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ABSTRACT

Few-shot learning (FSL) is a challenging problem in machine learning due to the
limited availability of labeled data. A major obstacle to FSL is the ability to gen-
eralize well on both novel tasks and training tasks. In this paper, we propose a
new branch of unsupervised and semi-supervised regularization tasks to combat
this problem. Our approach leverages both labeled and unlabeled data to improve
the robustness and generalization performance of FSL models. Experimental re-
sults demonstrate the effectiveness of our proposed method by showing faster and
better convergence, lower generalization, and standard deviation error both on
novel tasks and training tasks, highlighting its potential for practical applications
in FSL. Our proposed approach offers a promising solution to address the chal-
lenge of regularization in FSL, paving the way for future research in this area.

1 INTRODUCTION

Few-Shot Learning (FSL) is a promising method for dealing with the issue of limited data avail-
ability in computer vision tasks. FSL approaches use meta-learning techniques to learn how to
learnWortsman et al. (2019) from a small number of instances, allowing them to generalize suc-
cessfully to new tasks with limited training data. The main challenge in FSL is to develop efficient
meta-learning algorithms that can generalize well to new tasks and acquire meaningful represen-
tations from a small number of samples. Recent developments in deep learning, notably in the
field of meta-learning, have led to the development of powerful FSL techniques such as Match-
ing NetworksVinyals et al. (2016), Relation NetworksSung et al. (2018), MAMLFinn et al. (2017),
Prototypical NetworksSnell et al. (2017), Reptile Nichol & Schulman (2018). FSL enables models
to learn about anomalies and recognize uncommon occurrences, which can be particularly useful
in medical applications, such as locating uncommon diseases like COVID-19. By minimizing the
quantity of data needed to train a model, FSL can drastically reduce the expenses involved with data
gathering and annotation.Li et al. (2017); Setlur et al. (2020); Zhang et al. (2018).

Meta-learning has achieved impressive results in a wide range of domains, but thorough regular-
ization is required to prevent overfitting and ensure good generalization performance both on novel
samples from training classes and novel classes. Regularization is particularly difficult in meta-
learning since these algorithms train exhaustively on a limited number of samples, which increases
the chance of overfitting. Various regularization methods have been used in meta-learning, such as
dropout, weight decay, and batch normalization, but their efficacy varies depending on the specific
meta-learning algorithm and task at hand. Moreover, selecting the suitable regularization approach
and associated hyperparameters can have a considerable impact on the meta-learning model’s per-
formance. As a result, developing effective regularization strategies that generalize well across
different meta-learning algorithms and tasks remains a serious challenge.

The goal of FSL is to learn an adequate representation of the data such that new data can be classified
accurately even with a few labeled samples. The first part of a few-shot learning method involves
embedding the data into a high-dimensional feature space in a way that captures the important as-
pects of the data. The second part involves using the labeled examples to learn a classifier that can
accurately predict the labels of new, unlabeled examples. In many few-shot learning methods, the
embedding and classification stages are often combined into a single neural network architecture.
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Although the two parts are closely related, they can still be viewed as separate components of a typ-
ical FSL method (Figure 2). The key contribution of this study is (1) the development of meta-tasks
(Figure 1), a new sort of Meta-tasks that can regularize individual tasks or episodes. We argue that
regularization can be considered a task in itself, and hence can be added as an additional loss func-
tion to the existing loss functions in a meta-learning setting. Furthermore, we propose that instead
of traditional regularization approaches, unsupervised or semi-supervised machine learning tasks be
used as regularization terms. For instance, by restricting the embedding vector to be reconstructable
to the original image, an autoencoderKramer (1991) can be used as a regularizer for FSL. (2) Our
research also presents a new regularization task for meta-learners called “meta-autoencoder”. We
show that using a meta-autoencoder leads to faster convergence with higher accuracy, lower gener-
alization error, and standard deviation, highlighting its potential for practical applications in FSL.

