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ABSTRACT

Sleep staging is helpful in assessing sleep quality and diagnosing sleep disorders.
However, how to adequately capture the temporal and spatial relations of the brain
during sleep remains a challenge. In particular, existing methods cannot adap-
tively infer spatial-temporal relations of the brain under different sleep stages. In
this paper, we propose a novel Bayesian spatial-temporal relation inference neural
network, named Bayesian spatial-temporal transformer (BSTT), for sleep stag-
ing. Our model is able to adaptively infer brain spatial-temporal relations during
sleep for spatial-temporal feature modeling through a well-designed Bayesian re-
lation inference component. Meanwhile, our model also includes a spatial trans-
former for extracting brain spatial features and a temporal transformer for cap-
turing temporal features. Experiments show that our BSTT outperforms state-of-
the-art baselines on ISRUC and MASS datasets. In addition, the visual analysis
shows that the spatial-temporal relations obtained by BSTT inference have certain
interpretability for sleep staging.

1 INTRODUCTION

Sleep staging is essential for assessing sleep quality and diagnosing sleep disorders. Sleep specialists
typically classify sleep stages based on the AASM sleep standard and polysomnography (PSG)
recordings to aid in diagnosis. The AASM standard not only provides criteria for determining each
sleep period, but also documents conversion rules between different sleep stages, which is known
as sleep transition rules, to help sleep specialists identify sleep stages when sleep transitions occur.
However, artificial sleep staging takes a long time, and the classification results are greatly affected
by professional level and subjectivity (Supratak et al., 2017). Therefore, automatic classification
methods are applied into sleep staging to improve efficiency.

Traditional machine learning methods use artificially designed features for sleep staging, which
improves the efficiency of staging to a certain extent (Fraiwan et al., 2012). However, the accuracy
of traditional machine learning methods relies heavily on feature engineering and feature selection,
which still requires a lot of expert knowledge. To address the above problems, deep learning methods
have been applied to sleep staging and achieved satisfactory classification performance (Phan et al.,
2019; Jia et al., 2022a;b). Most of the early deep learning methods focus on the temporal information
of the sleep data, utilizing convolutional neural networks (CNN) and recurrent neural networks
(RNN) to capture temporal features for sleep staging (Jain & Ganesan, 2021; Perslev et al., 2019).
In addition, some studies have shown that the spatial topology of the brain behave differently in
different sleep stages (Khanal, 2019), which means that both the temporal and spatial relations of
the brain are both important during sleep. Therefore, some researchers try to use the spatial and
temporal characteristics of the brain for sleep staging (Jia et al., 2020b; Phan et al., 2022; Jia et al.,
2020a). Although the above methods achieve good classification performance, it is challenging to
model spatial and temporal relations. Specifically, for the modeling of temporal relations, some
approaches attempt to capture sleep transition rules in sleep to serve the identification of specific
sleep stages. However, it is difficult for these methods to explicitly demonstrate the relation of
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different sleep time slices in accordance with the AASM sleep standard. Besides, for the modeling
of spatial relations, spatial convolution operation is employed to extract the spatial features of the
brain, which is insufficient that it may ignore the spatial topology of the brain by most methods
(Zhou et al., 2021a; Perslev et al., 2019). A few researches utilize spatial topology and temporal
relation information of brain for sleep staging by graph convolutional networks, but the constructed
brain networks still lack interpretability to a certain extent (Jia et al., 2020b).

To address the above challenges, we propose a novel model called Bayesian spatial-temporal trans-
former (BSTT) for sleep staging. The proposed model integrates the transformer and Bayesian
relation inference in a unified framework. Specifically, we design the spatial-temporal transformer
architecture, which can capture the temporal and spatial features of the brain. Besides, we propose
the Bayesian relational inference component which comes in two forms, Bayesian temporal relation
inference and Bayesian spatial relation inference. Wherefore, it can infer the spatial-temporal re-
lations of objects and generate the relation intensity graphs. Specifically, the main contributions of
our BSTT are summarized as follows:

• We design Bayesian relational inference component which can adaptively infer spatial-
temporal relations of brain during sleep in the service of capturing spatial-temporal rela-
tions.

