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Abstract

Many tasks in modern probabilistic machine learning and statistics require es-1

timating expectations over posterior distributions. While many algorithms have2

been developed to approximate these expectations, reliably assessing their perfor-3

mance in practice, in absence of ground truth, remains a significant challenge.4

In this work, we observe that the well-known k-hat diagnostic for importance sam-5

pling (IS) [1] can be unreliable, as it fails to account for the fact that the common6

self-normalized IS (SNIS) estimator is a ratio. First, we demonstrate that examin-7

ing separate k-hat statistics for the numerator and denominator can be insufficient.8

Then, we we propose a new statistic that accounts for the dependence between the9

estimators in the ratio. In particular, we find that the concept of tail dependence10

between numerator and denominator weights contains essential information for11

determining effective performance of the SNIS estimator.12

1 Introduction and background13

Algorithms for Bayesian computation continue to be used for increasingly complex probabilistic14

models, remaining an active research field [2]. Yet, in the absence of ground truth, it remains15

challenging in practice to determine how and in which sense an approximate inference algorithm16

has found a “good” solution, as studied by several recent works, for Markov Chain Monte Carlo17

(MCMC) [3–5], variational inference (VI) [6–8], and importance sampling [1, 9–11] (the latter two18

being closely connected). In this work, we focus on diagnostics that apply to IS and VI algorithms.19

Problem statement. Let θ P Θ (commonly, Rdθ ) be the parameter of a Bayesian statistical model20

tppy|θquθ for data y P Y with posterior PDF πpθ|Dq
def
“ Z´1

π ¨ rπpθ|Dq “ Z´1
π ¨

ś

n ppyn|θq ¨ πpθq21

with D def
“ tynuNn“1, Zπ the normalizer and prior PDF πpθq. Formally, we aim at constructing Monte22

Carlo estimates of a posterior expectation I P Rą0, defined as23

I
def
“ Eπpθ|Dqrfpθqs “

ż

fpθqπpθ|Dqdθ, (1)

where f : Θ Ñ Rě0 is a suitably integrable test function. In particular, we are interested in24

obtaining diagnostics to determine the quality of an estimator pI . As a concrete example, when we25

set fpθq “ ppypn`1q|θq for a test point ypn`1q, I is often written as ppypn`1q|Dq, i.e., the evaluation26

of the posterior predictive PDF ppy|Dq at point ypn`1q.127

Self-normalized IS, combination with VI. Approximating integrals like in Eq. (1) accurately is28

challenging. MCMC is a natural solution, but there are notable cases where it is not appropriate. For29

1Such integrals can be used for estimating the predictive performance of a posterior [12] or the influence of
a particular observation.
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example, when even exact i.i.d. sampling from πpθ|Dq is inefficient, or when it is too expensive. In30

these cases one usually resorts to IS [13], where we obtain samples from a chosen proposal PDF q,31

as θpsq i.i.d.
„ qpθq, and construct estimators for I as32

pISNIS “

S
ÿ

s“1

wpsqfpθpsqq , wpsq def
“

wpsq

řS
s1“1 w

ps1q
, wpsq “ wpθpsqq “

rπpθpsq|Dq

qpθpsqq
. (2)

Many theoretical properties of this estimator are known (see, e.g., [14] for a review). When the33

normalizing constant Zπ is unknown (i.e., almost always), the normalization of the weights in Eq. (2)34

is not optional. In practice, it is difficult to find a good proposal, i.e., leading to estimates that are35

close to I . It is natural to use proposals that are the result of a VI algorithm [6], which is done36

implicitly or explicitly in the VI literature. See [6, 15–25] as examples for the many connections37

between VI and IS. A consequence of using a bad proposal is that the distribution of the weights ws38

tends to have a few very large values.39

Pareto-smoothed IS. Exploiting the above observation, [1] proposed Pareto-smoothed IS (PSIS),40

which replaces the largest M unnormalized weights 2 to get SNIS estimators with better behaviour.41

They fit a generalized Pareto distribution (GPD) to the weights twpsquSs“1. The new (“smoothed”)42

weights introduce bias but reduce variance. The GPD has three parameters, the most important of43

which is the shape parameter k. [1] propose to use an estimate of k, i.e., pk, as a diagnostic for IS.44

