Network MAB (Unknown) respectively. We discuss both
sets of plot separately below.

Regret Scaling with N . We plot the cumulative regret when T = Tmax for N = 9 in Figure 2 (a).
Classical MAB algorithms such as UCB see an exponential growth in the regret as N increases.
Both Algorithm 1 and Algorithm 2 have much milder scaling with N . Algorithm 1 uses G to reduce
the ambient dimension of the regression, hence suffering less dependence on N as compared to
Algorithm 2.

Regret Scaling with T . We plot the cumulative regret for N = 9 in Figure 2 (b). Despite the poorer
scaling of our regret bounds with T , our algorithms lead to significantly better regret than UCB
which takes a large horizon to converge. Algorithm 1 is able to end its exploration phase earlier than
algorithm 2 since it does not need additional samples to learn the sparsity unlike the Lasso.
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(a) Cumulative regret vs number of units N . (b) Cumulative regret scaling vs horizon T .

Figure 2: We simulate rewards via a sparse network interference pattern, and plot the cumulative regret as a
function of N and T . Our Network MAB algorithms out-perform UCB, irrespective of knowledge of G, and
does not suffer exponential dependence in number of units N . The results also confirm our theoretical results
that knowledge of G leads Algorithm 1 to have milder dependence in N and better regret than Algorithm 2.

7 Conclusion

This paper introduces a framework for regret minimization in MABs with network interference,
a ubiquitous problem in practice. We study this problem under a natural sparsity assumption on
the interference pattern and provide simple algorithms both when the network graph is known
and unknown. Our analysis establishes low regret for these algorithms and numerical simulations
corroborate our theoretical findings. The results in this paper also significantly generalize previous
works on MABs with network interference by allowing for arbitrary and unknown (neighbourhood)
interference, as well as comparing to a combinatorially more difficult optimal policy. This paper also
suggests future directions for research such as designing algorithms that achieve better dependence on
T in the known graph setting. Establishing lower bounds to understand optimal algorithms will also
be valuable future work. Further extensions could also include considering interference in contextual
bandits or reinforcement learning problems. We also hope this work serves as a bridge between
online learning and discrete Fourier analysis.
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A Proof of Proposition 3.1

By the discussion in Section 3, recall that for any action a ∈ [A]N and unit n, the reward can be
expressed as rn = ⟨θn,χ(a)⟩. To establish the proof, it suffices to show that for any S ⊂ [N log2(A)]
satisfying S \ B(n) ̸= ∅, ⟨χS , rn⟩B = 0. Let i ∈ S \ B(n) be an arbitrary index, then, we have,

⟨χS , rn⟩B = A−N
∑

x∈{−1,1}N log2(A)

rn(x)χS(x)

= A−N


∑

x∈{−1,1}N log2(A)

xi=1

rn(x)χS(x) +
∑

x∈{−1,1}N log2(A)

xi=−1

rn(x)χS(x)


= A−N


∑

x∈{−1,1}N log2(A)

xi=1

xirn(x)χS\{i}(x) +
∑

x∈{−1,1}N log2(A)

xi=−1

xirn(x)χS\{i}(x)


= A−N


∑

x∈{−1,1}N log2(A)

xi=1

rn(x)χS\{i}(x)−
∑

x∈{−1,1}N log2(A)

xi=−1

rn(x)χS\{i}(x)


= 0,

where the final equality follows from the fact that, by Assumption 2, rn(x) = rn(x
′) when x and x′

differ only in positions indexed by i /∈ B(n). Thus, the only subsets S ⊂ [N log2(A)] where we can
have ⟨rn, χS⟩B ̸= 0 are those satisfying S ⊂ B(n), which proves the desired result.

B Proofs for for Known Interference

In this section, we prove Theorem 4.1. We establish helper lemmas before proving Theorem 4.1.

B.1 Helper Lemmas

Recall the following notation before establishing our results. We defined B(n) := {i ∈ [N log2(A)] :
i ∈ [(m − 1) log2(A) + 1 : m log2(A)] for m ∈ N (n)} as the set of indices of the treatment
vector v(a) ∈ {−1, 1}N log2(A) belonging to neighbors m ∈ N (n). Additionally, Xn = (χai(Bn) :
i ∈ [E]) ∈ {−1, 1}E×As

, where χa(Bn) = (χS(a) : S ⊂ B(n)) ∈ {−1, 1}As

. For a matrix
A ∈ RN×d, let σmin(A) denote its minimum singular value. To proceed, we quote the following
theorem.