• We apply the spatial-temporal transformer architecture to simultaneously model spatial-
temporal relations. It can effectively capture the spatial-temporal features of the brain and
enhance the model’s ability to model spatial-temporal relations.

• Experimental results show that the proposed BSTT achieves the state-of-the-art in multiple
sleep staging datasets. The visual analysis shows that our model has a certain degree of
interpretability for sleep staging.

2 RELATED WORK

Identifying sleep stages plays an important role in diagnosing and treating sleep disorders. Earlier,
the support vector machine (SVM) and random forest (RF) are used for sleep staging (Fraiwan et al.,
2012). However, these methods need hand-crafted features, which require a lot of prior knowledge.
Currently, deep learning methods have become the primary method for sleep staging.

Early deep learning methods extract temporal features of sleep signals for classification. The earliest
methods are based on the CNN models (Tsinalis et al., 2016; Chambon et al., 2018). For example,
Chambon et al. propose a convolutional neural network that can extract temporal-invariant features
from sleep signals (Chambon et al., 2018). Furthermore, Eldele et al. develope a multi-resolution
CNN with adaptive feature recalibration to extract representative features (Eldele et al., 2021). In
addition, RNN models have been gradually used for sleep staging (Phan et al., 2019; Perslev et al.,
2019; Phan et al., 2018). For example, Phan et al. propose a deep bidirectional RNN model with
attention mechanism for single-channel EEG (Phan et al., 2018). They then design an end-to-end
hierarchical RNN architecture for capturing different levels of EEG signal features (Phan et al.,
2019). Some studies combine CNN with RNN (Supratak & Guo, 2020; Guillot & Thorey, 2021;
Dong et al., 2017). For example, Suratak et al. propose a hybrid model combining CNN and RNN to
extract rich temporal features (Supratak et al., 2017). In addition, Phan et al. introduce transformer
into the sleep staging task to capture the temporal context features of sleep signals (Phan et al.,
2022). Jia et al. design a fully convolutional model to capture the typical waveform of sleep signals
(Jia et al., 2021b).

Further, several studies have shown the importance of brain spatial relations for sleep staging
(Khanal, 2019; Sakkalis, 2011). Some researchers try to model the spatial-temporal characteris-
tics of sleep data. For example, Jia et al. propose an adaptive deep learning model for sleep staging.
The proposed spatial-temporal graph convolutional network is used to extract spatial features and
capture transition rules (Jia et al., 2020b). They also propose a multi-view spatial-temporal graph
convolutional network based on domain generalization, which models the multi-view-based spatial
characteristics of the brain (Jia et al., 2021a).

Although the above models achieve good classification performance, these models do not ade-
quately model spatial-temporal properties or effectively reason and capture spatial-temporal rela-
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tions. Therefore, our method attempts to model spatial-temporal relations using Bayesian inference,
combined with state-of-the-art transformer architectures for sleep staging.

3 PRELIMINARIES

The proposed model processes data from successive T sleep epochs and predicts the label of the
epoch in the middle. Each sleep epoch is defined as x ∈ RC×N , where C represents the number of
channels of the sleep epoch (i.e. the EEG channel in this work. Since EEG signals from different
channels are extracted from different regions of the brain, spatial relations are contained among these
channels.) and N represents the number of sampling points in a sleep epoch. The input sequence of
sleep epochs is defined as x = {x1, x2, . . . , xT }, where xi denotes a sleep epoch (i ∈ [1, 2, . . . , T ])
and T is the number of sleep epochs.

The sleep staging problem is defined as: learning an artificial neural network F based on Bayesian
spatial-temporal transformer, which can infer the spatial-temporal relations of the input sleep epoch
sequence x and map it to the corresponding sleep stage Ŷ , where Ŷ is the classification result of
the middle epoch xm. According to the AASM standard, each Ŷ ∈ {0, 1, 2, 3, 4} is matched to five
sleep stages W, N1, N2, N3, and REM, respectively.