Figure 1: A High-level view of Meta-Task:
Each episode is made up of labeled examples (the support set) and unlabeled instances (the query
set). The episode samples are then utilized to generate meta-task samples that are unique to that
episode. The episode is subsequently processed by an embedding model, which maps the samples
to a feature space and produces a compact representation of the episode. The meta-learning approach
then uses this feature representation to learn and extract relevant information from the support set.
Using the learned patterns and relationships from the support set, the obtained knowledge is then
applied to predict or make inferences on the query set.

2 BACKGROUND/RELATED WORK

Meta-learning has been the subject of much research in recent years, and a variety of regularization
methods have been proposed to improve the generalization capability of meta-learning models.
Most conventional regularization methods from other areas of machine learning such as weight de-
cay Krogh & Hertz (1991), dropout Gal & Ghahramani (2016), and incorporating noise. Achille &
Soatto (2018); Alemi et al. (2016); Tishby & Zaslavsky (2015) are still applicable to meta-learning.
However, there are some regularization techniques more specialized for meta-learning:

Explicit regularization methods impose explicit regularization terms on the meta-learning update,
such as iMAML Rajeswaran et al. (2019), MR-MAML Yin et al. (2019), and works like Pan et al.
(2021); Wang et al. (2023). These methods directly constrain the model optimization process.

Data augmentation regularization regulates the meta-training data augmentation, like making modi-
fications to individual tasks through noise or mixup Yamaguchi et al. (2023); Shu et al. (2023). Task
augmentation and interpolation generate new tasks by interpolating between or augmenting existing
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Figure 2: A High-level view of Meta-Learning:
Each episode is made up of labeled examples (the support set) and unlabeled instances (the query
set). After that, the episode is fed into an embedding model, which maps the samples to a feature
space, resulting in a compact representation of the episode. The meta-learning approach then uses
this feature representation to learn and extract relevant information from the support set. Using the
learned patterns and relationships from the support set, the obtained knowledge is then applied to
predict or make inferences on the query set.

tasks Yao et al. (2021); Rajendran et al. (2020). The goal is to expand the task distribution for more
robust generalization.

We hypothesize that by developing tasks as regularization methods, we can further enhance the
generalization capability in meta-learning. Tasks have the potential to encode a diverse range of
information about the world and the relationships between different concepts, enabling the model to
learn generalizable patterns and ultimately improve its performance on new tasks. Our work aims
to generalize the concepts of task augmentation and interpolation, transforming them into simple,
explicit regularization terms that seamlessly integrate into existing meta-learning algorithms. While
previous methods have introduced specialized techniques, we demonstrate that these can be gen-
eralized as meta-tasks, effectively acting as regularization mechanisms. Furthermore, our research
reveals that even unrelated auxiliary tasks can serve as effective meta-tasks for regularization, ex-
tending their utility beyond traditional task interpolation.

Using tasks as regularization methods in meta-learning, as supported by previous research Yam-
aguchi et al. (2023); Shu et al. (2023) has the potential to improve generalization, reduce data re-
quirements, enhance robustness, and expand applicability to various problems, findings that align
with our experimental results.

3 PROBLEM STATEMENT

A meta-learning system has been proposed to deal with the problematic few-shot learning environ-
ment. The central concept is to learn how to adapt a base learner to a new task for which only a
few labeled samples are available by using a large number of comparable few-shot tasks. Training
numerous tasks are referred to as “meta”, and learning to scale and modify the functions of Deep
Neural Networks (DNN) weights for each task is based on transfer learning, meaning using the
trained meta-learning model as a pre-trained model for each task Finn et al. (2017). Meta-learning
often uses shallow neural networks (SNNs), which improves its effectiveness because it reduces
intra-class variation Chen et al. (2019).

An N -way, K-shot classification consists of N classes and K examples of each class. They serve
as the task’s “support set” and aid the model in learning like a training set. The performance of this
task is also assessed using additional examples of the same classes, which are referred to as a “query
set”. Samples from one task might not appear in others because one task can be entirely independent
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of the others. The notion is that throughout training, the system continually encounters tasks with
a structure similar to the final few-shot task but containing different classes. The meta-learning
framework for few-shot learning involves selecting a random training task at each meta-learning
step and updating model parameters based on the classification accuracy of the query set. The aim
is to differentiate class labels in general rather than a specific subset of classes because the task at
each time step is different. Few-shot performance is evaluated on a set of unseen classes, referred to
as novel classes, that were not included in the training.

