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a b s t r a c t 

Bayesian learning has been recently considered as an effective means of accounting for uncertainty in 

trained deep network parameters. This is of crucial importance when dealing with small or sparse train- 

ing datasets. On the other hand, shallow models that compute weighted sums of their inputs, after pass- 

ing them through a bank of arbitrary randomized nonlinearities, have been recently shown to enjoy good 

test error bounds that depend on the number of nonlinearities. Inspired from these advances, in this 

paper we examine novel deep network architectures, where each layer comprises a bank of arbitrary 

nonlinearities, linearly combined using multiple alternative sets of weights. We effect model training by 

means of approximate inference based on a t -divergence measure; this generalizes the Kullback–Leibler 

divergence in the context of the t -exponential family of distributions. We adopt the t -exponential fam- 

ily since it can more flexibly accommodate real-world data, that entail outliers and distributions with fat 

tails, compared to conventional Gaussian model assumptions. We extensively evaluate our approach using 

several challenging benchmarks, and provide comparative results to related state-of-the-art techniques. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Deep neural networks (DNNs) have experienced a resurgence of

interest; this is due to recent breakthroughs in the field that offer

unprecedented empirical results in several challenging real-world

tasks, such as image and video understanding ( He, Zhang, Ren,

& Sun, 2016 ), natural language understanding and generation

( Sutskever, Vinyals, & Le, 2014 ), and game playing ( Silver et al.,

2016 ). Most DNN models are trained by means of some variant

of the backpropagation (BP) algorithm. However, despite all these

successes, BP suffers from the major shortcoming of being able to

obtain only point-estimates of the trained networks. This fact re-

sults in the trained networks generating predictions that do not

account for uncertainty, e.g. due to the limited or sparse nature of

the available training data. 

A potential solution towards the amelioration of these is-

sues consists in treating some network components under the

Bayesian inference rationale, instead of stochastic optimization

( Neal, 1995 ). Indeed, Bayesian inference principles have been re-

cently met with great success in the context of DNN regulariza-

tion, e.g. ( Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdi-

nov, 2014 ). Specifically, in this paper we are interested in inference

of the network feature functions . In the literature, this is effected
∗ Corresponding author. 
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y considering them as stochastic latent variables imposed some

athematically convenient Gaussian process prior ( Damianou &

awrence, 2013 ). On this basis, one proceeds to infer the corre-

ponding posteriors, based on the available training data. To the

atter end, and with the goal of combining accuracy with com-

utational efficiency, expectation-propagation ( Bui, Hernández-

obato, Hernández-Lobato, Li, & Turner, 2016 ), mean-field ( Chatzis

 Kosmopoulos, 2015; Damianou & Lawrence, 2013 ), and prob-

bilistic backpropagation ( Bui, Hernández-Lobato, Li, Hernández-

obato, & Turner, 2015 ) have been used. 

One of the main driving forces behind the unparalleled data

odeling and predictive performance of modern DNNs is their ca-

ability of effectively learning to extract informative, high-level, hi-

rarchical representations of observed data with latent structure

 LeCun, Bengio, & Hinton, 2015 ). Nevertheless, DNNs are not the

nly class of models that entail this sort of functionality. Indeed,

ajor advances in machine learning have long been dominated by

he development of shallow architectures that compute weighted

ums of feature functions; the latter generate nonlinear represen-

ations of their input data, which can be determined under a mul-

itude of alternative rationales. For instance, models that belong

o the family of support vector machines (SVMs) ( Vapnik, 1998 )

ssentially compute weighted sums of positive definite kernels;

oosting algorithms, such as AdaBoost ( Schapire, 2003 ), compute

eighted sums of weak learners, such as decision trees. In all

ases, both the feature functions as well as the associated weights

re learned under an empirical risk minimization rationale; for in-

https://doi.org/10.1016/j.eswa.2018.01.013
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tance, the hinge loss is used in the context of SVMs, while Ad-

Boost utilizes the exponential loss. 

In the same vein, the machine learning community has re-

ently examined a bold, yet quite promising possibility: postu-

ating weighted sums of random kitchen sinks (RKS) ( Rahimi &

echt, 2009 ) . The main rationale of this family of approaches es-

entially consists in randomly drawing the employed feature func-

ions (nonlinearities), and limiting model training to the associated

scalar) weights. Specifically, the (entailed parameters of the) pos-

ulated nonlinearities are randomly sampled from an appropriate

ensity, which is a priori determined by the practitioners accord-

ng to some assumptions ( Le, Sarlós, & Smola, 2013; Yang, Smola,

ong, & Wilson, 2015 ). As it has been shown, both through theoret-

cal analysis as well as some empirical evidence, such a modeling

pproach does not yield much inferior performance for a trained

lassifier compared to the mainstream approach of optimally se-

ecting the employed nonlinearities. In addition, predictive perfor-

ance is shown to increase with the size of the employed bank of

andomly drawn nonlinearities. 

Inspired from these advances, this paper introduces a fresh

egard towards DNNs: We formulate each DNN layer as a bank

f random nonlinearities, which are linearly combined in multi-

le alternative fashions. This way, the postulated models eventu-

lly yield a hierarchical cascade of informative representations of

heir multivariate observation inputs, that can be used to effec-

ively drive a penultimate regression or classification layer. At each

ayer, the employed bank of random nonlinearities is sampled from

n appropriate postulated density, in a vein similar to RKS. How-

ver, in order to alleviate the burden of having to manually design

hese densities, we elect to infer them in a Bayesian sense. In ad-

ition, we elect not to obtain point-estimates of the weights used

or combining the drawn nonlinearities. On the contrary, we per-

orm Bayesian inference over them; this way, we allow for strong

odel regularization, by better accounting for model uncertainty,

specially when training data availability is limited or sparse. 

