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ABSTRACT

Mapping a protein sequence to its underlying biological function is a critical prob-
lem of increasing importance in biology. In this work, we propose ProtEx, a
retrieval-augmented approach for protein function prediction that leverages exem-
plars from a database to improve accuracy and robustness and enable generalization
to unseen classes. Our approach relies on a novel multi-sequence pretraining task,
and a fine-tuning strategy that effectively conditions predictions on retrieved ex-
emplars. Our method achieves state-of-the-art results across multiple datasets and
settings for predicting Enzyme Commission (EC) numbers, Gene Ontology (GO)
terms, and Pfam families. Our ablations and analysis highlight the impact of condi-
tioning predictions on exemplar sequences, especially for classes and sequences
less well represented in the training data.

1 INTRODUCTION

Proteins perform a wide array of functions within organisms, captured by biologists using ontologies
such as Gene Ontology (GO) terms (Ashburner et al., 2000), Enzyme Commission (EC) numbers (Tip-
ton & Boyce, 2000), and Pfam families (Bateman et al., 2004). Mapping proteins to such functional
annotations can address key problems in biology, medicine, and chemistry (Price et al., 2018; Durairaj
et al., 2023). However, given the expense of wet lab experiments, and the rapid growth of protein
sequence databases (Uniprot, 2023), it is critical to extend coverage using computational protein
function predictions. Protein function prediction techniques largely fall into two categories, with
different strengths and weaknesses. Homology-based approaches align the query protein to annotated
sequences via methods such as BLAST (Altschul et al., 1997) or profile hidden Markov models (Eddy,
1998) allowing propagation of a label to the query. More recently, deep learning approaches directly
predict a protein’s function from its amino acid sequence.

While these approaches have been successful, key obstacles remain. A critical challenge is out-of-
distribution generalization across both label and sequence space. For example, recent expansions of
the Pfam database were driven by the identification of new classes (Mistry et al., 2021), for which
there are few annotated sequences. Moreover, a substantial number of proteins belong to the “dark
matter" of the protein universe (Durairaj et al., 2023), i.e. their sequences are dissimilar from those
of any characterized proteins, posing considerable challenges for both homology-based and deep
learning methods.

In this work, we propose ProtEx, a method for Protein function prediction via retrieved Exemplars.
ProtEx is a semiparametric approach that combines aspects of non-parametric similarity search
based methods and parametric deep learning models to achieve increased accuracy and robustness.
ProtEx is inspired by retrieval augmented methods in natural language processing and vision,
e.g. (Lewis et al., 2020; Pasupat et al., 2021; Izacard et al., 2023; Yu et al., 2023a; Long et al., 2022),
which show advantages over fully parametric models in capturing tail information (Kandpal et al.,
2023) and performing few-shot tasks through conditioning on task exemplars (Min et al., 2022; Chen
et al., 2022).

As shown in Figure 1, given a query protein and candidate label, ProtEx first uses a homology-based
retriever (such as BLAST) to obtain a class-conditioned set of positive and negative exemplars from
the training set. Our neural model is trained to make a task-based comparison across the set of
exemplars and the query to output a binary decision of whether the query sequence has the same
label as the positive exemplars. To enable the model to efficiently learn the relationship between
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Figure 1: Method Overview. Our proposed method, ProtEx, predicts the relevance of various
functional annotations for a given query sequence. First, for a given candidate label, positive and
negative exemplar sequences are retrieved from the training data. Second, a pre-trained neural model
jointly conditions on the query sequence and retrieved exemplars to make a prediction.

query and exemplar sequences, we propose a novel multi-sequence pretraining objective (Figure 3).
Our formulation allows us to effectively generalize to rare and unseen classes at test time and better
classify sequences that have low sequence similarity with the training data.

We evaluate our approach, ProtEx, on EC number, GO term, and Pfam family prediction tasks,
showing that it achieves state-of-the-art performance across multiple settings, and consistently
outperforms both existing traditional homology-based approaches and deep learning models. Our
stratified analysis shows that ProtEx brings most notable improvements on rare classes and sequences
that are far from the training set. We also demonstrate generalization to labels not seen at training
time. Finally, our ablations and analyses highlight the efficacy of our pretraining strategy and the
model’s ability to leverage exemplar sequences for improved classification accuracy.1

2 BACKGROUND AND RELATED WORK

We review traditional methods for protein similarity search, neural models for protein function
prediction, and related work on retrieval-augmented models from other domains.

Protein Similarity Search Proteins with similar sequences often perform similar functions, and
for a given query sequence, homologous sequences can be retrieved from a database using a variety
of similarity-based search methods (Altschul et al., 1997; Johnson et al., 2010; Remmert et al., 2012).
These enable homology-based inference (Loewenstein et al., 2009), where functional labels from
retrieved homologs are transferred to the query. ProtEx can be seen as performing homology-based
inference where information from the homologs is aggregated using a learned, non-linear model. A
ubiquitous tool for similarity search is BLAST (Altschul et al., 1990; 1997), which identifies and
scores local sequence alignments using an empirically-derived substitution cost matrix (Henikoff
& Henikoff, 1992). Our method leverages BLAST and BLAST-inspired techniques to retrieve
exemplars (see §4). BLAST also serves as a strong baseline for homology-based inference when
used in isolation.

Neural Models for Protein Function Prediction Recent work has shown that deep models map-
ping a protein sequence to functional predictions can outperform traditional alignment-based tech-
niques. Models can be fit from scratch (Kulmanov et al., 2018; Ryu et al., 2019; Cao & Shen, 2021;
Bileschi et al., 2022; Fan et al., 2022; Sanderson et al., 2023) or fine-tuned from a model pretrained on
unlabeled protein sequences (Strodthoff et al., 2020; Dohan et al., 2021; Villegas-Morcillo et al., 2021;
Yuan et al., 2023; Dickson & Mofrad, 2023). The amino acid sequence largely specifies a protein’s
structure and function (Anfinsen, 1973), and hence is often used as input to models. However, other
approaches also encode protein structures (Sokolov & Ben-Hur, 2010; Roy et al., 2012; Konc et al.,
2013; Gligorijević et al., 2021; Zhang et al., 2022; Lai & Xu, 2022), with broad coverage due to
advancements in protein structure prediction (Jumper et al., 2021; Baek et al., 2021). Using structures

1Code and model predictions are available at http://anonymized.
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in addition to or instead of protein sequences, either for prediction or retrieval, is largely orthogonal
to the contributions of this paper, and future extensions to ProtEx could incorporate such techniques.
Disordered proteins, which are not well characterized by a static structure would need to be handled
carefully, however (Ruff & Pappu, 2021). We do not consider prediction approaches based on protein
interaction networks (Mostafavi et al., 2008; You et al., 2019; Zhang et al., 2019; Kulmanov et al.,
2024), which have demonstrated high accuracy where such networks are already established, but
have limited overall coverage.

