
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROTEX: A RETRIEVAL-AUGMENTED APPROACH
FOR PROTEIN FUNCTION PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Mapping a protein sequence to its underlying biological function is a critical prob-
lem of increasing importance in biology. In this work, we propose ProtEx, a
retrieval-augmented approach for protein function prediction that leverages exem-
plars from a database to improve accuracy and robustness and enable generalization
to unseen classes. Our approach relies on a novel multi-sequence pretraining task,
and a fine-tuning strategy that effectively conditions predictions on retrieved ex-
emplars. Our method achieves state-of-the-art results across multiple datasets and
settings for predicting Enzyme Commission (EC) numbers, Gene Ontology (GO)
terms, and Pfam families. Our ablations and analysis highlight the impact of condi-
tioning predictions on exemplar sequences, especially for classes and sequences
less well represented in the training data.

1 INTRODUCTION

Proteins perform a wide array of functions within organisms, captured by biologists using ontologies
such as Gene Ontology (GO) terms (Ashburner et al., 2000), Enzyme Commission (EC) numbers (Tip-
ton & Boyce, 2000), and Pfam families (Bateman et al., 2004). Mapping proteins to such functional
annotations can address key problems in biology, medicine, and chemistry (Price et al., 2018; Durairaj
et al., 2023). However, given the expense of wet lab experiments, and the rapid growth of protein
sequence databases (Uniprot, 2023), it is critical to extend coverage using computational protein
function predictions. Protein function prediction techniques largely fall into two categories, with
different strengths and weaknesses. Homology-based approaches align the query protein to annotated
sequences via methods such as BLAST (Altschul et al., 1997) or profile hidden Markov models (Eddy,
1998) allowing propagation of a label to the query. More recently, deep learning approaches directly
predict a protein’s function from its amino acid sequence.

While these approaches have been successful, key obstacles remain. A critical challenge is out-of-
distribution generalization across both label and sequence space. For example, recent expansions of
the Pfam database were driven by the identification of new classes (Mistry et al., 2021), for which
there are few annotated sequences. Moreover, a substantial number of proteins belong to the “dark
matter" of the protein universe (Durairaj et al., 2023), i.e. their sequences are dissimilar from those
of any characterized proteins, posing considerable challenges for both homology-based and deep
learning methods.

In this work, we propose ProtEx, a method for Protein function prediction via retrieved Exemplars.
ProtEx is a semiparametric approach that combines aspects of non-parametric similarity search
based methods and parametric deep learning models to achieve increased accuracy and robustness.
ProtEx is inspired by retrieval augmented methods in natural language processing and vision,
e.g. (Lewis et al., 2020; Pasupat et al., 2021; Izacard et al., 2023; Yu et al., 2023a; Long et al., 2022),
which show advantages over fully parametric models in capturing tail information (Kandpal et al.,
2023) and performing few-shot tasks through conditioning on task exemplars (Min et al., 2022; Chen
et al., 2022).

As shown in Figure 1, given a query protein and candidate label, ProtEx first uses a homology-based
retriever (such as BLAST) to obtain a class-conditioned set of positive and negative exemplars from
the training set. Our neural model is trained to make a task-based comparison across the set of
exemplars and the query to output a binary decision of whether the query sequence has the same
label as the positive exemplars. To enable the model to efficiently learn the relationship between

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

…

Sequence to classify Candidate label

Retriever
Positive and negative

exemplar sequences for
candidate label

… …✓ ✓ … …✗ ✗

Concatenate Inputs

Transformer Model

Binary prediction for
candidate label

Figure 1: Method Overview. Our proposed method, ProtEx, predicts the relevance of various
functional annotations for a given query sequence. First, for a given candidate label, positive and
negative exemplar sequences are retrieved from the training data. Second, a pre-trained neural model
jointly conditions on the query sequence and retrieved exemplars to make a prediction.

query and exemplar sequences, we propose a novel multi-sequence pretraining objective (Figure 3).
Our formulation allows us to effectively generalize to rare and unseen classes at test time and better
classify sequences that have low sequence similarity with the training data.

We evaluate our approach, ProtEx, on EC number, GO term, and Pfam family prediction tasks,
showing that it achieves state-of-the-art performance across multiple settings, and consistently
outperforms both existing traditional homology-based approaches and deep learning models. Our
stratified analysis shows that ProtEx brings most notable improvements on rare classes and sequences
that are far from the training set. We also demonstrate generalization to labels not seen at training
time. Finally, our ablations and analyses highlight the efficacy of our pretraining strategy and the
model’s ability to leverage exemplar sequences for improved classification accuracy.1

2 BACKGROUND AND RELATED WORK

We review traditional methods for protein similarity search, neural models for protein function
prediction, and related work on retrieval-augmented models from other domains.

Protein Similarity Search Proteins with similar sequences often perform similar functions, and
for a given query sequence, homologous sequences can be retrieved from a database using a variety
of similarity-based search methods (Altschul et al., 1997; Johnson et al., 2010; Remmert et al., 2012).
These enable homology-based inference (Loewenstein et al., 2009), where functional labels from
retrieved homologs are transferred to the query. ProtEx can be seen as performing homology-based
inference where information from the homologs is aggregated using a learned, non-linear model. A
ubiquitous tool for similarity search is BLAST (Altschul et al., 1990; 1997), which identifies and
scores local sequence alignments using an empirically-derived substitution cost matrix (Henikoff
& Henikoff, 1992). Our method leverages BLAST and BLAST-inspired techniques to retrieve
exemplars (see §4). BLAST also serves as a strong baseline for homology-based inference when
used in isolation.

Neural Models for Protein Function Prediction Recent work has shown that deep models map-
ping a protein sequence to functional predictions can outperform traditional alignment-based tech-
niques. Models can be fit from scratch (Kulmanov et al., 2018; Ryu et al., 2019; Cao & Shen, 2021;
Bileschi et al., 2022; Fan et al., 2022; Sanderson et al., 2023) or fine-tuned from a model pretrained on
unlabeled protein sequences (Strodthoff et al., 2020; Dohan et al., 2021; Villegas-Morcillo et al., 2021;
Yuan et al., 2023; Dickson & Mofrad, 2023). The amino acid sequence largely specifies a protein’s
structure and function (Anfinsen, 1973), and hence is often used as input to models. However, other
approaches also encode protein structures (Sokolov & Ben-Hur, 2010; Roy et al., 2012; Konc et al.,
2013; Gligorijević et al., 2021; Zhang et al., 2022; Lai & Xu, 2022), with broad coverage due to
advancements in protein structure prediction (Jumper et al., 2021; Baek et al., 2021). Using structures

1Code and model predictions are available at http://anonymized.

2

http://anonymized

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

in addition to or instead of protein sequences, either for prediction or retrieval, is largely orthogonal
to the contributions of this paper, and future extensions to ProtEx could incorporate such techniques.
Disordered proteins, which are not well characterized by a static structure would need to be handled
carefully, however (Ruff & Pappu, 2021). We do not consider prediction approaches based on protein
interaction networks (Mostafavi et al., 2008; You et al., 2019; Zhang et al., 2019; Kulmanov et al.,
2024), which have demonstrated high accuracy where such networks are already established, but
have limited overall coverage.

Particularly relevant are recent methods combining neural models and retrieval for protein function
prediction. Notin et al. (2022) combines likelihood scores from a protein language model and
an MSA to predict the functional effects of mutations. Hamamsy et al. (2023) distills a protein
similarity function into a neural network, and Dickson & Mofrad (2023) fine-tunes a retrieval model
for homology-based inference. The ProtIR method of Zhang et al. (2024) uses transductive learning
where predictions from a retriever and neural classifier are iteratively updated towards agreement. In
contrast to retrieval methods, which form predictions by aggregating pairwise similarity scores over
sequences, ProtEx predicts conditioned on multiple labeled exemplar sequences. This also differs
from methods that use the correlation structure in aligned sets of homologous sequences (MSAs),
without accompanying annotations of their function, to inform, e.g., structure prediction (Marks et al.,
2011; Jumper et al., 2021; Baek et al., 2021) or representation learning (Rao et al., 2021).

