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ABSTRACT

Bayesian learning has been recently considered as an effective means of accounting for uncertainty in
trained deep network parameters. This is of crucial importance when dealing with small or sparse train-
ing datasets. On the other hand, shallow models that compute weighted sums of their inputs, after pass-
ing them through a bank of arbitrary randomized nonlinearities, have been recently shown to enjoy good
test error bounds that depend on the number of nonlinearities. Inspired from these advances, in this
paper we examine novel deep network architectures, where each layer comprises a bank of arbitrary
nonlinearities, linearly combined using multiple alternative sets of weights. We effect model training by
means of approximate inference based on a t-divergence measure; this generalizes the Kullback-Leibler
divergence in the context of the t-exponential family of distributions. We adopt the t-exponential fam-
ily since it can more flexibly accommodate real-world data, that entail outliers and distributions with fat
tails, compared to conventional Gaussian model assumptions. We extensively evaluate our approach using

several challenging benchmarks, and provide comparative results to related state-of-the-art techniques.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Deep neural networks (DNNs) have experienced a resurgence of
interest; this is due to recent breakthroughs in the field that offer
unprecedented empirical results in several challenging real-world
tasks, such as image and video understanding (He, Zhang, Ren,
& Sun, 2016), natural language understanding and generation
(Sutskever, Vinyals, & Le, 2014), and game playing (Silver et al.,
2016). Most DNN models are trained by means of some variant
of the backpropagation (BP) algorithm. However, despite all these
successes, BP suffers from the major shortcoming of being able to
obtain only point-estimates of the trained networks. This fact re-
sults in the trained networks generating predictions that do not
account for uncertainty, e.g. due to the limited or sparse nature of
the available training data.

A potential solution towards the amelioration of these is-
sues consists in treating some network components under the
Bayesian inference rationale, instead of stochastic optimization
(Neal, 1995). Indeed, Bayesian inference principles have been re-
cently met with great success in the context of DNN regulariza-
tion, e.g. (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdi-
nov, 2014). Specifically, in this paper we are interested in inference
of the network feature functions. In the literature, this is effected
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by considering them as stochastic latent variables imposed some
mathematically convenient Gaussian process prior (Damianou &
Lawrence, 2013). On this basis, one proceeds to infer the corre-
sponding posteriors, based on the available training data. To the
latter end, and with the goal of combining accuracy with com-
putational efficiency, expectation-propagation (Bui, Hernandez-
Lobato, Hernandez-Lobato, Li, & Turner, 2016), mean-field (Chatzis
& Kosmopoulos, 2015; Damianou & Lawrence, 2013), and prob-
abilistic backpropagation (Bui, Hernandez-Lobato, Li, Hernandez-
Lobato, & Turner, 2015) have been used.

One of the main driving forces behind the unparalleled data
modeling and predictive performance of modern DNNs is their ca-
pability of effectively learning to extract informative, high-level, hi-
erarchical representations of observed data with latent structure
(LeCun, Bengio, & Hinton, 2015). Nevertheless, DNNs are not the
only class of models that entail this sort of functionality. Indeed,
major advances in machine learning have long been dominated by
the development of shallow architectures that compute weighted
sums of feature functions; the latter generate nonlinear represen-
tations of their input data, which can be determined under a mul-
titude of alternative rationales. For instance, models that belong
to the family of support vector machines (SVMs) (Vapnik, 1998)
essentially compute weighted sums of positive definite kernels;
boosting algorithms, such as AdaBoost (Schapire, 2003), compute
weighted sums of weak learners, such as decision trees. In all
cases, both the feature functions as well as the associated weights
are learned under an empirical risk minimization rationale; for in-
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stance, the hinge loss is used in the context of SVMs, while Ad-
aBoost utilizes the exponential loss.

In the same vein, the machine learning community has re-
cently examined a bold, yet quite promising possibility: postu-
lating weighted sums of random kitchen sinks (RKS) (Rahimi &
Recht, 2009). The main rationale of this family of approaches es-
sentially consists in randomly drawing the employed feature func-
tions (nonlinearities), and limiting model training to the associated
(scalar) weights. Specifically, the (entailed parameters of the) pos-
tulated nonlinearities are randomly sampled from an appropriate
density, which is a priori determined by the practitioners accord-
ing to some assumptions (Le, Sarl6s, & Smola, 2013; Yang, Smola,
Song, & Wilson, 2015). As it has been shown, both through theoret-
ical analysis as well as some empirical evidence, such a modeling
approach does not yield much inferior performance for a trained
classifier compared to the mainstream approach of optimally se-
lecting the employed nonlinearities. In addition, predictive perfor-
mance is shown to increase with the size of the employed bank of
randomly drawn nonlinearities.

Inspired from these advances, this paper introduces a fresh
regard towards DNNs: We formulate each DNN layer as a bank
of random nonlinearities, which are linearly combined in multi-
ple alternative fashions. This way, the postulated models eventu-
ally yield a hierarchical cascade of informative representations of
their multivariate observation inputs, that can be used to effec-
tively drive a penultimate regression or classification layer. At each
layer, the employed bank of random nonlinearities is sampled from
an appropriate postulated density, in a vein similar to RKS. How-
ever, in order to alleviate the burden of having to manually design
these densities, we elect to infer them in a Bayesian sense. In ad-
dition, we elect not to obtain point-estimates of the weights used
for combining the drawn nonlinearities. On the contrary, we per-
form Bayesian inference over them; this way, we allow for strong
model regularization, by better accounting for model uncertainty,
especially when training data availability is limited or sparse.