Particularly relevant are recent methods combining neural models and retrieval for protein function
prediction. Notin et al. (2022) combines likelihood scores from a protein language model and
an MSA to predict the functional effects of mutations. Hamamsy et al. (2023) distills a protein
similarity function into a neural network, and Dickson & Mofrad (2023) fine-tunes a retrieval model
for homology-based inference. The ProtIR method of Zhang et al. (2024) uses transductive learning
where predictions from a retriever and neural classifier are iteratively updated towards agreement. In
contrast to retrieval methods, which form predictions by aggregating pairwise similarity scores over
sequences, ProtEx predicts conditioned on multiple labeled exemplar sequences. This also differs
from methods that use the correlation structure in aligned sets of homologous sequences (MSAs),
without accompanying annotations of their function, to inform, e.g., structure prediction (Marks et al.,
2011; Jumper et al., 2021; Baek et al., 2021) or representation learning (Rao et al., 2021).

Retrieval-Augmented Models and In-Context Fine-tuning Retrieval augmented neural models
have shown success for a variety of text generation and classification tasks, with particular strength in
recalling long tail knowledge, where even large parametric language models (LMs) struggle (Kandpal
et al., 2023). Examples include retrieval-augmented language models, and models for machine
translation, question answering, semantic parsing, and text classification (Khandelwal et al., 2020;
2021; Karpukhin et al., 2020; Guu et al., 2020; Lewis et al., 2020; Izacard et al., 2023; Pasupat et al.,
2021; Yu et al., 2023a; Chalkidis & Kementchedjhieva, 2023). Retrieved context or exemplars come
from large-scale unlabeled collections or labeled sets for supervised learning (Wang et al., 2022; Lewis
et al., 2021). Computer vision and multimodal models also benefit from retrieval augmentation (Long
et al., 2022; Ramos et al., 2023). A focus in NLP have been methods to adapt a pretrained parametric
language model into one that can integrate information from retrieved sequences, and joint training
of a retriever and generation model. In this work, we use pre-existing protein similarity models for
retrieval and pre-train a protein sequence model to make inferences from multiple proteins.

ProtEx is also related to in-context tuning methods for few-shot tasks (Min et al., 2022; Chen et al.,
2022), where pretrained language models are meta-trained to make predictions given an input and
task-relevant exemplars. These works show strong performance on unseen tasks, enabled by the LM’s
ability to make predictions from an input and a few in-context exemplars. Similarly, ProtEx can be
seen as meta-training on multiple binary classification tasks with in-context exemplars and, as shown
in Section 4.5, can adapt to new labels without additional fine-tuning.

3 PROPOSED METHOD

Given a protein represented as a sequence of amino acids, x, our goal is to predict a set of associated
labels, y ⊂ L, where L is a set of protein function labels, such as EC numbers, GO terms, or
Pfam labels. Core to our approach is to condition model predictions on a set of annotated exemplar
sequences, which are retrieved from a training set, as visualized in Figure 2.

3.1 OVERVIEW

To predict a set of labels y given x, we first determine a set of candidate labels, L̂x ⊆ L, and then
make an independent binary prediction for each candidate label l ∈ L̂x, conditioning on exemplars
that are selected based on both x and l. Due to our model’s limited context window, we can only
condition on a limited number of exemplars per prediction. Therefore, our approach has several
advantages compared to generating y based on x and a single limited set of exemplars. First, we
can focus each prediction on the exemplars that are most relevant towards understanding the class
boundary of a specific label l. Second, we can consider a larger and more diverse set of candidate
labels than those corresponding to a limited number of exemplars. Finally, our approach can be seen

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Query 
Sequence

Similar Annotated 
Sequences

Similarity Search 
(e.g. BLAST)

Extract Candidate 
Labels

Candidate Label 1Candidate Label 2Candidate Label Candidate Label 1Candidate Label 2Select Exemplars

Candidate Label 1Candidate Label 2Model Input Candidate Label 1Candidate Label 2Run Transformer Candidate Label 1Candidate Label 2Predicted Score

Annotated Training 
Sequences

Threshold and 
Aggregate

Predicted Labels

Generate Input

Figure 2: Inference Procedure. Overview of procedure for computing a set of predicted labels given
a protein sequence and a set of training sequences with annotated function.

as meta-training on multiple binary classification tasks with in-context exemplars, which we show
enables ProtEx to adapt to new labels without additional fine-tuning.2

The inference procedure for predicting a set of functional labels, y, given a protein sequence, x, is
shown in Figure 2. We review each step of this procedure below.

Similarity Search Given a query sequence, x, the first step in Figure 2 is to retrieve a ranked list
of relevant sequences with known functional annotations, denoted Nx, from the training set. We
adopt standard methods based on efficiently computing local alignments between sequences. We use
BLAST (Altschul et al., 1997) for most experiments, which has shown strong performance and is
computationally feasible to run on most of the datasets we study.3 Specifically, we run blastp to
retrieve up to the 100 most similar sequences in the training set, and rank these sequences based on
the BLAST alignment score. (See Appendix B.5 for details.)

Candidate Labels We determine the set of candidate labels, L̂x, as the union of the labels cor-
responding to sequences in Nx. This simple approach ensures that we have at least one positive
exemplar sequence for every candidate label.

Selecting Exemplars We select a set of positive exemplars, Epx,l, as the top-kp sequences in Nx that
are annotated with the candidate label l. Similarly, we select a set of negative exemplars, Enx,l, as the
top-kn sequences in Nx that are not annotated with l. The hyperparameters kp and kn are discussed
in Section 4 and selected such that the exemplars fit within the model’s context window.