Lemma B.1 (Theorem 5.41 in Vershynin [2018]). Let A ∈ RN×d such that its rows Ai are
independent isotropic random vectors in Rd. If ∥Ai∥2 ≤

√
m almost surely for all i ∈ [N ], then,

with probability at least 1− δ, one has

σmin(A) ≥
√
N −

√
cm log(2d/δ)

for universal constant c > 0.

Lemma B.2 (Minimum Eigenvalue of Fourier Characteristics). There exists a positive constant
C4 > 0 such that if E ≥ C4As log(2As/δ), then,

σmin

(
XT

nXn

E

)
≥ 1

2
,

with probability at least 1− δ.

Proof. We begin by showing the conditions for Lemma B.1 are satisfied. First, we prove Xn

is isotropic, i.e., E[χa(Bn) (χ
a(Bn))

T
] = IAs , where the expectation is taken over uniformly
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sampling actions a uniformly and random from [A]N . This follows since for any two subsets
S, S′ ⊂ [N log2(A)],

E[χS(a)χS′(a)] =
1

AN

∑
a∈AN

χS(a)χS′(a)

= ⟨χS , χS′⟩B = 1[S = S′]

Since, χa(Bn) ∈ {−1, 1}As

for all actions a ∈ [A]N , ∥χa(Bn)∥2 ≤
√
As. Hence, by Lemma B.1,

σmin(Xn) ≥
√
E −

√
c log(2As/δ)As. Next, using the fact that σmin(X

T
nXn) = σ2

min(Xn), we
get that

σmin

(
XT

nXn

E

)
≥

E − 2
√
cEAs log(2As/δ)

E
.

Finally, plugging in As log(2As/δ) ≤ E/C for an appropriate C gives us the claimed result.

We quote the following theorem regarding the ∥ · ∥2 error of θ̂n.
Lemma B.3. [Theorem 2.2 in Rigollet and Hütter [2023]] Assume that Y = Xθ∗ + ϵ, where ϵ is 1
sub-Gaussian, where X ∈ RE×d. If d ≤ E, and covariance matrix ΣX = (XTX)/E has rank d,
then we have with probability at least 1− δ,

∥Xθ∗ −Xθ̂∥2 ≤ C1

√
d+ log(1/δ)

E
,

where θ̂ = argminθ∈Rd ∥Y−Xθ∥22 is the least squares estimator, and C1 > 0 is a positive universal
constant.

While the above lemma bounds the mean-squared error the least-squares estimate, in our applications
we can about bounding the ℓ2 distance between θ∗ and θ̂. Simple rearrangement on the above implies
that, with probability at least 1− δ, we actually have

∥θ∗ − θ̂∥2 ≤ C1

√
d+ log(1/δ)

E · σmin(ΣX)
.

If, in particular, σmin

(
X⊤X
E

)
≥ 1/2, the above can be simplified to

∥θ∗ − θ̂∥2 ≤ C2

√
d+ log(1/δ)

E

with probability at least 1− δ for some new, appropriate universal constant C2 > 0.

B.2 Proof of Theorem 4.1

Proof. Recall the notation θ̂ = N−1
∑N

n=1 θ̂n, and â = argmaxa∈[A]N ⟨θ̂,χ(a)⟩. The average
reward r(â) can be bounded using the definition of â and Holder’s inequality as follows,

r(a∗)− r(â) = ⟨θ,χ(a∗)− χ(â)⟩

= ⟨θ − θ̂,χ(a∗)− χ(â)⟩+ ⟨θ̂,χ(a∗)− χ(â)⟩︸ ︷︷ ︸
≤0

≤ ⟨θ − θ̂,χ(a∗)− χ(â)⟩

=
1

N

N∑
i=1

⟨θn − θ̂n,χ(a
∗)− χ(â)⟩

=
1

N

N∑
i=1

⟨θn − θ̂n,χ
a∗
(Bn)− χâ(Bn)⟩

≤ 1

N

N∑
i=1

∥θn − θ̂n∥2∥χa∗
(Bn)− χâ(Bn)∥2
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Using ∥χa(Bn)∥2 ≤
√
As then gives us

r(a∗)− r(â) ≤
√
As

N

N∑
i=1

∥θn − θ̂n∥2 (2)