As already discussed, Bayesian inference for DNN-type mod-

ls can be performed under various alternative paradigms. Here,

e resort to variational inference ideas, which consist in search-

ng for a proxy in an analytically solvable distribution family that

pproximates the true underlying posterior distribution. To mea-

ure the closeness between the true and the approximate poste-

ior, the relative entropy between these two distributions is used.

pecifically, under the typical Gaussian assumption, one can use

he Shannon–Boltzmann–Gibbs (SBG) entropy, whereby the rela-

ive entropy yields the well known Kullback–Leibler (KL) diver-

ence ( Wainwright & Jordan, 2008 ). However, real-world phenom-

na tend to entail densities with heavier tails than the simplistic

aussian assumption. 

To account for these facts, in this work we exploit the t -

xponential family 1 , which was first proposed by Tsallis and co-

orkers ( Sousa & Tsallis, 1994; Tsallis, 1998; Tsallis, Mendes, &

lastino, 1998 ), and constitutes a special case of the more gen-

ral φ-exponential family ( Naudts, 20 02; 20 04a; 20 04b ). Of spe-

ific practical interest to us is the Students’- t density; this is a

ell-shaped distribution with heavier tails and one more parame-

er (degrees of freedom–DOF) compared to the normal distribution,

nd tends to a normal distribution for large DOF values ( McLachlan

 Peel, 20 0 0 ). This way, it offers a solution to the problem of

roviding protection against outliers in multidimensional variables

 Archambeau & Verleysen, 2007; McLachlan & Peel, 20 0 0; Svensén

 Bishop, 2005a ), which is a very difficult problem that increases

n difficulty with the dimension of the variables ( Kosinski, 1999 ).

n top of these merits, the t -exponential family also gives rise
1 Also referred to as the q -exponential family or the Tsallis distribution. 

d  

l  

c  
o a new t -divergence measure; this can be used for perform-

ng approximate inference in a fashion that better accommodates

eavy-tailed densities (compared to standard KL-based solutions)

 Ding, Vishwanathan, & Qi, 2011 ). 

To summarize, we formulate a hierarchical (multilayer) model,

ach layer of which comprises a bank of random feature functions

nonlinearities). Each nonlinearity is presented with the layer’s in-

ut, and generates scalar outputs. These outputs are linearly com-

ined by using multiple alternative sets of mixing weights, to pro-

uce the (multivariate) layer’s output. At each layer, the postulated

onlinearities are drawn from an appropriate (posterior) density,

hich is inferred from the data (as opposed to the requirement

f conventional RKS that the practitioners manually specify this

istribution). Indeed, both the posterior density of the nonlinear-

ties, as well as the posterior over the mixing weights, are in-

erred in an approximate Bayesian fashion. This renders our model

ore capable of accommodating limited or sparse training data,

hile retaining its computational scalability. In addition, in or-

er to allow for our model to account for heavy tails, we postu-

ate that the sought densities belong to the t -exponential family,

pecifically they constitute (multivariate) Student’s- t densities. On

his basis, we conduct approximate inference by optimizing a t -

ivergence functional, that better leverages the advantages of the

 -exponential family. We dub our proposed approach the Deep t -

xponential Bayesian Kitchen Sinks (D t BKS) model. 

The remainder of this paper is organized as follows: In the fol-

owing Section, we provide a brief overview of the methodologi-

al background of our approach. Subsequently, we introduce our

pproach, and derive its training and inference algorithms. Then,

e perform the experimental evaluation of our approach, and il-

ustrate its merits over the current state-of-the-art. Finally, in the

oncluding Section of this paper, we summarize our contribution

nd discuss our results. 

. Methodological background 

.1. Weighted sums of random kitchen sinks 

Consider the problem of fitting a function f : R 

δ → Y to a train-

ng dataset comprising N input-output pairs { x n , y n } N n =1 , drawn

.i.d. from some unknown distribution P ( x , y ), with x n ∈ R 

δ and

 n ∈ Y . In essence, this fitting problem consists in finding a func-

ion f that minimizes the empirical risk on the training data 

 [ f ] = 

1 

N 

N ∑ 

n =1 

c ( f ( x n ) , y n ) (1)

here the cost function c ( f ( x ), y ) defines the penalty we impose

n the deviation between the prediction f ( x ) and the actual value

 . 

The main underlying idea of data modeling under the weighted

ums of RKS rationale consists in postulating functions of the form

f ( x ) = 

S ∑ 

s =1 

αs ξ ( x ;ω s ) (2) 

here the { αs } S s =1 
are mixing weights, while the nonlinear fea-

ure functions ξ are parameterized by some vector ω ∈ �, and are

ounded s.t.: | ξ ( x ; ω s )| ≤ 1. Specifically, the vectors ω s are samples

rawn from an appropriate probability distribution p ( ω) with sup-

ort in �, whence we have ξ : R 

δ × � → [ −1 , 1] . 

As an outcome of this construction, the fitted function f ( x )

an be essentially viewed as a weighted sum of a bank of ran-

om nonlinearities, ξ , drawn by appropriately sampling from a se-

ected probability distribution p ( ω). On this basis, the fitting pro-

edure reduces to selecting the weight values { αs } S s =1 
, such that we
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Fig. 1. Univariate student’s- t distribution t ( y t ; μ, �, ν), with μ, � fixed, for various 

values of ν ( Svensén & Bishop, 2005b ). 
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Fig. 2. Graphical illustration of the configuration of one D t BKS model layer. 
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minimize the empirical risk (1); typically, a quadratic loss function

is employed to this end. As shown in Rahimi and Recht (2009) ,

for S → ∞ , weighted sums of RKS yield predictive models whose

true risk is near the lowest true risk attainable by an infinite-

dimensional class of functions with optimally selected parameter

sets, ω. 

