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Abstract

The efficient processing of long context poses001
a serious challenge for large language models002
(LLMs). Recently, retrieval-augmented genera-003
tion (RAG) has emerged as a promising strat-004
egy for this problem, as it enables LLMs to005
make selective use of the long context for ef-006
ficient computation. However, existing RAG007
approaches lag behind other long-context pro-008
cessing methods due to inherent limitations009
on inaccurate retrieval and fragmented con-010
texts. To address these challenges, we intro-011
duce RetroLM, a novel RAG framework for012
long-context processing. Unlike traditional013
methods, RetroLM employs KV-level retrieval014
augmentation, where it partitions the LLM’s015
KV cache into contiguous pages and retrieves016
the most crucial ones for efficient computa-017
tion. This approach enhances robustness to018
retrieval inaccuracy, facilitates effective utiliza-019
tion of fragmented contexts, and saves the cost020
from repeated computation. Building on this021
framework, we further develop a specialized022
retriever for precise retrieval of critical pages023
and conduct unsupervised post-training to opti-024
mize the model’s ability to leverage retrieved025
information. We conduct comprehensive evalu-026
ations with a variety of benchmarks, including027
LongBench, InfiniteBench, and RULER, where028
RetroLM significantly outperforms existing029
long-context LLMs and efficient long-context030
processing methods, particularly in tasks re-031
quiring intensive reasoning or extremely long-032
context comprehension.033

1 Introduction034

The processing of long contexts has emerged as a035

critical issue in the development and application of036

Large Language Models (LLMs). Numerous appli-037

cations necessitate the ability to handle extended038

sequences of information, including understand-039

ing lengthy documents (Bai et al., 2023; Caciularu040

et al., 2023), supporting sophisticated AI agent sys-041

tems (Jin et al., 2024), and generating long-form042

reasoning chains for complex tasks, such as math- 043

ematical proofs (OpenAI, 2024) or computer pro- 044

gramming (Gur et al., 2023). To address this crucial 045

requirement, substantial efforts have been devoted 046

to extending the maximum context lengths accom- 047

modated by LLMs. For example, GPT-4 (Achiam 048

et al., 2023) and LLaMA-3.1 (Dubey et al., 2024), 049

both of which support a 128K token context win- 050

dow. Moreover, the recent Gemini-1.5-pro (Team 051

et al., 2024) makes a dramatic extension, enabling 052

a context window of over 10M input tokens. 053

Despite these advancements, the naive extension 054

of context lengths remains constrained in several 055

aspects. One significant challenge is the dramatic 056

rise in computation when processing long contexts. 057

As such, efficient long-context processing tech- 058

niques have attracted growing interest. For exam- 059

ple, StreamingLLM and LM-Infinite (Xiao et al., 060

2023a; Han et al., 2023) maintain the most recent 061

KVs within a sliding window alongside initial at- 062

tention sinks; while SnapKV and InfLLM (Li et al., 063

2024b; Xiao et al., 2024) identify critical attention 064

features for KV compression. Recently, retrieval- 065

augmented generation (RAG) has emerged as a 066

promising strategy for this problem (Xu et al., 2023; 067

Li et al., 2024a). These approaches leverage retriev- 068

ers to extract useful context fragments from very 069

long inputs, which effectively overcomes the limits 070

of LLMs’ context lengths. By making selective use 071

of the retrieved fragments, RAG further enables 072

more efficient computation for long-context tasks. 073

However, RAG-based methods are subject to the 074

following inherent limitations while handling long- 075

context tasks. 1) Retrieval Inaccuracy. Many long- 076

context processing tasks provide no explicit queries 077

at all, like document summarization, code comple- 078

tion, and in-context learning (Bai et al., 2023). As a 079

result, traditional retrievers become inapplicable to 080

handle corresponding problems. Besides, it’s non- 081

trivial to properly chunk long contexts for retrieval 082

(Qian et al., 2024), and it’s hard for retrievers to 083
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deal with zero-shot settings. Without precise and084