Next, define “good” events for any unit n ∈ [N ] as

Gn1 :=

{
σmin

(
XT

nXn

E

)
≥ 1

2

}
and Gn2 :=

{
∥θ̂n − θn∥2 ≤ C2

√
E−1

[
As + log

(
4NAs

δ

)]}
,

where C2 > 0 is as stated above. Notice that there exists a sufficiently large uni-
versal constant C3 > 0, such that T ≥ C3

(
A2s[log(2N/δ) + s log(A)]

)
implies E =

(TAs)2/3
[
log
(
N
δ

)
+ s log (A)

]1/3 ≥ C4As log(4NAs/δ). Hence, for any given n ∈ [N ], we
have via Lemma B.2 that Gn1 holds with probability 1 − δ

2N Conditioned on Gn1, we get that
P(Gn2|G1) ≥ 1− δ

2N . Summarizing, we get that for any n ∈ [N ], the following holds

∥θ̂n − θn∥2 ≤ C2

√
E−1

[
As + log

(
4NAs

δ

)]
≤ C5

√
E−1As log

(
4NAs

δ

)
,

with probability at least
(
1− δ

2N

)2 ≥ 1− δ/N , where C5 > 0 is an appropriate constant. Taking a
union bound over all N units, and then substituting into (2) gives us

r(a∗)− r(â) ≤ C5As

√
E−1 log

(
4NAs

δ

)
Finally, using this, the cumulative regret can be upper bounded with probability 1− δ as follows:

RegT =

T∑
t=1

(r̄(a∗)− r̄(â))

=

E∑
t=1

(r̄(a∗)− r̄(â)) +

T∑
t=E+1

(r̄(a∗)− r̄(â))

≤ E + C5TAs

√
E−1 log

(
4NAs

δ

)
Substituting E as in the theorem statement completes the proof.

C Proofs for Unknown Interference

In this appendix, we prove Theorem 5.1. Our proof requires the following lemmas.

C.1 Helper Lemmas for Theorem 5.1

The first lemma we prove details the (high-probability) incoherence guarantees of the uniformly
random design matrix under the Fourier basis. Recall the following notation before stating and
proving our results. We denote E as our exploration length, and χ(at) as the Fourier characteristic
associated with action at ∈ [A]N . Let X = (χ(at) : t ∈ [E]) ∈ {−1, 1}E×AN

Additionally, we
require the following definition of incoherence.
Definition C.1. We say a matrix A ∈ RE×d is s-incoherent if ∥A⊤A− Id∥∞ ≤ 1

32s , where Id is
the identity matrix of dimension d.

Lemma C.2 (Incoherence of Fourier Characteristics). For E ≥ 1, suppose a1, . . . ,aE
iid∼

U({−1,+1}N log2(A)). Then,

P

∥∥∥∥X⊤X

E
− IAN

∥∥∥∥
∞

≤

√√√√2 log
(

2A2N

δ

)
E

 ≥ 1− δ,
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where ∥A∥∞ = maxi,j |Ai,j | denotes the maximum coordinates of a matrix. Thus, if E ≥
4096A2s

[
log
(
2
δ

)
+ 2N log (A)

]
, X is As-incoherent with probability at least 1− δ.

Proof. Recall that, for any a ∈ [A]N , χ(a) := (χS1(a), . . . , χSAN
(a)), where S1, . . . , SAN is some

fixed enumeration of subsets S ⊂ [N log2(A)]. Thus, each entry of (X⊤X)/E can be viewed as
being indexed by subsets S, S′ ⊂ [N log2(A)].

To establish (C.2), we first examine diagonal elements of (X⊤X)/E. For S ⊂ [N log2(A)], we have(
X⊤X

E

)
S,S

=
1

E

(
E∑
t=1

χ(at)(χ(at))
⊤

)
S,S

=
1

E

E∑
t=1

χS(at)χS(at) = 1, (3)

where the last equality follows from the fact that (χS(at))
2 = 1.