Retrieval-Augmented Models and In-Context Fine-tuning Retrieval augmented neural models
have shown success for a variety of text generation and classification tasks, with particular strength in
recalling long tail knowledge, where even large parametric language models (LMs) struggle (Kandpal
et al., 2023). Examples include retrieval-augmented language models, and models for machine
translation, question answering, semantic parsing, and text classification (Khandelwal et al., 2020;
2021; Karpukhin et al., 2020; Guu et al., 2020; Lewis et al., 2020; Izacard et al., 2023; Pasupat et al.,
2021; Yu et al., 2023a; Chalkidis & Kementchedjhieva, 2023). Retrieved context or exemplars come
from large-scale unlabeled collections or labeled sets for supervised learning (Wang et al., 2022; Lewis
et al., 2021). Computer vision and multimodal models also benefit from retrieval augmentation (Long
et al., 2022; Ramos et al., 2023). A focus in NLP have been methods to adapt a pretrained parametric
language model into one that can integrate information from retrieved sequences, and joint training
of a retriever and generation model. In this work, we use pre-existing protein similarity models for
retrieval and pre-train a protein sequence model to make inferences from multiple proteins.

ProtEx is also related to in-context tuning methods for few-shot tasks (Min et al., 2022; Chen et al.,
2022), where pretrained language models are meta-trained to make predictions given an input and
task-relevant exemplars. These works show strong performance on unseen tasks, enabled by the LM’s
ability to make predictions from an input and a few in-context exemplars. Similarly, ProtEx can be
seen as meta-training on multiple binary classification tasks with in-context exemplars and, as shown
in Section 4.5, can adapt to new labels without additional fine-tuning.

3 PROPOSED METHOD

Given a protein represented as a sequence of amino acids, x, our goal is to predict a set of associated
labels, y ⊂ L, where L is a set of protein function labels, such as EC numbers, GO terms, or
Pfam labels. Core to our approach is to condition model predictions on a set of annotated exemplar
sequences, which are retrieved from a training set, as visualized in Figure 2.

3.1 OVERVIEW

To predict a set of labels y given x, we first determine a set of candidate labels, L̂x ⊆ L, and then
make an independent binary prediction for each candidate label l ∈ L̂x, conditioning on exemplars
that are selected based on both x and l. Due to our model’s limited context window, we can only
condition on a limited number of exemplars per prediction. Therefore, our approach has several
advantages compared to generating y based on x and a single limited set of exemplars. First, we
can focus each prediction on the exemplars that are most relevant towards understanding the class
boundary of a specific label l. Second, we can consider a larger and more diverse set of candidate
labels than those corresponding to a limited number of exemplars. Finally, our approach can be seen

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Query
Sequence

Similar Annotated
Sequences

Similarity Search
(e.g. BLAST)

Extract Candidate
Labels

Candidate Label 1Candidate Label 2Candidate Label Candidate Label 1Candidate Label 2Select Exemplars

Candidate Label 1Candidate Label 2Model Input Candidate Label 1Candidate Label 2Run Transformer Candidate Label 1Candidate Label 2Predicted Score

Annotated Training
Sequences

Threshold and
Aggregate

Predicted Labels

Generate Input

Figure 2: Inference Procedure. Overview of procedure for computing a set of predicted labels given
a protein sequence and a set of training sequences with annotated function.

as meta-training on multiple binary classification tasks with in-context exemplars, which we show
enables ProtEx to adapt to new labels without additional fine-tuning.2

The inference procedure for predicting a set of functional labels, y, given a protein sequence, x, is
shown in Figure 2. We review each step of this procedure below.

Similarity Search Given a query sequence, x, the first step in Figure 2 is to retrieve a ranked list
of relevant sequences with known functional annotations, denoted Nx, from the training set. We
adopt standard methods based on efficiently computing local alignments between sequences. We use
BLAST (Altschul et al., 1997) for most experiments, which has shown strong performance and is
computationally feasible to run on most of the datasets we study.3 Specifically, we run blastp to
retrieve up to the 100 most similar sequences in the training set, and rank these sequences based on
the BLAST alignment score. (See Appendix B.5 for details.)

Candidate Labels We determine the set of candidate labels, L̂x, as the union of the labels cor-
responding to sequences in Nx. This simple approach ensures that we have at least one positive
exemplar sequence for every candidate label.

Selecting Exemplars We select a set of positive exemplars, Epx,l, as the top-kp sequences in Nx that
are annotated with the candidate label l. Similarly, we select a set of negative exemplars, Enx,l, as the
top-kn sequences in Nx that are not annotated with l. The hyperparameters kp and kn are discussed
in Section 4 and selected such that the exemplars fit within the model’s context window.

Model Input As visualized in Figure 1, we form a retrieval-augmented input sequence by concate-
nating the query sequence, x, the candidate label l, and the positive and negative exemplars, Epx,l and
Enx,l, with a character denoting whether each exemplar is positive or negative.4

Transformer Model As the focus of our study is the pre-training and fine-tuning recipe for our
model, we use the general encoder-decoder Transformer (Vaswani et al., 2017) architecture of
T5 (Raffel et al., 2020). As demonstrated in Raffel et al. (2020), this allows for flexibility in
defining different pre-training and fine-tuning tasks without changes to the underlying architecture.
We evaluate Small (60M) and Base (220M) sized models, using the Base size for our main results.
We also evaluated Transformer variants that offer more efficient handling of long context. See
Appendix C.2 for these comparisons. Similarly to Raffel et al. (2020), to apply our encoder-
decoder model as a binary classifier, our model predicts single character sequences corresponding
to either positive (p) or negative (n) predictions. We define the model score sθ(x, l, Epx,l, Enx,l) with
trainable parameters θ as the probability the model assigns to the positive character sequence p,
i.e. sθ(x, l, Epx,l, Enx,l) := logPθ(p|x, l, Epx,l, Enx,l). Since we consider separate exemplars for each
candidate label, this requires running the model up to |L̂x| (the number of candidate labels) times for
each input sequence. We analyze the computational cost of inference in Appendix B.3.

2While such a capability is theoretically also possible if generating a set of labels, e.g., by anonymizing
labels (Pasupat et al., 2021), this would be conceptually less straightforward.

3For the Pfam task, which requires retrieval from a larger training set, we use a similar but alternative
approach discussed in Section 4.4.

4See Appendix A.1 for further details. We also ablate inclusion of the candidate label in Section 4.5.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

MENFT1KEV2EN… KE3KMEF4PK… 1P2M3V4V…60

MENFTPKEVMEN… KEVKMEFVPK…

Similarity between
sequences

Sample Sequence
Pair from UniRef

Randomly Mask Residues

Transformer
Model

Masked
residues

Figure 3: Pretraining task. We sample a pair of unlabeled sequences, and the model is tasked with
predicting masked residues and a similarity score between the two sequences.

Aggregating Predictions For multilabel prediction tasks (e.g. EC and GO), we can determine a
predicted label set, ŷ, based on a score threshold t:

ŷ = {l | l ∈ L̂x ∧ sθ(x, l, Epx,l, E
n
x,l) > t},

and varying t produces a tradeoff between precision and recall. For multiclass prediction tasks (e.g.
Pfam) where y is always a singleton, we can determine the class with the highest score:

ŷ = {argmax
l∈L̂x

sθ(x, l, Epx,l, E
n
x,l)}.

3.2 TRAINING

Model training consists of two stages. First, we pre-train using unlabeled sequence pairs. Then, we
fine-tune for a specific task by constructing positive and negative examples given a set of labeled
sequences. In both stages, models are trained to maximize the likelihood of a target sequence given
an input sequence, given our generic encoder-decoder architecture (Raffel et al., 2020).

Pre-training Our pre-training task shown in Figure 3. Prior work has primarily pre-trained on
single unlabeled sequences, then fine-tuned with a single sequence as input to improve protein
function prediction (Dohan et al., 2021; Lin et al., 2023). In contrast, our goal is to train models that
implicitly compare a query sequence with exemplar sequences. We thus propose a new pre-training
objective over multiple sequences. We sample pairs of sequences from UniRef90 (Suzek et al., 2015),
approximating a uniform distribution over sequence similarity buckets. We then implement a version
of the span denoising objective of Raffel et al. (2020). We mask the sequences by randomly replacing
approximately 10% of residues with a placeholder index. The prediction target consists of predicting
the masked residues as well as the similarity score between the two sequences. As a simple and easy
to compute measure of sequence similarity, we use Levenshtein distance normalized by the sequence
length, bucketed to the nearest multiple of 5. Intuitively, the prediction target encourages the model
to learn to approximately align and compare the two input sequences. We then expect the model to
implicitly learn a more task-specific notion of similarity during fine-tuning. Pre-trained checkpoints
are shared across all tasks that we study. See Appendix A.2 for details and §4 for analysis.