As already discussed, Bayesian inference for DNN-type mod-
els can be performed under various alternative paradigms. Here,
we resort to variational inference ideas, which consist in search-
ing for a proxy in an analytically solvable distribution family that
approximates the true underlying posterior distribution. To mea-
sure the closeness between the true and the approximate poste-
rior, the relative entropy between these two distributions is used.
Specifically, under the typical Gaussian assumption, one can use
the Shannon-Boltzmann-Gibbs (SBG) entropy, whereby the rela-
tive entropy yields the well known Kullback-Leibler (KL) diver-
gence (Wainwright & Jordan, 2008). However, real-world phenom-
ena tend to entail densities with heavier tails than the simplistic
Gaussian assumption.

To account for these facts, in this work we exploit the t-
exponential family!, which was first proposed by Tsallis and co-
workers (Sousa & Tsallis, 1994; Tsallis, 1998; Tsallis, Mendes, &
Plastino, 1998), and constitutes a special case of the more gen-
eral ¢-exponential family (Naudts, 2002; 2004a; 2004b). Of spe-
cific practical interest to us is the Students’-t density; this is a
bell-shaped distribution with heavier tails and one more parame-
ter (degrees of freedom-DOF) compared to the normal distribution,
and tends to a normal distribution for large DOF values (McLachlan
& Peel, 2000). This way, it offers a solution to the problem of
providing protection against outliers in multidimensional variables
(Archambeau & Verleysen, 2007; McLachlan & Peel, 2000; Svensén
& Bishop, 2005a), which is a very difficult problem that increases
in difficulty with the dimension of the variables (Kosinski, 1999).
On top of these merits, the t-exponential family also gives rise

1 Also referred to as the g-exponential family or the Tsallis distribution.

to a new t-divergence measure; this can be used for perform-
ing approximate inference in a fashion that better accommodates
heavy-tailed densities (compared to standard KL-based solutions)
(Ding, Vishwanathan, & Qi, 2011).

To summarize, we formulate a hierarchical (multilayer) model,
each layer of which comprises a bank of random feature functions
(nonlinearities). Each nonlinearity is presented with the layer’s in-
put, and generates scalar outputs. These outputs are linearly com-
bined by using multiple alternative sets of mixing weights, to pro-
duce the (multivariate) layer’s output. At each layer, the postulated
nonlinearities are drawn from an appropriate (posterior) density,
which is inferred from the data (as opposed to the requirement
of conventional RKS that the practitioners manually specify this
distribution). Indeed, both the posterior density of the nonlinear-
ities, as well as the posterior over the mixing weights, are in-
ferred in an approximate Bayesian fashion. This renders our model
more capable of accommodating limited or sparse training data,
while retaining its computational scalability. In addition, in or-
der to allow for our model to account for heavy tails, we postu-
late that the sought densities belong to the t-exponential family,
specifically they constitute (multivariate) Student’s-t densities. On
this basis, we conduct approximate inference by optimizing a t-
divergence functional, that better leverages the advantages of the
t-exponential family. We dub our proposed approach the Deep t-
Exponential Bayesian Kitchen Sinks (DtBKS) model.

The remainder of this paper is organized as follows: In the fol-
lowing Section, we provide a brief overview of the methodologi-
cal background of our approach. Subsequently, we introduce our
approach, and derive its training and inference algorithms. Then,
we perform the experimental evaluation of our approach, and il-
lustrate its merits over the current state-of-the-art. Finally, in the
concluding Section of this paper, we summarize our contribution
and discuss our results.

2. Methodological background
2.1. Weighted sums of random kitchen sinks

Consider the problem of fitting a function f : R® — Y to a train-
ing dataset comprising N input-output pairs {x;, J’n}’,;’:p drawn
iid. from some unknown distribution P(x, y), with x, € R® and
yn € Y. In essence, this fitting problem consists in finding a func-

tion f that minimizes the empirical risk on the training data

N
RUfT = 1 D0 c(f ). ) (M
n=1

where the cost function c(f{x), y) defines the penalty we impose
on the deviation between the prediction f{x) and the actual value
y.

The main underlying idea of data modeling under the weighted
sums of RKS rationale consists in postulating functions of the form

S
f@) =) asé (% 05) 2)

s=1

where the {a5}§:1 are mixing weights, while the nonlinear fea-
ture functions £ are parameterized by some vector € €2, and are
bounded s.t.: |£(X; ws)| < 1. Specifically, the vectors ws are samples
drawn from an appropriate probability distribution p(@) with sup-
port in €2, whence we have £ : R% x Q@ — [-1,1].