The pk diagnostic. [1] use the estimated value of k, i.e., pk, as a diagnostic for deciding whether45

the SNIS estimates with PSIS-corrected weights are reliable. The GPD has 1{k finite fractional46

moments when the true k ą 0, which suggests finite variance as soon as k ă 0.5. Note that this47

guarantees finite variance only for the normalizing constant estimator pZπ “ 1{S
řS

s“1 w
psq, which48

is implicit in the denominator of SNIS [26]. [1] find empirically that when S ą 2000, estimation49

with PSIS-corrected weights is reliable for pk ă 0.7, a threshold less stringent than 0.5. An advantage50

of pk is that it is not an IS estimate itself, unlike the effective sample size (ESS) [10], attempting to51

address the issues with variance-based diagnostics [9].52

2 Methodology53

Several works [26–28] have shown theoretically and empirically that accurately estimating posterior54

expectations such as I in Eq. (1) involves more than simply finding a proposal qpθq that is close to55

the posterior πpθ|Dq. This is because the SNIS estimator is a ratio estimator, as I itself is the ratio56

of two integrals,57

I “

ş

fpθqrπpθ|Dqdθ
ş

rπpθ|Dqdθ
def
“

Inum

Zπ

def
“

Inum

Iden
, (3)

where we relabelled the normalizing constant Iden. Therefore, we can write the SNIS estimator as58

pISNIS “

1
S

řS
s“1 w

psqfpθpsqq

1
S

řS
s“1 w

psq
“

pInum

pIden
, θpsq i.i.d.

„ qpθq, (4)

where the two estimators pInum and pIden are unbiased, but pISNIS is not. As elaborated in [26], the59

asymptotic variance of the SNIS estimator is driven by the variance of the numerator estimator, the60

variance of the denominator, and the covariance between them. For convenience, we define two61

unnormalized importance weight functions, the one used in the numerator for pInum and the one used62

in pIden, as63

wnumpθq “
fpθqrπpθ|Dq

qpθq
, wdenpθq “

rπpθ|Dq

qpθq
. (5)

We can then write the SNIS estimator as a ratio of two unbiased IS estimators,64

pISNIS “

1
S

řS
s“1 wnumpθpsqq

1
S

řS
s“1 wdenpθpsqq

, θpsq i.i.d.
„ qpθq. (6)

2See [1] for the choice of M .
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Given that there are two IS weights, wnumpθpsqq, wdenpθpsqq in the above, it is natural to consider65

that one may track reliability pISNIS by computing two diagnostics pknum, pkden separately for weights66

tw
psq
numuSs“1 and tw

psq

denuSs“1. [1] explored this option empirically, reporting that in their experiments67

it was sufficient to take maxppknum,pkdenq to determine reliability of the ratio. In this work, we will68

argue that this heuristic misses useful information and propose a new diagnostic.69

2.1 Capturing error cancellation with tail dependence70

The diagnostics pknum and pkden describe how well pInum and pIden respectively approximate Inum and71

Iden, serving as an (improved) substitute for estimates of variance (like the ESS). Yet, the variance72

of the SNIS estimator pISNIS is not only affected by the variance of the numerator of Eq. (6), the73

variance of the denominator. It is also affected by the covariance CovqrpInum, pIdens [26].74

A straightforward idea to capture this missing piece of information from pknum and pkden is to construct75

an estimate of CovqrpInum, pIdens, using the same samples from q used to estimate I . Yet, doing so76

would suffer the same drawbacks of variance-based diagnostics, which was a motivation for pk [1].77

Thus, we will develop a diagnostic that is not a direct estimate of CovqrpInum, pIdens. Like [1], we78

also exploit the fact that the distribution of wnum and wden can be well approximated with a power-79

law distribution in the tails. Specifically, we will look at a suitable notion of dependence between80

the tails of wnum and wden. This notion will replace the covariance CovqrpInum, pIdens as our target81

estimate. In fact, covariance, up to normalization, is equivalent to Pearson’s correlation ρ, which is82

only a very specific form of dependence, with many known limitations [29].83

Dependence and error cancellation. An intuition for why higher covariance between the estima-84

tors CovqrpInum, pIdens, or other dependence metrics, can lead to lower error is that, in a ratio, error85

cancellation can happen. Error cancellation in ratios has been exploited to derive better convergence86

rates for other numerical integration methods [30]. In IS, it is known that large IS weights lead to87

high errors. Therefore, error cancellation in the ratio of Eq. (6) could happen when a large weight in88

the numerator is offset by another similarly large weight in the denominator. We now formalize this89

using the notion of tail dependence.90

Definition 1 (Upper tail dependence coefficient and tail dependence) Let W1,W2 be two real-91

valued random variables. Let their (continuous) marginal CDFs be F1, F2. Then,92

lim
qÑ1´

P
“

W2 ą F´1
2 pqq|W1 ą F´1

1 pqq
‰

“ λU , (7)

provided the limit exists, is known as upper tail dependence coefficient λU P r0, 1s. If λU ą 0,93