Fine-tuning For each sequence x and corresponding set of annotated labels y ⊂ L in the training
set, we create both positive and negative examples, with targets p and n, respectively. We generate
a positive example for every label ∈ y, and negative examples corresponding to labels /∈ y.5 We
determine the retrieval-augmented input sequence as described in §3.1. The only difference is how
we select positive and negative exemplars, Epx,l and Enx,l, from the ranked list of related sequences,
Nx.6 We evaluated top-k (as used at inference time), uniform, and geometric sampling (Pasupat et al.,
2021).7 Uniform or geometric sampling leads to greater diversity in the training data compared to
training for multiple epochs over data generated using deterministic top-k selection. Also, for cases
where the training and evaluation sequences are not from the same distribution, such sampling can
better align the distribution between query sequences and exemplar sequences seen at training time
with the distribution seen at inference time. More analysis is given in §4.5.

5See Appendix B.6 for details of how negative examples are sampled, and a discussion of class imbalance.
6At training time we also need to ensure the query sequence x is excluded from the ranked list of related

sequences.
7Geometric sampling samples the jth element with probability∝ p(1− p)(j−1), where parameter p provides

interpolation between top-k and uniform sampling.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS AND ANALYSIS

We compare the performance of ProtEx with other approaches (§4.2) across several EC, GO, and
Pfam classification tasks (§4.1), with results reported in in §4.3 and §4.4. Finally, in §4.5, we report
additional analysis and ablations. Further details and results can be found in Appendices B and C.

4.1 TASKS AND DATASETS

Table 1: Dataset Statistics. We consider prediction of EC numbers, GO terms, and Pfam families
across several settings proposed in prior work. We report the number of unique classes among the
training sequences, and the average number of classes per sequence.

Name Labels Training Sequences Classes Avg. # Classes Per Seq.

Random EC EC 438,522 4,862 1.89
Random GO GO 438,522 31,365 45.49
Clustered EC EC 182,965 3,411 1.90
Clustered GO GO 182,965 26,538 45.57
NEW-392 EC 227,362 5,242 1.06
Price-149 EC 227,362 5,242 1.06
PDB EC EC 15,551 538 1.67
Clustered Pfam Pfam 1,296,280 17,929 1

We consider several EC number, GO term, and Pfam prediction tasks summarized in Table 1. Some
additional details are provided in Appendix B.

For EC and GO prediction, we adopt the random and clustered splits from Sanderson et al. (2023).
These splits consist of proteins and their corresponding annotations from Swiss-Prot, the manually
curated portion of UniProt (Consortium, 2015). For the random split, approximately 80% of proteins
were reserved for training, with 10% each assigned to the development and test sets. For the more
challenging clustered split, proteins were divided evenly into train, development, and test sets based
on UniRef50 clusters (Suzek et al., 2015), such that proteins in the development and test sets have
lower sequence similarity with those in the training set than a random split.

To better compare our results on EC prediction with prior work, we also consider several other
evaluations. First, we evaluate EC prediction on the setting proposed in Yu et al. (2023b). Similarly
to Sanderson et al. (2023), this setting uses sequences from Swiss-Prot for training. There are
two evaluation sets, NEW-392 and Price-149. While the training data contains sequences added to
Swiss-Prot prior to April 2022, New-392 consists of 392 enzyme sequences added after this date,
forming a temporal split. Price-149, originally curated by Sanderson et al. (2023), consists of 149
sequences with EC numbers determined experimentally by Price et al. (2018). These sequences were
inconsistently labeled by automated annotation methods, indicating a challenging setting. Second,
we also adopt the PDB-based dataset proposed by Gligorijević et al. (2021). In contrast to the other
EC splits based on sequences from Swiss-Prot, this dataset focuses on proteins with experimentally
determined structures in PDB (Berman et al., 2000). Therefore, the training set is considerably
smaller. Notably, our method does not require structural information, but we nevertheless evaluate on
this setting to compare with prior work.

Finally, we also evaluate on the Pfam seed dataset (Finn et al., 2014) where the goal is to map each
protein sequence to one of 17,929 families. We use the clustered split as defined by Bileschi et al.
(2022) where sequences in the development and test sets have less than 25% sequence identity to
those in the training set.

4.2 BASELINES

For each task we consider three types of baselines. First, we consider the strongest performing
neural models and other methods from prior work. Second, to determine the impact of retrieving and
conditioning on exemplars, we evaluate ProtEx when no exemplars are included during fine-tuning
and inference. Third, we report results for BLAST, following the setting of Sanderson et al. (2023),
which imputes the labels from the most similar sequence returned by BLAST if the score is above

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Max F1 scores for EC and GO prediction on the random and clustered SwissProt-based
splits proposed by Sanderson et al. (2023).

EC GO

Method Random Clustered Random Clustered

ProteInfer 0.977 0.914 0.885 0.782
ProteInfer (ensemble) 0.981 0.930 0.899 0.811

BLAST 0.984 0.950 0.902 0.824

ProtEx 0.987 0.958 0.917 0.854
ProtEx (no exemplars) 0.977 0.944 0.786 0.754

an alignment score threshold. In some cases, our BLAST results are stronger than those reported
by prior work due to this thresholding. Notably, this BLAST baseline frequently outperforms the
strongest neural methods from prior work, highlighting the importance of including such baselines,
as well as motivating methods such as ProtEx that can combine the strengths of similarity-search
methods such as BLAST with pre-trained neural models.

4.3 EC AND GO MAIN RESULTS

Table 3: Weighted AUC for EC prediction
for NEW-392 and Price-149.

Method NEW-392 Price-149

CLEAN 0.740 0.733

BLAST 0.788 0.691

ProtEx 0.932 0.842
ProtEx (no ex.) 0.926 0.839

Table 4: Max protein-centric F1 for EC
prediction on PDB-based split.

PDB EC

Method 30% 50% 95%

DeepFRI 0.470 0.545 0.631
ESM-1b 0.737 0.797 0.864
GearNet MVC 0.744 0.808 0.874
ESM-GearNet — — 0.890
PromptProtein 0.765 0.823 0.888
ProtST (ESM-2) — — 0.878
ESM-2 (adapter) — — 0.892
PST (ESM-2) — — 0.899

BLAST 0.801 0.848 0.900

ProtEx 0.820 0.862 0.909
ProtEx (no ex.) 0.717 0.777 0.849

Here we report results on several EC and GO clas-
sification tasks. We used up to 2 positive and 2
negative exemplars. See Appendix B for further
details and Appendix C.1 for the statistical signif-
icance of key comparisons (tested differences are
significant with p-values < 0.01).

First, we report results in Table 2 for the ran-
dom and clustered EC and GO splits proposed by
Sanderson et al. (2023). We follow Sanderson et al.
(2023) and report the maximum micro-averaged
F1 score. We compare with a single-model and
ensembled versions of ProteInfer (Sanderson et al.,
2023), a CNN-based model. Our BLAST result re-
produces that of Sanderson et al. (2023), which out-
performs ProteInfer. ProtEx also improves over
BLAST, with performance dropping considerably
if exemplars are not included in the input during
fine-tuning and inference. The precision and recall
curves of ProtEx relative to BLAST are shown in
Figure 4, demonstrating improvements in precision
at all recall values.

Second, we report in Table 3 results on the NEW-
392 and Price-149 evaluations proposed by Yu et al.
(2023b), and compare with their proposed method,
CLEAN. As there is no development set provided
in this setting, we used the hyperparameters de-
termined for the clustered EC task, and compare
results based on the weighted AUC metric reported by Yu et al. (2023b), which does not require select-
ing a score threshold. We see that ProtEx improves over both CLEAN and BLAST. Again, ablating
exemplars leads to a drop in performance. Additionally, we report F1 results in Appendix C.3.3.

Finally, we also report results on the PDB-based split proposed by Gligorijević et al. (2021) in Table 4.
Following prior work, we report the maximum protein-centric F1 score (i.e. Fmax), and stratify
results by the maximum similarity between test sequences and training sequences. Table 4 includes
results for the strongest methods from prior work. We report results for DeepFRI from Gligorijević
et al. (2021), ESM-1b (Rives et al., 2021) and GearNet from Zhang et al. (2022), ESM-GearNet
from Zhang et al. (2023), PromptProtein from Wang et al. (2023), ProtST from Xu et al. (2023), and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.80 0.85 0.90 0.95 1.00
Recall

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Clustered EC

0.7 0.8 0.9 1.0
Recall

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Clustered GO

Ours
BLAST

Figure 4: Precision and recall of ProtEx and BLAST on the clustered EC and GO tasks.