Model Input As visualized in Figure 1, we form a retrieval-augmented input sequence by concate-
nating the query sequence, x, the candidate label l, and the positive and negative exemplars, Epx,l and
Enx,l, with a character denoting whether each exemplar is positive or negative.4

Transformer Model As the focus of our study is the pre-training and fine-tuning recipe for our
model, we use the general encoder-decoder Transformer (Vaswani et al., 2017) architecture of
T5 (Raffel et al., 2020). As demonstrated in Raffel et al. (2020), this allows for flexibility in
defining different pre-training and fine-tuning tasks without changes to the underlying architecture.
We evaluate Small (60M) and Base (220M) sized models, using the Base size for our main results.
We also evaluated Transformer variants that offer more efficient handling of long context. See
Appendix C.2 for these comparisons. Similarly to Raffel et al. (2020), to apply our encoder-
decoder model as a binary classifier, our model predicts single character sequences corresponding
to either positive (p) or negative (n) predictions. We define the model score sθ(x, l, Epx,l, Enx,l) with
trainable parameters θ as the probability the model assigns to the positive character sequence p,
i.e. sθ(x, l, Epx,l, Enx,l) := logPθ(p|x, l, Epx,l, Enx,l). Since we consider separate exemplars for each
candidate label, this requires running the model up to |L̂x| (the number of candidate labels) times for
each input sequence. We analyze the computational cost of inference in Appendix B.3.

2While such a capability is theoretically also possible if generating a set of labels, e.g., by anonymizing
labels (Pasupat et al., 2021), this would be conceptually less straightforward.

3For the Pfam task, which requires retrieval from a larger training set, we use a similar but alternative
approach discussed in Section 4.4.

4See Appendix A.1 for further details. We also ablate inclusion of the candidate label in Section 4.5.
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Figure 3: Pretraining task. We sample a pair of unlabeled sequences, and the model is tasked with
predicting masked residues and a similarity score between the two sequences.

Aggregating Predictions For multilabel prediction tasks (e.g. EC and GO), we can determine a
predicted label set, ŷ, based on a score threshold t:

ŷ = {l | l ∈ L̂x ∧ sθ(x, l, Epx,l, E
n
x,l) > t},

and varying t produces a tradeoff between precision and recall. For multiclass prediction tasks (e.g.
Pfam) where y is always a singleton, we can determine the class with the highest score:

ŷ = {argmax
l∈L̂x

sθ(x, l, Epx,l, E
n
x,l)}.

3.2 TRAINING

Model training consists of two stages. First, we pre-train using unlabeled sequence pairs. Then, we
fine-tune for a specific task by constructing positive and negative examples given a set of labeled
sequences. In both stages, models are trained to maximize the likelihood of a target sequence given
an input sequence, given our generic encoder-decoder architecture (Raffel et al., 2020).

Pre-training Our pre-training task shown in Figure 3. Prior work has primarily pre-trained on
single unlabeled sequences, then fine-tuned with a single sequence as input to improve protein
function prediction (Dohan et al., 2021; Lin et al., 2023). In contrast, our goal is to train models that
implicitly compare a query sequence with exemplar sequences. We thus propose a new pre-training
objective over multiple sequences. We sample pairs of sequences from UniRef90 (Suzek et al., 2015),
approximating a uniform distribution over sequence similarity buckets. We then implement a version
of the span denoising objective of Raffel et al. (2020). We mask the sequences by randomly replacing
approximately 10% of residues with a placeholder index. The prediction target consists of predicting
the masked residues as well as the similarity score between the two sequences. As a simple and easy
to compute measure of sequence similarity, we use Levenshtein distance normalized by the sequence
length, bucketed to the nearest multiple of 5. Intuitively, the prediction target encourages the model
to learn to approximately align and compare the two input sequences. We then expect the model to
implicitly learn a more task-specific notion of similarity during fine-tuning. Pre-trained checkpoints
are shared across all tasks that we study. See Appendix A.2 for details and §4 for analysis.

Fine-tuning For each sequence x and corresponding set of annotated labels y ⊂ L in the training
set, we create both positive and negative examples, with targets p and n, respectively. We generate
a positive example for every label ∈ y, and negative examples corresponding to labels /∈ y.5 We
determine the retrieval-augmented input sequence as described in §3.1. The only difference is how
we select positive and negative exemplars, Epx,l and Enx,l, from the ranked list of related sequences,
Nx.6 We evaluated top-k (as used at inference time), uniform, and geometric sampling (Pasupat et al.,
2021).7 Uniform or geometric sampling leads to greater diversity in the training data compared to
training for multiple epochs over data generated using deterministic top-k selection. Also, for cases
where the training and evaluation sequences are not from the same distribution, such sampling can
better align the distribution between query sequences and exemplar sequences seen at training time
with the distribution seen at inference time. More analysis is given in §4.5.

5See Appendix B.6 for details of how negative examples are sampled, and a discussion of class imbalance.
6At training time we also need to ensure the query sequence x is excluded from the ranked list of related

sequences.
7Geometric sampling samples the jth element with probability∝ p(1− p)(j−1), where parameter p provides

interpolation between top-k and uniform sampling.

5
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4 EXPERIMENTS AND ANALYSIS

We compare the performance of ProtEx with other approaches (§4.2) across several EC, GO, and
Pfam classification tasks (§4.1), with results reported in in §4.3 and §4.4. Finally, in §4.5, we report
additional analysis and ablations. Further details and results can be found in Appendices B and C.

4.1 TASKS AND DATASETS

Table 1: Dataset Statistics. We consider prediction of EC numbers, GO terms, and Pfam families
across several settings proposed in prior work. We report the number of unique classes among the
training sequences, and the average number of classes per sequence.

Name Labels Training Sequences Classes Avg. # Classes Per Seq.

Random EC EC 438,522 4,862 1.89
Random GO GO 438,522 31,365 45.49
Clustered EC EC 182,965 3,411 1.90
Clustered GO GO 182,965 26,538 45.57
NEW-392 EC 227,362 5,242 1.06
Price-149 EC 227,362 5,242 1.06
PDB EC EC 15,551 538 1.67
Clustered Pfam Pfam 1,296,280 17,929 1

We consider several EC number, GO term, and Pfam prediction tasks summarized in Table 1. Some
additional details are provided in Appendix B.

