
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BOOSTING ADVERSARIAL ROBUSTNESS WITH CLAT:
CRITICALITY-LEVERAGED ADVERSARIAL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial training (AT) is a common technique for enhancing neural network
robustness. Typically, AT updates all trainable parameters, but such comprehensive
adjustments can lead to overfitting and increased generalization errors on clean data.
Research suggests that fine-tuning specific parameters may be more effective; how-
ever, methods for identifying these essential parameters and establishing effective
optimization objectives remain unclear and inadequately addressed. We present
CLAT, an innovative adversarial fine-tuning algorithm that mitigates adversarial
overfitting by integrating "criticality" into the training process. Instead of tuning
the entire model, CLAT identifies and fine-tunes fewer parameters in robustness-
critical layers—those predominantly learning non-robust features—while keeping
the rest of the model fixed. Additionally, CLAT employs a dynamic layer selection
process that adapts to changes in layer criticality during training. Empirical results
demonstrate that CLAT can be seamlessly integrated with existing adversarial
training methods, enhancing clean accuracy and adversarial robustness by over 2%
compared to baseline approaches.

1 INTRODUCTION

Advancements in deep learning models have markedly improved image classification accuracy.
Despite this, their vulnerability to adversarial attacks — subtle modifications to input images that
mislead the model — remains a significant concern (Goodfellow et al., 2015; Szegedy et al., 2014).
The research community has been rigorously exploring theories to comprehend the mechanics behind
adversarial attacks (Bai et al., 2021). Ilyas et al. (2019) uncover the coexistence of robust and
non-robust features in standard datasets. Adversarial vulnerability largely stems from the presence
of non-robust features in models trained on standard datasets, which, while highly predictive and
beneficial for clean accuracy, are susceptible to noise (Szegedy et al., 2014). Unfortunately, it is
observed that deep learning models tend to preferentially learn these non-robust features. Inkawhich
et al. (2019; 2020) further demonstrate that adversarial images derived from the hidden features of

Adversarial
input

Clean
input

Critical layers finetuning with
criticality-aware loss

Frozen
non-critical layers

Recomputed critical
layers

Adversarial
input

Clean
input

Recompute critical
layers every 10 epochs

Continue training
with new critical layers

Figure 1: CLAT overview. CLAT fine-tunes the se-
lected critical layers (red) while freezing other layers
(grey). fine-tuning objective is computed per Eq. (6).
Critical layers are adjusted periodically. Pseudocode is
provided in Appendix A.

certain intermediate non-robust/“critical”
layers exhibit enhanced transferability to
unseen models. This suggests a common-
ality in the non-robust features captured
by these layers. While identifying these
critical layers to improve their robustness
is appealing, this process often requires
the time-consuming generation of attacks
against each individual layer. Methods to
identify and effectively address the critical-
ity of such layers are still lacking.

In contrast to layer-wise feature vulnerabil-
ity analysis, adversarial training (Athalye
et al., 2018; Madry et al., 2019; Croce &
Hein, 2020), involves training entire neural
networks with adversarial examples gener-
ated in real-time. This approach inherently
encourages all layers in the model to learn

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

robust features from adversarial images, thereby enhancing the model’s resilience against attacks.
However, given the more challenging optimization process of learning from adversarial examples than
from clean ones, adversarial training also brings hurdles such as heightened errors on clean data and
susceptibility to overfitting, ultimately diminishing its effectiveness in practical applications (Schmidt
et al., 2018; Zhang et al., 2019; Raghunathan et al., 2019; Javanmard et al., 2020). Despite various
efforts to enhance adversarial training, such as modifying input data and adjusting loss functions
(Hitaj et al., 2021; Raghunathan et al., 2019; Zhang et al., 2019; Wang et al., 2020; Wu et al., 2020b;
Pang et al., 2022), these approaches still frequently fall short in alleviating the aforementioned issues.

In light of these challenges, we introduce CLAT, a paradigm shift in adversarial training, where we
mitigate overfitting during adversarial training by identifying and tuning only the robustness-critical
model layers. CLAT commences by pinpointing critical layers within a model using our novel,
theoretically grounded, and easily computable,“criticality index”, which we developed to identify
layers which have learned non-robust features dominantly. Subsequently, our algorithm meticulously
fine-tunes these critical layers to remove their non-robust features and reduce their criticality, while
freezing the other, non-critical layers. Dynamic selection of critical layers is conducted during the
training process to always focus fine-tuning on the most-in-need layers, avoiding the overfitting of
full-model adversarial training. CLAT therefore achieves both clean and adversarial state-of-the-art
(SOTA) accuracy compared to previous adversarial training methods.

In summary, we make the following contributions in this paper:

• We introduce the “criticality index”, a quantitative metric designed to identify critical layers
for the adversarial vulnerability of a model with minimal overhead.

• We develop a specialized adversarial training objective focused on reducing the criticality of
the identified critical layers to bolster overall model robustness.

• We propose CLAT, an adversarial fine-tuning algorithm that mitigates overfitting by focusing
on reducing the criticality of fewer than 4% of trainable parameters. CLAT integrates
seamlessly into diverse model training scenarios and baseline adversarial training methods.

CLAT stands out by markedly reducing overfitting risks, boosting both clean accuracy and adversarial
resilience by approximately 2%.

2 RELATED WORK

2.1 ADVERSARIAL TRAINING

Adversarial Training (AT) was first introduced by (Goodfellow et al., 2015), who demonstrated how
the integration of adversarial examples into the training process could substantially improve model
robustness. This idea evolved into a sophisticated minimax optimization approach with Projected
Gradient Descent Adversarial Training (PGD-AT) (Madry et al., 2019), which employs PGD attacks
in training. Regarded as the gold standard in AT, PGD-AT generates adversarial training samples
using multiple steps of projected gradient descent, leading to substantially improved empirical
robustness (Carlini & Wagner, 2017; Athalye et al., 2018; Croce & Hein, 2020). Further refining
this approach, TRADES (Zhang et al., 2019) optimizes a novel loss function to balance classification
accuracy with adversarial robustness. Recent enhancements in AT, including model ensemble and data
augmentation, have also produced notable improvements in model resilience. (Xie et al., 2020; Yang
et al., 2020; Carmon et al., 2022). Inkawhich et al. (2019) propose “Activation Attacks” (AA) which
underscore the efficacy of leveraging intermediate model layers for generating stronger adversarial
attacks, suggesting that incorporating AA in adversarial training could fortify defenses. Their findings
provide a foundation for our method which integrates these intermediate critical layers into our
adversarial training strategy.