Weighted sums of RKS give rise to a modeling paradigm with

quite appealing properties: It allows for seamlessly and efficiently

employing arbitrarily complex feature functions ξ , since model fit-

ting is limited to the mixing weights; this way, we can easily ex-

periment with feature functions that do not admit simple fitting

procedures. On the other hand, RKS require one to (manually) de-

sign appropriate distributions p ( ω) to draw the employed nonlin-

earities from; in real-world data modeling tasks, this might prove

quite challenging a task. 

2.2. The student’s- t distribution 

The adoption of the multivariate student’s- t distribution pro-

vides a way to broaden the Gaussian distribution for potential out-

liers. The probability density function (pdf) of a student’s- t distri-

bution with mean vector μ, covariance matrix �, and ν > 0 de-

grees of freedom is ( Liu & Rubin, 1995 ) 

( y t ;μ, �, ν) = 

�
(

ν+ δ
2 

)| �| −1 / 2 (πν) −δ/ 2 

�(ν/ 2) { 1 + d( y t , μ;�) /ν} (ν+ δ) / 2 
(3)

where δ is the dimensionality of the observations y t , d ( y t , μ; �) is

the squared Mahalanobis distance between y t , μ with covariance

matrix �

d( y t , μ;�) = ( y t − μ) T �−1 ( y t − μ) (4)

and �( s ) is the Gamma function, �(s ) = 

∫ ∞ 

0 e −t z s −1 dz. 

A graphical illustration of the univariate student’s- t distribution,

with μ, � fixed, and for various values of the degrees of freedom

ν , is provided in Fig. 1 . As we observe, as ν → ∞ , the student’s- t

distribution tends to a Gaussian with the same μ and �. On the

contrary, as ν tends to zero, the tails of the distribution become

longer, thus allowing for a better handling of potential outliers,

without affecting the mean or the covariance of the distribution

( Chatzis, Kosmopoulos, & Varvarigou, 2009; Chatzis & Kosmopou-

los, 2011 ). 

2.3. The t -divergence 

The t -divergence was introduced in Ding et al. (2011) as fol-

lows: 
Definition 1. The t -divergence between two distributions, q ( h )

nd p ( h ), is defined as 

 t (q || p) = 

∫ 
˜ q ( h ) log t q ( h )d h − ˜ q ( h ) log t p( h )d h (5)

here ˜ q ( h ) is called the escort distribution of q ( h ), and is given by

˜ 
 ( h ) = 

q ( h ) t ∫ 
q ( h ) t d h 

, t ∈ R (6)

mportantly, the divergence D t ( q || p ) preserves the following two

roperties: 

• D t ( q || p ) ≥ 0, ∀ q, p . The equality holds only for q = p. 
• D t ( q || p ) 	 = D t ( p || q ). 

As discussed in Ding et al. (2011) , by leveraging the above def-

nition of the t -divergence, D t ( q || p ), one can establish an advanced

pproximate inference framework, much more appropriate for fit-

ing heavy-tailed densities. We exploit these benefits in developing

he training algorithm of the proposed D t BKS model, as we shall

xplain in the following Section. 

. Proposed approach 

.1. Model formulation 

Let us consider a D t BKS model with input variables x ∈ R 

δ and

utput (predictable) variables y , comprising L layers. In Fig. 2 , we

rovide a graphical illustration of the proposed configuration of

ne D t BKS model layer. Each layer, l , is presented with an input

ector h 

l−1 
, generated from the preceding layer; at the first layer,

his vector is the model input, h 

0 � x . This is fed into a bank com-

rising S randomly drawn feature functions, { ξ l 
s ( h 

l−1 ) } S 
s =1 

. Specif-

cally, these functions are nonlinearities parameterized by some

andom vector ω; i.e., ξ l 
s ( h 

l−1 ) = ξ ( h 

l−1 ;ω 

l 
s ) . The used samples

 

l 
s are drawn from an appropriate density, which is inferred in a

ayesian sense, as we shall explain next. 

This way, we eventually obtain a set of S univariate signals,

hich we linearly combine to obtain the layer’s output. Specif-

cally, we elect to (linearly) combine them in multiple alterna-

ive ways, with the goal of obtaining a potent, multidimensional,

igh-level representation of the original observations. These alter-

ative combinations are computed via a mixing weight matrix,
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l ∈ R 

η×S , where η is the desired dimensionality of the layer’s

utput (i.e., the postulated number of alternative linear combina-

ions). 

Eventually, the output vectors at the layers l ∈ { 1 , . . . , L − 1 }
ield 

 

l = W 

l [ ξ ( h 

l−1 ;ω 

l 
s )] S s =1 ∈ R 

η (7)

here [ χs ] 
S 
s =1 

denotes the vector-concatenation of the set { χs } S s =1 
.

urning to the penultimate layer of the model, we consider that

he output variables are imposed an appropriate conditional likeli-

ood function, the form of which depends on the type of the ad-

ressed task. Specifically, in the case of regression tasks, we postu-

ate a multivariate Gaussian of the form 

p( y | x ) = N 

(
y 

∣∣∣W 

L [ ξ ( h 

L −1 ;ω 

L 
s )] S s =1 , σ

2 
y I 

)
(8)

here σ 2 
y is the noise variance. On the other hand, in case of clas-

ification tasks, we assume 

p( y | x ) = Softmax 

(
y 

∣∣∣W 

L [ ξ ( h 

L −1 ;ω 

L 
s )] S s =1 

)
(9) 

This concludes the definition of our model. For brevity, we shall

mit the layer indices, l , in the remainder of this paper, wherever

pplicable. As we observe from Eqs. (7 )–( 9) , at each layer of the

roposed model: 

(i) We postulate a random feature function ξ ( · ) that generates

scalar outputs. This is effected by taking the inner product of

the layer’s input with a parameter vector ω. 

ii) We draw many different samples of ξ ( · ). This is effected by

drawing multiple samples from the parameter vector ω, which

is essentially considered as a random variable. 

ii) We optimally combine the drawn samples of ξ ( · ) in a linear

fashion, by using the trainable matrix W . That is, we compute

multiple alternative weighted averages of the drawn samples of

ξ ( · ), whereby the used sets of weights (stored in W ) are train-

able parameters. 