4 BAYESIAN SPATIAL-TEMPORAL TRANSFORMER

We propose a novel model named Bayesian spatial-temporal transformer (BSTT) for sleep staging.
The core ideas of our model are summarized as follows:

• Infer the spatial-temporal relations of the brain based on Bayesian inference method.

• Design the Bayesian transformer architecture while capturing the spatial-temporal features
of the brain.

• Integrate Bayesian relational inference components and transformer architecture into a uni-
fied framework which can stage sleep period effectively.

The overall model is carefully designed to accurately classify different sleep stages.

4.1 ARCHITECTURE

The overall architecture of the proposed BSTT is shown in Figure 1. The EEG signals are first
encoded by the embedding layer. The spatial-temporal relations are then inferred and modeled by
Bayesian spatial-temporal transformer module. Specifically, the Bayesian spatial-temporal trans-
former includes a Bayesian spatial transformer and a Bayesian temporal transformer. The Bayesian
spatial transformer can reason about spatial relations in the brain and capture spatial features. The
Bayesian temporal transformer can reason about the temporal relations of consecutive sleep epochs
and capture temporal features. Finally, the predictions of different sleep stages are performed by the
classification layer.

4.1.1 BAYESIAN RELATION INFERENCE

Capturing the spatial-temporal relations of brain signals during sleep can better serve sleep staging
task. However, due to the difficulty in inferring the spatial-temporal relations of sleep, current re-
searches are insufficient for modeling the spatial-temporal relations. Inspired by deep graph random
process (DGP) proposed in recent research (Huang et al., 2020), we propose the Bayesian relation
inference method. Bayesian relational inference is the core component of our model, which can in-
fer relations between each pair of object nodes and build relation intensity graphs. In this article, an
object node represents the embedding of an EEG channel or the embedding of a certain time slice.
The construction of the relation intensity graph is mainly divided into the following steps:

Step 1: Edge embedding initialization. The input of the Bayesian relational inference is the node
embeddings of the object. Building a sleep relation intensity graph starts with generating edge
embeddings. Specifically, the node embeddings of the object are spliced and generated into edge
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Figure 1: The overall architecture of the proposed Bayesian spatial-temporal transformer for sleep
staging. BSTT includes two Bayesian transformer modules, a spatial Bayesian transformer and a
temporal Bayesian transformer. For each transformer module, the input features are passed through
the position embedding and layernorm layer. Then the multi-head Bayesian relation inference com-
ponent infers the object’s spatial or temporal relation and captures the spatial-temporal features. The
residual connection is used to prevent overfitting and gradient disappearance. Here, ⊕ means add.

embeddings. We first apply a linear neural network fθ to generate edge embeddings:

Ee = fθ (En [i, j]) (i, j ∈ [1, n] && i != j) (1)

where En ∈ RB×Nv×V represents the input n node objects, En[i, j] ∈ RB×Ne×2V represents the
splicing of two node embeddings, and Ee ∈ RB×Ne×E represents the generated edge embeddings.

Step 2: Edge embedding coupling. Coupling is one of the key steps in relation inference, the purpose
is to obtain a summary graph of the relation between object nodes (Huang et al., 2020). We assume
that the edges of the summary graph M̈i,j are a summary of an n → ∞ of λ → 0 Binomial
distributions, which means m̈i,j ∼ B(n, λ), due to the uncertainty of spatial-temporal relations of
brain. Drawing from the Virtual Recurrent Neural Network (VRNN) model, the parameters of the
approximate posteriors are estimated using a Recurrent Neural Network (RNN) to encode features.
However, in contrast to VRNN, Bayesian relation inference component contains an approximate
posterior q(m̈|Ee), whose inference and sampling cannot be solved in a computationally feasible
manner due to its infinite n. By De MoivreLaplace theorem (Sheynin, 1977) and DGP (Huang et al.,
2020), we can subject these edge embeddings to a coupling transformation as follows:

ni,j = ζ
(
Lmean

(
Eei,j

) )
+ ϵ (2)

σ̃i,j = ζ
(
Lstd

(
Eei,j

) )
(3)

mi,j =
1 + 2ni,j σ̃

2
i,j −

√
1 + 4n 2

i,j σ̃
4
i,j

2
(4)

where ζ(·) is softplus function, Ee is the edge embedding generated in the first step, ϵ is a very
small constant, Lmean(·) and Lstd(·) are implemented by neural networks for estimating the mean
and standard deviation respectively, mi,j ∈ M is the approximation of Binomial edge variable in
the summary graph, and M ∈ RB×Ne is the approximation of summary graph which strengthens
the representation of real spatial or temporal relations.