For EC and GO prediction, we adopt the random and clustered splits from Sanderson et al. (2023).
These splits consist of proteins and their corresponding annotations from Swiss-Prot, the manually
curated portion of UniProt (Consortium, 2015). For the random split, approximately 80% of proteins
were reserved for training, with 10% each assigned to the development and test sets. For the more
challenging clustered split, proteins were divided evenly into train, development, and test sets based
on UniRef50 clusters (Suzek et al., 2015), such that proteins in the development and test sets have
lower sequence similarity with those in the training set than a random split.

To better compare our results on EC prediction with prior work, we also consider several other
evaluations. First, we evaluate EC prediction on the setting proposed in Yu et al. (2023b). Similarly
to Sanderson et al. (2023), this setting uses sequences from Swiss-Prot for training. There are
two evaluation sets, NEW-392 and Price-149. While the training data contains sequences added to
Swiss-Prot prior to April 2022, New-392 consists of 392 enzyme sequences added after this date,
forming a temporal split. Price-149, originally curated by Sanderson et al. (2023), consists of 149
sequences with EC numbers determined experimentally by Price et al. (2018). These sequences were
inconsistently labeled by automated annotation methods, indicating a challenging setting. Second,
we also adopt the PDB-based dataset proposed by Gligorijević et al. (2021). In contrast to the other
EC splits based on sequences from Swiss-Prot, this dataset focuses on proteins with experimentally
determined structures in PDB (Berman et al., 2000). Therefore, the training set is considerably
smaller. Notably, our method does not require structural information, but we nevertheless evaluate on
this setting to compare with prior work.

Finally, we also evaluate on the Pfam seed dataset (Finn et al., 2014) where the goal is to map each
protein sequence to one of 17,929 families. We use the clustered split as defined by Bileschi et al.
(2022) where sequences in the development and test sets have less than 25% sequence identity to
those in the training set.

4.2 BASELINES

For each task we consider three types of baselines. First, we consider the strongest performing
neural models and other methods from prior work. Second, to determine the impact of retrieving and
conditioning on exemplars, we evaluate ProtEx when no exemplars are included during fine-tuning
and inference. Third, we report results for BLAST, following the setting of Sanderson et al. (2023),
which imputes the labels from the most similar sequence returned by BLAST if the score is above

6
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Table 2: Max F1 scores for EC and GO prediction on the random and clustered SwissProt-based
splits proposed by Sanderson et al. (2023).

EC GO

Method Random Clustered Random Clustered

ProteInfer 0.977 0.914 0.885 0.782
ProteInfer (ensemble) 0.981 0.930 0.899 0.811

BLAST 0.984 0.950 0.902 0.824

ProtEx 0.987 0.958 0.917 0.854
ProtEx (no exemplars) 0.977 0.944 0.786 0.754

an alignment score threshold. In some cases, our BLAST results are stronger than those reported
by prior work due to this thresholding. Notably, this BLAST baseline frequently outperforms the
strongest neural methods from prior work, highlighting the importance of including such baselines,
as well as motivating methods such as ProtEx that can combine the strengths of similarity-search
methods such as BLAST with pre-trained neural models.

4.3 EC AND GO MAIN RESULTS

Table 3: Weighted AUC for EC prediction
for NEW-392 and Price-149.

Method NEW-392 Price-149

CLEAN 0.740 0.733

BLAST 0.788 0.691

ProtEx 0.932 0.842
ProtEx (no ex.) 0.926 0.839

Table 4: Max protein-centric F1 for EC
prediction on PDB-based split.

PDB EC

Method 30% 50% 95%

DeepFRI 0.470 0.545 0.631
ESM-1b 0.737 0.797 0.864
GearNet MVC 0.744 0.808 0.874
ESM-GearNet — — 0.890
PromptProtein 0.765 0.823 0.888
ProtST (ESM-2) — — 0.878
ESM-2 (adapter) — — 0.892
PST (ESM-2) — — 0.899

BLAST 0.801 0.848 0.900

ProtEx 0.820 0.862 0.909
ProtEx (no ex.) 0.717 0.777 0.849

Here we report results on several EC and GO clas-
sification tasks. We used up to 2 positive and 2
negative exemplars. See Appendix B for further
details and Appendix C.1 for the statistical signif-
icance of key comparisons (tested differences are
significant with p-values < 0.01).

First, we report results in Table 2 for the ran-
dom and clustered EC and GO splits proposed by
Sanderson et al. (2023). We follow Sanderson et al.
(2023) and report the maximum micro-averaged
F1 score. We compare with a single-model and
ensembled versions of ProteInfer (Sanderson et al.,
2023), a CNN-based model. Our BLAST result re-
produces that of Sanderson et al. (2023), which out-
performs ProteInfer. ProtEx also improves over
BLAST, with performance dropping considerably
if exemplars are not included in the input during
fine-tuning and inference. The precision and recall
curves of ProtEx relative to BLAST are shown in
Figure 4, demonstrating improvements in precision
at all recall values.

Second, we report in Table 3 results on the NEW-
392 and Price-149 evaluations proposed by Yu et al.
(2023b), and compare with their proposed method,
CLEAN. As there is no development set provided
in this setting, we used the hyperparameters de-
termined for the clustered EC task, and compare
results based on the weighted AUC metric reported by Yu et al. (2023b), which does not require select-
ing a score threshold. We see that ProtEx improves over both CLEAN and BLAST. Again, ablating
exemplars leads to a drop in performance. Additionally, we report F1 results in Appendix C.3.3.

Finally, we also report results on the PDB-based split proposed by Gligorijević et al. (2021) in Table 4.
Following prior work, we report the maximum protein-centric F1 score (i.e. Fmax), and stratify
results by the maximum similarity between test sequences and training sequences. Table 4 includes
results for the strongest methods from prior work. We report results for DeepFRI from Gligorijević
et al. (2021), ESM-1b (Rives et al., 2021) and GearNet from Zhang et al. (2022), ESM-GearNet
from Zhang et al. (2023), PromptProtein from Wang et al. (2023), ProtST from Xu et al. (2023), and

7
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Figure 4: Precision and recall of ProtEx and BLAST on the clustered EC and GO tasks.

