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Abstract

Recent works (Zhou et al., 2023; Xia et al.,001
2024; Liu et al., 2023) on efficient instruction002
tuning have shown that large language models003
(LLMs) can achieve comparable performance004
through the calibrated selection of a small sub-005
set of high-quality (INSTRUCTION, RESPONSE)006
pairs from labeled instruction pools. Despite007
reduced computational costs, these approaches008
often overlook the labor-intensive nature of in-009
struction acquisition for labeling. We intro-010
duce a novel paradigm, Active Instruction Tun-011
ing with Reference-Free Instruction Selection,012
which supports instruction selection from both013
labeled and unlabeled instruction pools. Our ex-014
perimental results demonstrate that this method015
not only achieves comparable or superior per-016
formance while reducing labeling costs but also017
matches the performance of prior studies in018
labeled instruction settings. Furthermore, we019
pioneer the investigation into the relationship020
between text evaluation correlated with human021
subjective evaluations and instruction tuning,022
confirming the effectiveness of ranking aggre-023
gation in enhancing the tuning.024

1 Introduction025

Instruction tuning is a crucial mechanism enabling026

large language models (LLMs) to upgrade from027

merely language modeling to effectively assisting028

users. The complete process of instruction tun-029

ing mainly includes two stages: a) labeling raw030

instructions, e.g., analyzing and selecting a series031

of the unprocessed user instructions (community032

forum) to produce high-quality responses, and b)033

finetuning the model by these labeled instructions.034

Significant efforts (Wei et al., 2022; Longpre et al.,035

2023; Sanh et al., 2022; Wang et al., 2022) have036

been devoted to creating a substantial, diverse, and037

high-quality finetuning dataset. However, given038

the massive amount of raw instruction data, there039

is an urgent need (Köpf et al., 2023; Ding et al.,040

2023) for a more efficient procedure to stream-041
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Figure 1: The Framework of Active Instruction Tun-
ing with Reference-Free Instruction Selection setting.
There are three key components: generation, selec-
tion, and finetuning. By evaluating the quality of the
(INSTRUCTION, OUTPUT)s in a response-free setting,
the most challenging instructions for the model are se-
lected where GENERATION QUALITY INDEX will rank,
then label or append (RESPONSE)s for these instructions;
finally the LLM is finetuned. Here, OUTPUT refers to
the text generated by the model when an instruction
serves as a prompt, whereas RESPONSE denotes the text
that is labeled for an instruction.

line the substantial labor-intensive labeling-and- 042

finetuning pipeline of instruction tuning, especially 043

since Zhou et al. (2023) pioneered a small num- 044

ber of meticulously labeled examples that yield 045

comparable performance. 046

Recent works (Liu et al., 2024; Li et al., 2023; 047

Du et al., 2023; Cao et al., 2023), consider efficient 048

instruction tuning as coreset selection from the la- 049

beled (INSTRUCTION, RESPONSE) training pools. 050

For instance, Xia et al. (2024) uses the gradient- 051

based data selection that relies on labeled responses. 052

While this reduces computational costs at the fine- 053

tuning stage, it overlooks the higher costs asso- 054

ciated with response labeling (Köpf et al., 2023; 055

Zheng et al., 2024). Moreover, this kind of ap- 056

proach ignores the vast and evolving resources of 057

unlabeled instructions. Therefore, the efficient ac- 058
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quisition of useful unlabeled instructions should059

not be excluded from the entire instruction tuning060

pipeline. These motivate us to reframe the prob-061

lem: efficiently acquire the most useful instructions,062

then label responses or append original reference063

responses for finetuning.064

We introduce a more feasible paradigm, Active065

Instruction Tuning with Reference-Free Instruction066

Selection which actively selects a small number067

of instructions to label-and-finetune rather than068

passively labeling the entire pool before select-069

ing (Kung et al., 2023). Importantly, our paradigm070

is compatible with traditional coreset selection for071

labeled pools and does not necessitate incorporat-072

ing responses into the quality evaluation process.073

Inspired by Active Learning (Settles, 2009), we074

hypothesize that instructions that are challenging075

for LLMs are more effective training samples, as076

they help identify weaknesses of the LLM through077

examining its outputs. However, quality evaluation078

methods based on accuracy or training efficacy es-079

timation fail when evaluating the generated outputs080

without reference responses. The literature (Zhou081

et al., 2023; Reimann et al., 2023) shows that hu-082

mans can provide reliable evaluations on subjective083

aspects even without a reference, though human084

evaluation is costly.085

To identify the most challenging instructions, we086

present a novel data selection method, Generation087

Quality Index (GQI), based on automated text gen-088

eration evaluation, which correlates with human089

subjective evaluation without requiring any refer-090

ence. Firstly, for the vague concept of “quality”, we091

define text quality as the weighted combination092

of several textually significant attributes to be093

evaluated. To this end, our framework is divided094

into two modules: 1) Atomic-level Subjective Text095

Evaluators: we introduce a significant number of096

automated text evaluators that target various atomic097

subjective cognitive aspects (e.g., Coherence, Nat-098

uralness, Likability) to discern the quality of gener-099

ated outputs, instead of being restricted to a limited100

set of coarse-grained aspects, such as uncertainty,101

diversity, even writing style. 2) Neural Ranking102

Aggregator: “no output is perfect in all aspects”;103

inherent partial orders often conflict between dif-104

ferent texts in various aspects, such as an “elegant105

hallucination” versus a “flat scientific paragraph”.106

Therefore, when introducing many atomic aspects107

as signals, we aim to achieve a consensus rank-108

ing to counter this issue and enhance the effective-109

ness of tuning. This partial inconsistency problem 110

has been overlooked in many works (Wettig et al., 111

2024), and to our knowledge, we are the first to to 112

address it. 113

Inspired by the Crowd-BT model (Chen et al., 114

2013), we derive a reliable consensus rank by for- 115

malizing our rank using probabilistic methods, as- 116

signing learnable confidence parameters to each 117

atomic evaluator, which also provides interpretabil- 118

ity for the understanding of abstract and vague 119

“quality” from the subjective aspects. More impor- 120

tantly, this mechanism still supports previous work 121

that used a single ranking as guidance for quality 122

evaluation and introduces any ranking as a strong 123

supervision signal to the aggregator, e.g., human 124

quality experts, simply by setting its corresponding 125

confidence parameter to about 0.95. 126

Through extensive experiments, we verified sev- 127

eral main conclusions: 1) under the traditional 128

paradigm of coreset selection for a labeled instruc- 129

tion pool, our method proves that reference-free se- 130

lection achieves comparable results with the same 131

data size; 2) our method can drastically reduce the 132

cost of labeling, and the sampled pool of unlabeled 133

instructions by our method outperforms LIMA and 134

ALPAGASUS; 3) we confirm the ranking aggre- 135

gation has effectiveness in selection and tuning. 136

Our contributions are summarized below: 137

1. A more realistic efficient instruction tun- 138

ing paradigm. Active instruction tuning with 139

reference-free instruction selection efficiently 140

selects high-quality instructions, which enables 141

finetuning LLM and expands instruction re- 142

sources efficiently. We overcome the limitations 143

of only selecting from labeled pools. 144

2. A more general and novel methodology. We 145

introduce two classic techniques, Text Genera- 146

tion Evaluation and Rank Aggregation, to ad- 147

dress the reference-free generation evaluation 148

and the inevitable inconsistencies among mul- 149

tiple ranks, thereby obtaining a consensus rank 150

for instruction acquisition. 151

3. A series of inspiring results. a) We verify 152

that selecting high-quality data under without 153

reference responses condition is still feasible 154

and achieves comparable results in both with 155

and without labeled response scenarios; b) We 156

demonstrate that the introduction of ranking ag- 157

gregation is significantly effective; c) We ex- 158

plore the relationship between subjective as- 159
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pects of evaluation and instruction tuning for160