complete acquisition of useful information, LLMs085

will be unable to produce correct outputs through086

RAG. 2) Fragmented Contexts. The retrieval op-087

eration introduces fragmented token spans from088

the input data, which are incoherent and prone to089

incompleteness. This significantly prevents LLMs090

from making effective use of the contextual infor-091

mation. 3) Repeated Computation. The pre-filling092

operation needs to be re-conducted for the retrieved093

tokens of each task, both for retriever and generator,094

resulting in a huge waste of computation. Because095

of the above problems, existing RAG-based meth-096

ods fall behind long-context LLMs and other effi-097

cient long-context processing approaches in many098

popular evaluation benchmarks (Bai et al., 2023;099

Xu et al., 2023; Li et al., 2024a).100

In this paper, we propose RetroLM, a novel101

RAG framework designed for efficient long-context102

processing. RetroLM partitions the LLM’s KV103

cache into contiguous pages and offloads them to104

external storage. During both pre-filling and decod-105

ing stages, it retrieves only the most crucial pages106

for the current context window, enabling efficient107

long-context processing. Unlike traditional RAG108

approaches which operate on raw tokens, retrieval109

augmentation at the KV cache level offers several110

advantages. First, it is robust to retrieval inaccu-111

racy, as useful information within a certain token112

span can be captured by all succeeding KVs. Sec-113

ond, LLMs can naturally accommodate fragmented114

KVs due to the inherent sparsity of LLMs’ atten-115

tion patterns (Jiang et al., 2024). Third, the KV116

cache is computed once and reused, thus eliminat-117

ing repeated computation (Pope et al., 2023).118

We introduce a couple of key operations to op-119

timize the performance of RetroLM. For precise120

retrieval of crucial pages, we design a specialized121

page retriever. It estimates the pages’ importance122

using fine-grained KV interactions; and by fine-123

tuning over well-curated datasets, it achieves strong124

generality across various downstream tasks and a125

broad scope of context lengths. To make better126

use of fragmented KVs, we perform post-training127

based on unlabeled data. This further contributes128

to the end-to-end performance of RetroLM.129

We perform comprehensive evaluations using130

several standard benchmarks in this field, includ-131

ing LongBench (Bai et al., 2023), InfiniteBench132

(Zhang et al., 2024b), and RULER (Hsieh et al.,133

2024). In our experiment, RetroLM outperforms134

popular efficient long-context processing methods 135

with notable advantages. In majority of the tasks, 136

it achieves an equivalent performance as the ex- 137

pensive full-attention methods; while for certain 138

scenarios like long-doc QA, it even surpasses full- 139

attention by effectively filtering out background 140

noise and focusing on the most useful KV entries. 141

Our well-trained models and source code will be 142

made publicly available to facilitate future research. 143

2 Related Work 144

In this section, we make discussions on the follow- 145

ing related works: 1) context extension of LLMs, 146

2) efficient long-context processing, 3) RAG ap- 147

proaches for long-context processing. 148

First of all, a substantial body of research has 149

focused on extending the context length of LLMs 150

directly. One common approach involves modi- 151

fying positional encoding mechanisms to enable 152

LLMs trained on short texts to process longer in- 153

puts directly during inference (Chen et al., 2023a; 154

Peng et al., 2023; Ding et al., 2024). While straight- 155

forward, these methods often yield suboptimal per- 156

formance without additional fine-tuning. Another 157

widely adopted strategy is continual training, where 158

existing LLMs are fine-tuned on long-sequence 159

data to expand their context windows (Li et al., 160

2023; Chen et al., 2023b; Mohtashami and Jaggi, 161

2023; Xiong et al., 2023). However, fine-tuning ap- 162

proaches typically require training from extremely 163

long-sequence data, which is challenging due to the 164

scarcity of native human-annotation data and the 165

high expenses resulted from the training operations 166

(Fu et al., 2024; Gao et al., 2024). 167

Recent studies have explored various types of 168

efficient long-context processing techniques to 169

alleviate computational and memory constraints 170

(Sun et al., 2024; Liao et al., 2024; Yang et al., 171

2024). Stream processing approaches, such as 172

StreamingLLM (Xiao et al., 2023a) and LM- 173

Infinite (Han et al., 2023), maintain the most recent 174

KVs within a sliding window alongside initial at- 175

tention sinks. Sequential compression techniques, 176

such as Activation Beacon (Zhang et al., 2024a), 177

compress intermediate activations into more com- 178

pact forms to conserve memory. KV quantization 179

methods, including KIVI (Liu et al., 2024b), en- 180

code the KV cache using low-bit representations 181

to minimize storage requirements. Among these 182

methods, KV cache sparsification has gained sig- 183

nificant attention for their ability to selectively uti- 184
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lize portions of KVs based on certain reduction185