ESM-2 (Lin et al., 2023) with a classifier head and PST from Chen et al. (2024). Perhaps surprisingly,
we see that BLAST with an alignment score threshold achieves a very competitive result on this
setting. Regardless, ProtEx outperforms BLAST and other previously reported results on this setting,
including ESM-2 (a 15B parameter model), other models based on ESM-2 (ESM-GearNet, ProtST,
and PST), and approaches that explicitly consider structural information. Ablating exemplars again
demonstrates the significance of conditioning on exemplars. For future work, improvements from
pre-training scale (e.g. ESM-2) and incorporating structural information and other resources (e.g.,
GearNet, ProtST, PST, PromptProtein) could be complementary to our retrieval-augmented approach.

4.4 PFAM MAIN RESULTS

For the Pfam dataset, we use an alternative to BLAST for selecting similar sequences, detailed in
Appendix B.5. The Pfam dataset is considerably larger than the other datasets (see Table 1), and
running BLAST for all examples in the training set can take considerable time. Moreover, BLAST
does not achieve as strong of a result for Pfam classification as it does for the EC and GO tasks.
Therefore, we implemented an alternative retrieval system that can be more easily parallelized and
customized than BLAST. For every sequence, we select a set of similar sequences for each class
independently. For efficiency, we randomly select up to a maximum number of sequences per class in
the training set, and then rank these sequences according to a local alignment score that is similar to
the one computed by BLAST. Based on analysis of the effect of restricting the number of classes
(see Appendix C.4.1), we opted to consider all classes as candidate labels. We also evaluated this
strategy for EC prediction although it did not perform as well as our BLAST-based approach (see
Appendix C.3.2). We use 4 positive exemplars and zero negative exemplars, since we found in our
early experiments that additional positive exemplars added more benefit.

Table 5: Results on the Pfam clustered split. Sequences in the test set have less than 25% sequence
identity to the training set.

Method Family Accuracy Lifted Clan Accuracy Avg. Per-Family Accuracy

Top pick HMM 81.9 88.1 82.9
BLAST 64.1 70.1 63.7
ProtENN 87.8 89.0 80.4
ProtNLM 87.4 90.7 80.6
ProtTNN 88.4 90.5 83.4
ProtTNN (ensemble) 89.7 91.7 85.0

ProtEx 92.6 93.3 91.7
ProtEx (no exemplars) 76.3 80.2 65.7

We compare ProtEx with two strong homology-based approaches (BLAST and Top pick HMM, as
described in Dohan et al. (2021)), ProtENN (Bileschi et al., 2022) a convolutional neural network
ensemble, and ProtNLM (Gane et al., 2022) and ProtTNN (Dohan et al., 2021), which are pretrained
Transformer models. For the no exemplar ablation, we found that predicting a binary label without
exemplars generalizes poorly when the number of classes is large, and so we instead finetune our
pretrained checkpoint to predict the class label as a string given the sequence, which we found
performed better. See Appendix § C.4.2 for further discussion.
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Results are shown in Table 5. We report family accuracy, lifted clan accuracy that groups families
into higher level clans (Dohan et al., 2021), and the average per-family accuracy, which gives equal
weight to all classes, including rare classes. Our approach achieves state-of-the-art performance
by a considerable margin. Additionally, as shown in Figure 5, while other methods typically show
lower performance for examples with rare labels, ProtEx demonstrates more consistent performance
across training set family sizes, showcasing large improvements for examples belonging to rare
families. See Appendix C.4.3 for further stratified performance analysis, showing that our method
performs well across sequences that have low similarity with the closest sequence in the training data,
and that similar trends are observed at the lifted clan level.

1 17 29 42 58 79 104 149 237 402 2197
Training set family size (ticks are bin boundaries)
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Figure 5: Pfam stratified family accuracy. ProtEx shows considerably improved performance for
sequences belonging to rare labels.

4.5 ANALYSIS AND ABLATIONS

Table 6: Generalization to Unseen Labels. Max
F1 on clustered EC and GO when a randomly se-
lected subset of labels are not included during fine-
tuning.

EC GO

Method Seen Unseen Seen Unseen

BLAST 0.953 0.964 0.826 0.816
ProtEx 0.960 0.970 0.849 0.839

Table 7: Pre-training Ablations. We
report F1 on Clustered EC development
split for different pre-training strategies.

Pre-training F1

Sequence pair w/ score 0.958
Sequence pair 0.956
Single sequence 0.952

No pre-training 0.912

Generalization to New Labels We tested the ability of ProtEx to make predictions for new classes
not seen during fine-tuning. On the EC and GO clustered splits we randomly removed 10% of classes
during fine-tuning, while retaining the ability to retrieve sequences annotated with these classes at
inference time. As shown in Table 6, ProtEx performs comparably or better than BLAST even
on classes it has not seen during training. Relatedly, we also found that there is only a minimal
performance decrease when candidate labels are not included in the model input (see Appendix C.3.1),
further indicating that the model is conditioning its predictions on the exemplar sequences as opposed
to directly representing the sequence to class relationship in the model parameters.

Pre-training Analysis We show results for ablating the key elements of our pre-training recipe
in Table 7. Notably, there is a drop in end task performance when pre-training with only a single
sequence as input, as commonly done in prior work, as opposed to pre-training over sequence pairs.
This indicates that our pre-training task is useful for retrieval-augmented models that are fine-tuned
to make comparisons across multiple sequences. See Appendix B.4 for further details.

Model Architectures and Scaling In Appendix C.2 we compare Small and Base sized models,
finding that there is a modest benefit to increasing model size from Small to Base. We also compare
the Fusion-in-Decoder (FiD) approach introduced by Izacard & Grave (2021) with a standard
Transformer, finding that this may be viable path towards scaling to more exemplars, but that there is
a performance drop, indicating that cross-attention between exemplar sequences is beneficial.
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Exemplar Distribution and Sampling As described in §3, we study different sampling strategies
to select exemplars during training. This adds diversity to the training data, and can also help align
the distribution of similarities between query and exemplar sequences seen during training with those
seen during inference, which is especially useful for non-random splits. We highlight this capability
on the Pfam task, which features the largest distributional shift between training and inference due to
the split restricting inference sequences to have <25% sequence similarity to the training set. Figure 6
shows the corresponding distribution of similarities between query and exemplar sequences and its
impact on out-of-distribution generalization as measured by family accuracy on development set.
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Pfam Exemplar Sampling Strategies
    Split    Sampling            Family Acc.