the first time.161

2 Related Work162

2.1 Instruction Tuning163

For improving the general zero-shot abilities of pre-164

trained large language models, Wei et al. (2022)165

firstly proposed “instruction tuning”, teaching an166

LM to perform tasks described via instructions.167

Consequently, Chung et al. (2022); Longpre et al.168

(2023); Wang et al. (2023b) have progressively en-169

larged the scale of finetuning training resources,170

ultimately encompassing millions of instances.171

LIMA (Zhou et al., 2023) firstly pioneered a172

novel discussion that finetuning can yield remark-173

able outcomes even with a limited training set174

size, as long as the instruction-responses pairs are175

high-quality labeled by experts. There are two in-176

dependent research directions: 1) continuing to177

use human-heuristic standards (Köpf et al., 2023;178

Conover et al., 2023; Singh et al., 2024) to label re-179

sponses or computational-costly (Ding et al., 2023;180

Zheng et al., 2024) expand the high-quality instruc-181

tion pool, and 2) performing high-quality coreset182

selection (Cao et al., 2023; Li et al., 2023; Du183

et al., 2023; Das and Khetan, 2023; Wu et al., 2023)184

within the already labeled instruction pool. We ar-185

gue that the latter direction, which separates the186

labeling and finetuning processes, does not truly187

reduce the overall cost.188

2.2 Active Learning and Quality-based189

Acquisition190

Given an unlabeled data pool and a constrained bud-191

get, Active Learning (Settles, 2009; Zhang et al.,192

2022c) emerges as a potentially efficient way to193

improve the finetuning performanc and label the194

most valuable instructions.195

Besides, among several mining criteria, those196

hinging on difficulty have proven to be most crucial197

for training (Felzenszwalb et al., 2010; Schröder198

et al., 2022), more specifically the hard examples199

are viewed as uncertain yet informative because the200

model’s predictions for these are least satisfactory.201

Conventional approaches that rely on a single met-202

ric (e.g., loss) limit the selection only in the labeled203

pool. They do not guarantee that the discrepancies204

between model outputs and reference responses205

accurately indicate the weakness of the model gen-206

eration ability (this is an observation in our exper-207

iments). We bridge a gap between challenging208

to LLM and generation quality degradation to 209

design a quality-based acquisition. 210

Our research pioneers the integration of active 211

learning principles in instruction tuning without 212

labelled responses. Particularly, Kung et al. (2023) 213

still makes the model more generalizable in the 214

labeled dataset, while Parkar et al. (2024) uses only 215

the cluster-based diversity metric to find valuable 216

instructions indirectly. In addition, reference-free 217

scenario and research (Meng et al., 2024; Muldrew 218

et al., 2024) also emerge in Direct Preference Opti- 219

mization (Rafailov et al., 2023) for LLM. 220

2.3 Text Generation Evaluation 221

Text generation evaluation (Celikyilmaz et al., 222

2021) is to assess the quality of the generated text 223

x given on a specific aspect a (e.g., coherence, in- 224

terestingness) and an optional reference op, then 225

predict a quality score y, 226

y = f(x|a, op), (1) 227

where f can be performed using expert annota- 228

tions following a protocol or automated evaluation 229

metrics. Reference-based similarity methods are 230

widely used in evaluation tasks, such as BLEU (Pa- 231

pineni et al., 2002), BLEURT (Sellam et al., 2020). 232

Many tasks, such as open dialogue, inherently lack 233

and should not have predefined references. Based 234

on the experience that humans can make subjec- 235

tive evaluations without references, reference-free 236

evaluations (e.g., FED (Mehri and Eskenazi, 2020), 237

UniEval (Zhong et al., 2022), GPTScore (Fu et al., 238

2023)) uniquely enable the assessment of fine- 239

grained and subjective aspects that strongly cor- 240

relate with human evaluations. These evaluations 241

are even beginning to surpass traditional reference- 242

free approaches. Our work considers 20 aspects 243

and corresponding metrics, as shown in Table 5. 244

Furthermore, notable endeavors have focused on 245

evaluating specific aspects with exceptional preci- 246

sion, i.e., AlignScore (Zha et al., 2023) on Factual- 247

ity. 248

2.4 Rank Aggregation 249

Due to the inherent different specialization (coher- 250

ence or consistency) and varying levels (weak or 251

strong) of expertise of each expert, rank aggrega- 252

tion (RA) (Mallows, 1957; Jin et al., 2020), refer- 253

ring to the task of optimizing a “consensus” rank 254

of a set of objects given partial ranks, or full ranks 255

obtained from a set of experts, is widely applied 256
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in various domains such as science, economy, and257

society. Formally, defining an aggregate function258

RAθ, given a set of crowdsourced atomic ranks259

{r1, r2, ..., rk}Kk=1, we can generate a better con-260

sensus rank r∗,261

r∗ = RAθ(r1, r2, ..., rk) (2)262

where θ can be interpreted as confidence weights263

to different atomic ranks. Numerous proposed264

RA methods can be divided into two fundamental265

strategies: unsupervised (Klementiev et al., 2008)266

and supervised (Liu et al., 2007), contingent upon267

the assumptions of whether they are guided by ex-268

plicit Oracle rank or not; The Bradley-Terry (BT)269

model (Bradley and Terry, 1952) and the Thur-270

stone model (Thurstone, 1927), which originated271

as early works, effectively capture the probabilis-272

tic relationship between objects by leveraging the273

achieved scores, making them particularly suitable274

for pairwise comparisons. Our work draws inspira-275

tion from the design of the Crowd-BT model (Chen276

et al., 2013), which learns the confidence weights277

for each atomic ranker and optimizes both scores278

and weights.279

3 Methodology280

In this section, we provide a detailed description281

of our proposed method. Section 3.1 outlines282

the formulation of the Active Instruction Tuning283

with Reference-Free Instruction Selection. Build-284

ing upon this, we detail the principle of instruc-285

tion acquisition using GQI in Section 3.2, where286

we decompose “difficulty” into multiple atomic287

reference-free quality metrics and then aggregating288

them, instead of relying on ambiguous metrics like289

uncertainty and diversity. Finally, we devote to290

the critical part–NEURAL RANKING AGGREGA-291

TION in GQI–in Section 3.3, to get a better ranking292

derived from multiple ranks.293

3.1 Paradigm Formulation294

Our insight involves using instructions as prompts295

to identify weaknesses in a model’s generation ca-296

pabilities. These selected instructions aid in fine-297

tuning LLMs by labeling responses or appending298

original reference responses.299

Given an LLM F(·;w0) with pretrained weights300

w0 and a large INSTRUCTION pool P = {xi}Ni=1301

without reference responses, where N is the size302

of the pool. Our task is to select a subset PS ⊂ P303

and then label or append (RESPONSE)s for them304

to get a training (INSTRUCTION, RESPONSE) pool 305

P label
S = {(xi, yi)}Bi=1 with a budget B, to achieve 306

satisfactory performance of the finetuned model 307

F(·;w⋆) with finetuned weights w⋆. The detailed 308

algorithm and framework are shown in Alg. 1 309

and Fig. 1, where we select instructions that are 310

challenging for the model in an iterative manner. 311

The core lies in designing an acquisition function 312

q(·;π), which evaluates the (INSTRUCTION, OUT- 313

PUT) to get the quality rank r⋆. 314

3.2 Generation Quality Index 315

Atomic Evaluators

(Scalable)

Neural Ranking 

Aggregator

(Learnable)

#𝒓𝟏. Engagingness
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#𝒓𝟓. Factuality

#𝒓𝟑. Understandability

Objective:

Loss:

#𝒓𝟐. Coherence #𝒓𝟔. Consistency

(20+ aspects)

……..

consensus rank 𝒓∗

(INSTRUCTION, OUTPUT) 
(INSTRUCTION, OUTPUT) (INSTRUCTION, OUTPUT) 

…

Generation Quality Index

…

Confidence 

Weight:

Figure 2: Our proposed GENERATION QUALITY IN-
DEX. Given N (INSTRUCTION, OUTPUT) items, K scal-
able atomic reference-free evaluators can score them to
get K different ranks for each pair-wise relationship.
Learning from the C(N, 2) × K pair-wise rank data,
NEURAL RANKING AGGREGATOR generates the con-
sensus ranking r⋆ for items.