strategies, where KVs are reduced into a fixed bud-186

get (e.g., 2K) (Xu et al., 2024; Tang et al., 2024;187

Huang et al., 2024; Liu et al., 2024a; Shi et al.,188

2024). For instance, InfLLM (Xiao et al., 2024)189

incorporates intermediate information by segment-190

ing KVs into fixed-size chunks and selecting top-k191

most salient chunks based on attention score pat-192

terns. H2O (Zhang et al., 2023) introduces a policy193

that greedily drops KVs during generation using194

a scoring function derived from cumulative atten-195

tion. SnapKV and PyramidKV (Li et al., 2024b;196

Cai et al., 2024) extend to alleviate memory pres-197

sure during the prefilling stage by dropping tokens198

based on cumulative attention scores within local-199

ized windows.200

Retrieval-augmented generation (RAG) has201

emerged as a promising approach for addressing202

long-context tasks (Xu et al., 2023; Li et al., 2024a;203

Yue et al., 2024). Leveraging modern dense retriev-204

ers (Karpukhin et al., 2020; Xiao et al., 2023b),205

these approaches first partition the long text into206

smaller chunks, subsequently selecting the most207

salient chunks, and concatenating them to form a208

new prompt for the LLM (Zhao et al., 2024). In209

addition, several specialized retrievers have been210

developed for long-context scenarios (Luo et al.,211

2024; Günther et al., 2023). In this work, RetroLM212

integrates retrieval augmentation directly at the KV213

cache level, thereby seamlessly incorporating RAG214

pipeline into long-context language modeling.215

3 Method216

3.1 Problem Formulation217

For long-context understanding and language mod-218

eling tasks, such as question answering, summa-219

rization, the input can be structured into: context X ,220

user query q, and target output Y . The generation221

objective of LLM can be expressed as:222

max. log LLM(yt|X, q, Y<t) (1)223

In such scenarios, the context X often exceeds224

100K tokens, leading to significant computational225

and memory consumption. To address this prob-226

lem, various efficient long-context processing tech-227

niques have been introduced, aiming at compress-228

ing context either implicitly or explicitly using a229

designated reduction policy p(X).230

RAG-based methods employ a standalone re-231

triever as an explicit context reduction policy232

pret(·). It first chunks the long context into: X :233

{s1, ..., sN}, and then select the top-k relevant 234

chunks: Xret : {s1, ..., sk}. The Xret forms the 235

new input context. Explicit context compression 236

of RAG-based methods prune the prompt rigidly, 237

which results in information loss and semantic dis- 238

continuities. 239

RetroLM performs retrieval augmentation at KV 240

cache level, using a plug-in page retriever as policy 241

pkv(·). It selects the most crucial KVs at each de- 242

coder layer: C = pkv(X), where C is the KVs for 243

attention computation, thereby achieving implicit 244

context compression. Unlike existing KV sparsi- 245

fication approaches that rely on heuristic methods 246

to approximate full attention, RetroLM introduces 247

a specialized and trainable page retriever, inspired 248

by dense retrieval techniques. We conduct further 249

analysis in Sec. 4.7 to demonstrate the effective- 250

ness of page retriever over full attention. 251

3.2 Inference Process 252

Paging Inputs. RetroLM first partitions the LLM’s 253

input context X = {xi}li=1 into contiguous pages: 254

{x1, ..., xl}
partition−−−−−→ {X1, ..., Xm}, Xi = {xi

j}wj=1 (2) 255

where w is the page size (128 in practice). Then 256

for each page Xi, a special bookmark token ( 257

⟨BMK⟩) is inserted to the end of it: X
′
i = 258

{xi1, ..., xiw, ⟨bmk⟩i}. The LLM encodes both the 259

normal tokens and bookmark tokens. The book- 260

mark tokens function as the page indexs of cor- 261

responding pages for KV retrieval and establish 262

their representations during attention computation 263

across each decoder layer. 264

Pre-filling. During pre-filling, we employ stream- 265

ing encoding based on page retrieval to enable the 266

process of extremely long inputs. Specifically, a 267

fixed-sized sliding window is used to encode the 268

long context progressively. In each layer, the encod- 269

ing of page Xi
′ only retrieves k pages (including 270

the first page as attention sink) for attention com- 271

putation instead of costly full attention: 272

C : {X ′
1, ..., X

′
k} = pkv(X ′ : {X ′

1, ..., X
′
i−1}|X ′

i) (3) 273

Once encoded, the KVs of page X ′
i are offloaded 274

to CPU, ensuring that only the required KV pages 275

are reloaded to GPU for attention computation. 276

Decoding. During decoding, page retrieval is con- 277

ducted only once given the user query: 278

C : {X ′
1, ..., X

′
k} = pkv(X ′ : {X ′

1, ..., X
′
m}|q) (4) 279
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Figure 1: Framework of RetroLM: (1) Paging mechanism for KV management. (2) Specialized trainable, plug-in page retriever.
(3) KV retrieval using special bookmark tokens, with their representation established within attention module.