Prototypical networks Snell et al. (2017) are robust to data imbalance as they compute their mean
embedding or prototype by averaging the embeddings of examples for each class. The prototypes are
then classified based on their similarity with the query embedding, which is often calculated using
cosine distance. While cosine distance typically outperforms Euclidean distance in prototypical
networks, this may not always be the case, initialization can impact the performance of each distance
metric Snell et al. (2017). Nonetheless, using a better weight initialization can lead to cosine distance
typically outperforming Euclidean distance, as suggested by Chen et al. Chen et al. (2019). However,
some restrictions remain for prototypical networks. One such constraint is the lack of generality,
because neural networks may not perform well when attempting to identify images with diverse
representations. While prototypical networks may perform well on the Omniglot dataset Lake et al.
(2015), they may not yield trustworthy results when attempting to categorize distinct bird breeds
due to representational differences. Another drawback of prototypical networks is that they only
employ means to determine the center and neglect support set variance, which can compromise their
ability to categorize images with noise. Nonetheless, prototypical networks remain popular due to
their ability to produce outstanding results and represent a simpler inductive bias than contemporary
few-shot learning methods, which is advantageous in environments with sparse data.

To address these limitations, we are exploring the addition of unsupervised tasks, such as decoder
or adversarial modelsGoodfellow et al. (2020), to improve the model’s understanding of new task-
specific data. By incorporating these new techniques, prototypical networks may be able to over-
come their constraints and achieve even higher levels of performance on few-shot learning tasks.

4 APPROACH

Let’s suppose that the meta-dataset is split to train, validation, testing sets, and let’s denote them by
Dtr, Dval, Dte where Dtr and Dval consist of tasks T tr

1 , T tr
2 , . . . , T tr

L and our Dte consist of tasks T te
1 ,

T te
2 , . . . , T te

I .

We introduce a new task, denoted as T tr
L1, which only requires images from Dtr and does not need

labels, or labels can be created using available labels in Dtr. In each episode, we take N tasks from
{T tr

i }Li=1 and use T tr
L1 (and any other applicable {T tr

Li}) as the regularizer for {T tr
i }Li=1 or fine-tuned

separately for each task.

To clarify this method, we can define a new task T tr
L1, as generating an image in an autoencoder. In

this task, the loss can be defined as the mean squared error (MSE) loss.

The goal of prototypical networks is to minimize the negative log probability (log-softmax loss).
For a given query sample x, if n is the correct label, then the loss function is defined as:

Jx(θ) = − log(pθ(y = n|x)) (1)

where pθ(y = n|x) is the probability of assigning the correct label n to query sample x.

pθ(y = n|x) = exp(−d(fθ(x), cn)∑N
k=1 exp(−d(fθ(x), ck))

(2)

where fθ is the embedding network parameterized by θ, cn is the prototype of the n-th class, d(a, b)
is the Euclidean distance between vectors a and b. The logarithm is used to increase the loss when
the model fails to predict the correct class. Thus, we can rewrite the loss function and subsequently
the update role as:

min
θ

Jx(θ) = d (fθ(x), cn) + log

N∑
k=1

exp (−d(fθ(x), ck)) (3)
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We add an additional term to the loss function to incorporate the regularization term into our method.
This term is the loss function of the new task we introduced, which we denote as T tr

L1. In our case,
T tr
L1 is the generation of an image using an autoencoder, and we use mean squared error as the loss

function for this task. To be more specific, we add the autoencoder update role to the original update
role of Prototypical Networks, resulting in the following loss function for a query sample x with
correct label n:

Jx(θ) = d(fθ(x), cn) + log

N∑
k=1

exp(−d(fθ(x), ck))︸ ︷︷ ︸
Meta-Learning Update

+

AutoEncoder Update︷ ︸︸ ︷
λ||gθ′ (fθ(x))− x|| (4)

where g is the decoder network with parameters θ
′
, and λ is the learning rate for the autoencoder.