Step 3: Sleep relation intensity calculation. The final step is to strengthen edge information and
generate a relation intensity graph for downstream tasks. The relation intensities of brain temporal-
spatial network during sleep is sparse based on existing research (Razi et al., 2017). Therefore,
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generating a sparse graph based on edge embedding can not only highlight the representation of
key relations, but also be more in line with the actual situation. We employ the Gaussian graph
transformation approach which produces a sparse sleep relation intensity graph G. The specific
calculation is defined as follows:

α̃i,j =
(
mstd

i,j

)
× εi,j +mi,j (5)

si,j =
(
mmean

i , j

)
× α̃i,j +

(
α̃std
i,j

)
×
(
σ̃mean

i , j

)
× ε′i,j (6)

ᾱi,j = si,j × α̃i,j (7)
αi,j = ζ (L (ᾱi,j) ) (8)

where mi,j ∈ M is the approximation of the edges of the summary graph obtained in Step 2, ε
and ε′ are the standard Gaussian random variable of the same dimension as M , α̃ ∈ RB×Ne is the
Gaussian edge representation, S ∈ RB×Ne is the task-related Gaussian variable, σ̃i,j is calculated
in Eq.(3), std is the standard deviation, mean is the mean value, ᾱ is the Gaussian transformation
map, α ∈ RB×Ne is the final sleep relation intensity graph, ζ(·) is softplus function, and L(·) is
linear function. Afterwards, we utilize an attention mechanism-based method to convert the node
embeddings into feature embeddings based on the sleep relation intensity graph as the output of
Bayesian relation inference. The specific calculation is as follows:

Eout = fGAL (En, α) (9)

where fGAL(·) is the graph attention layer, En is the node embeddings of the input object, α is the
sleep relation intensity graph, and Eout ∈ RB×Nv×Vout is the output node embeddings.

4.1.2 LEARNING OF BAYESIAN RELATION INFERENCE

We adopt variational inference to jointly optimise Baysian relation inference component. Inspired
by VRNN (Chung et al., 2015), we can use the evidence lower bound (ELBO) for joint learning and
inference. The details of how variational inference fits into our model are shown in the Appendix 3.
Specifically, we use two random variables need to be optimised to describe the same random process
data. The resulting objective is to maximize the ELBO:

M∑
i=1

{
KL

(
q
(
Ã,S | X0:i

)
∥p

(
Ã,S | X0:i

))
− EÃ,S

[
logP

(
Yi | Xi, Ã,S

)]}
(10)

where S is the task-related Gaussian variable, Ã is the Gaussian graph embedding, q
(
Ã,S | X0:i

)
is the prior distribution, and p

(
Ã,S | X0:i

)
is the posterior distribution. Since every variable in S

are affected by Ã in Eq.(6), the KL term can be further written as:∑
( i, j )∈Ẽ

{
KL

(
B(n, λ̃i,j )∥B

(
n, λ̃

(0)
i,j

))

+Eα̃i,j

[
KL

(
N ( α̃i,j ∗ µi,j , α̃i,j ∗ σ2

i,j∥N
(
α̃i,j ∗ µ(0)

i,j , α̃i,j ∗ σ(0) 2

i,j

))]} (11)

Obviously the second term can be calculated, while the first term is tough to calculate because
n→∞. According to Theorem 2 provided in DGP (Huang et al., 2020), we can convert it into an
easy-to-solve value to approximate the calculation.