2.2 ADVERSARIAL TRAINING IMPROVEMENTS AND ROBUST OVERFITTING

Adversarial training methods like PGD-AT and TRADES are computationally expensive and prone
to overfitting, requiring multi-step adversary generation, complex objectives, and extensive model
tuning (Shafahi et al., 2019). To improve efficiency, Shafahi et al. (2019) proposed “Free” AT, which
accelerates training by using a single backpropagation step for both training and PGD adversary

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

generation. However, gradient alignment issues led to reduced robustness and increased overfitting.
Similarly, Wong et al. (2020) introduced “Fast” AT, but it also suffered from similar weaknesses
(Andriushchenko & Flammarion, 2020), prompting the development of GradAlign. Unfortunately,
GradAlign tripled training time due to second-order gradient computation. Later efforts sought to
address robust overfitting. RiFT (Zhu et al., 2023) improved general performance by leveraging
layer redundancies but was constrained by heuristic redundancy measurements. Zhang et al. (2024)
mitigated overfitting by disentangling natural and adversarial objectives, yet model-wide adjustments
still limited robustness. In contrast, CLAT uses a theoretically grounded, dynamic, critical layer
selection mechanism, resulting in improved robust generalization by tuning a critical subset of layers.
Furthermore, CLAT is agnostic to attack generation methods in the AT processing, making it an ideal
complement to existing fast-AT methods to mitigate overfitting.

3 METHODS

Building on prior attack and defense research (Inkawhich et al., 2019; 2020; Zhu et al., 2023) which
demonstrates that not all model layers equally learn non-robust features and having all layers learn
robust features leads to overfitting, we aim to improve model robustness by identifying and fine-tuning
only those critical layers that are prone to learning non-robust features, while keeping the non-critical
layers frozen. In this section, we begin by defining and identifying critical layers, then outline our
objectives for reducing their criticality. Finally, we present our complete CLAT algorithm, which
effectively mitigates overfitting and enhances model robustness.

3.1 LAYER CRITICALITY

Consider a deep learning model with n layers, and an input x, defined as:

F (x) = fn(fn−1(. . . f1(x))), (1)

where the functionality of the i-th layer is denoted as fi. During the standard training process, all
layers learn useful features which contribute to the correct outputs of the model. We denote the
hidden feature learned at the output of the i-th layer as Fi(x) = fi(fi−1(. . . f1(x))).

Under adversarial perturbation, features from all layers will be altered, leading to incorrect outputs.
Following previous work (Hein & Andriushchenko, 2017; Finlay et al., 2018), the robustness, or
weakness, of the feature can be linked to the local Lipschitz constant of function Fi(·). For a easier
computation, we consider the worst-case feature difference under a fixed input perturbation budget of
ϵ. This leads to our definition of the ϵ-weakness of layer i’s feature as:

Wϵ(Fi) =
1

Ni
Ex

[
sup

||δ||p≤ϵ

||Fi(x+ δ)− Fi(x)||2

]
, (2)

where Ni denotes the dimensionality of the output features at layer i, therefore normalizing the
weakness measurement of layers with different output sizes. The weakness measurement is propor-
tional to the local Lipschitz constant. A higher weakness value indicates that the feature vector is
more vulnerable to input perturbations. The functionality of cascading layers from 1 to i affects the
vulnerability of the hidden features, as described by this formulation.

Alternatively, Moosavi-Dezfooli et al. (2019) suggests the local curvature can be a more accurate
estimation of robustness than the Lipschitz constant. However, the computation and optimization
of curvature involves costly higher-order gradient computation. We provide additional derivations
in Appendix E to show the feature weakness defined in Eq. (2) is also an effective approximation to
the local curvature value.

For the purpose of mitigating overfitting, we want to identify the layers that are the most critical to the
lack of robustness, characterized by their increased susceptibility to perturbations from adversarial
inputs. Other already-robust layers shall then be fixed to avoid further overfitting to the adversarial
training objective. We therefore provide the following definition:
Definition 3.1. Critical layer: A layer is considered critical if it exhibits a greater propensity to
learn non-robust features or demonstrates diminished robustness to adversarial input perturbations
relative to other layers in the model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To this end, we single out the contribution of each layer’s functionality to the weakness of the features
after it with a Layer Criticality Index Cfi , which is formulated as

Cfi =
Wϵ(Fi)

Wϵ(Fi−1)
. (3)

For the first layer, we define Cf1 =Wϵ(F1) as only the first layer contributes to the weakness.

As a sanity check, the feature weakness at the output of layer i can be attributed to the criticality of
all previous layers asWϵ(Fi) =

∏i
k=1 Cfk . Conversely, a layer with a larger criticality index will

increase the weakness of the features after it, indicating the layer is critical according to Definition 3.1,
as it weakens the feature robustness to the adversarial input.

One drawback of the formulation in Eq. (3) is that computing the feature weakness involves finding
the worst-case perturbation against the hidden features at each layer, which is a costly process to
conduct sequentially for all layers. In practice, we approximate the worst-case perturbation against
features with an untargeted PGD attack against the model output, so that we can use the same PGD
perturbation δ to estimate the feature weakness of all layers following Eq. (2). In this way, with a
reasonably sufficient batch size, we can compute the critical indices for all layers in a model with two
forward passes: one with the clean input x and one with the PGD attack input x+ δ. We make the
following proposition:
Proposition 3.2. Critical layers defined as in Definition 3.1 can be identified as the layers with the
largest criticality indices argmaxi Cfi .

To verify Proposition 3.2, we conduct an ablation study in Table 7, where we show that model
robustness is improved more by CLAT fine-tuning of critical layers compared to equivalent fine-
tuning of randomly selected layers. We will discuss how to reduce the criticality of the critical layers
and make them more robust in the next subsection.

3.2 CRITICALITY-TARGETED FINE-TUNING

Once the critical layers are identified, we fine-tune them to reduce their criticality, thereby decreasing
the weakness of subsequent hidden features and enhancing model robustness. For a critical layer
i, we optimize the trainable parameters to minimize Cfi . Note that in the criticality formulation
in Eq. (3), the weakness of the previous layer’s output, Wϵ(Fi−1), is constant with respect to fi.
Thus, the optimization objective for fi can be simplified as

LC(fi) = Ex

[
sup

||δ||p≤ϵ

||Fi(x+ δ)− Fi(x)||2

]
. (4)

In the case where multiple critical layers are considered in the fine-tuning process, the fine-tuning
objective can be expanded to accommodate all critical layers simultaneously. Formally, suppose we
have a set S where layers i ∈ S are all selected for fine-tuning, the fine-tuning objective for these
critical layers can be formulated as

LC(fS) = Ex

[
sup

||δ||p≤ϵ

∑
i∈S

||Fi(x+ δ)− Fi(x)||2

]
, (5)

where a single perturbation is utilized to capture the weakness across all critical layers. In the common
setting, a projected gradient ascent optimization with random start is used for the inner maximization.

Minimizing the objective in Eq. (5) by adjusting the trainable variables of the critical layers will
reduce their feature weaknesses. However, the removal of non-robust features in these layers may
affect the functionality of the model on clean inputs. As a tradeoff, we also include the cross entropy
loss L(·) in the final optimization objective, which derives the optimization objective on the critical
layers during the fine-tuning process

min
fS

Ex,yL(F (x), y) + λLC(fS), (6)

where the hyperparameter λ serves as a balancing factor between the two loss terms. Note that only
the selected critical layers fS are optimized in Eq. (6) while the other non-critical layers are frozen,
preventing them from further overfitting.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 CLAT ADVERSARIAL TRAINING

We design CLAT as a fine-tuning approach, which is applied to neural networks that have undergone
preliminary training. The pretraining phase allows all layers in the model to capture useful features,
which will facilitate the identification of critical layers in the model. Notably, CLAT’s versatility
allows it to adapt to various types of pretrained models, either adversarially trained or trained on a
clean dataset only. In practice, we find that models do not need to fully converge during the pretraining
phase to benefit from CLAT fine-tuning. For example, in case of the CIFAR-10 dataset, 50 epochs of
PGD-AT training would be adequate. We consider the number of adversarial pretraining epochs as a
hyperparameter and provide further analysis on the impact of pretraining epochs in Section 4.3.1.