As an outcome of this construction, the fitted function f(x)
can be essentially viewed as a weighted sum of a bank of ran-
dom nonlinearities, £, drawn by appropriately sampling from a se-
lected probability distribution p(w). On this basis, the fitting pro-

cedure reduces toselecting the weight values{a5}§=1, such that we
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Fig. 1. Univariate student’s-t distribution t(y;; u, X, v), with u, X fixed, for various
values of v (Svensén & Bishop, 2005b).

minimize the empirical risk (1); typically, a quadratic loss function
is employed to this end. As shown in Rahimi and Recht (2009),
for S— oo, weighted sums of RKS yield predictive models whose
true risk is near the lowest true risk attainable by an infinite-
dimensional class of functions with optimally selected parameter
sets, @.

Weighted sums of RKS give rise to a modeling paradigm with
quite appealing properties: It allows for seamlessly and efficiently
employing arbitrarily complex feature functions &, since model fit-
ting is limited to the mixing weights; this way, we can easily ex-
periment with feature functions that do not admit simple fitting
procedures. On the other hand, RKS require one to (manually) de-
sign appropriate distributions p(w) to draw the employed nonlin-
earities from; in real-world data modeling tasks, this might prove
quite challenging a task.

2.2. The student’s-t distribution

The adoption of the multivariate student’s-t distribution pro-
vides a way to broaden the Gaussian distribution for potential out-
liers. The probability density function (pdf) of a student’s-t distri-
bution with mean vector u, covariance matrix ¥, and v >0 de-
grees of freedom is (Liu & Rubin, 1995)

(52131 2y o2 3
F(U/z){l+d(yt,[L;Z)/v}(U+6)/2 ( )

where § is the dimensionality of the observations y;, d(y;, u; X) is
the squared Mahalanobis distance between y;, # with covariance
matrix X

d@. 2 =@ - W' @ - n) (4)
and I'(s) is the Gamma function, I'(s) = [~ e tz5 dz

A graphical illustration of the univariate student’s-t distribution,
with pu, X fixed, and for various values of the degrees of freedom
v, is provided in Fig. 1. As we observe, as v — oo, the student’s-t
distribution tends to a Gaussian with the same g and X. On the
contrary, as v tends to zero, the tails of the distribution become
longer, thus allowing for a better handling of potential outliers,
without affecting the mean or the covariance of the distribution
(Chatzis, Kosmopoulos, & Varvarigou, 2009; Chatzis & Kosmopou-
los, 2011).

t(.yl" ’L’ 27 U) =

2.3. The t-divergence

The t-divergence was introduced in Ding et al. (2011) as fol-
lows:
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Fig. 2. Graphical illustration of the configuration of one DtBKS model layer.

Definition 1. The t-divergence between two distributions, q(h)
and p(h), is defined as

De(qllp) = /ti(h)loth(h)dh — §(h)log,p(h)dh (5)
where G(h) is called the escort distribution of q(h), and is given by
~oe qh)!

Importantly, the divergence D¢(q||p) preserves the following two
properties:

* D¢(q|lp)=0,VYq, p. The equality holds only for g = p.
* De(qllp) # De(pllq)-

As discussed in Ding et al. (2011), by leveraging the above def-
inition of the t-divergence, D¢(q||p), one can establish an advanced
approximate inference framework, much more appropriate for fit-
ting heavy-tailed densities. We exploit these benefits in developing
the training algorithm of the proposed DtBKS model, as we shall
explain in the following Section.

3. Proposed approach
3.1. Model formulation

Let us consider a DtBKS model with input variables x € R? and
output (predictable) variables y, comprising L layers. In Fig. 2, we
provide a graphical illustration of the proposed configuration of
one DtBKS model layer. Each layer, [, is presented with an input
vector b, generated from the preceding layer; at the first layer,
this vector is the model input, h®2x. This is fed into a bank com-
prising S randomly drawn feature functions, {Ssl(h"l)}§=]. Specif-
ically, these functions are nonlinearities parameterized by some
random vector ®; ie., &(h1) =& !). The used samples
. are drawn from an appropriate density, which is inferred in a
Bayesian sense, as we shall explain next.

This way, we eventually obtain a set of S univariate signals,
which we linearly combine to obtain the layer's output. Specif-
ically, we elect to (linearly) combine them in multiple alterna-
tive ways, with the goal of obtaining a potent, multidimensional,
high-level representation of the original observations. These alter-
native combinations are computed via a mixing weight matrix,
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W! e R7<S, where n is the desired dimensionality of the layer’'s
output (i.e., the postulated number of alternative linear combina-
tions).

Eventually, the output vectors at the layers [ e {1,...,L -1}
yield

h =w'[e(h'""; ), e R (7)

where | XS]le denotes the vector-concatenation of the set { Xs}le.
Turning to the penultimate layer of the model, we consider that
the output variables are imposed an appropriate conditional likeli-
hood function, the form of which depends on the type of the ad-
dressed task. Specifically, in the case of regression tasks, we postu-
late a multivariate Gaussian of the form

plx) =N (y|WHE B b, 071 (®)
where oyz is the noise variance. On the other hand, in case of clas-
sification tasks, we assume

p(yi) = Softmax(y|W'{e (s W, ) ©)

This concludes the definition of our model. For brevity, we shall
omit the layer indices, [, in the remainder of this paper, wherever
applicable. As we observe from Egs. (7)-(9), at each layer of the
proposed model:

(i) We postulate a random feature function &(-) that generates
scalar outputs. This is effected by taking the inner product of
the layer’s input with a parameter vector .