3.3 Page Retriever280

Architecture. We propose a trainable, plug-and-281

play page retriever designed to conduct KV cache282

level retrieval augmentation, whose architecture is283

shown in Figure 1 (Middle). It reuses all modules284

of the LLM except imposing a slight modification285

on the self-attention module.286

During the self-attention computation, the hid-287

den states of normal tokens (n) and bookmark to-288

kens (b) are sliced out and projected into query, key,289

and value vectors respectively:290

Qn = W n
QH

n, Kn = W n
KHn, V n = W n

V Hn,

Qb = W b
QH

b, Kb = W b
KHb, V b = W b

V Hb

(5)291

where Wn
∗ are the LLM’s original projection ma-292

trices and W b
∗ are the newly introduced matrices293

designed specifically to handle bookmark tokens.294

The bookmark tokens distill corresponding page’s295

contextual information during attention computa-296

tion and are used for page retrieval.297

Retrieval Score. Page importance estimation em-298

ploys similarity between the query vector of target299

page’s bookmark token and the key vectors of past300

pages’ bookmark tokens:301

pkv({X ′
1, ..., X

′
m−1}|X ′

m) = top-k
{
⟨qbmk

m ,kbmk
j ⟩

}m−1

j=1

(6)302

where ⟨∗, ∗⟩ denotes the dot product operation,303

commonly used as a similarity measurement in304

dense retrieval (Karpukhin et al., 2020).305

Training. Training the page retriever poses a306

challenge due to the lack of appropriately labeled307

long-context data for retrieval supervision signals.308

Drawn inspiration from the training paradigm of309

advanced dense retrievers, where a few negative310

samples are employed to establish the ability to dis-311

tinguish relevant passages from corpus containing312

millions of samples, we adopt contrastive learning313

to train the page retriever for strong generalizability314

and robustness (Karpukhin et al., 2020; Chen et al., 315

2024; Luo et al., 2024). 316

As shown in Figure 5, we leverage 50K pair- 317

wise data from the dense retrieval training set MS 318

MARCO (Bajaj et al., 2016), which is derived from 319

real-world web search queries, to provide valuable 320

transferable semantic matching capabilities for the 321

page retriever. To construct input sequences, we 322

concatenate the positive passage with hard negative 323

passages in a random order, forming pseudo-texts 324

up to a length of 8K tokens, and append the web 325

search query to the end of the sequence (page X ′
m). 326

Additionally, we synthesize 5K pairwise samples 327

using text from Slimpajama (Shen et al., 2023), 328

which contains coherent contexts that enable page 329

retriever to effectively learn to find target KVs rele- 330

vant to query. The detailed data format and training 331

implementation are described in Appendix A. 332

Assuming the useful KVs for the local page m 333

(where the query resides) is located on page i (de- 334

noted as X ′
i) the contrastive learning objective is 335

defined as follows: 336

L1 = − log
exp(⟨qbmk

m ,kbmk
i ⟩)∑m−1

j=1 exp(⟨qbmk
m ,kbmk

j ⟩)
(7) 337

where qbmk
∗ and kbmk

∗ are the query and key vectors 338

of bookmark tokens of corresponding pages in the 339

self-attention module. This training phase, referred 340

to as Stage-1, focuses on training the page retriever 341

to identify useful KVs against complex and distract- 342

ing contexts at each decoder layer, while keeping 343

the backbone LLM frozen. 344

3.4 Post Training 345

We conduct Stage-2 post-training for RetroLM, 346

during which model parameters are fine-tuned to 347

adapt to sparse KV caches retrieved by the page 348

retriever. Our training leverages unsupervised pre- 349

training data from SlimPajama (Shen et al., 2023) 350
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(up to 12K tokens) and employs a streaming encod-351

ing strategy. During language modeling, each page352

uses the well-trained page retriever to select most353

semantically important top-k pages for attention354

computation (similar to inference process), instead355

of relying on full attention:356

C : {X ′
1, ..., X

′
k} = pkv({X ′

1, ..., X
′
i−1}|X ′

i) (8)357

The loss function follows the standard language358

modeling loss formula:359

L2 = −
∑
t

logP (xt|x<t) (9)360

The training data consists of unsupervised, rela-361

tively short-length corpus segments from SlimPa-362

jama (Shen et al., 2023), with a maximum token363

length of 12K. Notably, the objective is not length364

extension but rather enhancing the model’s capac-365

ity for adaptation to retrieved sparse KV pages.366

We use the same data to finetune LLM directly for367

further analysis in Sec. 4.8.368

4 Experiment369

We conduct extensive experiments focused on an-370

swering the following two research questions: 1)371

The effectiveness of RetroLM against long-context372

LLMs and other efficient methods. 2) How well373

can RetroLM generalize to different long-context374

tasks and context lengths.375

4.1 Setting376

Datasets. To comprehensively evaluate the overall377

performance of RetroLM, we employ the Long-378

Bench suite (Bai et al., 2023). This benchmark379

encompasses a variety of tasks, including single-380

document QA, multi-hop QA, summarization, and381

long ICL. These tasks are well-suited for assessing382

the long-context capability of different methods in383

practical application scenarios. Subsequently, to384

assess the generalization of RetroLM in extremely385

long scenarios, we utilize several realistic and rep-386

resentative tasks from InfiniteBench (Zhang et al.,387

2024b), including free-form QA on long books388

(QA), summarization over long texts (Summary),389

multiple-choice QA on long books (Choice), and390

finding special numbers in lengthy lists (Math.F).391

The average input length within InfiniteBench is392

145K tokens. We also use RULER (Hsieh et al.,393

2024) to evaluate long context key information394

identification capability. All evaluation metrics395

are aligned with official implementation.396

Baseline Methods. To rigorously demonstrate the 397

effectiveness of RetroLM, we compare its perfor- 398

mance against the following competitive baseline 399

methods: (1) Original Models: We report the per- 400

formance of the LLMs with full attention mech- 401

anisms (Jiang et al., 2023; Dubey et al., 2024). 402

(2) Stream Processing: This category includes 403

methods like LM-Infinite (Han et al., 2023) and 404

StreamingLLM (Xiao et al., 2023a), which em- 405

ploy attention sink and sliding window mechanisms 406

for processing long inputs. (3) KV Sparsification: 407

These methods, such as H2O (Zhang et al., 2023), 408

SnapKV (Li et al., 2024b), InfLLM (Xiao et al., 409

2024), and PyramidKV (Cai et al., 2024), employ 410

heuristic KV sparsification policies to selectively 411

retain portions of KVs. (4) RAG: We employ sev- 412

eral retrieval methods to conduct RAG pipeline: 413

the classic BM25 method (Robertson et al., 2009), 414

the Contriever model (Izacard et al., 2021), and the 415

SOTA BGE-large-v1.5 model (Xiao et al., 2023b). 416

4.2 Comparing with other Efficient 417

Processing Methods on LongBench 418

We compare stage-1 and stage-2 training of 419

RetroLM with other efficient processing methods, 420

using two popular backbone LLM (Mistral-7B- 421

Instruct and Llama-3-8B-Instruct). The results 422

on LongBench (Bai et al., 2023) are presented in 423

Table 1. For the original models, we evaluate using 424

their maximum context lengths. For RetroLM and 425

other baseline methods, a fixed KV budget of 2K 426

tokens is employed. Consequently, in each decoder 427

layer’s attention module, 2K tokens are selected for 428

attention computation according to each method’s 429

respective KV reduction policy. 430

For the Mistral-based models, RetroLM achieves 431

an overall score that surpasses all baselines, also 432

significantly outperforming results obtained us- 433

ing full attention. Other approaches that employ 434

heuristic KV selection strategies encounter perfor- 435

mance ceilings comparable to full attention. No- 436

tably, RetroLM exceeds the performance of full 437

attention by 2.5 points, even when only the KV re- 438

triever is trained during stage-1, with the language 439

model remaining frozen. By learning to discrim- 440

inate key information during the training of page 441

retriever, RetroLM effectively identifies important 442

KVs within extensive texts, achieving significant 443

performance gains under constrained token bud- 444

gets. 445

During stage-2 training of RetroLM, additional 446
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Model Context Narrative Qasper Multifield Hotpot 2wikim Musique GovReport MultiNews QmSum Trec Trivia SAMSum Average