Next, we consider off-diagonal elements, and bound their magnitude. Before doing so, we require
the following. For subsets S, S′ ⊂ [N log2(A)], let S∆S′ denote the symmetric difference of two
subsets. For any two subsets S, S′ ⊂ [N log2(A)], the product of their Fourier characteristics is,

χS(at)χS′(at) =

(∏
i∈S

v(at)i

)(∏
i′∈S′

v(at)i′

)
=

∏
i∈S∆S′

v(at)i.

Using this, for any distinct subsets S, S′, we have(
X⊤X

E

)
S,S′

=
1

E

E∑
t=1

χS(at)χS′(at) =
1

E

E∑
t=1

∏
i∈S∆S′

v(at)i.

Since S ̸= S′, and at ∼ U({−1, 1}N log2(A)), the set of random variables {v(at)i : i ∈ S∆S′} are
independent Rademacher random variables. Applying Hoeffding’s inequality for ϵ > 0 gives us

P

((
X⊤X

E

)
S,S′

≥ ϵ

)
≤ 2 exp

(
−Eϵ2

2

)
.

Applying the inequality above and taking a union bound over all A2N elements of (X⊤X)/E

P

 max
S,S′⊂[N log2(A)]

S ̸=S′

(
X⊤X

E

)
S,S′

≥ ϵ

 ≤ 2A2N exp

(
−Eϵ2

2

)
.

Choosing ϵ =

√
2E−1 log

(
2A2N

δ

)
yields,

P

 max
S,S′⊂[N log2(A)]

S ̸=S′

(
X⊤X

E

)
S,S′

≥

√√√√2 log
(

2A2N

δ

)
E

 ≤ δ. (4)

To complete the proof, observe that (3) implies that∥∥∥∥X⊤X

E
− IAN

∥∥∥∥
∞

= max
S,S′⊂[N log2(A)]

S ̸=S′

(
X⊤X

E

)
S,S′

.

Substituting this observation into (4) above completes the proof.

In addition to the above lemma, we leverage the following Lasso convergence result. We state a
version that can be found in the book on high-dimensional probability due to Rigollet and Hütter
[2023].
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Lemma C.3 (Theorem 2.18 in [Rigollet and Hütter, 2023] ). Suppose that Y = Xθ∗+ ϵ, where X ∈
RE×d, θ∗ ∈ Rd is s-sparse, and ϵ has independent 1-sub-Gaussian coordinates. Further, suppose
X⊤X
T is s-incoherent. Then, for any δ ∈ (0, 1) and for λ = 4

√
E−1 log(2d) + 4

√
E−1 log(δ−1),

we have, with probability at least 1− δ

∥θ∗ − θ̂∥2 ≤ C

√
sE−1 log

(
2d

δ

)
where θ̂ denotes the solution to the Lasso and C > 0 is some absolute constant.

Using standard arguments (see the proof of Theorem 2.18 in Rigollet and Hütter [2023] or the
statement of Theorem 7.3 in Wainwright [2019]), it can be further deduced that ∥θ∗ − θ̂∥1 ≤
4
√
s∥θ∗ − θ̂∥2, so we actually have that, for any δ ∈ (0, 1), with probability at least 1− δ,

∥θ∗ − θ̂∥1 ≤ Cs

√
E−1 log

(
2d

δ

)
,

where C > 0 is again some absolute constant.

C.2 Proof of Theorem 5.1

Proof. Define θ = N−1
∑N

n=1 θn. Recall the notation θ̂ = N−1
∑N

n=1 θ̂n, and â =

argmaxa∈[A]N ⟨θ̂,χ(a)⟩. For any round t ∈ {E + 1, . . . , T}, we greedily play the action â. The
average reward r(â) can be bounded using the definition of â and Holder’s inequality as follows,

r(a∗)− r(â) = ⟨θ,χ(a∗)− χ(â)⟩

= ⟨θ − θ̂,χ(a∗)− χ(â)⟩+ ⟨θ̂,χ(a∗)− χ(â)⟩︸ ︷︷ ︸
≤0

≤ ⟨θ − θ̂,χ(a∗)− χ(â)⟩

≤ ∥θ − θ̂∥1∥χ(a∗)− χ(â)∥∞.