Thus, our model constitutes a generalization of random kitchen

inks, whereby the main rationale consists in drawing multiple

andom samples of a fundamental unit. A key difference between

he existing literature, e.g. Yang et al. (2015) , Le et al. (2013) and

ahimi and Recht (2009) , and our approach consists in the fact

hat we opt for inferring the distribution we draw samples from, as

pposed to using some fixed selection. In addition, we learn how

o optimally combine these samples, and do it in multiple alterna-

ive ways, so as to generate a multidimensional layer output. Each

imension of the generated output corresponds to a different way

f combining the drawn samples of the basic unit ξ ( · ). This is in

ontrast to the existing literature on random kitchen sinks, where

nly shallow architectures with scalar outputs have been consid-

red ( Le et al., 2013; Rahimi & Recht, 2009; Yang et al., 2015 ),

hereby the drawn samples are combined in one single way. 

.2. Model training 

To perform model training, we opt for a full Bayesian treatment.

his is in contrast to most deep learning approaches, which rely on

requentist treatments that yield point-estimates of the model pa-

ameters. Indeed, frequentist methods consider model parameters

o be fixed, and the training data to be some random sample from

n infinite number of existing but unobserved data points. On the

ontrary, our Bayesian treatment is designed under the assumption

f dealing with fixed scarce data and parameters that are random

ecause they are unknowns. This way, by imposing a suitable prior

ver model parameters and obtaining a corresponding posterior

istribution based on the given observed data, our full Bayesian
reatment allows for better including uncertainty in learning the

odel; this is important when dealing with limited or sparse data.

To allow for inferring the distribution that the employed fea-

ure functions, ξ , must be drawn from, we first consider that the

ectors ω that parameterize them are student’s- t distributed latent

ariables. We employ the same assumption for the weight matri-

es, W , which we also want to infer in a Bayesian fashion, so as to

ccount for model uncertainty. Specifically, we start by imposing

 simple, zero-mean student’s- t prior distribution over them, with

ied degrees of freedom, at each model layer: 

p( ω ) = t( ω | 0 , I , ν) (10)

p( W ) = t( vec ( W ) | 0 , I , ν) (11)

here vec( · ) is the matrix vectorization operation, and ν > 0 is

he degrees of freedom hyperparameter of the imposed priors. On

his basis, we seek to devise an efficient means of inferring the

orresponding posterior distributions, given the available training

ata. To this end, we postulate that the sought posteriors approx-

mately take the form of student’s- t densities with means, diago-

al covariance matrices, and degrees of freedom inferred from the

ata. Hence, we have: 

 ( ω ;φ) = t( ω | μω , diag ( σ2 
ω ) , νω ) (12)

 ( W ;φ) = t( vec ( W ) | μW 

, diag ( σ2 
W 

) , νW 

) (13)

here φ = { μi , σ
2 
i 
, νi } i ∈{ ω , W } , and ν i > 0, ∀ i , for all model layers.

his selection for the form of the sought parameter posteriors al-

ows for our model to accommodate heavy-tailed underlying den-

ities much better than the usual Gaussian assumption, as we have

lso discussed in Section 2.2 . 

Then, to allow for inferring the sought posteriors in a com-

utationally efficient manner, we resort to variational Bayes

 Attias, 20 0 0 ). This consists in derivation of a family of variational

osterior distributions q (.), which approximate the true posterior

istributions that we need to infer. In essence, this is effected by

ptimizing an appropriate functional over the variational poste-

ior, which measures model fit to the training data. Hence, vari-

tional Bayes casts inference as an approximate optimization prob-

em, yielding a trade-off between accuracy and computational scal-

bility ( Attias, 20 0 0 ). 

Specifically, to allow for reaping the most out of the heavy-

ailed assumptions of our model, we elect to perform variational

ayes by minimizing the t -divergence between the sought approx-

mate posterior and the postulated joint density over the observed

ata and the model latent variables ( Ding et al., 2011 ). Thus, the

roposed model training objective becomes 

q ( ω ;φ) , q ( W ;φ) = 

= arg min 

q (·) 
D t 

(
q ( ω ;φ) , q ( W ;φ) || p( y ;ω , W ) 

) (14) 

By application of simple algebra, the expression of the t -

ivergence in (14) yields 

D t 

(
q ( ω ;φ) , q ( W ;φ) || p( y ;ω , W ) 

)
= D t 

(
q ( ω ;φ) || p( ω ) 

)
+ D t 

(
q ( W ;φ) || p( W ) 

)
− E ˜ q ( ω , W ;φ) [ log p( y | x )] 

(15) 

here ˜ q ( ω , W ;φ) is the escort distribution of the sought pos-

erior, and the t -divergence terms pertaining to the parameters

 and W are summed over all model layers. Then, following

ing et al. (2011) , and based on (10) –(13) , we obtain that the

 -divergence expressions in (15) can be written in the following
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form: 

D t 

(
q ( θ;φ) || p( θ) 

)
= 

∑ 

i 

{ 

qi 

1 − t 

(
1 + 

1 

νθ

)

− p 

1 − t 

(
1 + 

[ σ2 
θ
] i + [ μθ] 2 

i 

ν

)} 

(16)

where θ ∈ { ω, vec( W )}, [ ζ] i is the i th element of a vector ζ, we

denote 

qi � 

(
�( νθ+1 

2 
) 

�( νθ
2 
)(πνθ ) 

1 / 2 [ σθ] i 

)− 2 
νθ+1 

(17)

p � 

(
�( ν+1 

2 
) 

�( ν
2 
)(πν) 1 / 2 

)− 2 
ν+1 

(18)

and the free hyperparameter t is set as suggested in

Ding et al. (2011) , yielding: 

 = 

2 

1 + νθ
+ 1 (19)

As we observe from the preceding discussion, the ex-

pectation of the conditional log-likelihood of our model,

E ˜ q ( ω , W ;φ) [ log p( y | x )] , is computed with respect to the escort

distributions of the sought posteriors. Therefore, at training time,

the banks of the employed feature functions (i.e., the samples

of their parameters, { ω s } S s =1 
), must be drawn from the escort

distributions of the derived posteriors. 