Mistral-7B-Instruct-v0.2

Mistral-7B-v0.2 32k 26.9 33.1 49.2 43.0 27.3 18.8 25.6 26.2 23.3 71.0 86.2 42.6 39.4
LM-Infinite 2k 20.4 26.9 45.1 36.1 24.2 14.0 27.1 24.3 21.6 68.0 72.2 31.7 34.3
StreamingLLM 2k 20.3 26.6 45.7 35.3 24.3 12.2 27.5 24.5 21.6 68.5 71.9 31.2 34.1
InfLLM 2k 23.5 28.8 47.7 41.3 25.7 17.5 29.1 26.3 21.2 68.0 84.4 41.4 37.9
H2O 2k 25.6 31.1 49.0 40.8 26.5 17.1 24.8 26.6 23.6 55.0 86.3 42.4 37.4
SnapKV 2k 25.9 32.9 48.6 43.0 27.4 19.0 26.6 26.7 24.4 70.0 86.2 42.5 39.4
PyramidKV 2k 25.5 32.2 49.0 42.3 27.5 19.4 26.6 26.7 24.0 71.0 86.2 42.9 39.4
RetroLM-Stage1 2k 26.8 34.0 50.8 47.6 39.0 22.5 29.3 27.3 24.6 69.5 88.8 42.4 41.9
RetroLM-Stage2 2k 26.6 38.7 53.8 47.7 41.6 26.4 29.8 28.2 25.9 70.5 89.3 43.0 43.5

Llama-3-8B-Instruct

Llama-3-8B 8k 25.8 29.6 41.0 45.4 36.1 22.9 26.2 26.5 23.4 74.0 90.5 42.3 40.3
LM-Infinite 2k 22.0 26.2 38.3 40.5 33.1 17.1 23.0 26.5 22.5 70.0 83.1 32.2 36.2
StreamingLLM 2k 21.7 25.8 38.1 40.1 32.0 16.9 23.1 26.5 22.6 70.0 83.2 31.8 36.0
InfLLM 2k 23.4 29.0 40.9 41.5 34.3 19.7 25.7 26.8 22.4 73.0 89.9 41.3 39.0
H2O 2k 25.6 26.9 39.5 44.3 32.9 21.1 24.7 24.6 23.0 53.0 90.5 41.8 37.3
SnapKV 2k 25.9 29.6 41.1 45.0 35.8 21.8 26.0 26.5 23.4 73.5 90.5 41.6 40.1
PyramidKV 2k 25.4 29.7 40.3 44.8 35.3 22.0 26.8 26.2 23.3 73.0 90.5 42.1 40.0
RetroLM-Stage1 2k 25.4 33.8 48.7 50.2 39.8 24.1 26.9 27.0 24.7 73.5 91.0 42.2 42.3
RetroLM-Stage2 2k 26.6 38.7 48.9 52.5 45.4 27.0 30.4 27.9 26.1 75.5 90.7 42.8 44.4

Table 1: Experiment results of comparing RetroLM with other efficient processing methods on LongBench. The
result emphasizes the effectiveness of RetroLM over strong baselines and a wide variety of tasks.

Model Context Narrative Qasper Multifield Hotpot 2wikim Musique Average

Mistral-7B-v0.2 32k 26.9 33.1 49.2 43.0 27.3 18.8 33.1
Mistral-BM25 2k 13.9 22.7 34.6 31.0 22.7 17.8 23.8
Mistral-Contriever 2k 20.8 30.7 47.2 35.7 30.1 18.2 30.4
Mistral-BGE 2k 22.4 31.2 47.8 37.9 30.6 18.5 31.4
RetroLM-Stage1 2k 26.8 34.0 50.8 47.6 39.0 22.5 36.8
RetroLM-Stage2 2k 26.6 38.7 53.8 47.7 41.6 26.4 39.1

Table 2: Experiment results of comparing RetroLM with RAG methods on LongBench QA tasks.