Train    top-k               89.39      
Train    geometric (p=0.5)   89.18      
Train    geometric (p=0.1)   91.45      
Train    uniform             91.85      
Eval     top-k               -          

Figure 6: Effect of exemplar sampling strategy on Pfam. We visualize how different sampling
strategies can mitigate the distribution shift between training and evaluation. Uniform sampling leads
to the training distribution most similar to the evaluation distribution, and also leads to the highest
family accuracy on the development set.

5 LIMITATIONS AND DISCUSSION

Computational Requirements While we use a model size and number of pre-training steps
comparable to or less than prior work (Appendix B.3), the cost of inference with our method is
potentially larger due to encoding multiple protein sequences and making independent predictions
for each class. To mitigate these factors, we have considered the FiD architecture (Appendix C.2)
and a candidate label generator (§3), which offer a path towards more efficient inference. Regardless,
improvements in accuracy and robustness can justify an increase in computational cost for some
applications, given the much greater cost of running wet-lab experiments to annotate protein function.

Scope and Future Work In this work we focused on training and inference procedures that
can effectively condition predictions on retrieved exemplars, using a general-purpose Transformer
architecture and standard methods for retrieval (e.g. BLAST). Going forward, our approach could
potentially be further improved using enhanced similarity search techniques such as those based
on protein structure (Zhang et al., 2022; Hamamsy et al., 2023; Van Kempen et al., 2024) and
more specialized architectures. Finally, we focused on predicting EC, GO, and Pfam labels. Other
tasks such as fitness prediction (Romero et al., 2013) or generating free-text descriptions of protein
function (Gane et al., 2022; Abdine et al., 2024) could be of interest for future work.

Broader Impact and Ethical Considerations Our method enables more accurate and robust
prediction of protein functional annotations. Any computationally derived annotation should be
verified by wet lab experiments where possible, especially for critical applications. Our method
extends a long history of prior work that develops such tools and the community’s safeguards for how
to apply them in an ethical manner applies here as well.

6 CONCLUSION

We proposed ProtEx, a semiparametric approach that combines aspects of homology-based similarity
search with pre-trained neural models. ProtEx achieves state-of-the-art results on EC, GO, and Pfam
classification tasks. Our work highlights the potential of retrieval-augmented methods for improving
the accuracy and robustness of protein function prediction.
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A ADDITIONAL METHOD DETAILS

A.1 MODEL INTERFACE

We use the character-based vocabulary of Xue et al. (2022), which ensures that amino acid sequences
are tokenized into their individual amino acid residues. We represent labels as short character
sequences such as EC:1.2.3.4. We use single characters to indicate the start and end of amino
acid sequences, and to indicate whether an exemplar sequence is positive or negative.

The training target is a single character sequence, p or n, for positive and negative examples,
respectively. At inference time, we determine the score based on the probability assigned to the single
character sequence p.

A.2 PRETRAINING DETAILS

As our fine-tuned models need to make comparisons between query and exemplar sequences of
varying similarities, we construct the dataset such that all similarity ranges are well represented in
the pre-training data. For each pair, we sampled one sequence uniformly from UniRef90. Then,
we sampled a second sequence, approximating a uniform distribution over similarity buckets. The
resulting distribution of normalized Levenshtein similarities in the pretraining data is shown in
Table 8.

The process is loosely analogous to some methods explored in NLP. For example, Sellam et al.
(2020) pre-trained models to compute BLEU scores over pairs of strings. BLEU is a deterministic
measure of string similarity. Models were then fine-tuned on human labeled data to learn a more
task-specific notion of similarity. Pre-training on a context that includes related sequences is perhaps
also analogous to the in-context pre-training method proposed by Shi et al. (2024), which includes
a language modeling objective over related documents, showing this is useful relative to randomly
selected documents, for various downstream tasks.

Table 8: Distribution of similarities in pretraining data. We report the fraction of the sequence
pairs in the pretraining data for different ranges of normalized Levenshtein similarity.

Similarity Data %

0-25% 19.8
25-50% 38.4
50-75% 30.1
75-100% 11.7

B ADDITIONAL DATASET AND EXPERIMENT DETAILS

B.1 DATASET DETAILS

EC Labels As Table 1 shows, the number of EC classes considered varies across tasks. This is
partially due to differences in which sequences, and therefore which EC labels, are included in the
training set. However, different tasks also consider different tiers of the EC hierarchy. The Swiss-Prot
based random and clustered splits consider labels from all 4 levels of the EC hierarchy, the PDB EC
tasks considers only levels 3 and 4, and NEW-392 and Price-149 evaluations only consider level 4.
Also notably, the Price-149 labels were originally derived from Price et al. (2018). However, more
recent work (Price et al., 2022) has revisited the functional annotations of some of these sequences,
and should be considered for future work with this evaluation.

Dataset Licenses The EC and GO tasks are adapted from Swiss-Prot, which is the human curated
portion of UniProt that is released under CC BY 4.0. The PDB EC split is also available under CC BY
4.0. The Pfam task is derived from Pfam8 and is released under the CC0 1.0 license. For pretraining

8https://interpro-documentation.readthedocs.io/en/latest/pfam.html
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data we used Uniref90 Suzek et al. (2015), which is derived from UniProt (Consortium, 2015) that is
released under CC BY 4.0.

B.2 HYPERPARAMETERS

Pre-training We pre-trained models for 1M steps using a learning rate of 1e-3 and a batch size of
256 tokens using Adafactor (Shazeer & Stern, 2018).

EC and GO Fine-tuning We selected hyperparameters based on development set performance,
focusing on the Swiss-Prot clustered splits. For all ProtEx models with exemplars we use a learning
rate of 1e-3 with Adafactor with dropout regularization (Srivastava et al., 2014) set to 0.1. For the
Swiss-Prot based splits, we trained models for 50,000 steps. For the smaller PDB based split, we
trained models for 8,000 steps. Models without exemplars were trained longer, as these models took
longer to reach a stable development accuracy. We trained these models for 100,000 steps for the
Swiss-Prot splits and 40,000 steps for the PDB split. We used a batch size of 256 for all experiments.
For the random and clustered Swiss-Prot splits we used a maximum input sequence length of 6784
tokens, which led to some truncation of exemplars in about 1% of examples during training and
inference. The other tasks did not lead to inputs that exceeded this length.

Pfam Fine-tuning For all ProtEx models with exemplars we use a learning rate of 2e-4, batch
size of 128, a maximum input length of 6,528, and dropout set to 0.1. We finetune for 200,000 steps
with Adafactor, and pick the best model based on development accuracy.