(ii) We draw many different samples of &(-). This is effected by
drawing multiple samples from the parameter vector @, which
is essentially considered as a random variable.

(iii) We optimally combine the drawn samples of &£(-) in a linear
fashion, by using the trainable matrix W. That is, we compute
multiple alternative weighted averages of the drawn samples of
&(-), whereby the used sets of weights (stored in W) are train-
able parameters.

Thus, our model constitutes a generalization of random kitchen
sinks, whereby the main rationale consists in drawing multiple
random samples of a fundamental unit. A key difference between
the existing literature, e.g. Yang et al. (2015), Le et al. (2013) and
Rahimi and Recht (2009), and our approach consists in the fact
that we opt for inferring the distribution we draw samples from, as
opposed to using some fixed selection. In addition, we learn how
to optimally combine these samples, and do it in multiple alterna-
tive ways, so as to generate a multidimensional layer output. Each
dimension of the generated output corresponds to a different way
of combining the drawn samples of the basic unit £(-). This is in
contrast to the existing literature on random kitchen sinks, where
only shallow architectures with scalar outputs have been consid-
ered (Le et al, 2013; Rahimi & Recht, 2009; Yang et al., 2015),
whereby the drawn samples are combined in one single way.

3.2. Model training

To perform model training, we opt for a full Bayesian treatment.
This is in contrast to most deep learning approaches, which rely on
frequentist treatments that yield point-estimates of the model pa-
rameters. Indeed, frequentist methods consider model parameters
to be fixed, and the training data to be some random sample from
an infinite number of existing but unobserved data points. On the
contrary, our Bayesian treatment is designed under the assumption
of dealing with fixed scarce data and parameters that are random
because they are unknowns. This way, by imposing a suitable prior
over model parameters and obtaining a corresponding posterior
distribution based on the given observed data, our full Bayesian

treatment allows for better including uncertainty in learning the
model; this is important when dealing with limited or sparse data.

To allow for inferring the distribution that the employed fea-
ture functions, &, must be drawn from, we first consider that the
vectors @ that parameterize them are student’s-t distributed latent
variables. We employ the same assumption for the weight matri-
ces, W, which we also want to infer in a Bayesian fashion, so as to
account for model uncertainty. Specifically, we start by imposing
a simple, zero-mean student’s-t prior distribution over them, with
tied degrees of freedom, at each model layer:

p(@) =t(w|0,1,v) (10)

p(W) = t(vec(W)|[0.1,v) (11)

where vec(-) is the matrix vectorization operation, and v >0 is
the degrees of freedom hyperparameter of the imposed priors. On
this basis, we seek to devise an efficient means of inferring the
corresponding posterior distributions, given the available training
data. To this end, we postulate that the sought posteriors approx-
imately take the form of student’s-t densities with means, diago-
nal covariance matrices, and degrees of freedom inferred from the
data. Hence, we have:

q(@: @) = t(w|p,,, diag(o?2), ve) (12)

q(W; @) = t(vec(W)|py. diag(ogy). vw) (13)

where ¢ = {p;, 67, vi}ic(ow). and v;>0, Vi, for all model layers.
This selection for the form of the sought parameter posteriors al-
lows for our model to accommodate heavy-tailed underlying den-
sities much better than the usual Gaussian assumption, as we have
also discussed in Section 2.2.

Then, to allow for inferring the sought posteriors in a com-
putationally efficient manner, we resort to variational Bayes
(Attias, 2000). This consists in derivation of a family of variational
posterior distributions q(.), which approximate the true posterior
distributions that we need to infer. In essence, this is effected by
optimizing an appropriate functional over the variational poste-
rior, which measures model fit to the training data. Hence, vari-
ational Bayes casts inference as an approximate optimization prob-
lem, yielding a trade-off between accuracy and computational scal-
ability (Attias, 2000).

Specifically, to allow for reaping the most out of the heavy-
tailed assumptions of our model, we elect to perform variational
Bayes by minimizing the t-divergence between the sought approx-
imate posterior and the postulated joint density over the observed
data and the model latent variables (Ding et al., 2011). Thus, the
proposed model training objective becomes

q(w: ). qW; ¢) =
= argmin Di(q(@: §). qW; $)|Ip(y: @, W)) (14)
a

By application of simple algebra, the expression of the t-
divergence in (14) yields
Di(q(@: $). q(W: §)||p(y: . W))
=D (q(: §)||p(@)) + De (q(W; )| p(W)) (15)

- EQ(w,W;q)) [logp(y|x)]

where {(w,W; ¢) is the escort distribution of the sought pos-
terior, and the t-divergence terms pertaining to the parameters
w and W are summed over all model layers. Then, following

Ding et al. (2011), and based on (10)-(13), we obtain that the
t-divergence expressions in (15) can be written in the following
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form:

De(q(6: $)11p(8)) = 2{ Ya <1+ 1)

16
[Go]z+[ﬂo]2>} (1o

l—t

where 6 c{w, vec(W)}, [¢]; is the ith element of a vector ¢, we

denote
s F(U(’;l) vg+T

Va2 (F(Uz")(ﬂvo)”z[ﬂo]i) (17)
[ T \

v+ (o) 1

and the free hyperparameter t is set as
Ding et al. (2011), yielding:

2

suggested in

=——+1 1
1+ Vo + ( 9)
As we observe from the preceding discussion, the ex-
pectation of the conditional log-likelihood of our model,

Egow:¢)[logp@[x)], is computed with respect to the escort
distributions of the sought posteriors. Therefore, at training time,
the banks of the employed feature functions (i.e., the samples
of their parameters, {ws}le), must be drawn from the escort
distributions of the derived posteriors.