Turning to the employed mixing weight matrices, W , our con-

sideration of them being latent variables with an inferred posterior

perplexes computation of the expressions (7) –(9) ; indeed, it re-

quires that we compute appropriate posterior expectations of these

expressions w.r.t. W . To circumvent this problem, we draw multiple

samples of the mixing weight matrices, { W s } S s =1 
, in an MC fashion,

and average over the corresponding outcomes to compute the model

output. At training time, Eq. (15) implies that these samples must

also be drawn from the escort distributions of the derived posteriors. 

Based on the previous results, and following Ding et al. (2011) ,

we can easily obtain the expressions of these escort distributions

of the derived posteriors, that we need to sample from at training

time. Specifically, it is easy to show that these escort distributions

yield a factorized form, that reads: 

˜ q ( θ;φ) = t 

(
θ| μθ, 

νθ

νθ + 2 

diag ( σ2 
θ ) , νθ + 2 

)

∀ θ ∈ { ω , vec ( W ) } 
(20)

Notably, our inference algorithm yields an MC estimator of the

proposed D t BKS model. Unfortunately, MC estimators are notorious

for their vulnerability to unacceptably high variance. In this work,

we resolve these issues by adopting the reparameterization trick

of Kingma and Welling (2014) , adapted to the t -exponential family.

This trick consists in a smart reparameterization of the MC sam-

ples, { θs } S s =1 
, drawn from a distribution θ ∼ q ( θ; φ); this is obtained

via a differentiable transformation g φ( ε) of an (auxiliary) random

variable ε with low variance: 

θ = g φ( ε) with ε ∼ p( ε) (21)

In our case, the smart reparameterization of the MC samples

drawn from the student’s- t escort densities (20) yields the expres-

sion: 

θs = θ( εs ) = μθ + 

(
νθ

νθ + 2 

)1 / 2 

σθεs (22)

where εs is random student’s- t noise with unitary variance: 

εs ∼ t( 0 , I , νθ + 2) (23)
On this basis, at training time , we replace the samples of both

he weight matrices, W , as well as the feature function parameters,

, with the expression (22) , where sampling is performed w.r.t.

he low-variance random variable ε. Then, the resulting (reparam-

terized) t -divergence objective (15) can be minimized by means

f any off-the-shelf stochastic optimization algorithm, yielding low

ariance estimators. To this end, in this work we utilize AdaM

 Kingma & Ba, 2015 ). We initialize the sought posterior hyperpa-

ameters by setting them equal to the hyperparameters of the im-

osed priors. 

.3. Inference algorithm 

Having obtained a training algorithm for our proposed D t BKS

odel, we can now proceed to elaborate on how inference is per-

ormed using our method. To this end, it is needed that we com-

ute the posterior expectation of the model’s output, as usual when

erforming Bayesian inference. Thus, at inference time , we need to

raw samples from the derived posteriors , (12) and (13) , in an MC

ashion. This entails drawing from the posteriors, at each layer, of

 set comprising S samples of: (i) the vectors ω that parameterize

he employed feature functions; and (ii) the mixing weight matri-

es, W , used to combine the outputs of the drawn banks of feature

unctions. Note that this is in contrast to the training algorithm of

 t BKS, where the use of the t -divergence objective (15) gives rise

o the requirement of drawing from the associated escort distribu-

ions (20) , while the need of training reliable estimators requires

tilization of the reparameterization trick. 

. Experimental evaluation 

In this section, we perform a thorough experimental evaluation

f our proposed D t BKS model. We provide a quantitative assess-

ent of the efficacy, the effectiveness, and the computational effi-

iency of our approach, combined with deep qualitative insights

nto few of its key performance characteristics. To this end, we

onsider several benchmarks from the UCI machine learning repos-

tory (UCI-Rep) ( Asuncion & Newman, 2007 ) that pertain to both

egression and classification tasks, as well as the well-known In-

MNIST classification benchmark ( Loosli, Canu, & Bottou, 2007 ).

he considered datasets, as well as their main characteristics (i.e.,

heir number of training examples, N , and input dimensionality, δ)

re summarized in Table 1 . 

With the exception of the ISOLET dataset from UCI-Rep, as well

s InfiMNIST, the rest of the considered benchmarks do not pro-

ide a split into training and test sets. In these cases, we account

or this lack by running our experiments 20 times, with different

andom data splits into training and test sets, and compute perfor-

ance means and standard deviations; we use a randomly selected

0% of the data for model training, and the rest for evaluation pur-

oses. In the case of regression tasks, we use the root mean square

rror (RMSE) as our performance metric; we employ the misclas-

ification rate for the considered classification benchmarks. 

To obtain some comparative results, we also evaluate an exist-

ng alternative approach for Bayesian inference of deep network

onlinearities, namely deep Gaussian processes (DGPs) ( Damianou

 Lawrence, 2013 ). Indeed, the DGP is the existing type of Bayesian

eep learning approaches that is most closely related to our ap-

roach; this is the case, since DGP does also allow for inferring the

mployed nonlinearities, but under a completely different ratio-

ale. Specifically, we evaluate the most recent variant of DGPs, pre-

ented in Cutajar, Bonilla, Michiardi, and Filippone (2017) , which

llows for the model to efficiently scale to large datasets. Finally,

e also provide comparisons to a state-of-the-art Deep Learning

pproach, namely a Dropout network ( Srivastava et al., 2014 ), as
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Table 1 

Characteristics of the considered datasets. 