Previous studies (Liu et al., 2023; Du et al., 316

2023; Muldrew et al., 2024; Li et al., 2023; Parkar 317

et al., 2024) have established that acquisition strate- 318

gies typically rely on limited dimensions, with un- 319

certainty and diversity being the most prominent. 320

However, these metrics are too ambiguous, posing 321

challenges for further acquisition strategy improve- 322

ments. 323

The approach we propose relies on the assump- 324

tions that “challenging samples that make gener- 325

ation ability degradation has a higher value for 326

the finetuning” (inspired by Settles (2009); Wang 327

et al. (2004)). Moving beyond the traditional “dif- 328

ficulty” locked to a single metric, e.g., inference 329

loss (Cao et al., 2023), our hypothesis makes a con- 330

nection between difficulty and multivariate quality 331
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evaluation; there are multiple atomic subjective332

aspects of quality: coherence, interestingness, flexi-333

bility, naturalness, etc. Therefore, we decompose334

the “difficulty” into several atomic metrics, {r}Ki=1,335

that correlate to human evaluation and then aggre-336

gate these independent evaluation ranks to the final337

acquisition decision. Here, we work on the ranks338

instead of scores because scores possess more noise339

than the rank signal (Jin et al., 2019), and we do not340

assume the existence of an explicit oracle difficulty341

serving as the supervision signal for regression.342

3.3 Neural Ranking Aggregation343

To solve partial order inconsistency led by different344

metrics, we develop a NEURAL RANK AGGREGA-345

TION module, assigning each atomic evaluation a346

learnable confidence weight to measure its impor-347

tance in predicting one consensus rank.348

Formulation. After the model generates out-349

puts, there are N (INSTRUCTION,OUTPUT) items350

{ci = (x, y)i}Ni=1 and a set of K evaluation scor-351

ers. Due to different evaluation mechanisms, the352

scores estimated by different scorers noticeably di-353

verge, for instance, the range of different scores.354

Instead, we derive the K rank lists, Rk = {co1 ≻k355

· · · ≻k coN}Kk=1, from scores to express the indi-356

vidual preferences of the scorers, where ≻k repre-357

sents the preference order of the k-th scorer, and358

oj denotes the index of j-th instruction-output in359

this rank list. If a correct ranking exists, when two360

scorers give conflicting rankings, it is not possible361

to treat both scorers as equally reliable. Thus, this362

motivates us to measure which scorer is more trust-363

worthy. Inspired by Crowd-BT (Chen et al., 2013),364

we define a learnable parameter ηk for the k-th365

scorer as the probability that the k-th scorer agrees366

with the proper pairwise preference, then we can367

formalize any pair (ci, cj) with the true preference368

ci ≻ cj ,369

ηk ≡ P (ci ≻k cj |ci ≻ cj), (3)370

if the k-th scorer is more plausible, ηk is closer to371

1. Specifically, we apply the sigmoid function to372

the learnable parameters set W = {c1, . . . , cK} to373

derive the ηk,374

ηk = sigmoid(ck) ∈ [0, 1], (4)375

where each ck is a learnable parameter, optimized376

with the model parameters θ. Based on the confi-377

dence weights, we can further formalize the pre-378

dicted preference order of (ci, cj) predicted by k-th379

scorer, 380

P (ci ≻k cj) = P (ci ≻k cj |ci ≻ cj) · P (ci ≻ cj)

+ P (ci ≻k cj |ci ≺ cj) · P (ci ≺ cj)

= ηk · P (ci ≻ cj)+

(1− ηk) · P (ci ≺ cj),
(5) 381

where P (ci ≻ cj) is the probability of (ci ≻ cj) 382

predicted by the aggregation module. Here, we 383

use the Longformer (Beltagy et al., 2020) to en- 384

code the evaluated (ci, cj) and then predict two 385

scores (sci, scj) by an MLP layer separately, finally 386

P (ci ≻ cj) can be defined by sigmoid(sci − scj) 387

simply. The log-likelihood for s and η can be for- 388

mulated as 389

L(η, s) =
K∑
k=1

∑
(ci,cj)∈Rk

logP (ci ≻k cj). (6) 390

Non-Guidance v.s. Guidance Strategy. Based on 391

the hypothesis that “whether explicit golden rank 392

exists”, we offer two more specific assumptions 393

and provide corresponding strategies. 394

1) Implicit Oracle Rank: when the oracle rank is 395

not explicitly accessible, our proposed algorithm 396

fundamentally operates without any ground-truth 397

rank guidance. Its primary aim is to combine varied 398

ranks provided by multiple experts, deriving an 399

enhanced implicit gold rank. 400

2) Explicit or Assumed Oracle Rank: we hy- 401

pothesize the existence of an explicit oracle rank 402

or consider any metric an oracle standard rank. For 403

instance, we may assume an oracle-rank-in-loop. 404

Using the oracle rank as a beacon for guiding the 405

training of the aggregation module paves the way 406

to elucidate confidence parameters that calibrate 407

the various atomic metrics in alignment with the 408

oracle rank. To elaborate, when deploying a guid- 409

ance strategy, we introduce a new confidence pa- 410

rameter, ηk+1, corresponding to the signal of oracle 411

rank. This parameter can be designated with a fixed 412

value, approximately equal to 0.95, and deemed 413

non-learnable. This fixed weight can be interpreted 414

as a regularization term. 415

Via this paradigm, we foresee a heightened cor- 416

relation between the output of the aggregation mod- 417

ule and the oracle rank. Simultaneously, the learn- 418

able confidence parameters offer interpretability 419

relative to the oracle rank. 420
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Model Alignment Type Alignment Data Size MT-Bench(1-10) AlpacaEval 2(%)

GPT-4-as-Judge LC WR

Proprietary Models
Claude 3 Opus SFT+DPO — 9.18 40.5 29.1
GPT-4 SFT+DPO — — 38.1 23.6
GPT-3.5-turbo SFT+DPO — 7.94 19.3 9.2

Mistral-7B as Base Model

Mistral-7B-Instruct-v0.2 — — 7.60 17.1 14.7
UltraChat (Ding et al., 2023) SFT 200K 6.30 8.4 6.2
zephyr-sft (Tunstall et al., 2023) SFT 200K 7.32 — —
zephyr-beta (Tunstall et al., 2023) SFT+DPO 200K+60K 7.34 13.2 11.0
DElTA (Liu et al., 2024) SFT 6K 7.22 — —
DElTA (Liu et al., 2024) SFT 10K 7.28 — —

Random-Selection SFT 10K 6.31 8.2 5.8
Single(Engaging) SFT 10k 6.82 7.9 6.0
GQI (our proposed) SFT 6K 7.15 8.3 6.1
GQI (our proposed) SFT 10K 7.25 8.6 6.5

Llama 2-7B as Base Model
LLaMA2-7B-Chat SFT+RLHF >100K+>1M 6.27 5.4 5.0
Vicuna-7B-16k SFT 16K 6.22 6.3 4.2
Tulu 2 (Ivison et al., 2023) SFT 326K 6.30 — —
TuLu 2 +DPO 7B (Ivison et al., 2023) SFT+DPO 326K+60K 6.29 9.2 8.2
Random-Selection SFT 10K 6.20 6.1 5.0
Single(Natureness) SFT 10K 6.17 6.3 5.2
GQI (our proposed) SFT 10K 6.33 6.7 5.5

Llama 3-8B as Base Model
Llama 3-8B-Instruct SFT-DPO — 8.1 26.0 25.3
UltraChat (Ding et al., 2023) SFT 200K 6.6 6.2 4.6
GQI (our proposed) SFT 10K 7.21 7.1 6.0

Table 1: Efficient instruction tuning performance on instruction-following benchmarks in labeled instruction pools.
GPT-4-as-Judger give the scores in range (0, 10); LC and WR denote length-controlled and raw win rate.

4 Experiments421

There are two efficient instruction tuning scenar-422

ios: a) in coreset selection for (INSTRUCTION, RE-423

SPONSE) dataset, reference-free select the valuable424

pairs; b) in coreset selection in (INSTRUCTION)425

dataset, select the valuable instructions then to la-426

bel them. Therefore, we have two main research427

objectives: (a) without RESPONSE as the selection428

signal, our GQI still achieve comparable instruc-429

tion tuning results compared to previous methods430

when coreset selection in the labeled pool. (b) our431

proposed methodology achieve better finetuned per-432

formance while reducing the labor-intensive nature433

of the labeling process. For each objective’s exper-434

iment, we emphasize the different instruction data435

sources setting to ensure a fair comparison (it is436

undeniable that the quality basis of the data pool437

has a direct impact on the final finetuning perfor-438

mance): for (a), we select in the labeled instruction439

pools (OPENASSISTANT, DOLLY, FLAN-V2, and440

OPENORCA) followed previous work (Wang et al.,441

2023a; Xia et al., 2024); for (b), we use STACKEX-442

CHANGE and WIKIHOW as raw instructions source443

to compare with LIMA that is also heuristically444

labeled through these two pools. Furthermore, we 445

introduce extensive ablation studies, especially fo- 446

cusing on the relationship between subjective as- 447

pects and finetuning efficiency and aggregation ef- 448

fectiveness, which is, to our knowledge, the first 449

exploration in the domain of instruction tuning. 450

There are two types of benchmarks: 1) 451

instruction-following benchmarks, including MT- 452

BENCH and ALPACAEVAL-2; 2) downstream 453

benchmarks for cognitive performance, includ- 454

ing MMLU, TRUTHFULQA, HELLASWAG, and 455

ARC-C. The detailed settings are listed in 456

Appendix A: instruction pools, labeling setting, 457

atomic text generation evaluation, finetuning set- 458

ting, generation setting, benchmark setting, abla- 459

tion setting, and baseline details. 460

4.1 Main Results 461

We present the results of our proposed methodology 462

on two types of benchmarks and compare them 463

to several baseline methods. We summarize the 464

conclusions below. 465

It remains effective even without a reference re- 466

sponse for selection. While we acknowledge that 467

the quality of RESPONSE affects the final finetuning 468
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performance, this does not mean that coreset selec-469