Turning to the employed mixing weight matrices, W, our con-
sideration of them being latent variables with an inferred posterior
perplexes computation of the expressions (7)-(9); indeed, it re-
quires that we compute appropriate posterior expectations of these
expressions w.r.t. W. To circumvent this problem, we draw multiple
samples of the mixing weight matrices, {W}3 w1 in an MC fashion,
and average over the corresponding outcomes to compute the model
output. At training time, Eq. (15) implies that these samples must
also be drawn from the escort distributions of the derived posteriors.

Based on the previous results, and following Ding et al. (2011),
we can easily obtain the expressions of these escort distributions
of the derived posteriors, that we need to sample from at training
time. Specifically, it is easy to show that these escort distributions
yield a factorized form, that reads:

a6: ¢) = t(ow, S

di 23, 2
3 iag(ay). vo + ) 20)

V0 € {w, vec(W)}

Notably, our inference algorithm yields an MC estimator of the
proposed DtBKS model. Unfortunately, MC estimators are notorious
for their vulnerability to unacceptably high variance. In this work,
we resolve these issues by adopting the reparameterization trick
of Kingma and Welling (2014), adapted to the t-exponential family.
This trick consists in a smart reparameterization of the MC sam-
ples, {0S}§:1, drawn from a distribution 6 ~ q(@; ¢); this is obtained
via a differentiable transformation g¢(e) of an (auxiliary) random
variable € with low variance:

0 =gg4(e) with €~ p(e) (21)

In our case, the smart reparameterization of the MC samples
drawn from the student’s-t escort densities (20) yields the expres-
sion:

12
0
0, —9(65)—M9+(v +2) O g€s (22)

where € is random student’s-t noise with unitary variance:

€ ~t(0,1,vy+2) (23)

On this basis,at training time, we replace the samples of both
the weight matrices, W, as well as the feature function parameters,
w, with the expression (22), where sampling is performed w.r.t.
the low-variance random variable €. Then, the resulting (reparam-
eterized) t-divergence objective (15) can be minimized by means
of any off-the-shelf stochastic optimization algorithm, yielding low
variance estimators. To this end, in this work we utilize AdaM
(Kingma & Ba, 2015). We initialize the sought posterior hyperpa-
rameters by setting them equal to the hyperparameters of the im-
posed priors.

3.3. Inference algorithm

Having obtained a training algorithm for our proposed DtBKS
model, we can now proceed to elaborate on how inference is per-
formed using our method. To this end, it is needed that we com-
pute the posterior expectation of the model’s output, as usual when
performing Bayesian inference. Thus, at inference time, we need to
draw samples from the derived posteriors, (12) and (13), in an MC
fashion. This entails drawing from the posteriors, at each layer, of
a set comprising S samples of: (i) the vectors @ that parameterize
the employed feature functions; and (ii) the mixing weight matri-
ces, W, used to combine the outputs of the drawn banks of feature
functions. Note that this is in contrast to the training algorithm of
DtBKS, where the use of the t-divergence objective (15) gives rise
to the requirement of drawing from the associated escort distribu-
tions (20), while the need of training reliable estimators requires
utilization of the reparameterization trick.

4. Experimental evaluation

In this section, we perform a thorough experimental evaluation
of our proposed DtBKS model. We provide a quantitative assess-
ment of the efficacy, the effectiveness, and the computational effi-
ciency of our approach, combined with deep qualitative insights
into few of its key performance characteristics. To this end, we
consider several benchmarks from the UCI machine learning repos-
itory (UCI-Rep) (Asuncion & Newman, 2007) that pertain to both
regression and classification tasks, as well as the well-known In-
fiMNIST classification benchmark (Loosli, Canu, & Bottou, 2007).
The considered datasets, as well as their main characteristics (i.e.,
their number of training examples, N, and input dimensionality, §)
are summarized in Table 1.

With the exception of the ISOLET dataset from UCI-Rep, as well
as InfiMNIST, the rest of the considered benchmarks do not pro-
vide a split into training and test sets. In these cases, we account
for this lack by running our experiments 20 times, with different
random data splits into training and test sets, and compute perfor-
mance means and standard deviations; we use a randomly selected
90% of the data for model training, and the rest for evaluation pur-
poses. In the case of regression tasks, we use the root mean square
error (RMSE) as our performance metric; we employ the misclas-
sification rate for the considered classification benchmarks.