After the pretraining, CLAT begins by identifying and selecting critical layers in the pretrained model.
We then fine-tune critical layers only while freezing the rest of the layers. This process is illustrated
in Fig. 1, and the pseudocode is provided in Algorithm 1 in Appendix A for greater clarity. As
fine-tuning progresses, the critical layers will be updated to reduce their criticality, making them less
critical than some of the previously frozen layers. Subsequently, we perform periodic reevaluation of
the top k critical indices, ensuring continuous adaptation and optimization of the layers that are the
most in need in the training process. Through hyperparameter optimization, we find 10 epochs to be
adequate to optimize the selected critical layers for all models that we tested.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and models We conducted experiments using two widely recognized image classification
datasets, CIFAR10 and CIFAR100. Each dataset includes 60,000 color images, each 32×32 pixels,
divided into 10 and 100 classes respectively (Krizhevsky & Hinton, 2009). For our experiments, we
deployed a suite of network architectures: WideResnets (34-10, 70-16) (Zagoruyko & Komodakis,
2017), ResNets (50, 18) (He et al., 2016b), DenseNet-121 (Huang et al., 2017), PreAct ResNet-18(He
et al., 2016a), and VGG-19 (Simonyan & Zisserman, 2015). In this paper, these architectures are
referred to as WRN34-10, WRN70-16, RN50, RN18, DN121, Preact RN18 and VGG19 respectively.

Training and evaluation Since CLAT can be layered over clean pretraining, partial training, or
other adversarial methods, results incorporating CLAT are denoted in our tables as "X + CLAT,"
where "X" refers to the baseline method applied prior to CLAT. Typically, this baseline method is
run for the first 50 epochs, followed by fine-tuning during which CLAT is applied for an additional
50 epochs. The total number of epochs is in line with the 100 epochs used in previous PGD-based
adversarial training work (Zhang et al., 2019; Zhu et al., 2023).

For our baseline, we use PGD for attack generation during training, following a random start (Madry
et al., 2019), with an attack budget of ϵ = 0.03 under the ℓ∞ norm, a step size of α = 0.007, and
10 attack steps. The same settings apply to PGD attack evaluations. AutoAttack evaluations (Croce
& Hein, 2020) also use a budget of ϵ = 0.03 under the ℓ∞ norm, with no restarts for untargeted
APGD-CE, 9 target classes for APGD-DLR, 3 target classes for Targeted FAB, and 5000 queries for
Square Attack. These settings remain consistent unless explicitly noted otherwise.

Experiments were conducted on a Titan XP GPU, starting with an initial learning rate of 0.1,
which was adjusted according to a cosine decay schedule. To ensure the reliability of robustness
measurements, we conducted each experiment a minimum of 10 times, reporting the lowest adversarial
accuracies we observed.

CLAT settings We select critical layers as described in Section 3.1. Table 8 outlines the Top-5 most
critical layers for some of the models and corresponding datasets at the start of the CLAT fine-tuning,
after adversarially training with pgd-at for 50 epochs. In customizing the CLAT methodology to
various network sizes, we select approximately 5% of layers as critical through hyperparameter
optimization. For instance, DN121 uses 5 critical layers, while WRN70-16, RN50, WRN34-10,
VGG19, and RN18 use 4, 3, 2, 1, and 1 critical layers, respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 CLAT PERFORMANCE

White-box robustness Table 1 and Table 2 present white-box evaluation results using the PGD and
Auto attack frameworks, respectively. These tables illustrate CLAT’s versatility and effectiveness
when combined with various standard adversarial training methods, including state-of-the-art bench-
marks from RobustBench (Croce et al., 2020). CLAT effectively mitigates the overfitting typically
observed in traditional adversarial training, thereby enhancing both clean and adversarial accuracy
compared to baseline methods.

Table 1 further highlights that reducing trainable parameters alone does not necessarily lead to
improved performance. CLAT surpasses other parameter-efficient fine-tuning methods, such as
LoRA (Aleem et al., 2024) and RiFT (Zhu et al., 2023), due to its ability to precisely identify
critical layers and eliminate non-robust features from these layers. Additionally, we show that fast
adversarial training techniques, as discussed by Wong et al. (2020), can be applied to address the
inner maximization problem in the CLAT training objective described in Eq. (5). The "CLAT (Fast)"
method not only enhances performance but also improves robustness compared to Fast-AT baselines.

Notably, CLAT models are trained with PGD-like attacks on hidden features without seeing Auto
Attacks directly, but their robustness persists under these attacks (see Table 2). This suggests
that different attacks across various networks share similarities in exploiting non-robust features.
By addressing these non-robust features through critical layer fine-tuning, CLAT ensures that the
robustness is adaptable across different attack settings and models. Lastly, we assess the robustness
across various attack strengths in Appendix B.

Black-box robustness Table 3 and Table 4 evaluate the robustness against black-box attacks (Auto
Attack and PGD-AT respectively) between models trained solely using PGD-AT and those augmented
with CLAT. Attack settings are the same as those of the white-box attacks. As a sanity check, the
accuracies under black-box attack surpass those observed under white-box scenarios, indicating that
gradient masking does not appear in the CLAT model, and that the white-box robustness evaluation
is valid. More significantly, models trained with CLAT consistently outperform those trained with
PGD-AT, maintaining superior resilience in both black-box and white-box settings, regardless of the
attack method or models employed.

4.3 ABLATION STUDIES

4.3.1 ABLATING ON PRETRAINING EPOCHS BEFORE CLAT

As discussed in Section 3.3, we apply CLAT after the model has been adversarially trained for some
epochs. Here, we analyze how the number of pretraining epochs affects CLAT performance. Fig. 2
shows the training curves for different allocations of PGD pretraining epochs and CLAT fine-tuning
epochs within a 100-epoch training budget. The overfitting of PGD-AT is evident as adversarial
accuracy plateaus and declines towards the end, as documented in previous research (Rice et al.,
2020). In contrast, CLAT continues to improve adversarial accuracy, effectively addressing this
issue. Including CLAT at any stage of training results in higher clean accuracy and robustness at
convergence. Additional results on pretrained clean models are provided in Appendix C.

Furthermore, an intriguing aspect of our experiments involves running CLAT from scratch (0 PGD-AT
epochs). Although CLAT ultimately surpasses PGD-AT with sufficient epochs, using CLAT without
any prior adversarial training results in significantly slower model convergence. We believe this
suggests that “layer criticality” emerges during the adversarial training process, allowing critical
layers to be identified as the model undergoes adversarial training. This phenomenon supports our
theoretical insight that criticality can be linked to the curvature of the local minima to which each
layer converges during adversarial training.