tion must depend on RESPONSE, since the quality470

of the labeled pool already is not low. As shown471

in instruction-following performance Table 1 and472

downstream performance Table 6, our method 1)473

outperforms data selection via random sampling;474

2) achieves comparable performance to the previ-475

ous methods, e.g., DEITA depending on the selec-476

tion using (INSTRUCTION, RESPONSE) with simi-477

lar size of data; 3) surpasses models finetuned for478

CHAT while using fewer data.479

Our method boosts the finetuning-labeling effi-480

ciency instead of human-heuristically selection481

or filtering rule. Ensuring that the instruction482

data source is roughly equivalent to LIMA, we au-483

tomatically select approximately 1K instructions484

using our method. Our method offers lower costs485

than LIMA. Moreover, after labeling responses,486

our approach demonstrates superior performance487

to LIMA and ALPAGASUS (which use “LLM-as-488

filter”), proving the efficiency as shown in Table 2.489

Generality across models. We applied our method490

on three different base models: MISTRAL-7B-491

V0.1 (mistralai, 2023), LLAMA 2-7B (AI@Meta,492

2023), and LLAMA 3-8B (AI@Meta, 2024). We493

observe the effectiveness across all models.494

Single-aspect text evaluation can enhance the ef-495

fectiveness. As demonstrated in the Table 1, using496

single-aspect, such as ENGAGINGNESS and NAT-497

URALNESS, can improve performance compared498

to random selection. Through our observations499

of model outputs, we have identified significant500

discrepancies in the quality of outputs. Some out-501

puts with poor quality consistently perform poorly502

across various subjective aspects, indicating that503

any subjective aspect could be used to select chal-504

lenging INSTRUCTION for the model (cases in Ta-505

ble 13). In the subsequent section, we will confirm506

this finding further.507

Aggregation yields better ranking. Compared to508

ranking based on a single aspect, GQI achieves509

better performance. Continuing from the previous510

observation, this means that although some items511

are inferior in most single-aspect rankings, aggre-512

gating them can resolve conflicts among aspects513

and achieve a better ranking.514

4.2 Ablation Study515

The LLAMA 3-70B-INSTRUCT model has demon-516

strated capabilities on par with Gemini (google517

deepmind, 2024) and GPT-4 (OpenAI et al., 2024)518

across a range of instruction-following and down- 519

stream benchmarks. Its open-source characteristics 520

provide an optimal trade-off between experimen- 521

tal accuracy and the costs incurred from extensive 522

ablation studies. Consequently, we persist in uti- 523

lizing MT-BENCH and shift the LLAMA 3-70B- 524

INSTRUCT as the judger. 525

Samples
S

co
re

s

Heatmap of correlation between pair aspects

0.65

0.95

0.70

0.75

0.80

0.85

Figure 3: MT-bench score of different selection methods
as sample size increase when Llama 3-70B-Instruct as
judger. Mistral 7B is the base model for tuning.

Choices of Aggregation Strategy There are mul- 526

tiple aggregation strategies, and we test linear rank 527

aggregation (Linear RA) and Neural RA w/ Re- 528

sponse Guidance (Their descriptions are listed in 529

Appendix C.3). As shown in Figure 3, 1) Linear 530

RA yields satisfactory results despite its simplicity. 531

We speculate that each aspect has a unique contri- 532

bution, and even though a few ranks derived from 533

specific indicators may conflict with the majority, 534

they play some crucial roles. 2) Neural RA w/ Re- 535

sponse Guidance performs noticeably worse. We 536

assume the oracle rank is “the quality of reference 537

responses must be better than that from model gen- 538

eration”. An in-depth case study is in Table 14. It 539

reveals that the model generates better text than 540

the reference responses when finetuned on these in- 541

structions and corresponding reference responses in 542

the previous iteration. This shows that the so-called 543

“oracle” ranking is not as good as the reference-free 544

evaluation, so it is less effective than GQI’s default 545

non-guidance. This also enlightens us that assum- 546

ing any ranking as the oracle might not necessarily 547

yield the optimal effect. 548

Iteration performs significantly when selected 549

samples increase. When the number of selected 550

instructions is relatively low, the effect of the itera- 551

tion is not obvious, and even worse than the result 552

of single-step. One reason is that the total training 553
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Model Data Size Instruction Acquisiton Instruction-following Benchmarks Cognitive Benchmarks

MT-Bench(1-10) AlpacaEval 2(%) TruthfulQA ARC Hellaswag MMLU

LIMA 1,030 Human heuristic selection 2.74 3.95 41.90 55.63 80.09 43.71
ALPAGASUS 1,030(sampling from 9K) LLM-as-filter 2.65 3.57 42.03 55.49 80.25 44.12

GQI 1,030 rank-aggregation selection 2.81 4.13 41.95 55.70 80.18 43.91

Table 2: Efficient instruction tuning methods performance on instruction-following and cognitive benchmarks in
unlabeled pools for instruction acquisition. ALPACAEVAL 2 uses raw win rate as metrics. The base pretrained
model is LLAMA 2-7B.

step when using iteration is less than that of single-554

step selection; while the effect of iteration becomes555

more obvious when more samples are acquired.556

It implies that iteration enhances the diversity of557

the entire sampling process, as each selection de-558

pends on the varied generative capabilities of the559

iteratively finetuned model. In contrast, single-step560

sampling relies solely on the initial model, result-561

ing in relatively poorer diversity.562

Single Aspect and Core Aspects. We verify the563

rationality of the aggregation mechanism and iden-564

tify a group of core aspects by analyzing the corre-565

lation among various single-aspect rankings. The566

figure 4 reveals a high degree of correlation indicat-567

ing that the instructions selected exist overlapping568

using different single aspects, so they will all be569

effective; however, the conflicts in ranking prove570

that aggregation is necessary. Moreover, we can de-571

crease these aspects by distinguishing correlations572

to identify core aspects in F. Subsequently, we eval-573

uate the effectiveness of instruction selection based574

on single-aspect and aggregated rankings of these575

core aspects on MT-BENCH. Table 7 indicates576

that instructions categorized under “informative-577

ness” and “engagingness” generally perform better.578

Furthermore, while the performance using core as-579

pects surpassed that of single-aspect, it does not580

quite match the outcomes achieved by aggregating581

all aspects, highlighting the nuanced contribution582

of each aspect to the overall performance. More583

analysis is provided in the Appendix.584

Effectiveness of Confidence Weight. We com-585

pute Spearman’s correlation coefficient between586

each atomic rank and the corresponding aggregated587

rank in two guidance settings. As shown in Ap-588

pendix Sec. G, for Non-Guidance, when no “ora-589

cle” ranking as guidance, the confidence weights590

on atomic rankers are generally higher, and the cor-591

relation is also stronger than with guidance. Such592

findings interpretably reflect the shortcomings in593

the quality of the reference responses compared594

to model-generated outputs. Moreover, within the 595

metrics, those recognized as more powerful, such 596

as GPTScore, are associated with higher confi- 597

dence weights, which further validates the efficacy 598

of confidence weights. Additionally, rankings with 599

high confidence weights also show a higher correla- 600

tion with aggregated rankings, affirming the utility 601

of confidence weights. 602

5 Conclusion and Discussion 603

We innovatively connect efficient finetuning with 604

labeling to select potentially valuable instructions 605

without needing reference answers. Although some 606

previous efficient instruction tuning methods have 607

been built on the assumption of “learning from dif- 608

ficulty”, they all rely on a single metric and labeled 609

responses. However, our approach proves we can 610

achieve excellent results with text generation eval- 611

uation aligned with human subjective evaluation. 612

Most importantly, there are two advantages of our 613

work. 1) Enhancements to the acquisition become 614

extensible and decomposable. Grounded in text 615

generation evaluation and rank aggregation, we can 616

augment the metrics with increasingly refined mea- 617

surements and a more reliable aggregation algo- 618

rithm, even using crowd-sourced expert evaluation; 619

2) Rank aggregation is a promising mechanism 620

that resolves conflicts across multiple scorers to 621

improve the finetuning performance. While many 622

studies have employed multiple scorers primarily 623

to gather extensive ranking data for training an 624

overall scorer, the true strength of aggregation lies 625

in its ability to detect and analyze inconsistencies 626

in partial orders, particularly during the later stages 627

of iteration. This observation deepens our under- 628

standing of quality scorer variability. 629

Limitations 630

Atomic Quality Assessment. Our study uses 631

tools for the text generation evaluation skilled at 632

evaluating linguistic characteristics, overlooking 633

some functional evaluations of downstream tasks, 634
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e.g., functional correctness of generated code in635