Dataset N δ Task Performance metric 

Boston housing 506 13 Regression RMSE 

Concrete 1030 8 Regression RMSE 

Energy 768 8 Regression RMSE 

Power plant 9568 4 Regression RMSE 

Protein 45,730 9 Regression RMSE 

Wine (White) 4898 11 Regression RMSE 

Wine (Red) 1588 11 Regression RMSE 

Breast cancer diagnostic (wdbc) 569 30 Classification Misclassification rate 

ISOLET 7797 617 Classification Misclassification rate 

Gas sensor 13,910 128 Classification Misclassification rate 

Parkinson’s 197 22 Classification Misclassification rate 

(Oxford Parkinson’s disease detection dataset) 

Spam 4601 56 Classification Misclassification rate 

LSVT voice rehabilitation 126 310 Classification Misclassification rate 

InfiMNIST 8 + Million 784 Classification Misclassification rate 

w  

R

 

c  

ν  

a  

o  

m  

F  

p  

s  

D  

p  

n  

i  

r

 

o  

u  

e  

p  

w  

t  

e

 

u  

h  

D  

S  

l  

a  

K

4

 

f  

t  

w  

p  

s  

p  

(

s

 

e  

m  

n  

f  

b  

t  

t  

e  

t  

i  

s  

i  

w  

g  

t  

p

4

 

m  

l  

l  

p  

o  

i  

o  

s  

p  

p  

s  

m  

i  

h

4

r

 

i  

a  
ell as a baseline approach, namely SVMs using both linear and

BF kernels. 

In all cases, our specification of the priors imposed on D t BKS

onsiders a low value for the degrees of freedom hyperparameter,

= 2 . 1 . In the case of regression tasks, we employ a noise vari-

nce equal to σ 2 
y = exp (−2) . Turning to the selection of the form

f the drawn feature functions, ξ , we consider a simple trigono-

etric formulation, which is inspired from the theory of random

ourier projections of RBF kernels ( Rudin, 2011 ). Specifically, we

ostulate ξ ( x ;ω ) = 

1 
2 cos ( ω 

T x ) + 

1 
2 sin ( ω 

T x ) . Note that under this

election for the form of ξ ( x ; ω), and setting νω → ∞ and νW 

→ ∞ ,

 t BKS reduces to the DGP variant of ( Cutajar et al., 2017 ) with a

ostulated RBF kernel. For computational efficiency, we limit the

umber of drawn samples to 100, during both D t BKS training and

nference on the test data. AdaM is run with the default hyperpa-

ameter values. 

DGP is evaluated considering multiple selections of the number

f Gaussian processes per layer, as well as the number of layers,

sing RBF kernels and arc-cosine kernels ( Cutajar et al., 2017 ); in

ach experimental case, we report results pertaining to the best-

erforming DGP configuration. Similar is the case for Dropout net-

orks, which are evaluated considering multiple alternatives for

he number of layers and the output size of each hidden layer; we

mploy ReLU nonlinearities ( Nair & Hinton, 2010 ). 

Our deep learning source code has been developed in Python,

sing the Tensorflow library ( Abadi et al., 2015 ); it can be found on

ttps://github.com/Partaourides/DtBKS .We have also made use of a

GP implementation provided by M. Filippone 2 . The evaluation of

VM-type algorithms was performed by utilizing Python’s scikit-

earn toolbox ( Pedregosa et al., 2011 ). We run our experiments on

n Intel Xeon 2.5GHz server with 64GB RAM and an NVIDIA Tesla

40 GPU. 

.1. Comparative results 

We begin our exposition by providing the best empirical per-

ormance of our method, and showing how it compares to the al-

ernatives. These outcomes have been obtained by experimenting

ith different selections for the number of layers, L , and the out-

ut size of each hidden layer, η (i.e., for l ∈ { 1 , . . . , L − 1 } ). Our re-

ults are outlined in Table 2 ; in all cases, we provide therein (in

arentheses) the model configurations that obtained the reported

best empirical) performance 3 
2 https://github.com/mauriziofilippone/deep _ gp _ random _ features . 
3 This selection was performed by means of leave-one-out cross-validation, con- 

idering L ∈ {2, 3, 4, 5} and η ∈ { � δ/4 � , � δ/2 � , � 3 δ/4 � , δ}. 

o  

p  

p  

p  

f  
We observe that our approach outperforms DGP in the consid-

red regression benchmarks; in all cases, these empirical perfor-

ance differences are found to be statistically significant, by run-

ing the paired student’s- t test. On the other hand, D t BKS outper-

orms DGP in only three out of the seven considered classification

enchmarks, with statistically significant differences (according to

he paired student’s- t test), while yielding comparable outcomes in

he rest. In addition, D t BKS outperforms Dropout in all the consid-

red classification benchmarks; the paired student’s- t test shows

hat these empirical performance differences are statistically signif-

cant. The only exception to this finding is InfiMNIST, where the re-

ults are essentially comparable. On the other hand, D t BKS signif-

cantly outperforms Dropout in the Protein regression benchmark,

hile yielding comparable performance in the rest considered re-

ression tasks (according to the outcomes of the paired Student’s-

 test). Finally, both baseline SVM model configurations are com-

letely outperformed by D t BKS, in all cases. 

.2. Further investigation 

Further, it is interesting to provide a feeling of how D t BKS

odel performance changes with the selection of the number of

ayers, L , and the dimensionality of each hidden layer, η (i.e., for

 ∈ { 1 , . . . , L − 1 } ). To examine these aspects, in Fig. 3 (a)–(c) we

lot model performance fluctuation with η, setting the number

f layers equal to L = 2 , 3 , and 4, respectively, for few character-

stic experimental cases comprising limited training data. As we

bserve, D t BKS performance is significantly affected by both these

elections. Note also that the associated performance fluctuation

atterns of D t BKS are quite different among the illustrated exam-

les. These findings are congruent with the behavior of all existing

tate-of-the-art deep learning approaches. It is also important to

ention the high standard deviation of the observed performances

n some cases where we set L = 4 ; we attribute this unstable be-

avior to overfitting due to insufficient training data. 