This regularization term can be added to any other arbitrary method.

Jx(θ) = − log(pθ(y = n|x)) + λ||gθ′ (fθ(x))− x|| (5)

We calculate the sum of losses overall query samples in a task T tr
i to obtain the overall loss for that

task:
JT tr

i
(θ) =

∑
x∈T tr

i

Jx(θ) (6)

During each episode, we compute the loss function for each task and sum them to get the overall
loss functionFinn et al. (2017):

J(θ) =

L∑
i=1

JT tr
i
(θ) (7)

Now if we assume that we have a custom meta-task regularizer for each task by additive separability,
we can rewrite this equation as:

J(θ) =

L∑
i=1

(
JT tr

i
(θ) + λJT tr

Li
(θ)

)
(8)

If the regularization term is separable (like the autoencoder update), we can simplify this to:

J(θ) =

L∑
i=1

JT tr
i
(θ) + λ

L∑
i=1

JT tr
Lri

(θ) (9)

Now, if want to generalize this equation to form where each task may have multiple or no meta-task
attached to it. then again if these tasks are separable, We will have:

J(θ) =

L∑
i=1

JT tr
i
(θ) + λ

R∑
r=1

JT tr
Lr
(θ) (10)

Although we mostly discuss updates on prototypical networks, it is not strictly necessary to use our
approach with them and it generalizes to any FSL method. Nonetheless, given recent developments
in the field of few-shot learning, discussing updates on prototypical networks could be beneficial in
highlighting the potential for continued progress in this area.

The logic behind incorporating meta-tasks is similar to that of meta-learning, as it aims to help a
meta-learner better understand the commonalities between different tasks, learn to generalize more
effectively and develop a more robust set of features that can be applied to new tasks. By training
on a set of related meta-tasks, a meta-learner can leverage the knowledge gained from these tasks to
learn more efficiently and adapt more rapidly to new situations.

Although the use of encoder-decoders is not new in meta-learning Rusu et al. (2018), we will use
a novel autoencoder method to illustrate the effectiveness of this regularization, we have developed
a method called Meta-Autoencoder. In this method, we use the MSE loss of the decoder as the
regularization term for each episode. In other words, for each episode, we pass the images from
the episode through the decoder to generate the regularization term for the update of the prototyp-
ical network. This regularization helps to improve the generalization performance of the model by
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Figure 3: Detailed architecture of Meta-Autoencoder for a 3-Way 2-Shot FSL.
The training examples in the autoencoder task are identical copies of the support set samples but
without their labels. For these examples, the embedding model generates feature vectors, which are
then employed in two ways. They are first processed through a decoder to reconstitute the original
input images, which aids the model in learning meaningful representations. Second, the feature
vectors are used to generate prototypes for each support set class, which are then used to catego-
rize query photos based on their similarity. The training procedure includes two backpropagation
steps: one for updating model parameters based on the classification loss, which measures the match
between prototypes and query images, and another for updating model parameters based on the de-
coder’s reconstruction loss, which ensures accurate reconstruction of the original images.

encouraging the latent representations learned by the encoder to be more robust and informative.
It is worth noting that the main distinction from Rusu et al. (2018) lies in our focus on regulating
the training process, whereas their approach revolves around finding a better starting point using the
episode.

Our findings demonstrate that our proposed method is effective in improving the training process
via the incorporation of a decoder update as a regularization term. Specifically, we observed that
introducing artificial tasks during training can lead to improved performance and standard deviation.
These results suggest that our approach holds promise for enhancing the training of meta-learning
methods in various applications.