code generation tasks or CoT Tasks.636

High computational costs in generating outputs.637

Generating outputs for each instruction is costly638

in terms of both time and computation, yet this639

seems unavoidable for all tasks that rely on model640

feedback. Our trick involves directly pruning in-641

structions that prompt high-quality output at each642

selection step. These pruned instructions are then643

removed from subsequent selection processes.644

Ethics Statement645

We use open-source instruction data and LLMs in646

our finetuning. We do not involve the inclusion of647

any dangerous or private sensitive information.648
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A Implementation Setting 1001

Below are some specific settings in the experiment: 1002

A.1 Data Source and Labeling 1003

As illustrated above, we acknowledge that the orig- 1004

inal data pool’s quality impacts a fair comparison 1005

of the final finetuning effects; for instance, the fine- 1006

tuning performance in the human-annotated high- 1007

quality instruction datasets, like OPENASSISTANT 1008

and DOLLY, will mostly be better than raw data 1009

from STACKEXCHANGE. To avoid the influence 1010

of this factor on our evaluation of the effective- 1011

ness of our instruction selection algorithm, when 1012

verifying object (a), we select data sources, includ- 1013

ing DOLLY (Conover et al., 2023), OPENASSIS- 1014

TANT (Köpf et al., 2023), FLAN-V2 (Longpre 1015

et al., 2023) and OPENORCA (Mukherjee et al., 1016

2023) for objective (b), we utilize STACKEX- 1017

CHANGE 1 and WIKIHOW (Koupaee and Wang, 1018

2018) as sourced, because it’s also the source of 1019

LIMA. The detailed data statistic is shown in Ta- 1020

ble 3. Furthermore, there are some detailed prepro- 1021

cessing and labeling settings as below: 1022

FLAN-V2 We randomly sampled 100K samples 1023

from the original data as our base pool for verifying 1024

our method. 1025

Openorca We randomly sampled 100K samples 1026

from the original data as our base pool for verifying 1027

our method. 1028

StackExchange STACKEXCHANGE contains 1029

179 online communities (exchanges), where users 1030

interact by posting questions and answers. In the 1031

face of such a large amount of data, we followed 1032

the part operation of Zhou et al. (2023) and filtered 1033

the questions with the lowest score self-contained 1034

in the title to save 6000 questions. Furthermore, 1035

we will keep the top answer for each question 1036

for subsequent labeling, where the answer will 1037

be carefully modified with human and GPT-4 1038

intervention. 1039

wikiHow We used the wiki-style question di- 1040

rectly from Koupaee and Wang (2018) in the 1041

dataset. The original answer will be modified with 1042

human and GPT-4 for subsequent finetuning. 1043

A.2 Selection Proportions Setting 1044

The data volumes from these sources are uneven, so 1045

we manually set the proportions for each selection 1046

1https://stackexchange.com/
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Table 3: Details of the instruction pool.

Dataset # Instances Sourced from Preprocess Prompt Length Response Length

FLAN-V2 100,000 Mixture of (NLP datasets, human-written instructions) Random-Sampling 362 32.6
DOLLY 15,011 Human-written from scratch All 118.1 91.3
OPENASSISTANT 55,668 Human-written Conversation All 34.8 212.5
OPENORCA 100,000 Generated by GPT-4 Random-Sampling 372.9 328.1

STACKEXCHANGE 6000 Raw community forum Filtering 357.6 -
WIKIHOW 1384 Online wiki-style publication All 8 -

step according to the ratio of Dolly: OpenAssistant:1047

FLAN-v2: OpenOrca = 1:1:4:4.1048

A.3 Downstream Task Benchmarks Details1049

We evaluate the cognitive performance of models1050

on MMLU (Sanh et al., 2022), ARC (Clark et al.,1051

2018), HELLASWAG (Zellers et al., 2019), TRUTH-1052

FULQA (Lin et al., 2022) included in Huggingface1053

Open Leaderboard. We do not specifically fine-1054

tune the model to have strong CoT capabilities,1055

therefore, we did not test it on GSM8K and WINO-1056

GRANDE. We follow the standard evaluation pro-1057

tocols.1058

A.4 Instruction-following Benchmarks Details1059

We evaluate our models on two of the most1060

popular instruction-following benchmarks, MT-1061

BENCH (Zheng et al., 2023), ALPACAEVAL1062

2 (Dubois et al., 2024) (as shown in Table 4), which1063

automatically judge a model’s conversational abil-1064

ity by queries of multiple topics.1065

WR refers to win rate compared to the Baseline1066

Model, and LC refers to the length-controlled win1067

rate against biases in LLM-as-Evaluator.1068

A.5 Evaluation Strategies1069

While LLM-as-Evaluator is a good replacement for1070

non-scalable and costly human evaluation, it is not1071

inexpensive, especially when facing large-scale ab-1072

lation experiments. It is unacceptable to expand the1073

scale of assessment regardless of cost. Therefore,1074

we adopt an adaptive evaluation strategy. In the1075

main experiment to verify the primary objectives,1076

we use a standard protocol, and during ablation1077

experiments, we introduce efficient evaluation for1078

analysis.1079

Standard Evaluation Protocol For the main re-1080

sults, we strictly followed the default evaluation1081

protocol in all evaluation samples.1082

Low-cost Evaluation for Large-scale Abla-1083

tion Study For the numerous ablation studies1084

prompted by subjective aspects and aggregation, it1085

is impractical and unnecessary to exclusively em- 1086

ploy GPT-4 as the judger. Instead, we utilize a com- 1087

parable open-source large language model, LLAMA 1088

3-70B INSTRUCT. This model has achieved 1089

commendable results across various major leader- 1090

boards 2, showing little gap in performance com- 1091

pared to the original version of GPT-4 (06/13). 1092

A.6 Generation Setting 1093

In generating (OUTPUT)s stage, we set 1094

“do_sample” to “True”, “temperature= 0.1”, 1095

“max_new_tokens= 512”. We followed the 1096

standard evaluation protocol to set the generation 1097

hyperparameters in the evaluation stage. 1098

A.7 Finetuning Setting 1099

All of our experimental fine-tuning is performed 1100

on Mistral-7B (Jiang et al., 2023) and LLAMa-3- 1101

8B 3. We run model finetuning for 5 epochs, with 1102

per step batch size set to 128. We use Adam with 1103

β1 = 0.9, β2 = 0.999, and cosine learning rate 1104

scheduler starts from 2e − 5, and decays to 0. In 1105

addition, we run all finetuning experiments on an 1106

NVIDIA A6000 48G GPU cluster, with 8 A6000 1107

GPUs used in each experiment. 1108

A.8 Neural Ranking Aggregation Setting 1109

We use ALLENAI/LONGFORMER-LARGE-4096 as 1110

encoder to encode the (INSTRUCTION, OUTPUT) 1111

and a MLP layer as score predictor. Because in- 1112

putting a batch of pair-wise rank relationship de- 1113

rived from K metrics from Tab. 5, there are K 1114

learnable confidence weights that initialized as 1115

0.95. For fair aggregation for each aspect, we 1116

set the each loss updating hyperparameter weight 1117

as 1/numbermetrics in aspect. And the lrencoder = 1118

2e− 4, lrmlp = 1e− 3 and epoch = 5. 1119

2https://tatsu-lab.github.io/alpaca_
eval/,https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard,https://huggingface.co/
spaces/open-llm-leaderboard/open_llm_leaderboard

3https://huggingface.co/meta-llama
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Table 4: Details of the instruction-following benchmarks.