ESM-2 (Lin et al., 2023) with a classifier head and PST from Chen et al. (2024). Perhaps surprisingly,
we see that BLAST with an alignment score threshold achieves a very competitive result on this
setting. Regardless, ProtEx outperforms BLAST and other previously reported results on this setting,
including ESM-2 (a 15B parameter model), other models based on ESM-2 (ESM-GearNet, ProtST,
and PST), and approaches that explicitly consider structural information. Ablating exemplars again
demonstrates the significance of conditioning on exemplars. For future work, improvements from
pre-training scale (e.g. ESM-2) and incorporating structural information and other resources (e.g.,
GearNet, ProtST, PST, PromptProtein) could be complementary to our retrieval-augmented approach.

4.4 PFAM MAIN RESULTS

For the Pfam dataset, we use an alternative to BLAST for selecting similar sequences, detailed in
Appendix B.5. The Pfam dataset is considerably larger than the other datasets (see Table 1), and
running BLAST for all examples in the training set can take considerable time. Moreover, BLAST
does not achieve as strong of a result for Pfam classification as it does for the EC and GO tasks.
Therefore, we implemented an alternative retrieval system that can be more easily parallelized and
customized than BLAST. For every sequence, we select a set of similar sequences for each class
independently. For efficiency, we randomly select up to a maximum number of sequences per class in
the training set, and then rank these sequences according to a local alignment score that is similar to
the one computed by BLAST. Based on analysis of the effect of restricting the number of classes
(see Appendix C.4.1), we opted to consider all classes as candidate labels. We also evaluated this
strategy for EC prediction although it did not perform as well as our BLAST-based approach (see
Appendix C.3.2). We use 4 positive exemplars and zero negative exemplars, since we found in our
early experiments that additional positive exemplars added more benefit.

Table 5: Results on the Pfam clustered split. Sequences in the test set have less than 25% sequence
identity to the training set.

Method Family Accuracy Lifted Clan Accuracy Avg. Per-Family Accuracy

Top pick HMM 81.9 88.1 82.9
BLAST 64.1 70.1 63.7
ProtENN 87.8 89.0 80.4
ProtNLM 87.4 90.7 80.6
ProtTNN 88.4 90.5 83.4
ProtTNN (ensemble) 89.7 91.7 85.0

ProtEx 92.6 93.3 91.7
ProtEx (no exemplars) 76.3 80.2 65.7

We compare ProtEx with two strong homology-based approaches (BLAST and Top pick HMM, as
described in Dohan et al. (2021)), ProtENN (Bileschi et al., 2022) a convolutional neural network
ensemble, and ProtNLM (Gane et al., 2022) and ProtTNN (Dohan et al., 2021), which are pretrained
Transformer models. For the no exemplar ablation, we found that predicting a binary label without
exemplars generalizes poorly when the number of classes is large, and so we instead finetune our
pretrained checkpoint to predict the class label as a string given the sequence, which we found
performed better. See Appendix § C.4.2 for further discussion.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Results are shown in Table 5. We report family accuracy, lifted clan accuracy that groups families
into higher level clans (Dohan et al., 2021), and the average per-family accuracy, which gives equal
weight to all classes, including rare classes. Our approach achieves state-of-the-art performance
by a considerable margin. Additionally, as shown in Figure 5, while other methods typically show
lower performance for examples with rare labels, ProtEx demonstrates more consistent performance
across training set family sizes, showcasing large improvements for examples belonging to rare
families. See Appendix C.4.3 for further stratified performance analysis, showing that our method
performs well across sequences that have low similarity with the closest sequence in the training data,
and that similar trends are observed at the lifted clan level.

1 17 29 42 58 79 104 149 237 402 2197
Training set family size (ticks are bin boundaries)

0.7

0.8

0.9

1.0

fa
m

ily
 a

cc
ur

ac
y

Test set family accuracy by training family size

ProtEx (Ours)
ProTNN
ProtENN
Top pick HMM

Figure 5: Pfam stratified family accuracy. ProtEx shows considerably improved performance for
sequences belonging to rare labels.

4.5 ANALYSIS AND ABLATIONS

Table 6: Generalization to Unseen Labels. Max
F1 on clustered EC and GO when a randomly se-
lected subset of labels are not included during fine-
tuning.

EC GO

Method Seen Unseen Seen Unseen

BLAST 0.953 0.964 0.826 0.816
ProtEx 0.960 0.970 0.849 0.839

Table 7: Pre-training Ablations. We
report F1 on Clustered EC development
split for different pre-training strategies.

Pre-training F1

Sequence pair w/ score 0.958
Sequence pair 0.956
Single sequence 0.952

No pre-training 0.912

Generalization to New Labels We tested the ability of ProtEx to make predictions for new classes
not seen during fine-tuning. On the EC and GO clustered splits we randomly removed 10% of classes
during fine-tuning, while retaining the ability to retrieve sequences annotated with these classes at
inference time. As shown in Table 6, ProtEx performs comparably or better than BLAST even
on classes it has not seen during training. Relatedly, we also found that there is only a minimal
performance decrease when candidate labels are not included in the model input (see Appendix C.3.1),
further indicating that the model is conditioning its predictions on the exemplar sequences as opposed
to directly representing the sequence to class relationship in the model parameters.

Pre-training Analysis We show results for ablating the key elements of our pre-training recipe
in Table 7. Notably, there is a drop in end task performance when pre-training with only a single
sequence as input, as commonly done in prior work, as opposed to pre-training over sequence pairs.
This indicates that our pre-training task is useful for retrieval-augmented models that are fine-tuned
to make comparisons across multiple sequences. See Appendix B.4 for further details.

Model Architectures and Scaling In Appendix C.2 we compare Small and Base sized models,
finding that there is a modest benefit to increasing model size from Small to Base. We also compare
the Fusion-in-Decoder (FiD) approach introduced by Izacard & Grave (2021) with a standard
Transformer, finding that this may be viable path towards scaling to more exemplars, but that there is
a performance drop, indicating that cross-attention between exemplar sequences is beneficial.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Exemplar Distribution and Sampling As described in §3, we study different sampling strategies
to select exemplars during training. This adds diversity to the training data, and can also help align
the distribution of similarities between query and exemplar sequences seen during training with those
seen during inference, which is especially useful for non-random splits. We highlight this capability
on the Pfam task, which features the largest distributional shift between training and inference due to
the split restricting inference sequences to have <25% sequence similarity to the training set. Figure 6
shows the corresponding distribution of similarities between query and exemplar sequences and its
impact on out-of-distribution generalization as measured by family accuracy on development set.

102 103

Alignment score threshold

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 e

xe
m

pl
ar

s
 w

ith
 a

lig
nm

en
t

sc
or

e
>

th
re

sh
ol

d

Pfam Exemplar Sampling Strategies
 Split Sampling Family Acc.

Train top-k 89.39
Train geometric (p=0.5) 89.18
Train geometric (p=0.1) 91.45
Train uniform 91.85
Eval top-k -

Figure 6: Effect of exemplar sampling strategy on Pfam. We visualize how different sampling
strategies can mitigate the distribution shift between training and evaluation. Uniform sampling leads
to the training distribution most similar to the evaluation distribution, and also leads to the highest
family accuracy on the development set.

5 LIMITATIONS AND DISCUSSION

Computational Requirements While we use a model size and number of pre-training steps
comparable to or less than prior work (Appendix B.3), the cost of inference with our method is
potentially larger due to encoding multiple protein sequences and making independent predictions
for each class. To mitigate these factors, we have considered the FiD architecture (Appendix C.2)
and a candidate label generator (§3), which offer a path towards more efficient inference. Regardless,
improvements in accuracy and robustness can justify an increase in computational cost for some
applications, given the much greater cost of running wet-lab experiments to annotate protein function.

Scope and Future Work In this work we focused on training and inference procedures that
can effectively condition predictions on retrieved exemplars, using a general-purpose Transformer
architecture and standard methods for retrieval (e.g. BLAST). Going forward, our approach could
potentially be further improved using enhanced similarity search techniques such as those based
on protein structure (Zhang et al., 2022; Hamamsy et al., 2023; Van Kempen et al., 2024) and
more specialized architectures. Finally, we focused on predicting EC, GO, and Pfam labels. Other
tasks such as fitness prediction (Romero et al., 2013) or generating free-text descriptions of protein
function (Gane et al., 2022; Abdine et al., 2024) could be of interest for future work.