4.1.3 BAYESIAN TRANSFORMER MODULE

Transformer shows convincing results in various sequence modeling tasks (Li et al., 2021; Luo et al.,
2021; Zhou et al., 2021b). However, traditional transformer does not have the ability to reason the
relation between each pair of object nodes. This results in a lack of interpretability of the attention
graph generated by transformer. Besides, the accuracy of traditional transformer is not good enough
under some medical scenarios. The Bayesian relation inference component we proposed can infer
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spatial-temporal relations efficiently. Hence, we integrate the Bayesian relation inference component
mentioned in Section 4.1.1 with the transformer in a unified framework to simultaneously reason and
model the spatial-temporal features of sleep EEG data.

Bayesian spatial transformer. To better construct the spatial functional connectivity of the brain and
capture spatial features, we design the Bayesian spatial transformer. It contains two components:
a Bayesian spatial relation inference component and a position feed-forward network, of which the
core component is a Bayesian relation inference component. Specifically, the input of the Bayesian
spatial transformer S is the embeddings of n spatial nodes. First we add position encoding to the
input to introduce position information:

S̃ = S +Pep (12)
where S ∈ R(B×Nt)×Ns×V is the input spatial node embedding, Pep ∈ R(B×Nt)×Ns×V is the po-
sition encoding matrix, and S̃ ∈ R(B×Nt)×Ns×V is the position-encoded spatial node embeddings.
For the position encoding matrix, we follow the groundbreaking work (Vaswani et al., 2017) and use
the sine and cosine functions to calculate.

We design a multi-head spatial Bayesian relation inference component which can reson about spatial
relations to improve the representation learning ability of the model. The details of Bayesian relation
inference component have been described in Section 4.1.1. The node embeddings with positional
encoding are encoded as embeddings with spatial features after passing through the multi-head spa-
tial Bayesian relation inference component and the feed-forward neural network layer:

S̃′ = fFNN

(
fBSRI

(
S̃
))

(13)

where S̃ is the input node embedding, fBSRI(·) is the Bayesian spatial relation inference module
which inferences the spatial relation, fFNN(·) is the feed-forward neural network layer, and S̃′ ∈
RB×Nt×Vs is the spatial relation intensity graph based features.

Bayesian temporal transformer. Similar to the Bayesian spatial transformer, in order to better capture
the sleep transition rules, we design a Bayesian temporal transformer module to reason and model
temporal features. The calculations of the temporal relation intensity graph based features are as
follows:

T̃ = S̃′ +Pep (14)

T̃ ′ = fFNN

(
fBTRI

(
T̃
))

(15)

where fBTRI(·) is the Bayesian temporal relation inference component, fFNN(·) is the feed-forward
neural network layer, and T̃ ′ ∈ RB×Nst is the temporal relation intensity graph based features. The
classification results are generated by T̃ ′ after passing through a linear classification layer fC:

Ŷ = fC

(
T̃ ′

)
(16)

where Ŷ is the classification result of BSTT.

5 EXPERIMENTS

To verify the effectiveness of the Bayesian spatial-temporal transformer, we evaluate it on the In-
stitute of Systems and Robotics, University of Coimbra (ISRUC) and Montreal Archives of Sleep
Studies-SS3 (MASS-SS3) dataset.

5.1 DATASET

ISRUC dataset contains the PSG recordings from 100 adult subjects. Each PSG recording contains 6
EEG channels, 6 EOG channels, 3 EMG channels, and 1 ECG channel. MASS-SS3 dataset contains
the PSG recordings from 62 adult subjects. Each PSG recording contains 20 EEG channels, 2
EOG channels, 3 EMG channels, and 1 ECG channel. The recordings are divided into time slices
according to a sleep epoch every 30s. Sleep spacialists divide these time slices into five distinct sleep
stages (W, N1, N2, N3, and REM) according to the AASM standard. There are also motion artifacts
at the beginning and end of each subject’s recording which are marked as unknown. We follow the
previous study and remove these recordings (Supratak et al., 2017).
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5.2 EXPERIMENT SETTINGS

We evaluate our model using k-fold cross-subject validation to ensure that the experiment results
are correct and reliable. We set k = 5 in order to test all recordings efficiently. For optimizer, the
Adam and Adadelta optimizer are deployed in MASS-SS3 and ISRUC dataset.