The configuration for the no exemplar ablation is similar except we use a higher learning rate of 1e-3
which we found worked better in practice and a beam size of 8 since we are treating the label as a
string that can be tokenized into multiple tokens. Since there are no exemplars the maximum input
length could be shortened to 2,688.

B.3 COMPUTATIONAL RESOURCES AND ANALYSIS

For training and inference we used Google Cloud TPUs (v3 and v5e) in configurations of up to 128
chips.

Model Training Pre-training the Base model to 1M steps took approximately 7 days on 64 TPU
v3 chips. Fine-tuning the Base model took approximately 3 hours per 10K steps of fine-tuning.

Retrieval Training and inference requires retrieving exemplars. The expense of retrieving exem-
plars is comparable to systems such as AlphaFold (Jumper et al., 2020) or MSA Transformer (Rao
et al., 2021), which retrieve sequences as a preprocessing step, albeit for a different purpose (to build
a MSA).

For inference with BLAST, a query over the largest training split considered (438K SwissProt
examples for the random EC and GO splits) achieved a throughput of >1 sequence per second,
running blastp -query with -num_threads 16 and -max_target_seqs 100, on a
standard CPU workstation.

As we speculate in Section 5, embedding-based retrievers could potentially provide an even more
computationally efficient way to retrieve exemplars in the future.

Model Inference We evaluated 60M (Small) and 220M (Base) parameter T5 models (Ap-
pendix C.2). Notably, even the Base model is considerably smaller than some prior work, such as
ESM-2 (Lin et al., 2023), which has 15B parameters. As ProtEx outperforms several approaches
based on ESM-2, our results suggest that retrieval-augmented models may offer the ability to achieve
greater accuracy with smaller models.

Inference with ProtEx requires running the model once for each candidate label. The Base model
throughput was approximately 500 sequence and candidate label pairs per second on a cluster of 64
Google Cloud TPU v3 chips. Inference can additionally be parallelized over multiple clusters or
performed on a larger cluster. Model throughput could be improved by considering more efficient
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architectures (as analyzed in Appendix C.2), and the number of candidate labels per sequence could
be reduced by considering stronger candidate label generators.

B.4 PRE-TRAINING ABLATIONS DETAILS

Here we provide additional details about the pre-training ablations shown in Table 7. As pre-training
is computationally expensive and our Small and Base models perform similarly (see C.2), we
used Small models for these comparisons. Additionally, we observed that fine-tuning performance
was comparable when tuning from a checkpoint that had been pre-trained for 500K or 1M steps,
indicating that most of the advantage of pre-training is accrued in the first 500K steps. Therefore, we
compared models pre-training for 500K steps. Finally, given the full development set is quite large
(approximately 180,000 examples), we perform this ablation on a random 10% subset.

B.5 RETRIEVER DETAILS

BLAST We use ncbi-blast-2.14.1+. We run makeblastdb with -dbtype prot, and
then query the database using blastp with default arguments and -max_target_seqs 100.

We select exemplars during training using geometric sampling with p = 0.5.

We consider only candidate labels associated with sequences in the retrieved set. The number of
candidate labels per sequence can vary, e.g. the mean is 6.3 candidate labels per sequence for the
Random EC dataset vs. 237.2 candidate labels per sequence for the Random GO task. This is
influenced by the number of classes per sequence per Table 1.

Per Class Retrieval For flexibility and ease of parallelization, we use Biopython9

Align.PairwiseAligner. We set mode = local, extend_gap_score = -1.0,
open_gap_score = -11.0, and substitution_matrix = BLOSUM62.

For development and inference, for each query we find the closest 4 exemplars from each class using
the pairwise aligner above. For training given the size of the dataset, for each query we sample up to
100 exemplar candidates per class and select 4 exemplars from this set using uniform sampling as
detailed in § 3, which we found performs the best (Table 6).

B.6 NEGATIVE EXAMPLE SAMPLING

As discussed in §3, we sometimes use sampling of negative examples to avoid class imbalance during
training. When using the BLAST retriever this is not necessary because the set of candidate labels
consists of a reasonable balance of positive and negative labels. However, when using the Per Class
Retrieval method, naively generating a training example for every label would lead to an imbalance.
Therefore, for each sequence, we generate a negative example for the label with the highest similarity
score, and also randomly sample another negative label.

C ADDITIONAL RESULTS AND ANALYSIS

C.1 STATISTICAL SIGNIFICANCE AND VARIANCE

For the results reported in Table 2 and Table 4, we assessed the statistical significance of the difference
in F1 score between ProtEx and BLAST, for cases where the difference was less than 0.01, using
a permutation test Yeh (2000). In Table 9, we report the p-values and standard deviation of the
sampled score differences under the null hypothesis that predictions from the two approaches are
interchangeable, which was estimated using 100 sampled permutations of the predictions. We
computed p-values using a t-test.

For the evaluation settings where the training and evaluation sets are small, we also computed the
variance from different fine-tuning runs. The standard deviation across 3 different fine-tuning runs
is shown in Table 10, which is in all cases small relative to the performance differences between
ProtEx and prior work.

9https://biopython.org/
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Table 9: Statistical significance of comparisons between ProtEx and BLAST.

Task Metric Null Stdev. Observed Diff p-value

Random EC Micro F1 0.0002 0.003 1.32e-24
Clustered EC Micro F1 0.0002 0.008 1.53e-59
PDB EC Protein-centric F1 0.0031 0.009 6.17e-3

Table 10: Variance between fine-tuning runs.

Task Metric Fine-tuning Stdev.

PDB EC Protein-centric F1 0.0006
NEW-392 Weighted AUC 0.0003
Price-149 Weighted AUC 0.0009

C.2 MODEL ARCHITECTURES AND SCALING

The computational cost of self-attention in a standard Transformer scales quadratically with input
length. To more efficiently encode exemplars, we studied the Fusion-in-Decoder (FiD) approach
introduced by Izacard & Grave (2021). We apply this approach to encode the query and each exemplar
in a separate encoder, effectively masking attention between exemplars. Notably, this model variant
consists of the same set of parameters and can be initialized from the same pre-trained checkpoint. We
compare the performance of the standard and FiD architecture for Small (60M) models in Table 11.