5 RESULTS AND DISCUSSIONS

For our study, we used a ResNet50 architecture He et al. (2016) and implemented a ResNet-based
autoencoder. This autoencoder was trained on bird 525 species dataset. The trained encoder was
then utilized as the embedding model for our experiments. An NVIDIA Tesla P100 was used as
a computing resource for model training. The experiments were conducted over 50, 000 episodes
with a learning rate of 10−4 and a query size of 15. Additionally, the autoencoder was trained with a
separate learning rate of 10−6. The complete source code and results for this paper can be accessed
at the following GitHub repository: HIDDEN

To assess the effectiveness of different approaches, we conducted a comparative study between a
Prototypical Network and a meta-autoencoder Prototypical Network. Initially, we tuned the hyper-
parameters of both models for the 5-shot 5-way task on the miniImageNet dataset Ravi & Larochelle
(2017). These adjusted hyperparameters were then used for all subsequent training runs. It is worth
emphasizing that assessing few-shot learning methods is difficult due to a lack of appropriate eval-
uation metrics. Standard measurements of accuracy and precision, which are designed for non-
repetitive samples, may not be appropriate for few-shot learning scenarios. For our evaluation, we
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relied on the available metrics for comparing meta-learning methods as they are currently the pri-
mary tools for comparison. Additionally, we also examined the performance of the two models
using traditional evaluation metrics, assuming each sample to be unique, which can be found in the
supplementary materials. The results of our study are summarized in the following tables 1 2 3.

Tiered ImageNet
Train

5-Shot 5-Way 5-Shot 1-Way
Prototypical Network Meta-AutoEncoder Prototypical Network Meta-AutoEncoder

# Episodes Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss
10000 61.00% 1.2871±0.0002 58.70% 1.0339±0.0000 41.30% 1.4699±0.0002 39.30% 1.4194±0.0000
20000 64.70% 1.2506±0.0002 68.10% 0.8196±0.0000 44.80% 1.4382±0.0002 46.30% 1.2950±0.0000
30000 65.70% 1.2406±0.0002 71.30% 0.7395±0.0000 45.40% 1.4329±0.0002 49.80% 1.2235±0.0000
40000 66.00% 1.2371±0.0002 73.50% 0.6855±0.0000 45.90% 1.4295±0.0002 51.90% 1.1790±0.0000
50000 66.00% 1.2387±0.0002 74.60% 0.6579±0.0000 46.10% 1.4268±0.0002 53.80% 1.1376±0.0000

Validation
5-Shot 5-Way 5-Shot 1-Way

Prototypical Network Meta-AutoEncoder Prototypical Network Meta-AutoEncoder
# Episodes Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

10000 58.90% 1.3089±0.0002 62.60% 0.9583±0.0000 40.40% 1.4848±0.0002 42.40% 1.3606±0.0000
20000 60.70% 1.2905±0.0002 65.50% 0.8850±0.0000 41.80% 1.4681±0.0002 44.60% 1.3107±0.0000
30000 60.80% 1.2878±0.0002 67.60% 0.8390±0.0000 42.20% 1.4636±0.0002 46.10% 1.2780±0.0000
40000 61.50% 1.2818±0.0002 68.90% 0.8198±0.0000 42.70% 1.4576±0.0002 47.40% 1.2528±0.0000
50000 61.30% 1.2854±0.0002 68.00% 0.8206±0.0000 41.90% 1.4625±0.0002 49.70% 1.2265±0.0000

Test
5-Shot 5-Way 5-Shot 1-Way

Prototypical Network Meta-AutoEncoder Prototypical Network Meta-AutoEncoder
# Episodes Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

10000 62.60% 1.2712±0.0002 64.30% 0.9061±0.0000 42.90% 1.4568±0.0002 42.70% 1.3961±0.0000
20000 64.50% 1.2522±0.0002 67.90% 0.8174±0.0000 45.60% 1.4345±0.0002 45.90% 1.3094±0.0000
30000 64.70% 1.2488±0.0002 69.30% 0.7859±0.0000 46.00% 1.4271±0.0002 47.30% 1.2810±0.0000
40000 65.40% 1.2427±0.0002 70.20% 0.7643±0.0000 46.60% 1.4228±0.0002 49.30% 1.2290±0.0000
50000 65.30% 1.2453±0.0002 71.30% 0.7437±0.0000 46.70% 1.4226±0.0002 50.00% 1.2319±0.0000

Table 1: The table displays the training accuracy of the prototypical network and meta-autoencoder
on tiered-ImageNet. The results of our experiments clearly show that our method maintains consis-
tent accuracy and loss compared to the prototypical network.