4.3.2 ABLATING ON CRITICAL LAYER SELECTION

The choice of critical layer selection is another important feature impacting the performance of CLAT.
We begin by examining the effect of dynamic layer selection. Table 5 and Table 6 highlight that
dynamic selection is crucial to CLAT’s performance. Using the same layers throughout the process
tends to cause overfitting and results in lower accuracies compared to the PGD-AT baseline.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparative performance of CLAT across various networks and adversarial training/fine-
tuning techniques. Robustness is evaluated with white-box PGD attacks.

MODEL METHOD CIFAR-10 ACC. (%) CIFAR-100 ACC. (%)

CLEAN ADVERSARIAL CLEAN ADVERSARIAL

DN121 PGD-AT (MADRY ET AL., 2019) 80.05 58.15 57.18 31.76
PGD-AT + CLAT 81.03 60.60 58.79 33.23

WRN70-16 (PENG ET AL., 2023) 93.27 71.07 70.20 42.61
PENG ET AL. + CLAT 93.56 72.25 71.94 44.12
(BAI ET AL., 2024) 92.23 64.55 69.17 40.86
BAI ET AL. + CLAT 92.77 64.92 70.17 41.64

RN50 PGD-AT 81.38 56.35 58.16 33.01
PGD-AT + CLAT 83.78 59.54 61.88 36.23

WRN34-10 PGD-AT 87.41 55.40 59.19 31.66
PGD-AT + LORA (ALEEM ET AL., 2024) 73.36 56.17 55.56 31.43
PGD-AT + RIFT (ZHU ET AL., 2023) 87.89 55.41 62.35 31.64
PGD-AT + CLAT 88.97 57.11 62.38 32.05
TRADES (ZHANG ET AL., 2019) 87.60 56.61 60.56 31.85
TRADES + RIFT 87.55 56.72 61.01 32.03
TRADES + CLAT 88.23 57.89 61.45 33.56

VGG19 PGD-AT 78.38 50.35 50.16 26.54
PGD-AT + CLAT 79.88 52.54 50.98 28.41

RN18 PGD-AT 81.46 53.63 57.10 30.15
PGD-AT + LORA 76.57 55.38 48.49 32.36
PGD-AT + RIFT 83.44 53.65 58.74 30.17
PGD-AT + CLAT 83.89 55.37 59.22 32.04
TRADES 81.54 53.31 57.44 30.20
TRADES + RIFT 81.87 53.30 57.78 30.22
TRADES + CLAT 81.89 54.57 58.82 31.06
MART (WANG ET AL., 2019) 76.77 56.90 51.46 31.47
MART + RIFT 77.14 56.92 52.42 31.48
MART + CLAT 76.82 57.55 53.01 33.23
AWP (WU ET AL., 2020B) 78.40 53.83 52.85 31.00
AWP + RIFT 78.79 53.84 54.89 31.05
AWP + CLAT 79.01 55.27 55.39 32.08
SCORE (PANG ET AL., 2022) 84.20 54.59 54.83 29.49
SCORE + RIFT 85.65 54.62 57.63 29.50
SCORE + CLAT 86.11 55.78 57.66 30.23
AUTOLORA (ZHANG ET AL., 2024) 84.2 54.27 62.1 32.71
AUTOLORA + CLAT 86.45 58.53 64.91 35.82

PREACT RN18 FAST-AT (WONG ET AL., 2020) 81.46 45.55 50.10 27.72
FAST-AT + CLAT 84.46 52.13 54.33 29.22
FAST-AT + CLAT (FAST) 82.72 49.62 52.10 27.99

Figure 2: Comparative analysis of CLAT performance on WRN34-10: Clean and adversarial accuracy
on CIFAR-10 across partially trained models.

To verify the significance of the selected critical layers, we compare CLAT with an alternative
approach in which random layers are dynamically selected for fine-tuning instead of the critical
layers. The results of this comparison are detailed in Table 7 and Table 12 (in Appendix C).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Adversarial Accuracy on CIFAR-10 and CIFAR-100 when subjected to AutoAttack (AA).

NETWORK METHOD ADVERSARIAL ACCURACY (%)

CIFAR-10 CIFAR-100

DN121 PGD-AT 47.56 23.13
PGD-AT + CLAT 49.91 25.74

WRN70-16 PGD-AT 54.32 28.25
PGD-AT + CLAT 57.64 30.98
(CARLINI & WAGNER, 2017) 66.1 -
(CARLINI & WAGNER, 2017) + CLAT 68.43 -

RN50 PGD-AT 46.22 23.48
PGD-AT + CLAT 49.45 25.81
(MADRY ET AL., 2019) 49.25 -
(MADRY ET AL., 2019) + CLAT 51.64 -

WRN34-10 PGD-AT 51.50 25.56
PGD-AT + CLAT 52.88 27.62
(CROCE & HEIN, 2020) 57.3 -
(CROCE & HEIN, 2020) + CLAT 59.98 -

VGG19 PGD-AT 40.42 19.54
PGD-AT + CLAT 41.72 20.45

RN18 PGD-AT 40.48 20.21
PGD-AT + CLAT 42.86 21.76
TWINS (LIU ET AL., 2023) 47.89 25.45
TWINS + CLAT 51.39 28.12
AUTOLORA (ZHANG ET AL., 2024) 48.95 27.48
AUTOLORA + CLAT 53.21 30.49

Table 3: Comparative Analysis of Black-box Auto Attack (AA) Accuracy on CIFAR-10 and CIFAR-
100. Model in each row is the attacker and each column the victim.

NETWORK METHOD CIFAR-10 ADV. ACC. (%) CIFAR-100 ADV. ACC. (%)

DN121 RN50 VGG19 RN18 DN121 RN50 VGG19 RN18

DN121 PGD-AT - 52.50 44.21 45.45 - 27.64 23.21 24.26
PGD-AT + CLAT - 55.83 47.53 48.92 - 29.89 26.71 26.93

RN50 PGD-AT 54.23 - 43.56 43.24 27.91 - 23.02 23.51
PGD-AT + CLAT 56.72 - 46.21 47.01 30.11 - 26.34 25.86

VGG19 PGD-AT 55.32 55.45 - 46.72 27.84 28.15 - 24.20
PGD-AT + CLAT 59.83 59.72 - 49.31 30.20 29.79 - 26.55

RN18 PGD-AT 53.21 51.73 43.21 - 29.31 26.75 22.91 -
PGD-AT + CLAT 56.75 54.45 46.53 - 31.25 29.41 25.95 -

The data demonstrates that selecting critical layers significantly enhances the model’s adversarial
robustness and clean accuracy. This observation is bolstered by our ablation study in Appendix
Table 20 illustrating the performance effect of choosing the smallest versus largest critical indices for
fine-tuning. Furthermore, Table 8 indicates near-identical critical layer selections within the same
model, even across diverse datasets. This evidence supports our assertion that the variation in layer
criticality arises from inherent properties within the model architecture, where certain layers are
predisposed to learning non-robust features.