adaptation of LLM on unsupervised text data yields447

further performance improvements across tasks.448

This demonstrates the model’s ability to adapt effec-449

tively to sparse KV cache and streaming encoding450

paradigm. To validate and analyze these findings,451

we conducted ablation studies using the same data452

but trained and evaluated the models with full atten-453

tion (see Sec. 4.8). Similar trends are observed in454

experiments with the Llama-3-based models, cor-455

roborating the generality of our findings.456

4.3 Comparing with RAG on LongBench457

In this section, we compare RetroLM with retrieval-458

augmented generation (RAG) methods, which sim-459

ilarly aim to identify and utilize query-relevant in-460

formation from long contexts. The experimental461

results on LongBench (Bai et al., 2023) QA tasks462

are presented in Table 2. For RAG, we retrieve the463

top 10 most similar chunks (each 200 tokens) for464

each dataset.465

The results demonstrate that RetroLM consis-466

tently outperforms all RAG methods. These find-467

ings highlight the superior ability of RetroLM to468

effectively utilize long-context information, which469

can be attributed to its dynamic KV retrieval mech-470

anism. Unlike RAG methods, which rely on a471

static selection of information at the input stage,472

RetroLM dynamically retrieves crucial KVs at each473

decoder layer. This dynamic approach enables 474

RetroLM to preserve crucial information and main- 475

tain global contextual awareness. While RAG’s 476

rigid prompt selection often leads to the permanent 477

loss of relevant information that the retriever fails 478

to identify (Xu et al., 2023). Moreover, RAG’s 479

method for handling long-context tasks necessi- 480

tates additional retrieval models and stages, thereby 481

increasing the complexity of the task flow. In con- 482

trast, using RetroLM for long-context tasks allows 483

for an end-to-end approach using a single model. 484

RetroLM’s training of KV retriever in Stage- 485

1 draws inspiration from contrastive learning 486

paradigms employed in general-purpose dense re- 487

triever training (Izacard et al., 2021; Ma et al., 488

2024). This design allows it to accurately iden- 489

tify useful KV pages from complex, noisy con- 490

texts (hard negatives). As a result, RetroLM can be 491

viewed as a novel model-based RAG framework, 492

integrating retrieval functionality directly into the 493

LLM at KV cache level. This integration enhances 494

both semantic comprehension and portability. We 495

believe this approach holds broader research value 496

in the future, including extensions to more complex 497

long-context reasoning scenarios and the develop- 498

ment of knowledge bases capable of storing and 499

retrieving KVs. 500
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Model Context QA Summary Choice Math.F Average

Mistral-7B-v0.2 32k 12.9 25.9 44.5 20.6 25.9
StreamingLLM 6k 10.9 21.0 40.4 15.1 21.8
H2O 6k 14.2 23.7 43.7 24.2 26.5
InfLLM 6k 15.0 24.1 41.7 24.9 26.5
SnapKV 6k 16.2 25.3 44.0 24.7 27.5
RetroLM-Stage1 6k 18.4 27.8 45.0 24.2 28.9
RetroLM-Stage2 6k 20.2 29.2 46.1 24.5 30.0

Table 3: Experiment results on InfiniteBench. The results demonstrate the effectiveness and generalization of
RetroLM across ultra-long contexts compared with other efficient processing methods.

Model 4K 8K 16K 32K 64K AVG

NIAH Performance

Mistral-7B-v0.2 98.1 96.2 94.3 85.5 51.1 85.4
RetroLM-Stage2 99.1 96.4 92.2 88.6 79.0 91.1

GPU Memory (GB)

Mistral-7B-v0.2 17.0G 19.0G 22.0G 28.6G 43.3G -
RetroLM-Stage2 18.3G 18.7G 19.3G 20.1G 25.5G -

Table 4: Experiment results of NIAH tasks on RULER
and GPU memory usage at different input lengths.

4.4 Experiment Results on InfiniteBench501

The experimental results on InfiniteBench (Zhang502

et al., 2024b) are presented in Table 3. We compare503

RetroLM with other efficient processing methods504

to demonstrate its effectiveness and generalization505

across ultra-long contexts. Given that the lengths of506

most evaluation cases exceed 100K, we allocated a507

larger KV budget of 6K for all baselines.508

Across all tasks, RetroLM consistently outper-509

forms the full-attention baseline. This indicates510

that RetroLM effectively generalizes in scenarios511

involving ultra-long texts, despite being trained on512

significantly shorter context lengths. Specifically,513

during Stage-1, the KV retriever was trained on514

contexts up to 8K tokens, while in Stage-2, the515

language model was trained with an unsupervised516

corpus, using a maximum context length of 12K517

tokens.518

When compared to other efficient processing519

methods, RetroLM demonstrates a clear perfor-520

mance advantage. In the lengthy QA and sum-521

marization tasks, RetroLM-Stage2 outperforms522

SnapKV by 4.0 and 3.9 points respectively. This523

underscores RetroLM’s potential as a scalable and524

effective solution for real-world applications that525

require processing of extremely long text.526

4.5 Experiment Results on RULER527

Beyond downstream long-context understanding528

tasks such as QA and summarization, we assess529

Figure 2: Attention score maps for a MusiQue case. Left:
from original full attention. Right: score from RetroLM’s KV
retriever. Red squares are answers for the multi-hop question.
X-axis represents sequence position, Y-axis represents each
decoder layer. RetroLM effectively retrieves crucial KVs.

long-context retrieval capability of RetroLM us- 530

ing eight Needle-in-a-Haystack tasks from RULER 531

(Hsieh et al., 2024). These tasks cover a diverse 532

range of needle types and quantities with varying 533

levels of difficulty, requiring the model to extract 534

relevant information from a vast number of dis- 535

tractors. As shown in Table 4 (Top), RetroLM 536

achieves superior performance compared to the full- 537

attention Mistral model across evaluation lengths 538

ranging from 4K to 64K, demonstrating robust 539

long-context information identification capability. 540

4.6 GPU Memory Consumption 541

As shown in Table 4 (Bottom), RetroLM signif- 542

icantly reduces memory consumption compared 543

to full attention as input length increases. The 544

memory usage of full attention grows quadratically 545

with sequence length, while even flash attention 546

exhibits linear growth. In contrast, RetroLM lever- 547

ages streaming encoding with the page retriever to 548

maintain a fixed KV budget during both the prefill- 549

ing and decoding. This approach effectively min- 550

imizes peak memory consumption and implicitly 551

compresses the context. 552

4.7 Case Study 553

To further evaluate the effectiveness of KV cache 554

level retrieval augmentation in RetroLM, we con- 555

duct case study using the MusiQue dataset (Bai 556
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Model Context Narrative Qasper Multifield Hotpot 2wikim Musique Average