# Instances Evaluator Model Scoring Type Metric Baseline Model

ALPACAEVAL 2 805 GPT-4 Turbo Pairwise comparison LC & WR GPT-4 Turbo
MT-BENCH 80 GPT-4 Single-answer grading Rating of 1-10 -

A.9 Iteration Setting1120

In GQI, the default setting is iteration. There are1121

three budgets: 3K, 6K, 10K. For 3K and 6k, we1122

selects 1, 500 samples in each iteration step; for1123

10K, 1, 667 samples are selected in each iteration.1124

B Atomic Text Generation Evaluation1125

The aspects we will evaluate and the metric/tool1126

used for each aspect are all listed in Table 5. For1127

the use of these tools, there is open-source GitHub1128

code available from researchers, and there are no1129

special settings required.1130

C Baselines1131

C.1 Coreset Selection Methods in labeled1132

Instruction Pools as Baselines1133

DEITA. Liu et al. (2024) measures data from1134

three dimensions: complexity, quality, and diver-1135

sity. The method ask CHATGPT to rank and score1136

the variants of the same data sample for a small1137

seed dataset, and train a complexity and quality1138

scorers based on these scores. In the last step, they1139

utilize the trained scorers and adopt a score-first,1140

diversity-aware approach to select the “good” data1141

samples. This method belongs to selection depend-1142

ing on (INSTRUCTION, RESPONSE).1143

UltraChat. Ding et al. (2023) is a self-refinement1144

dataset consisting of 1.47M multi-turn dialogues1145

generated by GPT-3.5 over 30 topics and 20 dif-1146

ferent types of text material. The resulting dataset1147

contains approximately 200k examples1148

zephyr-beta. zephyr-beta is a fine-tuned version1149

of mistralai/Mistral-7B-v0.1 that was trained on on1150

a mix of publicly available, synthetic datasets using1151

Direct Preference Optimization (DPO).1152

Tulu 2. Ivison et al. (2023) keep a number of1153

high-quality datasets from the first mix version,1154

TÜLU-V1-mix, over human and GPT-generated1155

datasets and add new datasets that are either care-1156

fully manually curated for quality or generated1157

from GPT models while encouraging complexity1158

and diversity. The resulting dataset contains ap- 1159

proximately 326K. 1160

ORCA. Mukherjee et al. (2023) proposed 1M 1161

examples generated by GPT-4 which considered 1162

a high quality instruction tuning data. ORCA is 1163

Llama 2-7B finetuned by these examples. 1164

Alpaca-GPT4. Wang et al. (2023b) firstly pro- 1165

posed using LLM self-instruct to produce 1166

C.2 Coreset Selection Methods in Unlabeled 1167

Instruction Pools as Baselines 1168

LIMA. Zhou et al. (2023) thoroughly demon- 1169

strated the process of selecting from raw instruction 1170

data, for instance, Community Questions & An- 1171

swers, and then meticulously labeling responses for 1172

these instructions. Initially, the data was coarsely 1173

filtered using a filtering rule, followed by expert- 1174

heuristically selection, and finally dedicated label- 1175

ing the responses, ultimately yielding 1030 samples 1176

for finetuning. 1177

ALPAGASUS. ALPAGASUS (Chen et al., 2024) 1178

can be understood as a method that involves select- 1179

ing from machine-generated (instruction, output) 1180

pairs, specifically from within an alpaca dataset, 1181

using a Large Language Model (LLM) as a filter to 1182

select and modify outputs to form responses. This 1183

approach employs a more powerful LLM, such as 1184

ChatGPT, to perform these tasks, which, compared 1185

to our method, also incurs higher costs. 1186

C.3 Different Rank Strategies as Baseline 1187

Random Selection. Random selecting is essen- 1188

tially a form of uniform sampling, representing the 1189

average level of the data pool that can be extracted 1190

without any optimized selection measures. If our 1191

selection algorithm yields instructions that result 1192

in model fine-tuning outcomes better than those 1193

of random selecting, this demonstrates our algo- 1194

rithm’s ability to select high-quality instructions. 1195

Single Aspect Ranking. According to Table 5, 1196

we ranked the (INSTRUCTION, OUTPUT)s based on 1197

each subjective aspect. Each aspect contains multi- 1198

ple scorers/metrics, so we aggregated the rankings 1199
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Aspects Definition Corresponding Metrics
Naturalness (Nat) Judge whether a response is like something a person would naturally say. UniEval-Nat

Coherence (Coh)
Determine whether this response serves as a valid continuation of
the previous conversation.

UniEval-Coh, DynaEval (Zhang et al., 2021),
FED-Coh, FineD-Eval (Zhang et al., 2022a) (Coh), GPTScore

Engagingness (Eng)
Measure how captivating, interesting, or compelling a piece of text is
to the user.

EnDex (Xu et al., 2022), UniEval-Eng,
DynaEval, FED-Eng, GPTScore

Understandability (Und) Judge whether the response is understandable.
UniEval-Und, DynaEval,
FED-Und, FineD-Eval (Multi), MDD, GPTScore

Sensibleness (Sen)
Judge the text makes sense and is free from contradictions, ambiguities,
or misleading statements.

MDD (Zhang et al., 2022b)

Likability (Lik) Judge whether the system displays a likable personality.
MDD, DynaEval, FED-Sen,
FineD-Eval (Lik), GPTScore

Interestingness (Int) Measure how interesting or boring this conversation was. MDD, DynaEval, FED-Int, GPTScore

Factuality (Fac)
Judge whether the response contains factual consistency errors, such as
contradictions with input information or hallucinations irrelevant to the context

AlignScore, GPTScore

Consistency (Con) Judge how coherence and logical continuity within a conversation DynaEval, FED-Con, FineD-Eval (Multi), GPTScore
Informativeness (Inf) Judge whether the response provides unique and non-generic information. DynaEval, FED-Inf, FineD-Eval (Multi), GPTScore

Relevance (Rel) Measure how well is the generated text relevant to its source text. DynaEval, FED-Rel, GPTScore
Fluency (Flu) Judge whether the generated text is well-written and grammatical. DynaEval, FED-Flu, GPTScore
Specific (Spe) Judge whether the generated text is generic or specific to the source text. DynaEval, FED-Spe, GPTScore

Correctness (Cor)
Judge whether the generated text is correct or there was a misunderstanding
of the source text.

DynaEval, FED-Cor, GPTScore

Semantically
Appropriateness (SP)

Judge whether the response topically fits into its corresponding dialogue context. DynaEval, FED-SP

Error Recovery (ER) Judge whether the system can recover from errors that it makes DynaEval, FED-ER, FineD-Eval (Multi), GPTScore
Diversity (Div) Judge whether there is diversity in dialogue. DynaEval, FED-Div, FineD-Eval (Multi), GPTScore

Topic Depth (TD) Judge whether the system discusses topics in depth. DynaEval, FED-TP, FineD-Eval (Top), GPTScore
Flexibility (Fle) Judge whether the system is flexible and adaptable to the user and their interests. DynaEval, FED-Fle, FineD-Eval (Multi), GPTScore

Inquisitiveness (Inq) Judge the system is inquisitive throughout the conversation. DynaEval, FED-Inq, FineD-Eval (Inq), GPTScore

Table 5: List of atomic aspects of text quality assessment and corresponding metrics.