Next, substituting the definition of θ, θ̂, ∥χ(a)∥∞ = 1, and using the triangle inequality into the
equation above gives us,

r̄(a∗)− r̄(â) ≤ 2∥θ − θ̂∥1 ≤ 2

∥∥∥∥∥ 1

N

N∑
n=1

(
θn − θ̂n

)∥∥∥∥∥
1

≤ 2

N

N∑
n=1

∥∥∥θn − θ̂n

∥∥∥
1
. (5)

Let us define the “good” events by

G1 := {X is As-incoherent} and G2 :=

{
∀n ∈ [N ], ∥θ̂n − θn∥1 ≤ CAs

√
E−1 log

(
4NAN

δ

)}
where C > 0 is the constant following the discussion of Lemma C.3. Let us define the global “good”
event by G := G1 ∩G2. We show P(G) ≥ 1− δ.

First, there is a universal constant C ′ > 0 such that E ≥ 4096A2s [log(4/δ) + 2N log(A)] when
T ≥ C ′A2s[log(N/δ)+N log(A)]. Thus, by Lemma C.2, we know the matrix X with χa1 , . . . ,χaE

as its rows is As-incoherent least 1− δ
2 , i.e. P(G1) ≥ 1− δ

2 .

Next, conditioning on G1 and applying Lemma C.3 alongside a union bound over the N units yields

∥θ̂n − θn∥1 ≤ CAs

√
E−1 log

(
4NAN

δ

)
,

16



for all n ∈ [N ] with probability at least 1 − δ
2 , i.e. P(G2 | G1) ≥ 1 − δ

2 . Thus, in total, we have
P(G) = P(G1)P(G2 | G1) ≥ (1− δ/2)2 ≥ 1− δ. We assume we are operating on the good event
G going forward.

Plugging the per-unit ℓ1 norms into (5), the cumulative regret can be upper bounded with probability
1− δ as follows:

RegT =

T∑
t=1

(r̄(a∗)− r̄(â))

=

E∑
t=1

(r̄(a∗)− r̄(â)) +

T∑
t=E+1

(r̄(a∗)− r̄(â))

≤ E +
2T

N

(
N∑

n=1

∥∥∥θn − θ̂n

∥∥∥
1

)

≤ E + 2CT · As

√
E−1 log

(
4NAN

δ

)
(6)

Clearly, we should select E to roughly balance terms (up to multiplicative constants). In particular,
using the choice of E as

E := (TAs)2/3
[
log

(
N

δ

)
+N log(A)

]1/3
and substituting E into (6) gives us

RegT ≤ O
(
(N log(AN/δ))1/3(TAs)2/3

)
with probability at least 1− δ, precisely the claimed result.
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paper’s contributions and scope?
Answer: [Yes]
Justification: in the abstract/introduction, we claim that we contribute (a) a framework for
studying bandits with sparse interference, (b) algorithms for obtaining low regret under this
framework, and (c) simulations to empirically back up our theoretical findings. We present
these, respectively, in Section 3, Sections 4 and 5, and Section 6 of our paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss many shortcomings of our contributions. For instance, we note
that in the known interference setting, our main algorithm obtains a dependence on the time
horizon that grows as T 2/3, whereas one would ideally hope for T 1/2 dependence. We also
address computational aspects of the Lasso in Section 5, providing heuristic approaches for
speedup.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We detail all of our assumptions either in Section 3 or in the statements of
theorems. We also provide full, rigorous proof of our results in the appendices.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully describe our theoretical framework, and painstakingly detail all
algorithms, including how to choose free parameters. In our experimentation section, we
provide full details on our setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have attached our code as a supplement so it is viewable by reviewers. We
have redacted written where the link to the repo will be included upon acceptance.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We fully describe our simulations in Section 6 in our work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars for our simulation results and we describe the methodol-
ogy by which we produce our error bars.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Our experiments are extremely lightweight and can be run on any modern
laptop.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics and have found no violations in our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: There are no negative societal impacts of our work. We have mentioned as
positive societal impacts applicability of our results to tasks such as medical trials.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not produce any models or release any data that may be misused.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not use existing assets in our work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new assets in our work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use crowdsourcing nor do we conduct research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Same as the justification for the above bullet point.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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