Mistral-7B-v0.2 32k 26.9 33.1 49.2 43.0 27.3 18.8 33.1

Ablation Study

RetroLM w/o Stage1 2k 23.6 29.9 45.4 38.5 24.9 15.1 29.6
RetroLM-Stage1 2k 26.8 34.0 50.8 47.6 39.0 22.5 36.8
RetroLM-Stage2 2k 26.6 38.7 53.8 47.7 41.6 26.4 39.1
Mistral-Finetuned 32k 26.9 33.4 48.5 44.5 30.6 19.4 33.9
InfLLM-Finetuned 2k 25.4 30.7 48.0 43.7 29.2 18.0 32.5

Analytical Experiment with Varying Budgets

SnapKV (1024) 1024 25.4 29.5 49.0 40.9 25.7 18.3 31.5
SnapKV (2048) 2048 25.9 32.9 48.6 43.0 27.4 19.0 32.8
RetroLM-Stage1 (512) 512 25.0 30.4 47.0 42.9 30.4 17.9 32.3
RetroLM-Stage1 (1024) 1024 25.4 31.5 47.9 45.4 33.7 21.1 34.2
RetroLM-Stage1 (2048) 2048 26.8 34.0 50.8 47.6 39.0 22.5 36.8

Table 5: Analytical experiments with QA tasks from LongBench.

et al., 2023), a challenging multi-hop QA task in-557

volving lengthy texts. As illustrated in Figure 2,558

we compare the full attention scores with those of559

the page retriever. Full attention fails to attend to560

the KVs containing the correct answer, resulting in561

an incorrect prediction. In contrast, our proposed562

page retriever effectively identifies and retrieves563

the relevant pages. Especially in the intermediate564

layers, page retriever demonstrates strong ability565

to focus on crucial KVs. Due to space constraint,566

more cases are presented in Appendix B.567

4.8 Ablation Study568

Effectiveness of Page Retriever. As presented in569

Table 5 (Top), to assess the effectiveness of page570

retriever training (Stage1), we implement the al-571

gorithmic framework of RetroLM without training572

the page retriever (w/o Stage1). The resulting test573

performance exhibits a 6.9 points degradation, un-574

derscoring the critical importance of training the575

page retriever for KV cache level retrieval augmen-576

tation.577

Effectiveness of Post Training. As presented in578

Table 5 (Top), to assess the effectiveness of post-579

training (Stage2), we use the same unsupervised580

data to perform full-attention fine-tuning and evalu-581

ating on the Mistral model (Mistral-Finetuned). We582

then apply InfLLM (Xiao et al., 2024) algorithm583

using this model (InfLLM-Finetuned). While these584

approaches yielded modest performance improve-585

ments, they were markedly inferior to the results586

achieved by RetroLM after Stage-2 training. This587

demonstrates the necessity of adapting the model588

to sparse KV cache for effective KV cache usage589

and enhanced performance.590

Varying KV Budgets. We assess the effectiveness591

of RetroLM under varying KV budgets. Using 592

the RetroLM-stage1 model, which only trains the 593

retriever module, we vray the token budget from 594

512 to 2048 and evaluate on the Longbench QA 595

datasets. For comparative analysis, we include 596

results from SnapKV with 1024 and 2048 token 597

budgets and the full-attention model. The results 598

are reported in Table 5 (Bottom). 599

Even with 512-token budget, RetroLM achieves 600

an average score of 32.3 across the LongBench 601

QA tasks, closely aligns with both SnapKV using 602

a 2048-token budget and the full-attention model. 603

As the token budget increases, we observe a clear 604

trend of performance improvement. The signifi- 605

cant performance gains on complex datasets like 606

2WikiMQA (+8.6) and HotpotQA (+6.7) suggest 607

the effectiveness of RetroLM in complex long- 608

context reasoning scenarios that demand robust 609

information seeking and aggregation capabilities. 610

5 Conclusion 611

In this paper, we introduce RetroLM, a novel RAG 612

framework that enhances the performance of long- 613

context processing by conducting retrieval augmen- 614

tation at the KV cache level. Unlike traditional 615

RAG methods that operate on raw tokens, RetroLM 616

partitions the KV cache into contiguous pages and 617

selectively retrieves the most crucial ones. To 618

achieve precise and effective retrieval, we propose 619

a specialized page retriever that evaluates page 620

importance via fine-grained KV interactions. Ad- 621

ditionally, we employ post-training on unlabeled 622

data, enabling LLMs to better utilize retrieved KVs 623

and improving end-to-end performance. Extensive 624

evaluations are conducted on several standard long- 625

context benchmarks. 626
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6 Limitation627

While RetroLM achieves substantial progress in628

efficient long-context processing, computational629

constraints and design choices have led to the use630

of a relatively small base model (7B) during the631

experimental phase. It is anticipated that scaling to632

larger models could further enhance performance.633

Additionally, the fixed page size also presents a lim-634

itation; exploring dynamic or context-dependent635

page sizes could optimize the trade-off between636

granularity and computational cost.637

7 Ethical consideration638

RetroLM is built upon open-source LLMs. Conse-639

quently, it inherits similar ethical and social risks,640

such as bias, discrimination, and the potential for641

generating toxic or harmful content, as those asso-642

ciated with the base LLM. The pre-training data643

of the base LLM may contain private or sensitive644

information, posing a low but non-zero risk of infor-645

mation leakage, despite RetroLM operating on the646

KV cache. Furthermore, the page retriever’s fine-647

tuning data could introduce biases in the retrieval648

process, favoring certain types of information.649
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A Training Detail and Data Formulation921