from multiple scorers within each aspect. Ideally,1200

as long as the scorer is qualified, it can clearly1201

distinguish poorly generated outputs. Preferences1202

across different aspects only emerge when the gen-1203

erated texts have no obvious deficiencies. This1204

intuition is one of the reasons for incorporating an1205

aggregation mechanism.1206

Linear Ranking Aggregation. As a traditional1207

and naive aggregation strategy (Fox and Shaw,1208

1993), it essentially sets the weights of each met-1209

ric’s rank to be the same and serves as a baseline.1210

Neural Rank Aggregation w/ Response Guid-1211

ance. We assume that exists an explicit oracle1212

ranking, where the quality of labeled/appended re-1213

sponses are always superior to the generation of1214

LLM prompted by the same instruction. In each it-1215

eration generation step, we used the instructions se-1216

lected in the previous iteration as prompt to get the1217

generated outputs. As we have already labeled or1218

appended the reference responses to these instruc-1219

tions before this step, based on the oracle ranking1220

assumption, we will get an oracle ranking based on1221

outputs and responses, where reference responses1222

are better than generated outputs. Using this rank-1223

ing signal to neural aggregation module, we set1224

the corresponding weight as 0.95 and freeze this1225

weight.1226

D Active Instruction Tuning with 1227

Reference-Free Instruction Selection 1228
Our proposed method is open to any form of in- 1229

struction. Firstly, we prompt the LLM by instruc- 1230

tions following the above generation setting to get 1231

the outputs for each instruction; then we use all 1232

text generation metrics to evaluate the (instruction, 1233

output)s to get a set of K scores from K metrics. 1234

In the rank aggregation stage, we randomly sam- 1235

pled the any two pairs of (instruction, output)s to 1236

get a batch pair-wise order tuple for training this 1237

aggregation module. Until the end of training, we 1238

scored each (instruction, output) using the trained 1239

aggregator then rank them. For computational cost, 1240

we will remove the 1/3 instructions whose gener- 1241

ated outputs have top quality in this rank list, so 1242

that it does not participate in the subsequent selec- 1243

tion iteration. Based on the ranking, we selected 1244

the most difficult instructions as the resources for 1245

finetuning. 1246

E Cognitive Performance on Downstream 1247

Tasks 1248

To evaluate the fine-tuning effects of the instruc- 1249

tions selected by our GQI on the model, we con- 1250

ducted tests on several benchmarks that assess cog- 1251

nitive abilities in downstream tasks. The experi- 1252

mental results are displayed in Table 6. 1253

Preference correlated human evaluation can en- 1254

hance the performance on cognitive abilities. 1255

As discussed above, our evaluation aspects are 1256
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Algorithm 1: Active Instruction Tuning
with Reference-Free Instruction Selec-
tion

1 Input:
2 F(·;w0) : Pretrained Large LM;
3 P = {xi}Ni=1: Instructions Pool without

Responses;
4 {rj(·)}Kj=1: A Set of Reference-free Atomic

Metrics;
5 RA(·): Rank Aggregation Module;
6 B: Total Budget;
7 T : Sampling Size in each Step;
8 Output:
9 P label

S = {(xi, yi)}Bi=1 : labeled Instruction
Subset within a Budget B;

10 F(·;w⋆): LLM with finetuned weights w⋆;
11 Procedure:
12 P label

S = []
13 for iter ∈ [B/T ] do
14 Y ← F({xi}Ni=1;w);

/* Generate the Model’s outputs */

15 RK ← {rj({xi}Ni=1,Y)}Kj=1;
/* Evaluate outputs by atomic metrics

in Tab. 5 */

16 R⋆ ← RA(RK);
/* Train the Rank Aggregation by

Sec.3.3 and Get a Final Rank */

17 P label
S ← acquire B instructions by R⋆

then label responses or append the
original responses;

18 w⋆ ← Finetune(w,P label
S )

/* Finetuning the Model by labeled pool

*/

19 w ← w⋆

20 w⋆ ← Finetune(w,P label
S )

21 Return P label
S and F(·;w⋆)

subjective aspects, e.g., interestingness; and these1257

metrics have demonstrated a significant correlation1258

with human evaluations. Consequently, the rank-1259

ings we obtained can be considered as reflecting1260

subjective preferences. As illustrated in Table 6,1261

our method not only surpassed the performance1262

of random selections but also yielded results com-1263

parable to those of previous methodologies. This1264

outcome substantiates the effectiveness of our ap-1265

proach in identifying useful data for cognitive tasks.1266

This correlation may stem from the intrinsic rela-1267

tionship between expression and cognition, for in-1268

stance, the generation of suboptimal outputs may1269

reflect the model’s limited capabilities in the cogni- 1270

tive domain associated with the given instruction. 1271

Why is reference free setting still effective in 1272

data selection? When selections are based on 1273

quality, merely using the instruction as a signal can 1274

yield comparable effects. We believe there are two 1275

potential reasons for this: a) the pool of labeled 1276

instructions inherently contains responses of rela- 1277

tively high quality. In other words, when we select 1278

instructions, we can confidently append the origi- 1279

nal response without being doubtful of its original 1280

quality. This leads to the utility of the selection for 1281

the model depending solely on the instruction; b) 1282

the instruction signifies the quality of the (instruc- 1283

tion, response) pair. For example, a challenging 1284

instruction whose answer is also informative. This 1285

assertion is related to the concept of mutual infor- 1286

mation (Zhang et al., 2020). 1287

F Single Aspect and Core Aspects 1288

Samples
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s

Heatmap of correlation between pair aspects
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Figure 4: Spearman Correlation between scores corre-
sponding to each single aspect in the first iteration.

In this experiment, we use Mistral 7B as the 1289

base model for finetuning. We demonstrate the 1290

Spearman correlation 4 between scores in 20 as- 1291

pects during the first round. Observations show 1292

that this type of correlation generally exists and is 1293

relatively high, although each aspect has different 1294

emphases. Some aspects are highly similar, while 1295

others are relatively distinct. Based on the similari- 1296

ties reflected in the correlations, we have defined 1297

the following groups: 1298

• Group 1: {’specific’, ’engagingness’, ’sen- 1299

sibleness’, ’naturalness’, ’understandability’, 1300
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Model Alignment Type Alignment Data Size ARC HellaSwag MMLU TruthfulQA Average

Mistral-7B as Base Model
Mistral-7B-Instruct-v0.2 – – 63.57 84.79 60.40 66.81 68.89
UltraChat SFT 200K 58.28 80.76 60.10 40.35 59.87
DEITA SFT 6K 57.76 80.29 61.90 59.82 64.94
Random-Selection SFT 10K 56.33 79.92 60.82 51.12 62.02
Single (Engagingness) SFT 10k 58.52 81.35 59.25 53.91 63.25
GQI (our proposed) SFT 6K 59.22 82.63 60.69 52.66 63.80
GQI (our proposed) SFT 10K 60.52 82.14 61.53 52.14 64.08

Llama 2-7B as Base Model
LLaMA-2-7B – – 52.47 78.95 45.78 38.95 54.03
LLaMA-2-7B-CHAT SFT+RLHF >100K+>1M 52.90 78.55 48.32 45.57 56.35
InstructionMining SFT 10K 56.66 79.77 49.89 48.26 58.64
ORCA SFT 1M 54.1 76.19 56.37 52.45 59.77
Random-Selection SFT 10K 54.27 80.02 48.78 49.62 58.17
Single (Natureness) SFT 10K 53.74 80.15 48.17 48.74 57.7
GQI (our proposed) SFT 10K 56.62 79.91 49.79 49.55 58.97

Llama 3-8B as Base Model
Llama 3-8B – – 60.24 82.23 66.7 42.93 63.02
Llama 3-8B-Instruct SFT-DPO — 67.06 78.57 61.01 51.66 64.42
UltraChat (Ding et al., 2023) SFT 200K 64.88 81.37 60.15 45.33 62.93
Alpaca-GPT4 SFT 52K 59.13 79 65.23 53.87 64.31
GQI (our proposed) SFT 10K 63.25 80.19 66.8 52.88 65.53

Table 6: Cognitive Performance of Instruction-tuned LLMs on Downstream Tasks: ARC, HELLASWAG, MMLU,
TRUTHFULQA.