Lastly, we conduct an ablation study on the number of layers used in CLAT for fine-tuning. Fig. 3
and Fig. 7 illustrate the trade-offs between adversarial accuracy and the number of layers selected,
as well as clean accuracy and the number of layers, respectively. Interestingly, both adversarial and
clean accuracy are optimized with the same number of layers. Initially, fine-tuning more layers
enhances model performance by increasing flexibility; however, this eventually diminishes CLAT’s
effectiveness, likely because attention is diverted to less crucial layers at the expense of more
important ones. This pattern underscores the critical role of specific layers in network robustness
and emphasizes the need for deeper research into the dynamics of individual layers. Furthermore,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Comparative Analysis of Black-box PGD Accuracy on CIFAR-10 and CIFAR100. Model in
each row is the attacker and each column the victim.

NETWORK METHOD CIFAR-10 ADV. ACC. (%) CIFAR-100 ADV. ACC. (%)

RN50 DN121 VGG19 RN18 RN50 DN121 VGG19 RN18

RN50 PGD-AT - 74.83 68.01 67.44 - 46.82 40.55 40.10
PGD-AT + CLAT - 76.45 71.25 70.12 - 48.49 44.34 43.91

DN121 PGD-AT 72.24 - 69.53 68.38 44.45 - 40.63 41.22
PGD-AT + CLAT 74.55 - 71.78 70.56 46.78 - 43.62 42.88

VGG19 PGD-AT 65.72 67.56 - 62.26 47.86 46.56 - 40.55
PGD-AT + CLAT 66.46 70.72 - 65.78 49.25 48.72 - 42.72

RN18 PGD-AT 74.82 70.21 61.83 - 46.28 45.59 39.21 -
PGD-AT + CLAT 76.23 73.19 63.96 - 48.89 47.72 41.78 -

Table 5: Adversarial accuracy under PGD attack:
Comparison of PGD-AT, PGD-AT + CLAT, and
PGD-AT + CLAT (Non-dynamic) on CIFAR-10
and CIFAR-100.

METHOD CIFAR-10 CIFAR-100

DN121 RN50 DN121 RN50

PGD-AT 58.15 56.35 31.76 33.01
CLAT 60.60 59.54 33.23 36.23
CLAT (ND) 57.01 54.22 30.34 32.98

Table 6: Adversarial accuracy under Auto attack:
Comparison of PGD-AT, PGD-AT + CLAT, and
PGD-AT + CLAT (Non-dynamic) on CIFAR-10
and CIFAR-100.

METHOD CIFAR-10 CIFAR-100

DN121 RN50 DN121 RN50

PGD-AT 47.56 46.22 23.13 23.48
CLAT 49.91 49.45 25.74 25.81
CLAT (ND) 47.12 46.08 22.26 22.91

we highlight that although the number of layers chosen impacts the learned robustness, CLAT still
achieves robustness gains over the early-stopping baseline (no fine-tuning) with up to 10% of the
layers selected, demonstrating its stability under small variations in the number of selected layers.

4.4 OVERHEAD AND STABILITY ANALYSIS

The cost of optimizing the CLAT training objective in Eq. (6) is similar to that of the standard
adversarial training given its min-max formulation. Here, we show that the computational overhead
for determining critical indices is negligible. We verify in Table 10 that criticality indices can be stably
computed with a single training batch as small as 10, with top-ranking layers consistent with those
achieved with a larger batch. We further conducted over 1000 runs for each network to randomly
select the data used for criticality estimation, where we find remarkable consistency in computed
critical layers, differing in less than 5% of cases, typically involving only one layer change among
the top five critical layers. The stability means we can use a mere 0.0002% of the training data for
criticality estimation every 10 epochs, which introduces a neglectable 0.4% additional time to the
standard adversarial training process as measured in Table 10.

Table 7: Ablating CLAT Layer choices on CIFAR-10: The columns present PGD-10 and Auto Attack
(AA) evaluation adversarial accuracies for models trained with CLAT, where layers are selected based
on criticality or randomly.

NETWORK CRITICAL LAYERS RANDOM LAYERS

CLEAN ACC. PGD-10 AA CLEAN ACC. PGD-10 AA

DN121 81.03 60.60 49.91 78.85 51.35 39.81
RN50 83.78 59.54 49.45 79.01 51.44 40.29
RN18 83.89 55.37 42.86 78.02 51.03 33.50

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 8: Top-5 criticality indices by model and dataset.
Layers used in CLAT are bolded.

MODEL CIFAR10 CIFAR100

DN121 39, 14, 1, 3, 88 39, 15, 1, 2, 91
WRN70-16 4, 17, 1, 59, 62 3, 17, 2, 59, 61
RN50 34, 41, 48, 3, 36 34, 43, 45, 6, 32
WRN34-10 26, 1 30, 3, 28 26, 2, 30, 3, 27
VGG19 9, 11, 5, 3, 1 8, 13, 5, 3, 1
RN18 11, 10, 4, 2, 12 12, 9, 5, 2, 13

Table 9: Trainable Parameters during
CLAT in Various Networks

NETWORK TRAINABLE PARAMS % USED

TOTAL CLAT

DN121 6.96M 217K 3.1%
WRN70-16 267M 8.29M 3.0%
RN50 23.7M 823K 3.4%
WRN34-10 46.16M 1.24M 2.7%
RN18 11.2M 590K 5.2%
VGG19 39.3M 236K 0.6%

Figure 3: Comparative analysis on CLAT performance/PGD-10 adversarial accuracy with respect to
number of critical layers used during CLAT

5 CONCLUSIONS

In this work, we introduce CLAT, an innovative adversarial training approach that addresses robust
overfitting issues by fine-tuning only the critical layers vulnerable to adversarial perturbations. This
method not only emphasizes layer-specific interventions for enhanced network robustness but also
sheds light on the commonality in non-robust features captured by these layers, offering a targeted
and effective defense strategy. Our results reveal that CLAT effectively selects less than 4% critical
trainable variables to achieve significant improvements in clean accuracy and adversarial robustness
across diverse network architectures and baseline adversarial training methods. We limit the scope
of this work to improving the empirical robustness of the model by utilizing the critical layers. In
this sense, open questions remain on why these specific layers become critical, whether they can
be identified more effectively, and whether the issues can be resolved with architectural or training
scheme changes. We leave a more theoretical understanding of these questions as future work.

Table 10: DenseNet-121 critical layers identified with different amount of data. Time taken to
compute critical layers evaluated on TITAN RTX GPU. As a reference, 1 PGD-AT epoch takes 67s.

BATCH SIZE CIFAR10 CIFAR100

CRITICAL LAYERS TIME (S) CRITICAL LAYERS TIME(S)

10 39, 14, 1, 3, 90 2.64 39, 15, 1, 2, 91 2.82
30 39, 14, 1, 3, 88 2.72 39, 15, 1, 2, 88 2.91
50 39, 14, 1, 3, 89 2.83 39, 15, 1, 3, 91 3.14
100 39, 14, 1, 3, 88 3.15 39, 15, 1, 2, 91 3.54

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sidra Aleem, Julia Dietlmeier, Eric Arazo, and Suzanne Little. Convlora and adabn based domain
adaptation via self-training. arXiv preprint arXiv:2402.04964, 2024.

Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial
training, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples, 2018.

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial training
for adversarial robustness, 2021.

Yatong Bai, Brendon G. Anderson, Aerin Kim, and Somayeh Sojoudi. Improving the accuracy-
robustness trade-off of classifiers via adaptive smoothing, 2024.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks, 2017.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C. Duchi. Unlabeled data
improves adversarial robustness, 2022.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks, 2020.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Nicolas Flammarion, Mung Chiang,
Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness benchmark.
CoRR, abs/2010.09670, 2020. URL https://arxiv.org/abs/2010.09670.

Chris Finlay, Jeff Calder, Bilal Abbasi, and Adam Oberman. Lipschitz regularized deep neural
networks generalize and are adversarially robust. arXiv preprint arXiv:1808.09540, 2018.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016b.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. Advances in neural information processing systems, 30, 2017.

Dorjan Hitaj, Giulio Pagnotta, Iacopo Masi, and Luigi V. Mancini. Evaluating the robustness of
geometry-aware instance-reweighted adversarial training, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Joong-Won Hwang, Youngwan Lee, Sungchan Oh, and Yuseok Bae. Adversarial training with
stochastic weight average, 2020. URL https://arxiv.org/abs/2009.10526.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. Advances in neural information
processing systems, 32, 2019.

Nathan Inkawhich, Wei Wen, Hai (Helen) Li, and Yiran Chen. Feature space perturbations yield
more transferable adversarial examples. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Nathan Inkawhich, Kevin Liang, Binghui Wang, Matthew Inkawhich, Lawrence Carin, and Yiran
Chen. Perturbing across the feature hierarchy to improve standard and strict blackbox attack
transferability. Advances in Neural Information Processing Systems, 33:20791–20801, 2020.

11

https://arxiv.org/abs/2010.09670
https://arxiv.org/abs/2009.10526

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Adel Javanmard, Mahdi Soltanolkotabi, and Hamed Hassani. Precise tradeoffs in adversarial training
for linear regression, 2020.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Lin Li and Michael Spratling. Data augmentation alone can improve adversarial training, 2023. URL
https://arxiv.org/abs/2301.09879.

Ziquan Liu, Yi Xu, Xiangyang Ji, and Antoni B. Chan. Twins: A fine-tuning framework for improved
transferability of adversarial robustness and generalization, 2023. URL https://arxiv.org/
abs/2303.11135.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks, 2019.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard. Robust-
ness via curvature regularization, and vice versa. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9078–9086, 2019.

Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and Shuicheng Yan. Robustness and accuracy could be
reconcilable by (proper) definition, 2022.

ShengYun Peng, Weilin Xu, Cory Cornelius, Matthew Hull, Kevin Li, Rahul Duggal, Mansi Phute,
Jason Martin, and Duen Horng Chau. Robust principles: Architectural design principles for
adversarially robust cnns, 2023.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C Duchi, and Percy Liang. Adversarial
training can hurt generalization. arXiv preprint arXiv:1906.06032, 2019.

Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in adversarially robust deep learning, 2020.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Adver-
sarially robust generalization requires more data, 2018.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S.
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free!, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations, ICLR 2015 - Conference
Track Proceedings, 2015.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks, 2014.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In International conference on
learning representations, 2019.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving adver-
sarial robustness requires revisiting misclassified examples. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=rklOg6EFwS.

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
models further improve adversarial training, 2023. URL https://arxiv.org/abs/2302.
04638.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training,
2020.

Dongxian Wu, Shu tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust general-
ization, 2020a. URL https://arxiv.org/abs/2004.05884.

Dongxian Wu, Shu tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust general-
ization, 2020b.

12

https://arxiv.org/abs/2301.09879
https://arxiv.org/abs/2303.11135
https://arxiv.org/abs/2303.11135
https://openreview.net/forum?id=rklOg6EFwS
https://arxiv.org/abs/2302.04638
https://arxiv.org/abs/2302.04638
https://arxiv.org/abs/2004.05884

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan Yuille, and Quoc V. Le. Adversarial
examples improve image recognition, 2020.

Huanrui Yang, Jingyang Zhang, Hongliang Dong, Nathan Inkawhich, Andrew Gardner, Andrew
Touchet, Wesley Wilkes, Heath Berry, and Hai Li. Dverge: diversifying vulnerabilities for
enhanced robust generation of ensembles. Advances in Neural Information Processing Systems,
33:5505–5515, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2017.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
Theoretically principled trade-off between robustness and accuracy, 2019.

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. Autolora: Automatically tuning
matrix ranks in low-rank adaptation based on meta learning, 2024. URL https://arxiv.
org/abs/2403.09113.

Kaijie Zhu, Jindong Wang, Xixu Hu, Xing Xie, and Ge Yang. Improving generalization of adversarial
training via robust critical fine-tuning, 2023.

13

https://arxiv.org/abs/2403.09113
https://arxiv.org/abs/2403.09113

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PSEUDOCODE OF CLAT

To better facilitate an understanding of the CLAT process, we illustrate the pseudocode of the dynamic
critical layer identification process and the criticality-targeted fine-tuning process in Algorithm 1.
Only the selected critical layers are being fine-tuned while all the other layers are frozen.

Algorithm 1 CLAT Algorithm

1: Input: Dataset D, pre-trained model F , batch size bs, total epochs N .

2: for epoch = 1 to N do
3: if epoch%10 == 1 then
4: # Find critical layers
5: x← Batch of training data in D
6: x+ δ ← PGD attack against F
7: ComputeWϵ(Fi) for all layers with Eq. (2)
8: Compute Cfi for all layers with Eq. (3)
9: Critical layers S ← TopK(Cfi)

10: # fine-tune critical layers
11: minibatches← CreateMinibatches(D, bs)
12: for x, y in minibatches do
13: Perturbation δ ← Eq. (5) inner maximization
14: LC(fS)← Eq. (5)
15: Weight update w[S] with Eq. (6)

B ADDITIONAL EXPERIMENT RESULTS

We further compare the CLAT model robustness with the robustness of the SAT model against
white-box attacks of various strengths. As illustrated in Fig. 4, though both models are only trained
against an attack of one strength (ϵ = 0.03), the improved robustness of CLAT is consistent across
the full spectrum of attack strengths. This shows that CLAT is not overfitting to the specific attack
strength used in training.

Figure 4: White-box adversarial accuracy (y-axis) on CIFAR-10 for models trained with CLAT (red)
and pgd-at (blue), against PGD attacks of varying strengths (x-axis)

C ADDITIONAL ABLATION STUDY

C.1 CLAT ON PRETRAINED CLEAN MODEL

Besides the discussion on performing CLAT after adversarial pretraining in Section 4.3.1, Table 11
details the performance of CLAT on clean pretrained models. Although the adversarial accuracies of
clean pretrained models are relatively low compared to those of adversarially trained models, CLAT
demonstrates its capability to facilitate adversarial fine-tuning on clean models effectively to some
extent. This is a novel achievement, showcasing the algorithm’s versatility.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 11: Adversarial and clean accuracies for performing CLAT on various PyTorch pretrained
models on the CIFAR-10 dataset.