The experiments demonstrate that our proposed method outperforms the prototypical network, as
evidenced by the lower generalization error and standard deviation on both the training and test
sets. Additionally, we explored different hyperparameters such as the number of episodes, ways,
shots, and learning rate, and found that the results remained consistent. However, we also observed
that increasing the number of episodes and learning rate could lead to overfitting, particularly when
working with a larger learning rate. It is important to consider the risk of overfitting during training.
Furthermore, it is worth noting that simply adding more meta-tasks does not necessarily result in
better regularization, as meta-tasks are not inherently prone to task overfitting Pan et al. (2021).

6 CONCLUSION

In this paper, our primary objective was to address the regularization problem in Few-Shot Learning
(FSL) methods. To achieve this, we introduced a novel approach called Meta-Task, which serves as
an additional regularization task that can be easily incorporated into any FSL method. This Meta-
Task is constructed using semi-supervised or unsupervised techniques such as autoencoders. we
focused on the N-way K-shot image classification problem and extensively investigated the impact
of Meta-Tasks on improving model performance. By incorporating Meta-Tasks, we observed a sig-
nificant reduction in the noise present in the input data, leading to faster convergence and lower
generalization error. Our findings highlight the effectiveness of using autoencoders to enhance ac-
curacy while simultaneously reducing loss. By thoroughly exploring the concept of Meta-Tasks and
their relationship with the meta-learning problem, we have provided a clear understanding of how
this approach can effectively address the regularization problem. Meta-tasks offer a convenient and
efficient way to improve the performance of FSL methods by leveraging additional auxiliary tasks.
Our results demonstrate the benefits of incorporating Meta-Tasks, emphasizing their potential for
enhancing model accuracy and reducing overfitting.
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Mini-ImageNet
Train

5-Shot 5-Way 5-Shot 1-Way
Prototypical Network Meta-AutoEncoder Prototypical Network Meta-AutoEncoder

# Episodes Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss
10000 73.20% 0.6973±0.0004 66.40% 0.8635±0.0001 51.20% 1.2019±0.0005 45.60% 1.3094±0.0000
20000 77.20% 0.5971±0.0004 75.80% 0.6362±0.0000 54.70% 1.1227±0.0005 54.00% 1.1423±0.0000
30000 77.60% 0.5873±0.0004 79.30% 0.5476±0.0000 56.30% 1.0853±0.0005 57.60% 1.0592±0.0001
40000 78.00% 0.5784±0.0004 81.70% 0.4836±0.0000 56.30% 1.0816±0.0005 60.40% 0.9958±0.0001
50000 78.00% 0.5747±0.0004 83.60% 0.4345±0.0000 55.90% 1.0921±0.0005 62.30% 0.9513±0.0001

Validation
5-Shot 5-Way 5-Shot 1-Way

Prototypical Network Meta-AutoEncoder Prototypical Network Meta-AutoEncoder
# Episodes Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

10000 63.10% 1.0029±0.0004 64.60% 0.9166±0.0000 42.10% 1.3870±0.0004 44.80% 1.3719±0.0000
20000 64.00% 0.9762±0.0003 63.80% 0.9047±0.0000 44.00% 1.3305±0.0005 44.90% 1.3460±0.0000
30000 65.10% 0.9559±0.0003 66.60% 0.9002±0.0000 45.00% 1.3028±0.0004 47.80% 1.3020±0.0001
40000 64.70% 0.9439±0.0003 64.10% 0.9429±0.0000 44.20% 1.3163±0.0004 51.70% 1.2375±0.0000
50000 65.30% 0.9439±0.0003 64.90% 0.9113±0.0000 44.50% 1.3069±0.0004 51.60% 1.2625±0.0000

Test
5-Shot 5-Way 5-Shot 1-Way

Prototypical Network Meta-AutoEncoder Prototypical Network Meta-AutoEncoder
# Episodes Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