Broader Impact and Ethical Considerations Our method enables more accurate and robust
prediction of protein functional annotations. Any computationally derived annotation should be
verified by wet lab experiments where possible, especially for critical applications. Our method
extends a long history of prior work that develops such tools and the community’s safeguards for how
to apply them in an ethical manner applies here as well.

6 CONCLUSION

We proposed ProtEx, a semiparametric approach that combines aspects of homology-based similarity
search with pre-trained neural models. ProtEx achieves state-of-the-art results on EC, GO, and Pfam
classification tasks. Our work highlights the potential of retrieval-augmented methods for improving
the accuracy and robustness of protein function prediction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hadi Abdine, Michail Chatzianastasis, Costas Bouyioukos, and Michalis Vazirgiannis. Prot2text:
Multimodal protein’s function generation with GNNs and transformers. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 10757–10765, 2024.

Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng Zhang, Webb
Miller, and David J Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic acids research, 25(17):3389–3402, 1997.

Christian B Anfinsen. Principles that govern the folding of protein chains. Science, 181(4096):
223–230, 1973.

Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael
Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool
for the unification of biology. Nature genetics, 25(1):25–29, 2000.

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of protein
structures and interactions using a three-track neural network. Science, 373(6557):871–876, 2021.

Alex Bateman, Lachlan Coin, Richard Durbin, Robert D Finn, Volker Hollich, Sam Griffiths-Jones,
Ajay Khanna, Mhairi Marshall, Simon Moxon, Erik LL Sonnhammer, et al. The Pfam protein
families database. Nucleic acids research, 32(suppl_1):D138–D141, 2004.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research, 28(1):
235–242, 2000.

Maxwell L Bileschi, David Belanger, Drew H Bryant, Theo Sanderson, Brandon Carter, D Sculley,
Alex Bateman, Mark A DePristo, and Lucy J Colwell. Using deep learning to annotate the protein
universe. Nature Biotechnology, 40(6):932–937, 2022.

Yue Cao and Yang Shen. TALE: Transformer-based protein function annotation with joint sequence–
label embedding. Bioinformatics, 37(18):2825–2833, 2021.

Ilias Chalkidis and Yova Kementchedjhieva. Retrieval-augmented multi-label text classification.
arXiv preprint:2305.13058, 2023.

Dexiong Chen, Philip Hartout, Paolo Pellizzoni, Carlos Oliver, and Karsten Borgwardt. Endowing
protein language models with structural knowledge. arXiv preprint arXiv:2401.14819, 2024.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language
model in-context tuning. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 719–730, 2022.

UniProt Consortium. Uniprot: a hub for protein information. Nucleic Acids Res, 43(D1):D204–D212,
2015.

Andrew M Dickson and Mohammad RK Mofrad. Fine-tuning protein embeddings for generalizable
annotation propagation. bioRxiv, pp. 2023–06, 2023.

David Dohan, Andreea Gane, Maxwell L Bileschi, David Belanger, and Lucy Colwell. Improving
protein function annotation via unsupervised pre-training: Robustness, efficiency, and insights. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
2782–2791, 2021.

Janani Durairaj, Andrew M Waterhouse, Toomas Mets, Tetiana Brodiazhenko, Minhal Abdullah,
Gabriel Studer, Gerardo Tauriello, Mehmet Akdel, Antonina Andreeva, Alex Bateman, et al.
Uncovering new families and folds in the natural protein universe. Nature, 622(7983):646–653,
2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sean R. Eddy. Profile hidden markov models. Bioinformatics (Oxford, England), 14(9):755–763,
1998.

Hehe Fan, Zhangyang Wang, Yi Yang, and Mohan Kankanhalli. Continuous-discrete convolution for
geometry-sequence modeling in proteins. In The Eleventh International Conference on Learning
Representations, 2022.

Robert D Finn, Alex Bateman, Jody Clements, Penelope Coggill, Ruth Y Eberhardt, Sean R Eddy,
Andreas Heger, Kirstie Hetherington, Liisa Holm, Jaina Mistry, et al. Pfam: the protein families
database. Nucleic acids research, 42(D1):D222–D230, 2014.

A Gane, ML Bileschi, D Dohan, E Speretta, A Héliou, L Meng-Papaxanthos, H Zellner, E Brevdo,
A Parikh, MJ Martin, et al. ProtNLM: model-based natural language protein annotation. Preprint,
2022.

Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel Beren-
berg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis, et al. Structure-
based protein function prediction using graph convolutional networks. Nature communications, 12
(1):3168, 2021.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

Tymor Hamamsy, James T Morton, Robert Blackwell, Daniel Berenberg, Nicholas Carriero, Vladimir
Gligorijevic, Charlie EM Strauss, Julia Koehler Leman, Kyunghyun Cho, and Richard Bon-
neau. Protein remote homology detection and structural alignment using deep learning. Nature
biotechnology, pp. 1–11, 2023.

Steven Henikoff and Jorja G Henikoff. Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences, 89(22):10915–10919, 1992.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for
open domain question answering. In EACL 2021-16th Conference of the European Chapter
of the Association for Computational Linguistics, pp. 874–880. Association for Computational
Linguistics, 2021.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models. Journal of Machine Learning Research, 24(251):1–43,
2023.

L Steven Johnson, Sean R Eddy, and Elon Portugaly. Hidden markov model speed heuristic and
iterative HMM search procedure. BMC bioinformatics, 11:1–8, 2010.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Kathryn Tunyasu-
vunakool, Olaf Ronneberger, Russ Bates, Augustin Žídek, Alex Bridgland, et al. AlphaFold 2.
Fourteenth Critical Assessment of Techniques for Protein Structure Prediction, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
models struggle to learn long-tail knowledge. In International Conference on Machine Learning,
pp. 15696–15707. PMLR, 2023.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781, 2020.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In ICLR, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Nearest neighbor
machine translation. In International Conference on Learning Representations (ICLR), 2021.

Janez Konc, Milan Hodošček, Mitja Ogrizek, Joanna Trykowska Konc, and Dušanka Janežič.
Structure-based function prediction of uncharacterized protein using binding sites comparison.
PLoS computational biology, 9(11):e1003341, 2013.

Maxat Kulmanov, Mohammed Asif Khan, and Robert Hoehndorf. DeepGO: predicting protein
functions from sequence and interactions using a deep ontology-aware classifier. Bioinformatics,
34(4):660–668, 2018.

Maxat Kulmanov, Francisco J Guzmán-Vega, Paula Duek Roggli, Lydie Lane, Stefan T Arold, and
Robert Hoehndorf. Protein function prediction as approximate semantic entailment. Nature
Machine Intelligence, 6(2):220–228, 2024.

Boqiao Lai and Jinbo Xu. Accurate protein function prediction via graph attention networks with
predicted structure information. Briefings in Bioinformatics, 23(1):bbab502, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich Küttler, Aleksandra Piktus,
Pontus Stenetorp, and Sebastian Riedel. PAQ: 65 million probably-asked questions and what you
can do with them. Transactions of the Association for Computational Linguistics, 9:1098–1115,
2021.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

Yaniv Loewenstein, Domenico Raimondo, Oliver C Redfern, James Watson, Dmitrij Frishman, Michal
Linial, Christine Orengo, Janet Thornton, and Anna Tramontano. Protein function annotation by
homology-based inference. Genome biology, 10:1–8, 2009.

Alexander Long, Wei Yin, Thalaiyasingam Ajanthan, Vu Nguyen, Pulak Purkait, Ravi Garg, Chunhua
Shen, and Anton van den Hengel. Retrieval augmented classification for long-tail visual recognition.
In CVPR 2022, 2022.

Debora S Marks, Lucy J Colwell, Robert Sheridan, Thomas A Hopf, Andrea Pagnani, Riccardo
Zecchina, and Chris Sander. Protein 3D structure computed from evolutionary sequence variation.
PloS one, 6(12):e28766, 2011.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn
in context. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
(eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 2791–2809, 2022.

Jaina Mistry, Sara Chuguransky, Lowri Williams, Matloob Qureshi, Gustavo A Salazar, Erik LL
Sonnhammer, Silvio CE Tosatto, Lisanna Paladin, Shriya Raj, Lorna J Richardson, et al. Pfam:
The protein families database in 2021. Nucleic acids research, 49(D1):D412–D419, 2021.

Sara Mostafavi, Debajyoti Ray, David Warde-Farley, Chris Grouios, and Quaid Morris. GeneMANIA:
a real-time multiple association network integration algorithm for predicting gene function. Genome
biology, 9:1–15, 2008.

Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena Hurtado, Aidan N Gomez, Debora
Marks, and Yarin Gal. Tranception: protein fitness prediction with autoregressive transformers
and inference-time retrieval. In International Conference on Machine Learning, pp. 16990–17017.
PMLR, 2022.

Panupong Pasupat, Yuan Zhang, and Kelvin Guu. Controllable semantic parsing via retrieval
augmentation. arXiv preprint arXiv:2110.08458, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Morgan N Price, Kelly M Wetmore, R Jordan Waters, Mark Callaghan, Jayashree Ray, Hualan Liu,
Jennifer V Kuehl, Ryan A Melnyk, Jacob S Lamson, Yumi Suh, et al. Mutant phenotypes for
thousands of bacterial genes of unknown function. Nature, 557(7706):503–509, 2018.

Morgan N Price, Adam M Deutschbauer, and Adam P Arkin. Filling gaps in bacterial catabolic
pathways with computation and high-throughput genetics. PLoS genetics, 18(4):e1010156, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Rita Ramos, Bruno Martins, Desmond Elliott, and Yova Kementchedjhieva. SmallCap: Lightweight
image captioning prompted with retrieval augmentation. CVPR, 2023.

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. MSA transformer. In International Conference on Machine Learning, pp.
8844–8856. PMLR, 2021.

Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes Söding. HHblits: lightning-fast
iterative protein sequence searching by hmm-hmm alignment. Nature methods, 9(2):173–175,
2012.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15):e2016239118, 2021.

Philip A Romero, Andreas Krause, and Frances H Arnold. Navigating the protein fitness landscape
with gaussian processes. Proceedings of the National Academy of Sciences, 110(3):E193–E201,
2013.

Ambrish Roy, Jianyi Yang, and Yang Zhang. COFACTOR: an accurate comparative algorithm for
structure-based protein function annotation. Nucleic acids research, 40(W1):W471–W477, 2012.

Kiersten M Ruff and Rohit V Pappu. AlphaFold and implications for intrinsically disordered proteins.
Journal of molecular biology, 433(20):167208, 2021.

Jae Yong Ryu, Hyun Uk Kim, and Sang Yup Lee. Deep learning enables high-quality and high-
throughput prediction of enzyme commission numbers. Proceedings of the National Academy of
Sciences, 116(28):13996–14001, 2019.

Theo Sanderson, Maxwell L Bileschi, David Belanger, and Lucy J Colwell. ProteInfer, deep neural
networks for protein functional inference. Elife, 12:e80942, 2023.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. Bleurt: Learning robust metrics for text generation.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
7881–7892, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou, Margaret Li, Xi Victoria Lin, Noah A
Smith, Luke Zettlemoyer, Wen-tau Yih, and Mike Lewis. In-context pretraining: Language
modeling beyond document boundaries. In The Twelfth International Conference on Learning
Representations, 2024.

Artem Sokolov and Asa Ben-Hur. Hierarchical classification of gene ontology terms using the
GOstruct method. Journal of bioinformatics and computational biology, 8(02):357–376, 2010.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Nils Strodthoff, Patrick Wagner, Markus Wenzel, and Wojciech Samek. UDSMProt: universal deep
sequence models for protein classification. Bioinformatics, 36(8):2401–2409, 2020.

Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, Cathy H Wu, and UniProt
Consortium. UniRef clusters: a comprehensive and scalable alternative for improving sequence
similarity searches. Bioinformatics, 31(6):926–932, 2015.

Keith Tipton and Sinéad Boyce. History of the enzyme nomenclature system. Bioinformatics, 16(1):
34–40, 2000.

Uniprot. UniProt: the universal protein knowledgebase in 2023. Nucleic acids research, 51(D1):
D523–D531, 2023.

Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
Cameron LM Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein
structure search with foldseek. Nature Biotechnology, 42(2):243–246, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Amelia Villegas-Morcillo, Stavros Makrodimitris, Roeland CHJ van Ham, Angel M Gomez, Victoria
Sanchez, and Marcel JT Reinders. Unsupervised protein embeddings outperform hand-crafted
sequence and structure features at predicting molecular function. Bioinformatics, 37(2):162–170,
2021.

Shuohang Wang, Yichong Xu, Yuwei Fang, Yang Liu, Siqi Sun, Ruochen Xu, Chenguang Zhu, and
Michael Zeng. Training data is more valuable than you think: A simple and effective method by
retrieving from training data. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 3170–3179, 2022.

Zeyuan Wang, Qiang Zhang, HU Shuang-Wei, Haoran Yu, Xurui Jin, Zhichen Gong, and Huajun
Chen. Multi-level protein structure pre-training via prompt learning. In The Eleventh International
Conference on Learning Representations, 2023.

Minghao Xu, Xinyu Yuan, Santiago Miret, and Jian Tang. Protst: Multi-modality learning of
protein sequences and biomedical texts. In International Conference on Machine Learning, pp.
38749–38767. PMLR, 2023.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte models.
Transactions of the Association for Computational Linguistics, 10:291–306, 2022.

Alexander Yeh. More accurate tests for the statistical significance of result differences. In COLING
2000 Volume 2: The 18th International Conference on Computational Linguistics, 2000.

Ronghui You, Shuwei Yao, Yi Xiong, Xiaodi Huang, Fengzhu Sun, Hiroshi Mamitsuka, and Shanfeng
Zhu. NetGO: improving large-scale protein function prediction with massive network information.
Nucleic acids research, 47(W1):W379–W387, 2019.

Guoxin Yu, Lemao Liu, Haiyun Jiang, Shuming Shi, and Xiang Ao. Retrieval-augmented few-
shot text classification. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 6721–6735, 2023a.

Tianhao Yu, Haiyang Cui, Jianan Canal Li, Yunan Luo, Guangde Jiang, and Huimin Zhao. Enzyme
function prediction using contrastive learning. Science, 379(6639):1358–1363, 2023b.

Qianmu Yuan, Junjie Xie, Jiancong Xie, Huiying Zhao, and Yuedong Yang. Fast and accurate protein
function prediction from sequence through pretrained language model and homology-based label
diffusion. Briefings in bioinformatics, 24(3):bbad117, 2023.

Fuhao Zhang, Hong Song, Min Zeng, Yaohang Li, Lukasz Kurgan, and Min Li. DeepFunc: a
deep learning framework for accurate prediction of protein functions from protein sequences and
interactions. Proteomics, 19(12):1900019, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Z Zhang, C Wang, M Xu, V Chenthamarakshan, AC Lozano, P Das, and J Tang. A systematic
study of joint representation learning on protein sequences and structures. Preprint at http://arxiv.
org/abs/2303.06275, 2023.

Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das,
and Jian Tang. Protein representation learning by geometric structure pretraining. arXiv preprint
arXiv:2203.06125, 2022.

Zuobai Zhang, Jiarui Lu, Vijil Chenthamarakshan, Aurélie Lozano, Payel Das, and Jian Tang. ProtIR:
Iterative refinement between retrievers and predictors for protein function annotation. arXiv
preprint arXiv:2402.07955, 2024.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A ADDITIONAL METHOD DETAILS

A.1 MODEL INTERFACE

We use the character-based vocabulary of Xue et al. (2022), which ensures that amino acid sequences
are tokenized into their individual amino acid residues. We represent labels as short character
sequences such as EC:1.2.3.4. We use single characters to indicate the start and end of amino
acid sequences, and to indicate whether an exemplar sequence is positive or negative.

The training target is a single character sequence, p or n, for positive and negative examples,
respectively. At inference time, we determine the score based on the probability assigned to the single
character sequence p.

A.2 PRETRAINING DETAILS

As our fine-tuned models need to make comparisons between query and exemplar sequences of
varying similarities, we construct the dataset such that all similarity ranges are well represented in
the pre-training data. For each pair, we sampled one sequence uniformly from UniRef90. Then,
we sampled a second sequence, approximating a uniform distribution over similarity buckets. The
resulting distribution of normalized Levenshtein similarities in the pretraining data is shown in
Table 8.

The process is loosely analogous to some methods explored in NLP. For example, Sellam et al.
(2020) pre-trained models to compute BLEU scores over pairs of strings. BLEU is a deterministic
measure of string similarity. Models were then fine-tuned on human labeled data to learn a more
task-specific notion of similarity. Pre-training on a context that includes related sequences is perhaps
also analogous to the in-context pre-training method proposed by Shi et al. (2024), which includes
a language modeling objective over related documents, showing this is useful relative to randomly
selected documents, for various downstream tasks.

Table 8: Distribution of similarities in pretraining data. We report the fraction of the sequence
pairs in the pretraining data for different ranges of normalized Levenshtein similarity.