.3. Are t -exponential Bayesian kitchen sinks more potent than 

andom kitchen sinks? 

Finally, it is extremely interesting to examine how beneficial it

s for D t BKS to infer a posterior distribution over the (random vari-

bles that parameterize the) employed feature functions, instead

f using a simple, manually selected density. To examine this as-

ect, we repeat our experiments by drawing the vectors ω, that

arameterize the feature functions, ξ , from the postulated simple

riors, p ( ω). Hence, we adopt an RKS-type rationale in drawing the

eature functions, ξ , as opposed to utilizing the inferred posteri-

https://github.com/Partaourides/DtBKS
https://github.com/mauriziofilippone/deep_gp_random_features
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Table 2 

Obtained performance for best model configuration (RMSE for regression tasks, misclassification rate for classification tasks; the 

lower the better). 

Dataset D t BKS DGP Dropout Linear SVM RBF-kernel SVM 

Boston housing 0.2939 ± 0.04 0.3897 ± 0.1 0.2516 ± 0.06 0.5027 ± 0.1 0.3471 ± 0.1 

( L = 2 , η = 3 ) ( L = 2 , η = 3 ) ( L = 2 , η = 123 ) 

Concrete 0.3213 ± 0.02 0.4501 ± 0.03 0.3228 ± 0.03 0.64 ± 0.04 0.3957 ± 0.03 

( L = 2 , η = 5 ) ( L = 2 , η = 5 ) ( L = 2 , η = 163 ) 

Energy 0.1285 ± 0.01 0.1636 ± 0.02 0.1322 ± 0.01 0.3183 ± 0.03 0.25 ± 0.03 

( L = 2 , η = 6 ) ( L = 2 , η = 6 ) ( L = 2 , η = 175 ) 

Power plant 0.2366 ± 0.01 0.2401 ± 0.01 0.2236 ± 0.01 0.2671 ± 0.01 0.2399 ± 0.01 

( L = 3 , η = 4 ) ( L = 3 , η = 4 ) ( L = 3 , η = 200 ) 

Protein 0.6113 ± 0.01 0.6734 ± 0.01 0.7453 ± 0.01 0.8673 ± 0.01 0.7648 ± 0.01 

( L = 2 , η = 9 ) ( L = 2 , η = 9 ) ( L = 2 , η = 200 ) 

Wine (White) 0.7684 ± 0.02 0.8072 ± 0.02 0.7609 ± 0.02 0.8551 ± 0.02 0.7751 ± 0.02 

( L = 2 , η = 11 ) ( L = 2 , η = 11 ) ( L = 2 , η = 200 ) 

Wine (Red) 0.7564 ± 0.04 0.7791 ± 0.04 0.7570 ± 0.05 0.8064 ± 0.05 0.7693 ± 0.05 

( L = 2 , η = 5 ) ( L = 2 , η = 5 ) ( L = 2 , η = 145 ) 

Breast cancer diagnostic (wdbc) 0.0116 ± 0.01 0.0116 ± 0.01 0.0710 ± 0.06 0.0304 ± 0.02 0.025 ± 0.02 

( L = 2 , η = 21 ) ( L = 2 , η = 21 ) ( L = 2 , η = 170 ) 

ISOLET 0.055 ± NA 0.0654 ± NA 0.1256 ± NA 0.055 ± NA 0.063 ± NA 

( L = 2 , η = 205 ) ( L = 2 , η = 205 ) ( L = 2 , η = 133 ) 

Gas sensor 0.0136 ± 0.002 0.0094 ± 0.002 0.0688 ± 0.07 0.0159 ± 0.001 0.0168 ± 0.003 

( L = 3 , η = 106 ) ( L = 3 , η = 106 ) ( L = 3 , η = 183 ) 

Parkinson’s 0.0658 ± 0.05 0.0842 ± 0.05 0.0976 ± 0.09 0.1342 ± 0.07 0.1079 ± 0.04 

( L = 2 , η = 15 ) ( L = 2 , η = 15 ) ( L = 2 , η = 168 ) 

Spam 0.0543 ± 0.01 0.0517 ± 0.01 0.1629 ± 0.03 0.0777 ± 0.01 0.0666 ± 0.01 

( L = 2 , η = 46 ) ( L = 2 , η = 46 ) ( L = 2 , η = 182 ) 

LSVT voice rehabilitation 0.1375 ± 0.07 0.3250 ± 0.11 0.3782 ± 0.17 0.2583 ± 0.09 0.1667 ± 0.08 

( L = 2 , η = 51 ) ( L = 2 , η = 51 ) ( L = 2 , η = 116 ) 

InfiMNIST 0.0093 ± NA 0.0096 ± NA 0.0096 ± NA 0.25 ± NA 0.25 ± N A 

( L = 4 , η = 100 ) ( L = 4 , η = 100 ) ( L = 4 , η = 113 ) 

Fig. 3. D t BKS performance fluctuation with the number of layers, L , and the output size of each hidden layer, η (as a fraction of input dimensionality, δ): (a) L = 2 ; (b) L = 3 ; 

(c) L = 4 . Performance metrics are the RMSE for regression tasks, and the misclassification rate for classification tasks (the lower the better). 
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Table 3 

D t BKS performance when replacing t -exponential Bayesian kitchen sinks with random kitchen sinks. Per- 

formance metrics are the RMSE for regression tasks, and the misclassification rate for classification tasks 

(the lower the better). 