To obtain some comparative results, we also evaluate an exist-
ing alternative approach for Bayesian inference of deep network
nonlinearities, namely deep Gaussian processes (DGPs) (Damianou
& Lawrence, 2013). Indeed, the DGP is the existing type of Bayesian
deep learning approaches that is most closely related to our ap-
proach; this is the case, since DGP does also allow for inferring the
employed nonlinearities, but under a completely different ratio-
nale. Specifically, we evaluate the most recent variant of DGPs, pre-
sented in Cutajar, Bonilla, Michiardi, and Filippone (2017), which
allows for the model to efficiently scale to large datasets. Finally,
we also provide comparisons to a state-of-the-art Deep Learning
approach, namely a Dropout network (Srivastava et al., 2014), as



H. Partaourides, S. Chatzis / Expert Systems With Applications 98 (2018) 84-92 89

Table 1
Characteristics of the considered datasets.

Dataset N § Task Performance metric
Boston housing 506 13 Regression RMSE

Concrete 1030 8 Regression RMSE

Energy 768 8 Regression RMSE

Power plant 9568 4 Regression RMSE

Protein 45,730 9 Regression RMSE

Wine (White) 4898 11 Regression RMSE

Wine (Red) 1588 1 Regression RMSE

Breast cancer diagnostic (wdbc) 569 30 Classification ~ Misclassification rate
ISOLET 7797 617 Classification ~ Misclassification rate
Gas sensor 13,910 128 Classification ~ Misclassification rate
Parkinson’s 197 22 Classification ~ Misclassification rate
(Oxford Parkinson’s disease detection dataset)

Spam 4601 56 Classification ~ Misclassification rate
LSVT voice rehabilitation 126 310 Classification ~ Misclassification rate
InfiMNIST 8+ Million 784  Classification =~ Misclassification rate

well as a baseline approach, namely SVMs using both linear and
RBF kernels.

In all cases, our specification of the priors imposed on DtBKS
considers a low value for the degrees of freedom hyperparameter,
v =2.1. In the case of regression tasks, we employ a noise vari-
ance equal to 03,2 = exp(—2). Turning to the selection of the form
of the drawn feature functions, &£, we consider a simple trigono-
metric formulation, which is inspired from the theory of random
Fourier projections of RBF kernels (Rudin, 2011). Specifically, we
postulate & (x; @) = Jcos(w'x) + 1sin(w'x). Note that under this
selection for the form of £(x; w), and setting v, — co and vy, — oo,
DtBKS reduces to the DGP variant of (Cutajar et al., 2017) with a
postulated RBF kernel. For computational efficiency, we limit the
number of drawn samples to 100, during both DtBKS training and
inference on the test data. AdaM is run with the default hyperpa-
rameter values.

DGP is evaluated considering multiple selections of the number
of Gaussian processes per layer, as well as the number of layers,
using RBF kernels and arc-cosine kernels (Cutajar et al., 2017); in
each experimental case, we report results pertaining to the best-
performing DGP configuration. Similar is the case for Dropout net-
works, which are evaluated considering multiple alternatives for
the number of layers and the output size of each hidden layer; we
employ ReLU nonlinearities (Nair & Hinton, 2010).

Our deep learning source code has been developed in Python,
using the Tensorflow library (Abadi et al., 2015); it can be found on
https://github.com/Partaourides/DtBKS.We have also made use of a
DGP implementation provided by M. Filippone?. The evaluation of
SVM-type algorithms was performed by utilizing Python’s scikit-
learn toolbox (Pedregosa et al., 2011). We run our experiments on
an Intel Xeon 2.5GHz server with 64GB RAM and an NVIDIA Tesla
K40 GPU.

4.1. Comparative results

We begin our exposition by providing the best empirical per-
formance of our method, and showing how it compares to the al-
ternatives. These outcomes have been obtained by experimenting
with different selections for the number of layers, L, and the out-
put size of each hidden layer, n (i.e. for I € {1,...,L —1}). Our re-
sults are outlined in Table 2; in all cases, we provide therein (in
parentheses) the model configurations that obtained the reported
(best empirical) performance®

2 https://github.com/mauriziofilippone/deep_gp_random_features.
3 This selection was performed by means of leave-one-out cross-validation, con-
sidering Le (2, 3, 4, 5} and n e {[58/41, [§/2], [38/4], 3).

We observe that our approach outperforms DGP in the consid-
ered regression benchmarks; in all cases, these empirical perfor-
mance differences are found to be statistically significant, by run-
ning the paired student’s-t test. On the other hand, DtBKS outper-
forms DGP in only three out of the seven considered classification
benchmarks, with statistically significant differences (according to
the paired student’s-t test), while yielding comparable outcomes in
the rest. In addition, DtBKS outperforms Dropout in all the consid-
ered classification benchmarks; the paired student’s-t test shows
that these empirical performance differences are statistically signif-
icant. The only exception to this finding is InfiMNIST, where the re-
sults are essentially comparable. On the other hand, DtBKS signif-
icantly outperforms Dropout in the Protein regression benchmark,
while yielding comparable performance in the rest considered re-
gression tasks (according to the outcomes of the paired Student’s-
t test). Finally, both baseline SVM model configurations are com-
pletely outperformed by DtBKS, in all cases.