10000 63.60% 0.9921±0.0003 62.80% 0.8928±0.0000 41.90% 1.3889±0.0004 42.00% 1.3766±0.0000
20000 64.40% 0.9713±0.0003 67.30% 0.8296±0.0000 43.20% 1.3449±0.0005 44.60% 1.3597±0.0000
30000 65.30% 0.9618±0.0003 66.10% 0.8646±0.0000 45.00% 1.3013±0.0004 45.40% 1.3162±0.0000
40000 64.60% 0.9510±0.0003 65.60% 0.8583±0.0000 44.10% 1.3229±0.0004 46.60% 1.2753±0.0000
50000 65.20% 0.9447±0.0003 65.80% 0.8789±0.0000 44.60% 1.3088±0.0005 47.90% 1.2457±0.0000

Table 2: The table displays the training accuracy of the prototypical network and meta-autoencoder
on tiered-ImageNet. When the losses are compared, the meta-autoencoder regularization outper-
forms the Prototypical Network alone in terms of training regularization. This addition reduces
overall loss, indicating improved generalization performance. The autoencoder regularization term
assists the model in learning more robust and informative latent representations through the encoder,
resulting in better training regularization.

FC100
Train

5-Shot 5-Way 5-Shot 1-Way
Prototypical Network Meta-AutoEncoder Prototypical Network Meta-AutoEncoder

# Episodes Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss
10000 82.90% 0.4462±0.0004 76.50% 0.6114±0.0001 64.80% 0.8841±0.0005 56.70% 1.0698±0.0001
20000 86.30% 0.3589±0.0003 84.80% 0.3976±0.0000 68.70% 0.7887±0.0005 66.80% 0.8373±0.0001
30000 86.80% 0.3417±0.0003 87.40% 0.3291±0.0000 70.40% 0.7464±0.0005 70.80% 0.7385±0.0001
40000 87.20% 0.3338±0.0003 89.20% 0.2838±0.0000 70.30% 0.7418±0.0005 73.30% 0.6794±0.0001
50000 87.20% 0.3336±0.0003 90.30% 0.2540±0.0000 70.50% 0.7447±0.0005 75.30% 0.6303±0.0001

Validation
5-Shot 5-Way 5-Shot 1-Way

Prototypical Network Meta-AutoEncoder Prototypical Network Meta-AutoEncoder
# Episodes Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

10000 47.20% 1.3308±0.0004 49.80% 1.2624±0.0000 30.50% 1.7034±0.0003 31.10% 1.6558±0.0000
20000 49.40% 1.2897±0.0003 47.40% 1.3148±0.0000 31.30% 1.7150±0.0004 31.40% 1.6751±0.0000
30000 49.10% 1.2954±0.0004 48.50% 1.3068±0.0000 30.30% 1.7311±0.0003 30.50% 1.7099±0.0000
40000 48.80% 1.3078±0.0004 47.50% 1.3024±0.0000 29.60% 1.7471±0.0004 30.30% 1.7077±0.0000
50000 49.30% 1.2945±0.0003 48.50% 1.3148±0.0000 29.50% 1.7476±0.0004 31.30% 1.7162±0.0000

Test
5-Shot 5-Way 5-Shot 1-Way

Prototypical Network Meta-AutoEncoder Prototypical Network Meta-AutoEncoder
# Episodes Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

10000 47.20% 1.3346±0.0004 49.10% 1.2150±0.0000 30.90% 1.6981±0.0003 38.50% 1.5198±0.0000
20000 49.60% 1.2937±0.0004 51.10% 1.2090±0.0000 31.10% 1.7164±0.0004 38.60% 1.4865±0.0000
30000 48.80% 1.2978±0.0004 50.90% 1.1973±0.0000 30.30% 1.7299±0.0004 39.60% 1.5105±0.0000
40000 49.10% 1.3037±0.0003 51.00% 1.2762±0.0000 29.70% 1.7430±0.0004 36.60% 1.5620±0.0000
50000 48.70% 1.3006±0.0004 49.20% 1.2720±0.0000 29.30% 1.7554±0.0004 39.00% 1.5076±0.0000