MODEL ADV. ACC. CLEAN ACC.

DN-121 39.21% 80.89%
WRN70-16 42.1% 83.35%
RN-50 35.67% 78.23%
WRN34-10 40.1% 81.78%
VGG-19 32.67% 75.05%
RN-18 34.45% 76.51%

C.2 ADDITIONAL RESULTS ON LAYER SELECTION

Here in Table 12, we provide additional results contrasting CLAT with an alternative approach where
random layers are dynamically selected for fine-tuning instead of the critical layers on the CIFAR-100
dataset.

Table 12: Ablating CLAT layer choices on CIFAR-100: The columns
present PGD-10 and AutoAttack (AA) evaluation adversarial accura-
cies for models trained with CLAT, where layers are selected based on
criticality or randomly.

NETWORK CRITICAL LAYERS RANDOM LAYERS

CLEAN ACC. PGD-10 AA CLEAN ACC. PGD-10 AA

DN121 58.79 33.23 25.74 50.45 25.48 20.21
RN50 61.88 36.23 25.81 52.20 25.51 20.45
RN18 50.98 28.41 20.45 43.15 20.24 15.89

D REBUTTAL EXPERIMENTS

We thank the constructive feedback from all reviewers. We consolidate all additional experimental
results suggested by the reviewers in this appendix section. We will integrate these results and our
discussions in the rebuttal text into the finalized version.

D.1 FULL TRAINING CURVES

0 20 40 60 80 100 120 140
Epochs

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Full Training Curve Clean Accuracy
CLAT ft from epoch 70
CLAT from scratch
PGD-AT

0 20 40 60 80 100 120 140
Epochs

0

20

40

60

80

100

A
dv

. A
cc

ur
ac

y
(%

)

Full Training Curve Adv. Accuracy
CLAT ft from epoch 70
CLAT from scratch
PGD-AT

Figure 5: White-box PGD-10 adversarial accuracy (y-axis) on CIFAR-10 for WRN34-10 models
trained with CLAT fine-tuning starting at Epoch 70 (red), CLAT from scratch (orange), and PGD-AT
(blue). The learning rate decays to 0 by Epoch 150.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D.2 REDUCED LEARNING RATE PERFORMANCE

Please see Fig. 6.

0 20 40 60 80 100 120 140
Epochs

0

20

40

60

80

100
A

cc
ur

ac
y

(%
)

Clean Performance
PGD-AT Lower LR @ EP. 70
PGD-AT Standard Decay LR
CLAT Lower LR @ EP 70

0 20 40 60 80 100 120 140
Epochs

0

20

40

60

80

100

A
dv

er
sa

ri
al

 A
cc

ur
ac

y
(%

)

Adversarial Performance
PGD-AT Lower LR @ EP. 70
PGD-AT Standard Decay LR
CLAT Lower LR @ EP 70

Figure 6: White-box accuracies (y-axis) for WRN34-10 on CIFAR-10 for models trained with
the original learning rate multiplied by 0.1 at Epoch 70, using CLAT (green) and PGD-AT (red),
compared to normal PGD-AT learning rate (purple).

D.3 CRITICAL INDEX VARIATION OVER TIME

Please see Table 13.

Table 13: Critical layers identified at different epochs for various networks.

NETWORK EP. 70 EP. 80 EP. 90

DN121 [39, 14, 1, 3, 88] [38, 1, 5, 88, 15] [1, 5, 88, 2, 15]
RN50 [34, 41, 48] [48, 3, 36] [36, 2, 40]
RN18 [11] [11] [4]

D.4 CLEAN ACCURACY AND CRITICAL LAYER SELECTION

Figure 7: Comparative analysis on CLAT performance clean accuracies with respect to the number of
critical layers used during CLAT.

D.5 ABLATION STUDY: DYNAMIC AND FIXED CRITICAL INDICES

Please see Table 14.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 14: Comparison of CIFAR-100 Clean and Adversarial Accuracies (PGD-10) on Different
Networks with Fixed and Dynamic Layers for CLAT.

Model Fixed Layers Dynamic Layers

DN121 Clean 53.21 58.79
Adv 39.45 44.12

RN50 Clean 55.72 61.88
Adv 31.89 36.23

WRN34-10 Clean 56.45 62.38
Adv 28.56 32.05

D.6 PERFORMANCE ON OTHER DATASETS

D.6.1 IMAGENETTE

Results in Table 15.

Table 15: Comparative performance of CLAT across various networks on Imagenette. Robustness is
evaluated with white-box PGD-10 and Auto Attack.

Model Method Clean (%) PGD-10 (%) AA (%)

DN121 PGD-AT 83.40 61.78 51.23
PGD-AT + CLAT 86.91 65.45 54.82

WRN70-16 PGD-AT 90.20 67.96 58.91
PGD-AT + CLAT 93.52 72.39 61.43

RN50 PGD-AT 84.02 62.10 50.45
PGD-AT + CLAT 87.11 64.89 54.31

WRN34-10 PGD-AT 90.45 65.45 56.31
PGD-AT + CLAT 93.21 69.82 60.04

VGG19 PGD-AT 85.45 56.71 46.53
PGD-AT + CLAT 89.72 59.45 51.22

RN18 PGD-AT 83.01 60.04 49.01
PGD-AT + CLAT 86.42 62.91 51.23

D.6.2 IMAGENET

Results in Table 16.

Table 16: Clean and Adversarial Accuracies (PGD-10) performance comparison on ImageNet.
Model Method Clean Adv

DN121 PGD-AT 63.25 32.56
PGD-AT + CLAT 66.10 35.48

RN50 PGD-AT 65.88 33.18
PGD-AT + CLAT 67.12 36.91

WRN34-10 PGD-AT 64.31 31.08
PGD-AT + CLAT 66.12 33.59

D.7 ROBUSTNESS AGAINST OTHER ATTACKS

We report that performance on varying strengths of PGD-10 in Appendix B. Table 17 highlights the
robustness against stronger white-box attacks, including those not limited to ℓ∞-bounded constraints.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 17: Adversarial accuracies across various attacks on CIFAR-10, highlighting the difference
between models trained with the baseline and those utilizing CLAT. Positive blue values indicate the
improvement in performance achieved with CLAT.

Attack Method DN121 (%) WRN34-10 (%)

FAB PGD-AT 44.80 40.12
PGD-AT + CLAT +3.70 +5.03

StAdv PGD-AT 48.50 45.15
PGD-AT + CLAT +0.91 +1.89

Pixle PGD-AT 10.40 9.50
PGD-AT + CLAT +2.21 +1.90

PGD-ℓ2 (ϵ = 0.03) PGD-AT 61.79 60.25
PGD-AT + CLAT +1.92 +1.45

PGD-ℓ∞ (ϵ = 0.03, 50 steps) PGD-AT 57.01 54.01
PGD-AT + CLAT +1.92 +2.03

PGD-ℓ∞ (ϵ = 0.03, 100 steps) PGD-AT 56.89 53.12
PGD-AT + CLAT +1.63 +1.89

D.8 ADDITIONAL PERFORMANCE COMPARISONS TO BASELINES

D.8.1 STOCHASTIC WEIGHT AVERAGING AND ADVERSARIAL WEIGHT PERTURBATION

Table 18 shows results when CLAT is augmented with SWA (Hwang et al., 2020) and AWP (Wu
et al., 2020a) techniques. Omitted values are not reported in the original work.