We use multi-channel EEG data for sleep staging to better capture brain network structure. Specifi-
cally, on the ISRUC dataset, we use all 6 EEG channels for experiments. In the MASS-SS3 dataset
we use 19 channels of EEG signals. To comprehensively evaluate the Bayesian spatial-temporal
transformer model and all baseline methods, we use accuracy (ACC), F1 Score, and KAPPA to eval-
uate the models. Specific information of the evaluation indicators and baseline models are shown in
Appendix 2.

5.3 EXPERIMENT ANALYSIS

Table 1 and 2 indicate that the proposed model achieves the best performance compared to other
baseline methods on both datasets. Specifically, the MCNN and MMCNN utilize the CNN model
to automatically extract sleep features, while RNN based methods such as DeepSleepNet and
TinySleepNet focus on the temporal context in sleep data, and model the multi-level temporal char-
acteristics of the sleep process for sleep staging. Further, GraphSleepNet and ST-Transformer simul-
taneously model the spatial-temporal relations during sleep and achieve satisfactory results. How-
ever, GraphSleepNet and ST-Transformer cannot adequately reason the spatial-temporal relations,
which limits the classification performance to a certain extent. Our Bayesian ST-Transformer uses
the multi-head Bayesian relation inference component to infer spatial-temporal relations to better
model spatial and temporal relations. Therefore, the proposed model achieves best classification
performance on different datasets.

Table 1: Comparison of Bayesian spatial-temporal transformer and baselines on ISRUC dataset

Method ACC(%) F1 Scroe(%) KAPPA(%)
MCNN 78.23 76.37 71.79

MMCNN 76.83 78.93 74.17
MLP+LSTM 76.08 72.87 69.16
DeepSleepNet 75.71 73.16 68.82
TinySleepNet 76.92 75.15 70.26

U-Time 75.52 71.04 67.92
GraphSleepNet 80.18 78.19 74.54
ST-Transformer 80.35 78.05 74.71

BSTT (Our) 81.96∗ 80.30∗ 76.78∗

∗indicates the significant differences between our model and other models (p < 0.05).

Table 2: Comparison of Bayesian spatial-temporal transformer and baselines on MASS dataset

Method ACC(%) F1 Score(%) KAPPA(%)
MCNN 86.31 80.79 81.26

MMCNN 80.15 71.03 69.42
MLP+LSTM 86.31 81.55 80.12
DeepSleepNet 85.92 79.81 79.09
TinySleepNet 83.30 77.40 79.95

U-Time 85.23 78.36 77.94
GraphSleepNet 88.36 83.25 83.30
ST-Transformer 88.64 84.53 83.16

BSTT (Our) 89.50∗ 85.00∗ 84.37∗

∗indicates the significant differences between our model and other models (p < 0.05).
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5.4 ABLATION EXPERIMENTS

To verify the effectiveness of each component in the Bayesian spatial-temporal transformer, we
conduct ablation experiments to determine the impact of each module on the model’s performance.
Specifically, we design three variants of the Bayesian spatial-temporal transformer, including:

• Bayesian Spatial Transformer (BST), which removes the Bayesian temporal transformer
module to determine the impact of modeling temporal relations on model performance.

• Bayesian Temporal Transformer (BTT), which removes the Bayesian spatial transformer
module to determine the impact of modeling spatial relations on model performance.

• Spatial-Temporal Transformer (STT), which removes the relational inference component
to determine the impact of Bayesian relational inference on model performance.

Figure 2 demonstrates that the performance of the variant models degrades after removing certain
component or module. Among them, the removal of the relational inference component has the
greatest impact on performance, which shows the importance of introducing relational inference to
the sleep staging task. In addition, only modeling the spatial relation or temporal relation of the data
also lead to a decrease in performance. It can be seen that modeling the spatial and temporal relation
is helpful for the sleep staging task.
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Figure 2: Ablation experiment results of Bayesian spatial-temporal transformer on ISRUC dataset.
.