4.2. Further investigation

Further, it is interesting to provide a feeling of how DtBKS
model performance changes with the selection of the number of
layers, L, and the dimensionality of each hidden layer, n (i.e., for
le{l1,...,L—1}). To examine these aspects, in Fig. 3(a)-(c) we
plot model performance fluctuation with 7, setting the number
of layers equal to L =2,3, and 4, respectively, for few character-
istic experimental cases comprising limited training data. As we
observe, DtBKS performance is significantly affected by both these
selections. Note also that the associated performance fluctuation
patterns of DtBKS are quite different among the illustrated exam-
ples. These findings are congruent with the behavior of all existing
state-of-the-art deep learning approaches. It is also important to
mention the high standard deviation of the observed performances
in some cases where we set L =4; we attribute this unstable be-
havior to overfitting due to insufficient training data.

4.3. Are t-exponential Bayesian kitchen sinks more potent than
random kitchen sinks?

Finally, it is extremely interesting to examine how beneficial it
is for DtBKS to infer a posterior distribution over the (random vari-
ables that parameterize the) employed feature functions, instead
of using a simple, manually selected density. To examine this as-
pect, we repeat our experiments by drawing the vectors w, that
parameterize the feature functions, &, from the postulated simple
priors, p(w). Hence, we adopt an RKS-type rationale in drawing the
feature functions, &, as opposed to utilizing the inferred posteri-
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Table 2

Obtained performance for best model configuration (RMSE for regression tasks, misclassification rate for classification tasks; the
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lower the better).

Dataset DtBKS DGP Dropout Linear SVM RBF-kernel SVM
Boston housing 0.2939+0.04 0.3897 £0.1 0.2516 +£0.06 0.5027 £0.1 0.3471+0.1
(L=2,n=3) (L=2,n=3) (L=2,n1=123)
Concrete 0.3213+0.02 0.4501 +£0.03 0.3228 +£0.03 0.64+0.04 0.3957 +£0.03
(L=2,n=5) (L=2,n=5) (L=2,n1=163)
Energy 0.1285+0.01 0.1636 +0.02 0.1322 +£0.01 0.3183 +0.03 0.25+0.03
(L=2,1=6) (L=2,n1=6) (L=2,n=175)
Power plant 0.2366 £+ 0.01 0.2401 +£0.01 0.2236 +£0.01 0.2671+0.01 0.2399+0.01
(L=3,n=4) (L=3,n=4) (L=3,17=200)
Protein 0.6113 £0.01 0.6734+0.01 0.7453 +£0.01 0.8673 £0.01 0.7648 +0.01
(L=2,n=9) (L=2,n=9) (L=2,1n=200)
Wine (White) 0.7684 +0.02 0.8072 +£0.02 0.7609 +0.02 0.8551+0.02 0.7751 +£0.02
(L=2,n=11) (L=2,n=11) (L=2,1n=200)
Wine (Red) 0.7564 + 0.04 0.7791 £ 0.04 0.7570+0.05 0.8064 + 0.05 0.7693 £0.05
(L=2,n=5) (L=2,n=5) (L=2,n1=145)
Breast cancer diagnostic (wdbc)  0.0116+0.01 0.0116 +0.01 0.0710 £ 0.06 0.0304 +0.02 0.025+0.02
(L=2,n=21) (L=2,n=21) (L=2,n1=170)
ISOLET 0.055+NA 0.0654 + NA 0.1256 £ NA 0.055+NA 0.063 £ NA
(L=2,n=205) (L=2,n=205) (L=2,n=133)
Gas sensor 0.0136 +0.002 0.0094 +0.002 0.0688 +0.07 0.0159+0.001 0.0168 +0.003
(L=3,1n=106) (L=3,1n=106) (L=3,1n=183)
Parkinson’s 0.0658 +0.05 0.0842 +0.05 0.0976 +0.09 0.1342 £0.07 0.1079 £ 0.04
(L=2,n=15) (L=2,n=15) (L=2,1=168)
Spam 0.0543 +0.01 0.0517 £0.01 0.1629 +£0.03 0.0777 £0.01 0.0666 +0.01
(L=2,n1=46) (L=2,n1=46) (L=2,n1=182)
LSVT voice rehabilitation 0.1375+0.07 0.3250+0.11 0.3782+0.17 0.2583 +0.09 0.1667 +0.08
(L=2,n=51) (L=2,n=51) (L=2,n1=116)
InfiMNIST 0.0093 +NA 0.0096 + NA 0.0096 + NA 0.25+NA 0.25+NA
(L=4,1=100) (L=4,n=100) (L=4,n=113)
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Fig. 3. DtBKS performance fluctuation with the number of layers, L, and the output size of each hidden layer, 1 (as a fraction of input dimensionality, §): (a) L =2; (b) L
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(c) L = 4. Performance metrics are the RMSE for regression tasks, and the misclassification rate for classification tasks (the lower the better).
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Table 3

DtBKS performance when replacing t-exponential Bayesian kitchen sinks with random kitchen sinks. Per-
formance metrics are the RMSE for regression tasks, and the misclassification rate for classification tasks

(the lower the better).