Similarity Data %

0-25% 19.8
25-50% 38.4
50-75% 30.1
75-100% 11.7

B ADDITIONAL DATASET AND EXPERIMENT DETAILS

B.1 DATASET DETAILS

EC Labels As Table 1 shows, the number of EC classes considered varies across tasks. This is
partially due to differences in which sequences, and therefore which EC labels, are included in the
training set. However, different tasks also consider different tiers of the EC hierarchy. The Swiss-Prot
based random and clustered splits consider labels from all 4 levels of the EC hierarchy, the PDB EC
tasks considers only levels 3 and 4, and NEW-392 and Price-149 evaluations only consider level 4.
Also notably, the Price-149 labels were originally derived from Price et al. (2018). However, more
recent work (Price et al., 2022) has revisited the functional annotations of some of these sequences,
and should be considered for future work with this evaluation.

Dataset Licenses The EC and GO tasks are adapted from Swiss-Prot, which is the human curated
portion of UniProt that is released under CC BY 4.0. The PDB EC split is also available under CC BY
4.0. The Pfam task is derived from Pfam8 and is released under the CC0 1.0 license. For pretraining

8https://interpro-documentation.readthedocs.io/en/latest/pfam.html

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

data we used Uniref90 Suzek et al. (2015), which is derived from UniProt (Consortium, 2015) that is
released under CC BY 4.0.

B.2 HYPERPARAMETERS

Pre-training We pre-trained models for 1M steps using a learning rate of 1e-3 and a batch size of
256 tokens using Adafactor (Shazeer & Stern, 2018).

EC and GO Fine-tuning We selected hyperparameters based on development set performance,
focusing on the Swiss-Prot clustered splits. For all ProtEx models with exemplars we use a learning
rate of 1e-3 with Adafactor with dropout regularization (Srivastava et al., 2014) set to 0.1. For the
Swiss-Prot based splits, we trained models for 50,000 steps. For the smaller PDB based split, we
trained models for 8,000 steps. Models without exemplars were trained longer, as these models took
longer to reach a stable development accuracy. We trained these models for 100,000 steps for the
Swiss-Prot splits and 40,000 steps for the PDB split. We used a batch size of 256 for all experiments.
For the random and clustered Swiss-Prot splits we used a maximum input sequence length of 6784
tokens, which led to some truncation of exemplars in about 1% of examples during training and
inference. The other tasks did not lead to inputs that exceeded this length.

Pfam Fine-tuning For all ProtEx models with exemplars we use a learning rate of 2e-4, batch
size of 128, a maximum input length of 6,528, and dropout set to 0.1. We finetune for 200,000 steps
with Adafactor, and pick the best model based on development accuracy.

The configuration for the no exemplar ablation is similar except we use a higher learning rate of 1e-3
which we found worked better in practice and a beam size of 8 since we are treating the label as a
string that can be tokenized into multiple tokens. Since there are no exemplars the maximum input
length could be shortened to 2,688.

B.3 COMPUTATIONAL RESOURCES AND ANALYSIS

For training and inference we used Google Cloud TPUs (v3 and v5e) in configurations of up to 128
chips.

Model Training Pre-training the Base model to 1M steps took approximately 7 days on 64 TPU
v3 chips. Fine-tuning the Base model took approximately 3 hours per 10K steps of fine-tuning.

Retrieval Training and inference requires retrieving exemplars. The expense of retrieving exem-
plars is comparable to systems such as AlphaFold (Jumper et al., 2020) or MSA Transformer (Rao
et al., 2021), which retrieve sequences as a preprocessing step, albeit for a different purpose (to build
a MSA).

For inference with BLAST, a query over the largest training split considered (438K SwissProt
examples for the random EC and GO splits) achieved a throughput of >1 sequence per second,
running blastp -query with -num_threads 16 and -max_target_seqs 100, on a
standard CPU workstation.

As we speculate in Section 5, embedding-based retrievers could potentially provide an even more
computationally efficient way to retrieve exemplars in the future.

Model Inference We evaluated 60M (Small) and 220M (Base) parameter T5 models (Ap-
pendix C.2). Notably, even the Base model is considerably smaller than some prior work, such as
ESM-2 (Lin et al., 2023), which has 15B parameters. As ProtEx outperforms several approaches
based on ESM-2, our results suggest that retrieval-augmented models may offer the ability to achieve
greater accuracy with smaller models.

Inference with ProtEx requires running the model once for each candidate label. The Base model
throughput was approximately 500 sequence and candidate label pairs per second on a cluster of 64
Google Cloud TPU v3 chips. Inference can additionally be parallelized over multiple clusters or
performed on a larger cluster. Model throughput could be improved by considering more efficient

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

architectures (as analyzed in Appendix C.2), and the number of candidate labels per sequence could
be reduced by considering stronger candidate label generators.

B.4 PRE-TRAINING ABLATIONS DETAILS

Here we provide additional details about the pre-training ablations shown in Table 7. As pre-training
is computationally expensive and our Small and Base models perform similarly (see C.2), we
used Small models for these comparisons. Additionally, we observed that fine-tuning performance
was comparable when tuning from a checkpoint that had been pre-trained for 500K or 1M steps,
indicating that most of the advantage of pre-training is accrued in the first 500K steps. Therefore, we
compared models pre-training for 500K steps. Finally, given the full development set is quite large
(approximately 180,000 examples), we perform this ablation on a random 10% subset.

B.5 RETRIEVER DETAILS

BLAST We use ncbi-blast-2.14.1+. We run makeblastdb with -dbtype prot, and
then query the database using blastp with default arguments and -max_target_seqs 100.

We select exemplars during training using geometric sampling with p = 0.5.

We consider only candidate labels associated with sequences in the retrieved set. The number of
candidate labels per sequence can vary, e.g. the mean is 6.3 candidate labels per sequence for the
Random EC dataset vs. 237.2 candidate labels per sequence for the Random GO task. This is
influenced by the number of classes per sequence per Table 1.

Per Class Retrieval For flexibility and ease of parallelization, we use Biopython9

Align.PairwiseAligner. We set mode = local, extend_gap_score = -1.0,
open_gap_score = -11.0, and substitution_matrix = BLOSUM62.

For development and inference, for each query we find the closest 4 exemplars from each class using
the pairwise aligner above. For training given the size of the dataset, for each query we sample up to
100 exemplar candidates per class and select 4 exemplars from this set using uniform sampling as
detailed in § 3, which we found performs the best (Table 6).

B.6 NEGATIVE EXAMPLE SAMPLING

As discussed in §3, we sometimes use sampling of negative examples to avoid class imbalance during
training. When using the BLAST retriever this is not necessary because the set of candidate labels
consists of a reasonable balance of positive and negative labels. However, when using the Per Class
Retrieval method, naively generating a training example for every label would lead to an imbalance.
Therefore, for each sequence, we generate a negative example for the label with the highest similarity
score, and also randomly sample another negative label.

C ADDITIONAL RESULTS AND ANALYSIS

C.1 STATISTICAL SIGNIFICANCE AND VARIANCE

For the results reported in Table 2 and Table 4, we assessed the statistical significance of the difference
in F1 score between ProtEx and BLAST, for cases where the difference was less than 0.01, using
a permutation test Yeh (2000). In Table 9, we report the p-values and standard deviation of the
sampled score differences under the null hypothesis that predictions from the two approaches are
interchangeable, which was estimated using 100 sampled permutations of the predictions. We
computed p-values using a t-test.

For the evaluation settings where the training and evaluation sets are small, we also computed the
variance from different fine-tuning runs. The standard deviation across 3 different fine-tuning runs
is shown in Table 10, which is in all cases small relative to the performance differences between
ProtEx and prior work.

9https://biopython.org/

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: Statistical significance of comparisons between ProtEx and BLAST.

Task Metric Null Stdev. Observed Diff p-value

Random EC Micro F1 0.0002 0.003 1.32e-24
Clustered EC Micro F1 0.0002 0.008 1.53e-59
PDB EC Protein-centric F1 0.0031 0.009 6.17e-3

Table 10: Variance between fine-tuning runs.

Task Metric Fine-tuning Stdev.