5.5 VISUAL ANALYSIS

To verify the proposed Bayesian relational inference module can infer the spatial-temporal relations
during sleep, we visualize and analysis the generated relational inference graphs.

5.5.1 VISUAL ANALYSIS OF SPATIAL RELATION INFERENCE

Some researches have shown that the functional connectivity of the brain varies during different
sleep stages (Nguyen et al., 2018). In order to analyze the role of the Bayesian spatial inference
component of our model, we visualize the spatial relation intensity graph between EEG signal chan-
nels at different sleep periods, as shown in Figure 3. The position of the nodes in the figure repre-
sents the position of the electrodes that output the EEG signals, and the edge is the relation intensity
between the each two electrodes. We notice that during the NREM period, brain connectivity is
significantly stronger in light sleep (N1, N2) than that during deep sleep (N3). It has been revealed
that during light sleep, cerebral blood flow (CBF) and cerebral metabolic rate (CMR) are only about
3% to 10% lower than those of wakefulness while during deep sleep, these indexes have a significant
decrease of 25% to 44% by previous study (Madsen & Vorstrup, 1991). Synaptic connection activity
is directly correlated with CBF and CMR, which is consistent with our connection intensity graph.
Madsen also reported that the level of brain synaptic activity during REM period is similar to that of
the wake period, which matches our experimental findings.
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5.5.2 VISUAL ANALYSIS OF TEMPORAL RELATION INFERENCE

To analyze the contribution of the Bayesian temporal inference component of our model for sleep
staging, we visualize the time slice relation intensity graphs as shown in Figure 4. In each graph,
the nodes represent time slices while edges represent the strength of the relation between time slices
(Here, time slice represents the manually divided EEG signals of 30s duration.) The left graph of
each graph pair (e.g. N1 marked green) represents the five time slices (nodes) are in the same sleep
period. The one on the right (e.g. Other to N1 marked blue) represents the t−2 and t−1 time slices
are in one sleep period while the other three are in another sleep period (Sleep period transition
occurs between the t− 1 and t time slices.) In Figure 4, for each pair of graphs, the edges in the left
graph are, on average, darker than those in the right one. This means that our model tends to think
that EEG signals are more closely related to each other during a single sleep stage. Previous studies
have shown that the stability of the unchanging period is stronger, and sleep instability is the basis of
sleep transition (Bassi et al., 2009), which is consistent with our experimental results. Figure 4 also
reports that when sleep transition occurs, the relation intensity between the t and t + 1 time slices
are usually stronger. Similarly, temporal intensity between the t − 2 and the last three time slices
are usually weaker than that during the unchanging period, which is conducive to the interpretation
of the sleeping transition.

6 CONCLUSION

We propose a novel Bayesian spatial-temporal transformer model for sleep staging. To our best
knowledge, this is the first attempt to combine Bayesian relational inference with spatial-temporal
transformer for sleep staging. Our BSTT constructs spatial-temporal relations through Bayesian re-
lational inference and applies the transformer architecture to capture brain spatial-temporal features
for sleep staging. The results show that BSTT can effectively improve the model performance and
achieve state-of-the-art results. In addition, visual analysis presents that the relation intensity graphs
generated by the Bayesian relation inference have certain interpretability, which is consistent with
the existing research and helps to reveal the potential working mechanism of our model. Besides,
the proposed BSTT is a general-framework which can inference the spatial-temporal relations of
EEG data and perform satisfactory data forecasting. In the future, the proposed method can be used
for other EEG tasks, such as emotion recognition or motor imagery classification.
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7 REPRODUCIBILITY STATEMENT AND ETHICS STATEMENT

We provide an open-source implementation of our BSTT and other baseline models. The code
of BSTT is available at: https://github.com/YuchenLiu1225/BSTT/tree/main/
BSTT. Please check the Appendix 7 for links of the baseline methods.

The authors do not foresee any negative social impacts of this work. All authors disclosed no relevant
relationships.
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