The FiD architecture performs only slightly worse than the standard Transformer, indicating this may
be one path towards more efficiently encoding a larger number of exemplars. On the other hand, the
drop in performance suggests there is value in attention across exemplar sequences.

Another potential alternative would be a specialized architecture such as MSA Transformer (Rao
et al., 2021). This would require a couple of modifications to the MSA Transformer architecture.
First, MSA Transformer would need to be adapted to include functional labels along with unlabeled
sequences. Second, the architecture requires that all sequences are aligned as a preprocessing step.
Intuitively, our pre-training and fine-tuning procedures are designed to teach the model to implicitly
align sequences without relying on heuristic alignments. Notably, the main difference between
MSA Transformer and a standard Transformer is the more restricted attention operations allowed in
MSA Transformer. As we have shown, using a Fusion-in-Decoder Transformer, which has a more
restricted attention mechanism, leads to a modest drop in performance. Therefore, this would be a
concern for any architecture that similarly restricts the attention mechanism such as MSA Transformer.
Regardless, such specialized architectures could be a path to explore for future work.

Table 11: Model Architecture Comparisons. We report F1 on Clustered EC and GO development
splits for standard Transformer vs. Fusion-in-Decoder (FiD) for Small models

Architecture EC GO

Standard Transformer 0.958 0.845
FiD Transformer 0.953 0.842

We also compare Small vs. Base size models in Table 12. Given the full development set is quite
large (approximately 180,000 examples), we performed both these ablations on a random 10% subset.

C.3 ADDITIONAL RESULTS ON EC PREDICTION

C.3.1 ABLATING LABELS IN INPUT

We evaluate how much the model’s performance depends on being able to condition on the candidate
label as input. Table 13 shows that the model achieves similar performance with and without the
candidate label, indicating that the model is indeed conditioning on the exemplars. Given the full
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Table 12: Model Size Comparisons. We report F1 on Clustered EC and GO development splits for
Small and Base sized Transformers.

Size EC GO

Base (220M) 0.959 0.848
Small (60M) 0.958 0.845

development set is quite large (approximately 180,000 examples), we performed this ablation on a
random 10% subset.

Table 13: Label Ablation. Comparing whether we include the label being predicted in the input as
shown in Figure 1, or not. Results are max F1 on the clustered EC and GO development set for Small
models. Model performance is only slightly lower without access to the label.

Method EC GO

ProtEx-Small (with input label) 0.958 0.845
ProtEx-Small (without input label) 0.957 0.843

C.3.2 COMPARING RETRIEVAL STRATEGIES

We compared the BLAST and per-class retrieval strategies for EC prediction on the clustered split in
Table 14. Using BLAST to filter the number of classes gives considerably stronger performance on
EC prediction, likely because the BLAST performance is quite high. As a result, we used the BLAST
retrieval strategy for all the EC and GO results. As with Table 13, given the full development set is
quite large (approximately 180,000 examples), we performed this ablation on a random 10% subset.

Table 14: Retrieval Strategy Comparison: Comparing the BLAST and per class retrieval ap-
proaches on EC prediction (clustered development split).

Method EC

ProtEx (BLAST retrieval) 0.959
ProtEx (Per Class retrieval) 0.929

C.3.3 NEW-392 AND PRICE-149 RESULTS

The weighted AUC metric proposed by Yu et al. (2023b) averages F1 scores over classes based
on their representation in the test set. Especially since the NEW-392 and Price-149 test sets only
include a small subset of classes, this metric tends to emphasize higher recall and lower precision
relative to more standard metrics such as micro-averaged F1. Therefore, we also report the maximum
micro-averaged F1 scores for NEW-392 and Price-149 for ProtEx and BLAST in Table 15.

Table 15: Maximum Micro F1 scores for EC prediction for NEW-392 and Price-149 evaluation sets.

Method NEW-392 Price-149

BLAST 0.593 0.391
ProtEx 0.612 0.441

C.4 ADDITIONAL RESULTS ON PFAM

C.4.1 ANALYZING EFFECT OF CLASS FILTERING

Unlike for the EC and GO tasks, in Pfam we do not use a candidate label generator and consider all
potential classes for each query sequence. We made this decision based on the following analysis.
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We used PairwiseAligner (as in Appendix B.5) to select the single closest exemplar per
candidate label for a random subset of 1000 sequences in the development set which gives |L|
exemplars for each sequence. We can then restrict the number of candidate labels to K by taking the
corresponding classes for the closest K exemplars to the query sequence in this selected set. Table 16
shows the results for various values of K, showing that it is beneficial to consider a large number of
classes.

Table 16: Analysis of Class Filtering for Pfam: Table showing how filtering by a homology based
approach (PairwiseAligner) reduces the accuracy ceiling.

Number of Candidate Labels Accuracy Ceiling

10 82.3
50 87.8
100 88.7
500 93.4
1000 95.3
2000 96.2
5000 98.2
17929 100

C.4.2 NO EXEMPLAR ABLATION

We experiment with ablations for Pfam that remove exemplars. The first is to finetune the model
following the procedure as our other results for ProtEx i.e. to generate per-class binary predictions,
but with no exemplars. The second strategy is to finetune our pretrained checkpoint to directly predict
the label string from the sequence.

As shown in Table 17, we find that the first approach performs poorly compared to the second. Upon
further analysis, we believe the reason for this is the large number of classes (17,929) in Pfam. We
hypothesize that, without exemplars, the model does not learn to effectively discriminate between
the positive class and all competing classes when trained using binary supervision, which requires
sampling of negative classes to avoid class imbalance.

Table 17: No Exemplar Ablation Comparison: Comparing different no exemplar approaches for
Pfam seed.

Method Family Accuracy (Dev)

No Exemplar Binary Prediction 40.3
No Exemplar Label String Prediction 74.7

C.4.3 STRATIFIED PERFORMANCE

We show family accuracy stratified by sequence similarity in Figure 7. This shows that our approach
consistently performs well across sequences with low similarity to the closest sequence in the training
data. We also show the stratified performance by lifted clan accuracy in Figure 8 and Figure 9 that
shows similar trends to Figure 7 and Figure 5.
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Figure 7: Pfam family accuracy stratified by sequence similarity.
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Figure 8: Pfam lifted clan accuracy stratified by sequence similarity.
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Figure 9: Pfam lifted clan accuracy stratified by number of training examples per class.
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