Table 3: The table presents the training accuracy of both the prototypical network and meta-
autoencoder on FC100 dataset. The results indicate that our method achieves faster convergence
compared to the prototypical network. This is especially evident when observing the accuracy of
the prototypical network over the next 10,000 episodes, where the meta-autoencoder consistently
outperforms it.
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we also introduced a novel Meta-Task called meta-autoencoder. The meta-autoencoder leverages
the power of autoencoders within the meta-learning framework to enhance the learning process. By
incorporating the meta-autoencoder task, we aim to improve the model’s ability to extract mean-
ingful features and representations from the input data. This novel approach offers a promising
direction for advancing meta-learning algorithms and opens up new opportunities for improving
performance in various domains. We recognized the importance of fine-tuning the learning rate for
optimal performance and plan to explore this further in future work.

While meta-tasks are effective in addressing the issue of overfitting, it is important to note that they
are not immune to overfitting themselves. It is crucial to find the right balance when incorporating
meta-tasks into the meta-learning process. Adding too many meta-tasks can lead to task overfitting,
where the model becomes overly specialized to the specific tasks in the meta-training set and fails to
generalize well to new tasks. Therefore, careful consideration should be given to the selection and
number of meta-tasks to ensure optimal performance and generalization ability of the meta-learning
algorithm.
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A APPENDIX

More information on the experiments can be found here.
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Prototypical Network
precision recall f1-score support

0 29.12% 28.49% 28.80% 22635
1 54.58% 50.13% 52.26% 64455
2 26.88% 29.89% 28.31% 32565
3 49.94% 42.34% 45.83% 65115
4 36.33% 33.04% 34.60% 23910
5 56.25% 62.92% 59.40% 31275
6 53.73% 41.41% 46.77% 39420
7 44.38% 46.71% 45.51% 38310
8 26.97% 30.00% 28.40% 31665
9 70.61% 86.22% 77.64% 23130
10 53.81% 49.29% 51.45% 54825
11 27.54% 43.78% 33.81% 39690
12 34.26% 34.13% 34.19% 46980
13 37.02% 33.19% 35.00% 62745
14 30.11% 19.93% 23.99% 32160
15 65.74% 76.98% 70.91% 16020
16 56.42% 51.69% 53.96% 24045
17 55.85% 80.23% 65.86% 23205
18 46.94% 38.72% 42.44% 39870
19 47.49% 52.11% 49.69% 37980
accuracy 44.48%
macro avg 45.20% 46.56% 45.44% 750000
weighted avg 44.75% 44.48% 44.23% 750000
meta-learning accuracy 42.90%

Table 4: 5-way 1-shot classification report
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Meta-autoencoder
precision recall f1-score support

0 41.58% 37.27% 39.31% 64200
1 49.30% 58.49% 53.51% 47295
2 50.43% 50.11% 50.27% 39165
3 49.96% 29.91% 37.42% 16200
4 56.85% 38.64% 46.01% 70305
5 62.96% 66.98% 64.91% 24285
6 39.47% 44.93% 42.02% 23100
7 44.45% 46.86% 45.62% 39465
8 48.39% 39.82% 43.69% 22965
9 50.20% 55.14% 52.55% 54960
10 43.57% 37.51% 40.31% 39480
11 27.81% 22.48% 24.87% 24030
12 36.03% 25.30% 29.73% 47070
13 35.88% 36.83% 36.35% 47415
14 35.86% 50.05% 41.79% 15885
15 59.57% 85.49% 70.21% 38685
16 51.83% 84.35% 64.21% 39405
17 57.98% 61.81% 59.84% 47970
18 20.93% 14.95% 17.44% 32655
19 54.04% 54.30% 54.17% 15465
accuracy 47.28%
macro avg 45.86% 47.06% 45.71% 750000
weighted avg 46.47% 47.28% 46.14% 750000
meta-learning accuracy 47.30%

Table 5: 5-way 1-shot classification report

Hyper parameters
epoch 5 5
train num episode 10000 10000
test num episode 10000 10000
train way 5 5
train shot 5 1
train query 15 15
test way 5 5
test shot 5 1
test query 15 15
optimizer Adam Adam
autoencoder lr 1.00E-06 1.00E-06
lr 1.00E-04 1.00E-04
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