Dataset Performance Comparison to full D t BKS model (from Table 2 ) 

Boston housing 0.3199 ± 0.04 0.2939 ± 0.04 

Concrete 0.3586 ± 0.04 0.3213 ± 0.02 

Energy 0.1494 ± 0.01 0.1285 ± 0.01 

Power plant 0.2301 ± 0.01 0.2366 ± 0.01 

Protein 0.7110 ± 0.01 0.6113 ± 0.01 

Wine (White) 0.7787 ± 0.02 0.7684 ± 0.02 

Wine (Red) 0.7720 ± 0.04 0.7564 ± 0.04 

Breast cancer diagnostic (wdbc) 0.0188 ± 0.02 0.0116 ± 0.01 

ISOLET 0.2245 ± NA 0.0552 ± NA 

Gas Sensor 0.0175 ± 0.003 0.0136 ± 0.002 

Parkinson’s 0.0895 ± 0.06 0.0658 ± 0.05 

Spam 0.0748 ± 0.01 0.0543 ± 0.01 

LSVT voice rehabilitation 0.1208 ± 0.04 0.1375 ± 0.07 

InfiMNIST 0.0603 ± NA 0.0093 ± NA 

o  

t

 

t  

s  

q  

f  

m  

p  

t  

n  

P  

(

4

 

l  

t  

g  

c  

l  

t  

p  

i  

t  

f  

i  

e  

t  

u  

m  

s  

c

5

 

i  

l  

m  

a  

a  

i

 

t  

o  

Table 4 

Wall-clock times of the evaluated deep learning approaches (in minutes). 

Dataset D t BKS RKS DGP Dropout 

Boston housing 8 4 11 12 

Concrete 20 7 48 14 

Energy 23 8 166 22 

Power plant 94 43 91 49 

Protein 74 48 35 43 

Wine (White) 20 14 13 10 

Wine (Red) 8 7 10 6 

Breast cancer diagnostic (wdbc) 14 5 4 15 

ISOLET 195 31 109 20 

Gas sensor 97 35 39 48 

Parkinson’s 9 6 7 20 

Spam 42 22 23 13 

LSVT voice rehabilitation 11 5 1 3 

InfiMNIST 650 1165 489 238 
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rs, q ( ω) [or their corresponding escort distributions, ˜ q ( ω ) , during

raining]. 

Our findings are provided in Table 3 ; these results correspond

o selections of the number of layers, L , and the output size, η,

imilar to the values reported in Table 2 . Our empirical evidence is

uite conspicuous: (i) merely drawing the postulated nonlinearities

rom a simple prior, yet inferring a student’s- t posterior over the

ixing weights, W , as discussed previously, yields notably com-

etitive performance; (ii) inferring posteriors over the nonlineari-

ies, under the discussed D t BKS rationale, gives a statistically sig-

ificant boost to the obtained modeling performance, except for

ower Plant and LSVT, where we reckon that overfitting is induced

due to insufficient training data availability). 

.4. Computational complexity 

Another significant aspect that affects the efficacy of a machine

earning technique is its computational complexity. To investigate

his aspect, we scrutinize the derived D t BKS algorithm, both re-

arding its asymptotic behavior, as well as in terms of its total

omputational costs. Our observations can be summarized as fol-

ows: For the model configurations yielding the performance statis-

ics of Table 1 , D t BKS takes on average 4 times longer than Dropout

er algorithm iteration , probably due to the entailed �( · ) functions

n (16), and their derivatives; DGP takes on average 2 times longer

han Dropout. On the other hand, D t BKS training converges much

aster than all the considered competitors. These differences are so

mmense that, as an outcome, the total time required by all the

valuated methods is of the same order of magnitude. Indeed, we

ypically observe that D t BKS takes much less time than DGP, and

sually not much longer than Dropout; these outcomes are sum-

arized in Table 4 . Hence, we deduce that D t BKS yields the ob-

erved predictive performance improvement without undermining

omputational efficiency and scalability. 

. Conclusions 

In this paper, we introduced a fresh view towards deep learn-

ng, which consists in postulating banks of randomly drawn non-

inearities at each model layer. To alleviate the burden of having to

anually specify the distribution these nonlinear feature functions

re drawn from, we elected to infer them in a Bayesian sense. This

lso renders our model more robust to scenarios dealing with lim-

ted or sparse training data availability. 

In this context, we postulated that the sought posteriors consti-

ute multivariate student’s- t densities. This assumption allows for

ur model to better cope with heavy-tailed underlying densities;
hese are quite common in real-world data modeling scenarios, yet

hey cannot be captured sufficiently enough by the usual Gaussian

ssumptions. Then, to allow for reaping the most out of the heavy

ails of student’s- t densities, we performed approximate Bayesian

nference for our model under a novel objective function construc-

ion. This was based on a t -divergence functional, which better ac-

ommodates heavy-tailed densities. 

We exhaustively evaluated our approach using challenging

enchmark datasets; we offered thorough insights into its key per-

ormance characteristics. This way, we illustrated that our pro-

osed approach outperforms the existing alternatives in terms of

redictive accuracy, without undermining the overall computa-

ional scalability, both in terms of training time and of predic-

ion generation time. We also showed that data-driven inference

f a posterior distribution from which we can draw the employed

anks of nonlinearities yields better results than drawing from a

imple prior. 

One direction for further research concerns postulating nonel-

iptical latent variable densities, which can account for skewness

n a fashion similar, e.g., to Partaourides and Chatzis (2017) and

hatzis (2010) . Introduction of a solid means of capturing condi-

ional heteroscedasticity in modeled sequential data, in a fashion

imilar, e.g., to Platanios and Chatzis (2014) , is also a challenge of

mmense interest. On a different vein, we must emphasize that our

pproach is not capable of modeling spatial dynamics and depen-

encies the way, e.g., convolutional networks do. This is similar to

elated approaches, such as the DGP model and Dropout networks,

hich are also not designed with such tasks in mind. However,

nabling such capabilities in the context of our D t BKS framework

ould be extremely auspicious for the model performance in the
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context of real-world applications, dealing with challenging image

data. Hence, addressing these challenges and examining the asso-

ciated opportunities remains to be explored in our future work. 
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