Table 18: PGD-10 Adversarial Accuracies on CIFAR-10 and CIFAR-100 for PreAct RN-18 and
WRN34-10 compared to baselines.

Network Method CIFAR-10 CIFAR-100

PreAct RN-18 AWP (Wu et al., 2020a) 55.39 30.71
AWP + CLAT 58.41 33.97
SWAAT (Hwang et al., 2020) 58.32 28.43
SWAAT + CLAT 60.76 30.74

WRN34-10 AWP 58.10 -
AWP + CLAT 60.89 -
SWAAT 61.45 31.97
SWAAT + CLAT 63.82 34.55

D.8.2 DATA AUGMENTATION TECHNIQUES

Please see Table 19.

Table 19: Adversarial accuracies on CIFAR-10 for PreAct RN-18 (using PGD-10) and WRN70-16
(using Auto Attack).

Network Method Adv. Accuracy (%)

PreAct RN-18 Data Aug (weak) (Li & Spratling, 2023) 50.34
Data Aug (weak) + CLAT 54.01
Data Aug (strong) 49.99
Data Aug (strong) + CLAT 52.37

WRN70-16 Wang et al. (2023) 70.69
Wang et al. (2023) + CLAT 72.34

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.9 TIMING COMPARISONS

For a fair comparison, we use the same GPU configuration and number of GPUs across all methods,
as described in the methods section. For DN121, one epoch of PGD-AT takes 67 seconds, RiFT takes
56 seconds per epoch, CLAT takes 69 seconds per epoch, and AutoLoRA also takes 69 seconds per
epoch. As performed in the original paper for optimal performance, RiFT models were adversarially
trained for 110 epochs, each taking 67 seconds, followed by fine-tuning for an additional 10 epochs
at 56 seconds per epoch. Consequently, the total training time for RiFT is 132 minutes, compared to
112 minutes for CLAT (70 epochs of adversarial training and 30 epochs of fine-tuning).

D.10 ABLATION: EFFECT OF CHOOSING LARGEST CRITICAL INDICES/ MOST CRITICAL
LAYERS

Please see Table 20.

Table 20: Ablation study of CLAT layer choices on CIFAR-10: The columns present Clean, PGD-10,
and Auto Attack (AA) evaluation accuracies for models trained with CLAT, where layers with the
largest and lowest values are selected. The optimal number of layers per network was chosen for both
approaches. All settings are consistent with the results in Table 1

.

NETWORK LARGEST CIDX SMALLEST CIDX PGD-AT

CLEAN PGD-10 AA CLEAN PGD-10 AA CLEAN PGD-10 AA

DN121 81.03 60.60 49.91 80.50 59.25 48.81 80.05 58.15 47.56
RN50 83.78 59.54 49.45 82.30 57.01 47.10 81.38 56.35 46.22
RN18 83.89 55.37 42.86 82.56 54.01 40.91 81.46 53.63 40.48

E CURVATURE-BASED WEAKNESS MEASUREMENT

The main paper defines feature weakness based on the feature variation under worst-case perturbation.
However, due to the non-linear and non-convex nature of the neural network model, the weakness
measurement may not be precise in more complicated model architectures with a mixed layer
type, such as the Vision Transformer model. To this end, this section provides a more accurate
curvature-based formulation on feature weakness, and shows how the proposed weakness metric is
an approximation. We leave the utilization of the curvature-based weakness measurement on more
complicated models as future work.

Let’s start by considering the feature perturbation function Gi(·), which is defined at the output of
layer i on inputs close to a clean data point x:

Gi(z) = ||Fi(z)− Fi(x)||22. (7)

The worst-case curvature of the function Gi at the neighborhood of z = x can be estimated following
the formulation by Moosavi-Dezfooli et al. (2019) as

νi(x) =
∇Gi(x

′)−∇Gi(x)

||x′ − x||2
=
∇Gi(x

′)

||x′ − x||2
, (8)

where x′ is a worst-case perturbation (adversarial attack) maximizing Gi(z) in the vicinity of x, and
∇Gi(x) = 0 by definition given it is a minimum. Following the observation in Moosavi-Dezfooli
et al. (2019), a higher curvature indicates the feature to be more non-robust to adversarial examples.
We can therefore use the curvature formulation νi(x) under a fixed perturbation budget ||x′−x||p≤ ϵ
to estimate the layer non-robustness, or weakness.

As we use the feature weakness to derive both the layer criticality metric and the finetuning objective,
having a gradient term in the layer weakness leads to the costly computation of higher-order gradients
in the optimization. To avoid the high cost of computing higher-order gradients when optimizing
with the curvature, the numerator in the curvature formulation can be further derived as

νi(x) =
∂Fi(x

′)
∂x′

T
(Fi(x

′)− Fi(x))

||x′ − x||2
. (9)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

In practice, it is also difficult to explicitly instantiate ∂Fi(x
′)

∂x′ for a neural network. To this end,

we simplify the formulation in Eq. (9) by assuming ∂Fi(x
′)

∂x′ as a uniform vector. This leads to our
definition of the ϵ-weakness of layer i’s feature as:

Wϵ(Fi) =
1

Ni
Ex

[
sup

||δ||p≤ϵ

||Fi(x+ δ)− Fi(x)||2

]
, (10)

where Ni denotes the dimensionality of the output features at layer i, therefore normalizing the weak-
ness measurement of layers with different output sizes. The weakness measurement is proportional
to the curvature estimation in Eq. (9). A higher weakness value indicates that the feature vector is
more vulnerable to input perturbations. The functionality of cascading layers from 1 to i affects the
vulnerability of the hidden features, as described by this formulation.

20

	Introduction
	Related Work
	Adversarial training
	Adversarial training improvements and robust overfitting

	Methods
	Layer Criticality
	Criticality-targeted fine-tuning
	CLAT adversarial training

	experiments
	experimental settings
	clat performance
	Ablation Studies
	Ablating on pretraining epochs before clat
	Ablating on critical layer selection

	Overhead and stability analysis

	Conclusions
	Pseudocode of CLAT
	Additional experiment results
	Additional ablation study
	CLAT on pretrained clean model
	Additional results on layer selection

	Rebuttal Experiments
	Full Training Curves
	Reduced Learning Rate Performance
	Critical Index Variation Over Time
	Clean Accuracy and Critical Layer Selection
	Ablation Study: Dynamic and Fixed Critical Indices
	Performance on Other Datasets
	Imagenette
	ImageNet

	Robustness against Other Attacks
	Additional Performance Comparisons to Baselines
	Stochastic Weight Averaging and Adversarial Weight Perturbation
	Data Augmentation Techniques

	Timing Comparisons
	Ablation: Effect of choosing largest critical indices/ most critical layers

	Curvature-based weakness measurement