Dataset Performance Comparison to full DtBKS model (from Table 2)

Boston housing 0.3199+0.04  0.2939+0.04

Concrete 0.3586+0.04  0.3213+0.02

Energy 0.1494 +0.01 0.1285 +0.01

Power plant 0.2301 +£0.01 0.2366 +0.01

Protein 0.7110+0.01 0.6113 £0.01

Wine (White) 0.7787+0.02  0.7684+0.02

Wine (Red) 0.7720+0.04  0.7564+0.04

Breast cancer diagnostic (wdbc)  0.0188 +0.02 0.0116 +£0.01

ISOLET 0.2245 + NA 0.0552 + NA

Gas Sensor 0.01754+0.003  0.0136+0.002

Parkinson’s 0.0895+0.06  0.0658 +0.05

Spam 0.0748 +£0.01 0.0543 +0.01

LSVT voice rehabilitation 0.1208 +0.04 0.1375+0.07

InfiMNIST 0.0603 + NA 0.0093 + NA
ors, (@) [or their corresponding escort distributions, §(®), during Table 4
training]. Wall-clock times of the evaluated deep learning approaches (in minutes).

Our findings are provided in Table 3; these results correspond Dataset DBKS RKS  DGP  Dropout
tg s.electlons of the number gf layers, L, and thg .output. size, 1), Boston housing 3 2 1 2
similar to the values reported in Table 2. Our empirical evidence is Concrete 20 7 48 14
quite conspicuous: (i) merely drawing the postulated nonlinearities Energy 23 8 166 22
from a simple prior, yet inferring a student’s-t posterior over the EOWGF plant 3;1 ;13; g; ::539
mixing weights, W, as discussed previously, yields notably com- V\;?rtlzn(lWhite) % 4 on 10
petitive performance; (ii) inferring posteriors over the nonlineari- Wine (Red) 3 7 10 6
ties, under the discussed DtBKS rationale, gives a statistically sig- Breast cancer diagnostic (wdbc) 14 5 4 15
nificant boost to the obtained modeling performance, except for ISOLET 195 31 109 20
Power Plant and LSVT, where we reckon that overfitting is induced Gas sensor 97 35 39 48
due to insufficient training data availability) Parkinson’s 9 6 ! 20
(due g y) Spam 2 22 23 13
LSVT voice rehabilitation 1 5 1 3
InfiMNIST 650 1165 489 238

4.4. Computational complexity

Another significant aspect that affects the efficacy of a machine
learning technique is its computational complexity. To investigate
this aspect, we scrutinize the derived DtBKS algorithm, both re-
garding its asymptotic behavior, as well as in terms of its total
computational costs. Our observations can be summarized as fol-
lows: For the model configurations yielding the performance statis-
tics of Table 1, DtBKS takes on average 4 times longer than Dropout
per algorithm iteration, probably due to the entailed I'(-) functions
in (16), and their derivatives; DGP takes on average 2 times longer
than Dropout. On the other hand, DtBKS training converges much
faster than all the considered competitors. These differences are so
immense that, as an outcome, the total time required by all the
evaluated methods is of the same order of magnitude. Indeed, we
typically observe that DtBKS takes much less time than DGP, and
usually not much longer than Dropout; these outcomes are sum-
marized in Table 4. Hence, we deduce that DtBKS yields the ob-
served predictive performance improvement without undermining
computational efficiency and scalability.

5. Conclusions

In this paper, we introduced a fresh view towards deep learn-
ing, which consists in postulating banks of randomly drawn non-
linearities at each model layer. To alleviate the burden of having to
manually specify the distribution these nonlinear feature functions
are drawn from, we elected to infer them in a Bayesian sense. This
also renders our model more robust to scenarios dealing with lim-
ited or sparse training data availability.

In this context, we postulated that the sought posteriors consti-
tute multivariate student’s-t densities. This assumption allows for
our model to better cope with heavy-tailed underlying densities;

these are quite common in real-world data modeling scenarios, yet
they cannot be captured sufficiently enough by the usual Gaussian
assumptions. Then, to allow for reaping the most out of the heavy
tails of student’s-t densities, we performed approximate Bayesian
inference for our model under a novel objective function construc-
tion. This was based on a t-divergence functional, which better ac-
commodates heavy-tailed densities.

We exhaustively evaluated our approach using challenging
benchmark datasets; we offered thorough insights into its key per-
formance characteristics. This way, we illustrated that our pro-
posed approach outperforms the existing alternatives in terms of
predictive accuracy, without undermining the overall computa-
tional scalability, both in terms of training time and of predic-
tion generation time. We also showed that data-driven inference
of a posterior distribution from which we can draw the employed
banks of nonlinearities yields better results than drawing from a
simple prior.

One direction for further research concerns postulating nonel-
liptical latent variable densities, which can account for skewness
in a fashion similar, e.g., to Partaourides and Chatzis (2017) and
Chatzis (2010). Introduction of a solid means of capturing condi-
tional heteroscedasticity in modeled sequential data, in a fashion
similar, e.g., to Platanios and Chatzis (2014), is also a challenge of
immense interest. On a different vein, we must emphasize that our
approach is not capable of modeling spatial dynamics and depen-
dencies the way, e.g., convolutional networks do. This is similar to
related approaches, such as the DGP model and Dropout networks,
which are also not designed with such tasks in mind. However,
enabling such capabilities in the context of our DtBKS framework
would be extremely auspicious for the model performance in the
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context of real-world applications, dealing with challenging image
data. Hence, addressing these challenges and examining the asso-
ciated opportunities remains to be explored in our future work.
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