PDB EC Protein-centric F1 0.0006
NEW-392 Weighted AUC 0.0003
Price-149 Weighted AUC 0.0009

C.2 MODEL ARCHITECTURES AND SCALING

The computational cost of self-attention in a standard Transformer scales quadratically with input
length. To more efficiently encode exemplars, we studied the Fusion-in-Decoder (FiD) approach
introduced by Izacard & Grave (2021). We apply this approach to encode the query and each exemplar
in a separate encoder, effectively masking attention between exemplars. Notably, this model variant
consists of the same set of parameters and can be initialized from the same pre-trained checkpoint. We
compare the performance of the standard and FiD architecture for Small (60M) models in Table 11.

The FiD architecture performs only slightly worse than the standard Transformer, indicating this may
be one path towards more efficiently encoding a larger number of exemplars. On the other hand, the
drop in performance suggests there is value in attention across exemplar sequences.

Another potential alternative would be a specialized architecture such as MSA Transformer (Rao
et al., 2021). This would require a couple of modifications to the MSA Transformer architecture.
First, MSA Transformer would need to be adapted to include functional labels along with unlabeled
sequences. Second, the architecture requires that all sequences are aligned as a preprocessing step.
Intuitively, our pre-training and fine-tuning procedures are designed to teach the model to implicitly
align sequences without relying on heuristic alignments. Notably, the main difference between
MSA Transformer and a standard Transformer is the more restricted attention operations allowed in
MSA Transformer. As we have shown, using a Fusion-in-Decoder Transformer, which has a more
restricted attention mechanism, leads to a modest drop in performance. Therefore, this would be a
concern for any architecture that similarly restricts the attention mechanism such as MSA Transformer.
Regardless, such specialized architectures could be a path to explore for future work.

Table 11: Model Architecture Comparisons. We report F1 on Clustered EC and GO development
splits for standard Transformer vs. Fusion-in-Decoder (FiD) for Small models

Architecture EC GO

Standard Transformer 0.958 0.845
FiD Transformer 0.953 0.842

We also compare Small vs. Base size models in Table 12. Given the full development set is quite
large (approximately 180,000 examples), we performed both these ablations on a random 10% subset.

C.3 ADDITIONAL RESULTS ON EC PREDICTION

C.3.1 ABLATING LABELS IN INPUT

We evaluate how much the model’s performance depends on being able to condition on the candidate
label as input. Table 13 shows that the model achieves similar performance with and without the
candidate label, indicating that the model is indeed conditioning on the exemplars. Given the full

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 12: Model Size Comparisons. We report F1 on Clustered EC and GO development splits for
Small and Base sized Transformers.

Size EC GO

Base (220M) 0.959 0.848
Small (60M) 0.958 0.845

development set is quite large (approximately 180,000 examples), we performed this ablation on a
random 10% subset.

Table 13: Label Ablation. Comparing whether we include the label being predicted in the input as
shown in Figure 1, or not. Results are max F1 on the clustered EC and GO development set for Small
models. Model performance is only slightly lower without access to the label.

Method EC GO

ProtEx-Small (with input label) 0.958 0.845
ProtEx-Small (without input label) 0.957 0.843

C.3.2 COMPARING RETRIEVAL STRATEGIES

We compared the BLAST and per-class retrieval strategies for EC prediction on the clustered split in
Table 14. Using BLAST to filter the number of classes gives considerably stronger performance on
EC prediction, likely because the BLAST performance is quite high. As a result, we used the BLAST
retrieval strategy for all the EC and GO results. As with Table 13, given the full development set is
quite large (approximately 180,000 examples), we performed this ablation on a random 10% subset.

Table 14: Retrieval Strategy Comparison: Comparing the BLAST and per class retrieval ap-
proaches on EC prediction (clustered development split).

Method EC

ProtEx (BLAST retrieval) 0.959
ProtEx (Per Class retrieval) 0.929

C.3.3 NEW-392 AND PRICE-149 RESULTS

The weighted AUC metric proposed by Yu et al. (2023b) averages F1 scores over classes based
on their representation in the test set. Especially since the NEW-392 and Price-149 test sets only
include a small subset of classes, this metric tends to emphasize higher recall and lower precision
relative to more standard metrics such as micro-averaged F1. Therefore, we also report the maximum
micro-averaged F1 scores for NEW-392 and Price-149 for ProtEx and BLAST in Table 15.

Table 15: Maximum Micro F1 scores for EC prediction for NEW-392 and Price-149 evaluation sets.

Method NEW-392 Price-149

BLAST 0.593 0.391
ProtEx 0.612 0.441

C.4 ADDITIONAL RESULTS ON PFAM

C.4.1 ANALYZING EFFECT OF CLASS FILTERING

Unlike for the EC and GO tasks, in Pfam we do not use a candidate label generator and consider all
potential classes for each query sequence. We made this decision based on the following analysis.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We used PairwiseAligner (as in Appendix B.5) to select the single closest exemplar per
candidate label for a random subset of 1000 sequences in the development set which gives |L|
exemplars for each sequence. We can then restrict the number of candidate labels to K by taking the
corresponding classes for the closest K exemplars to the query sequence in this selected set. Table 16
shows the results for various values of K, showing that it is beneficial to consider a large number of
classes.

Table 16: Analysis of Class Filtering for Pfam: Table showing how filtering by a homology based
approach (PairwiseAligner) reduces the accuracy ceiling.

Number of Candidate Labels Accuracy Ceiling

10 82.3
50 87.8
100 88.7
500 93.4
1000 95.3
2000 96.2
5000 98.2
17929 100

C.4.2 NO EXEMPLAR ABLATION

We experiment with ablations for Pfam that remove exemplars. The first is to finetune the model
following the procedure as our other results for ProtEx i.e. to generate per-class binary predictions,
but with no exemplars. The second strategy is to finetune our pretrained checkpoint to directly predict
the label string from the sequence.

As shown in Table 17, we find that the first approach performs poorly compared to the second. Upon
further analysis, we believe the reason for this is the large number of classes (17,929) in Pfam. We
hypothesize that, without exemplars, the model does not learn to effectively discriminate between
the positive class and all competing classes when trained using binary supervision, which requires
sampling of negative classes to avoid class imbalance.

Table 17: No Exemplar Ablation Comparison: Comparing different no exemplar approaches for
Pfam seed.

Method Family Accuracy (Dev)

No Exemplar Binary Prediction 40.3
No Exemplar Label String Prediction 74.7

C.4.3 STRATIFIED PERFORMANCE

We show family accuracy stratified by sequence similarity in Figure 7. This shows that our approach
consistently performs well across sequences with low similarity to the closest sequence in the training
data. We also show the stratified performance by lifted clan accuracy in Figure 8 and Figure 9 that
shows similar trends to Figure 7 and Figure 5.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

10-12 12-14 14-16 16-18 18-20 20-22 22-24 24-26
Maximum percent sequence identity with training set (averaged per bin)

0.2

0.4

0.6

0.8

1.0

fa
m

ily
 a

cc
ur

ac
y

Test set family accuracy by similarity to the train set

Top pick HMM
ProtENN
ProTNN
ProtEx (Ours)

Figure 7: Pfam family accuracy stratified by sequence similarity.

10-12 12-14 14-16 16-18 18-20 20-22 22-24 24-26
Maximum percent sequence identity with training set (averaged per bin)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

lif
te

d
cla

n
ac

cu
ra

cy

Test set lifted clan accuracy by similarity to the train set

Top pick HMM
ProtENN
ProTNN
ProtEx (Ours)

Figure 8: Pfam lifted clan accuracy stratified by sequence similarity.

1 17 29 42 58 79 104 149 237 402 2197
Training set family size (ticks are bin boundaries)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

lif
te

d
cla

n
ac

cu
ra

cy

Test set lifted clan accuracy by training family size

Top pick HMM
ProtENN
ProTNN
ProtEx (Ours)

Figure 9: Pfam lifted clan accuracy stratified by number of training examples per class.

23

	Introduction
	Background and Related Work
	Proposed Method
	Overview
	Training

	Experiments and Analysis
	Tasks and Datasets
	Baselines
	EC and GO Main Results
	Pfam Main Results
	Analysis and Ablations

	Limitations and Discussion
	Conclusion
	Additional Method Details
	Model Interface
	Pretraining Details

	Additional Dataset and Experiment Details
	Dataset Details
	Hyperparameters
	Computational Resources and Analysis
	Pre-training Ablations Details
	Retriever Details
	Negative Example Sampling

	Additional Results and Analysis
	Statistical Significance and Variance
	Model Architectures and Scaling
	Additional Results on EC Prediction
	Ablating Labels in Input
	Comparing Retrieval Strategies
	NEW-392 and Price-149 Results

	Additional Results on Pfam
	Analyzing Effect of Class Filtering
	No Exemplar Ablation
	Stratified Performance