we say that W1,W2 are asymptotically tail dependent, with the magnitude of λU determining the94

strength of depedence.95

Next, we discuss how to relate the above concept to the estimation of I .96

2.2 Proposed reliability checks97

We propose to diagnose whether the estimate in Eq. (6) is reliable by examining three quantities:98

pknum, pkden and a new diagnostic that is constructed as an approximation of the tail dependence99

coefficient λU between wnum, wden. Our aim is to study how these quantities relate to the effective100

performance of pISNIS as an estimator of I , which we define as follows.101

Definition 2 (Effective performance) We define the effective performance of an estimator pI of I102

as ensuring that the value of ppI{Iq is close to 1 with high probability. This takes into account the103

possibility of I being very small, e.g., 10´7 following the reccomendation of [9]. In log-space, it is104

equivalent to look at how log I ´ log pI is close to zero (recall I ą 0).105

Semi-parametric estimation of tail dependence In mathematical finance, various estimators106

of tail dependence have been developed [31–33]. We begin by studying semi-parametric estima-107

tors, following the assumption used by [1] and common in heavy-tailed distribution inference [34].108
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Figure 1: Results (dθ “ 100) over 100 replications. We compare SNIS, GenSNIS (see Section 3)
with a common random number (CRN) and GenSNIS with independent marginals. From Fig. 1a,
we see that GenSNIS with CRN performs best; this cannot be captured by pk values, but only by the
higher TDC. Note that in such high dimension all methods perform poorly. We found similar results
for lower dimensions and showcase here only a high-dimensional case.

Specifically, we assume the distribution of wnum, wden is well approximated by a GPD in the tails.109

Similarly, to estimate tail dependence, we assume the copula of their joint distribution is well ap-110

proximated by an extreme value copula [35], also only in the tails.3 We hypothesize that tail depen-111

dence between wnum and wden improves pISNIS performance, similar to the effect of Covqrwnum, wdens,112

but easier to estimate and more reliable.113

3 Preliminary results on Bayesian linear regression and conclusions114

We look at the distribution of log I ´ log pI over different replications. We consider estimating the115

posterior predictive of a Bayesian linear regression (BLR) model where we can compute the exact116

value of I . That is, from Eq. (1), we set fpθq “ ppypn`1q|θq for a test point ypn`1q, and πpθ|Dq is a117

Gaussian with known mean and covariance (BLR posterior).4118

To validate our hypothesis that tail dependence contains useful information, we check the behaviour119

of the diagnostics pknum, pkden our tail dependence diagnostic pλU estimated from a Gumbel copula120

Cpu1, u2; ρ, θq (which we found performing better than a t-copula), given by 2 ´ 21{θ.5 We find121

that, when k-diagnostics between competitors are similar for numerator and denominator, a higher122

tail dependence coefficient (TDC) explains the better performance. To explain our results, we need123

to introduce a recent generalization of the SNIS estimator proposed in [26], i.e., sampling from124

an extended space Rdθ ˆ Rdθ , as pIGenSNIS “
1
S

řS
s“1 wnumpθ

psq

1 q

1
S

řS
s“1 wdenpθ

psq

2 q
, rθ

psq

1 , θ
psq

2 s
i.i.d.
„ q1,2pθ1, θ2q. SNIS125

is a special case where the joint is a degenerate joint with θ1 “ θ2. Another special case is tak-126

ing q1,2pθ1, θ2q “ q1pθ1qq2pθ2q, which is done in previous works including notably target-aware127

Bayesian inference [27]. Finally, for these experiments we consider the choice of q1,2pθ1, θ2q that128

uses a common random number (CRN) for numerator and denominator, but has different marginals.129

Concretely we used Gaussian proposals N pθ1;µ1,Σ1q and N pθ2;µ2,Σ2q for numerator and de-130

nominator, respectively. The parameters are set to the optimal ones (given by the BLR true posteri-131

ors for numerator and denominator) perturbed by an error term. The SNIS estimator uses only one132

distribution qpθq, so we take the midpoint between the two optimal IS means and covariances for its133

parameters. Fig. 1 shows the results. We indeed find in other settings (for dθ, noise variance, and co-134

variate distributions) that when pk values are similar for numerator and denominator, tail dependence135

explains the remaining performance if a difference exists. We plan to test further TDC metrics and136

Bayesian models.137

3A copula of a bivariate joint distribution is the distribution on r0, 1s
2 after transforming the marginals to

the uniform distribution. Many parametric copula families exist [36].
4See [37] for expressions about BLR including closed form posterior predictives.
5We use the estimate of pρ from the Python statsmodels package, while setting ν manually.
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