A.1 Data Formulation922

In this section, we introduce the detailed data curat-923

ing method for the training of RetroLM. For stage-924

1 training, we exclusively train the KV retriever925

while keeping the backbone LLM fixed. We utilize926

a dataset of 50K pairwise examples sourced from927

MS MARCO (Bajaj et al., 2016), formatted as illus-928

trated in Figure 5. Each dataset entry comprises a929

web search query, along with 40 hard negative pas-930

sages mined by BGE (Xiao et al., 2023b). These931

passages are randomly interspersed with a positive932

passage, resulting in pseudo input texts up to 8,000933

tokens in length. The query is appended at the end934

of the text, prompting the model to locate perti-935

nent information corresponding to the input query.936

Leveraging the robust semantic understanding of937

the fixed backbone LLM, we employ contrastive938

learning across each decoder layer using bookmark939

tokens. This task requires the KV retriever to dis-940

cern key KVs amidst substantial distractions. The941

input constraint of 8K tokens ensures high train-942

ing efficiency and aims to establish the retrieval943

proficiency of the KV retriever.944

Additionally, we generate 5K synthetic pairwise945

samples using text from Slimpajama (Shen et al.,946

2023), structured as depicted in Figure 6. Unlike947

discrete text spans from MS MARCO, these input948

texts consist of coherent passages, tasking the KV949

retriever with identifying key KVs for the query.950

For the detailed curation method, we begin by sam-951

pling lengthy documents from Slimpajama. From952

these documents, we extract a segment (e.g., 100953

words) as the Background Text, and randomly se-954

lect consecutive 1-5 sentences from this segment as955

the Ground Truth Text. Employing the GPT API1,956

we pose questions about the Background Text, stip-957

ulating that the answers must be contained within958

the Ground Truth Text. This method ensures that959

synthetic questions are contextually rich while en-960

suring that their answers remain within smaller961

semantic units. The prompt for constructing syn-962

thetic data are provided in Figure 7. To maintain963

the quality of synthetic data, we ask ChatGPT to964

generate precise and insightful questions. If the965

generated text lacks meaningful information, it un-966

dergoes careful scrutiny and filtration.967

For stage-2 training, we use 10K unsupervised968

text data from Slimpajama (Shen et al., 2023), with969

1https://platform.openai.com/

input lengths constrained to 12K tokens. The pri- 970

mary goal of stage-2 training is not to expand the 971

context window but to enable RetroLM to adapt 972

to a sparse KV cache and a streaming encoding 973

paradigm. The corresponding ablation study is de- 974

tailed in Sec. 4.8. 975

A.2 Implementation 976

In this Section, we introduce the training and 977

implementation details of RetroLM. We train 978

RetroLM using Mistral-7B-Instruct and Llama- 979

3-8B-Instruct as backbone respectively. During 980

training, we set the page size for RetroLM to 128 to- 981

kens. This means the input text is divided into seg- 982

ments of 128 tokens, each appended with a book- 983

mark token. It is important to note that the page 984

size used during inference does not need to match 985

the training page size; users can define it at any 986

desired granularity. 987

All the experiments take place on 8xA800 988

(80GB) GPUs. The learning rate for stage-1 train- 989

ing is 5×10−6 and for stage-2 is 1×10−6, the weight 990

decay is 1×10−2. The batch size is 1, where we 991

accumulate the gradient over 16 steps. We leverage 992

Flash-attention-v2 (Dao, 2023), Gradient Check- 993

pointing (Chen et al., 2016), and Deepspeed-Zero 994

(Rajbhandari et al., 2020) to speed up the train- 995

ing. Throughout training, the peak CUDA mem- 996

ory usage is observed at about 40GB, which is 997

attributable to the limited input length of 12K to- 998

kens. 999

B Further Case Study 1000

In this section, we present more cases (Figure 3 to 1001

Figure 4) to evaluate the effectiveness of KV cache 1002

level retrieval augmentation in RetroLM, using the 1003

MusiQue dataset (Bai et al., 2023). 1004
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Figure 3: Case 2: attention score maps. Left: from original full attention. Right: score from RetroLM’s KV retriever.
Red squares are answers for the multi-hop question. X-axis represents sequence position, Y-axis represents each decoder layer.

RetroLM effectively retrieves crucial KVs.

Figure 4: Case 3: attention score maps. Left: from original full attention. Right: score from RetroLM’s KV retriever.
Red squares are answers for the multi-hop question. X-axis represents sequence position, Y-axis represents each decoder layer.

RetroLM effectively retrieves crucial KVs.
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Figure 5: Example of weakly supervised data from msmarco (Bajaj et al., 2016) for stage-1 training. We concatenate
the positive passage with hard negative passages in a random order, forming pseudo-texts up to a length of 8K
tokens, and append the query to the end of the sequence. The page retriever is trained to identify useful KVs
(positive passage) across each decoder layer via contrastive learning.

Figure 6: Example of synthetic data for stage-1 training.
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Figure 7: Prompt for construct question from Slimpagama (Shen et al., 2023).
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