’fluency’}1301

• Group 2: {’relevance’, ’semantically appro-1302

priateness’}1303

• Group 3: {’informativeness’}1304

• Group 4: {’coherence’}1305

• Group 5: {’likability’}1306

• Group 6: {’interestingness’}1307

• Group 7: {’factuality’}1308

• Group 8: {’consistency’}1309

• Group 9: {’correctness’}1310

• Group 10: {’error recovery’}1311

• Group 11: {’diversity’}1312

• Group 12: {’topic depth’}1313

• Group 13: {’flexibility’}1314

• Group 14: {’inquisitiveness’}1315

For each group, we select one aspect to represent1316

the core aspects. For Group 1, we chose natural-1317

ness, and for Group 2, we chose relevance.1318

Next, we tested the LLMs finetuned in each indi-1319

vidual aspect, core aspect rank aggregation, and all1320

aspect rank aggregation on the MT-Bench, where1321

we used a single-step instruction acquisition set- 1322

ting for 10K instructions. We observed that the 1323

core aspects performed better than the individual 1324

aspects and were very close to the core aspects in 1325

effectiveness. Of course, all aspects still performed 1326

the best. This also demonstrates the effectiveness 1327

of rank aggregation. 1328

G Condience Weight and Spearman’s 1329

Correlation 1330

There are Confidence Weight and Spearman’s Cor- 1331

relation coefficients results (Tab 8, 9, 11, 10) 1332

in different guidance strategies and instructions 1333

pools. These Confidence weight are from the sec- 1334

ond iteration in GQI with 10K. The confidence 1335

weight provides interpretability. Through analysis, 1336

we have discovered that among various subjective 1337

aspects, “engagingness‘’ exhibits the highest cor- 1338

relation. This finding is understandable, as text 1339

with low Engagingness often corresponds to rejec- 1340

tion or repetition-style, even excessively dull and 1341

simplistic responses. 1342

H Case Study 1343

H.1 Generated output may be better than 1344

reference responses 1345

This situation 12 often occurs when iterating multi- 1346

ple cycles. In detail, when finetuning instructions 1347

from other pools, the generated outputs may out- 1348

perform the reference responses. 1349
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Aspect Mean Score
Informativeness 6.45
Naturalness 6.42
Coherence 5.94
Engagingness 6.41
Understandability 6.26
Sensibleness 6.33
Likability 6.00
Interestingness 6.16
Factuality 5.84
Consistency 6.02
Relevance 5.97
Fluency 6.34
Specific 6.37
Correctness 5.76
Semantically Appropriateness 5.95
Error Recovery 5.72
Diversity 5.91
Topic Depth 6.22
Flexibility 5.86
Inquisitiveness 5.86
Core Aspects 6.52
All Aspects 6.62

Table 7: Table of Aspects and Their Values

H.2 Poorly generated outputs1350

H.3 Output of trained instruction exceeds the1351

reference responses1352

There is an interesting phenomenon where, after1353

finetuning a model using SFT on a specific instruc-1354

tion, using that instruction prompts the finetuned1355

model to generate responses of very high quality,1356

often surpassing the original responses. Assum-1357

ing blindly that reference responses are the best is1358

risky; this undoubtedly challenges the traditional1359

reference-based approach to quality assessment. In1360

other words, blindly assuming that an explicit rank1361

exists is dangerous.1362
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UniEval-Nat UniEval-Coh UniEval-Eng UniEval-Und DynaEval EnDex MDD Alignscore FED-coh FED-eng FED-und FED-lik FED-int FED-con FED-inf FED-rel FED-flu FED-spe FED-cor FED-sp FED-er FED-div FED-tp FED-fle FED-inq FineD-Eval-Top FineD-Eval-Lik FineD-Eval-Coh FineD-Eval-Multi

Non-Guidance
SPEARMAN’S CORRELATION .5235 .7216 .8236 .5123 .1059 .6924 −.1842 .4628 −.4723 .8819 −.8693 .8293 .8483 −.4831 .7290 −.3680 −.9111 .8731 −.4504 −.9613 .1808 .3372 −.4605 .7480 .8272 .6205 .1123 .3887 .2961

CONFIDENCE WEIGHT .8223 .8492 .8696 .8297 .7573 .8636 .7249 .8446 .6927 .8716 .3382 .8714 .8716 .6566 .8704 .6961 .2338 .8712 .6901 .3314 .73313 .6312 .6713 .8703 .8132 .8628 .7131 .8028 .7212

Response Guidance
SPEARMAN’S CORRELATION .3685 .2983 .0533 .3503 −.0610 .1483 −.3784 .0633 −.2616 −.0101 −.0595 .0204 .0023 −.2499 −.0437 −.2617 −.0026 −.0025 −.2583 −.0097 −.2691 −.2514 −.2540 −.0351 .0268 .1075 −.0107 .2966 .1867

CONFIDENCE WEIGHT .6538 .5595 .5051 .5317 .5187 .5545 .4171 .6106 .4959 .5326 .4596 .5399 .548 .4879 .5492 .4786 .4114 .5831 .4793 .4212 .4929 .4884 .4884 .5514 .5577 .5416 .5085 .5478 .5108

GPTScore-Nat GPTScore-Coh GPTScore-Eng GPTScore-Und GPTScore-Fac GPTScore-lik GPTScore-int GPTScore-con GPTScore-inf GPTScore-rel GPTScore-flu GPTScore-spe GPTScore-cor GPTScore-sp GPTScore-er GPTScore-div GPTScore-tp GPTScore-fle GPTScore-inq Oracle

Non-Guidance
SPEARMAN’S CORRELATION .9282 .9094 .9290 .9211 .7126 .9116 .7897 .9889 .9544 .9549 .8990 .7280 .8194 .6808 .7772 .8980 .8805 .7813 .8826 –

CONFIDENCE WEIGHT .8592 .9315 .9376 .9297 .8573 .9336 .9449 .9446 .8827 .9416 .7382 .8714 .8716 .7566 .9704 .7961 .6338 .8712 .8362 –

Response Guidance
SPEARMAN’S CORRELATION −.6685 −.3983 .0533 −.3503 .0610 −.2483 −.3784 −.1633 −.2616 −.2101 −.0595 .0604 .0023 −.2499 −.0737 −.1617 −.2026 −.1025 −.2113 .4367

CONFIDENCE WEIGHT .4538 .5595 .5051 .4317 .5187 .4545 .4171 .5106 .3959 .5326 .4596 .5399 .548 .4879 .5492 .4786 .4114 .5831 .4793 .95

Table 8: Spearman’s correlation coefficient between each atomic ranker and the overall rank and Confidence weight
of atomic rankers in Dolly.

UniEval-Nat UniEval-Coh UniEval-Eng UniEval-Und DynaEval EnDex MDD Alignscore FED-coh FED-eng FED-und FED-lik FED-int FED-con FED-inf FED-rel FED-flu FED-spe FED-cor FED-sp FED-er FED-div FED-tp FED-fle FED-inq FineD-Eval-Top FineD-Eval-Lik FineD-Eval-Coh FineD-Eval-Multi

Non-Guidance
SPEARMAN’S CORRELATION .2711 .2948 .5582 .2943 −.0246 .3682 .3579 .0313 −.3415 .9823 −.8609 .9809 .9874 −.3942 .8743 −.3148 −.9771 .8931 −.0434 −.8691 −.0975 −.0988 −.2134 .7814 .9183 .6271 .1282 .5232 .3416

CONFIDENCE WEIGHT .7384 .8778 .9144 .8817 .6373 .7827 .8242 .7289 .7823 .8325 .0252 .8842 .893875 .7347 .8387 .8881 .0342 .3673 .6723 .0625 .8055 .7828 .7523 .8625 .9022 .9135 .8435 .7571 .8351

Response Guidance
SPEARMAN’S CORRELATION −.3521 −.3425 .3616 .0033 .0938 .1363 .1824 −.4316 −.0937 .8739 −.6356 .7876 .8828 −.5661 .4977 −.3613 −.4982 .3668 −.6343 −.7373 −.8742 −.1386 −.3529 .4463 .7723 .5811 .3151 .3361 .2361

CONFIDENCE WEIGHT .6635 .4338 .5531 .6194 .5096 .6813 .9419 .3535 .2639 .8854 .1314 .5361 .8374 .5412 .8719 .7009 .0413 .8923 .5134 .0341 .3416 .5441 .5981 .9136 .7943 .8341 .4315 .3416 .58

GPTScore-Nat GPTScore-Coh GPTScore-Eng GPTScore-Und GPTScore-Fac GPTScore-lik GPTScore-int GPTScore-con GPTScore-inf GPTScore-rel GPTScore-flu GPTScore-spe GPTScore-cor GPTScore-sp GPTScore-er GPTScore-div GPTScore-tp GPTScore-fle GPTScore-inq Oracle

Non-Guidance
SPEARMAN’S CORRELATION 0.9292 0.842 .965 0.9284 0.8765 0.9172 0.8136 0.8431 0.8267 0.7535 0.7418 0.8366 0.8284 0.7891 0.6676 0.9711 0.8409 0.7343 0.7407 –

CONFIDENCE WEIGHT 0.9473 0.9392 0.9054 0.8794 0.791 0.89 0.9618 0.9647 0.9616 0.9668 0.938 0.8994 0.7616 0.757 0.7846 0.8936 0.8652 0.9424 0.8306 –

Response Guidance
SPEARMAN’S CORRELATION −0.4547 −0.739 −0.4586 −0.5357 −0.031 −0.3727 −0.1607 −0.2106 −0.3657 −0.5715 −0.0596 0.2544 −0.3604 −0.4506 −0.0215 −0.2906 −0.4266 −0.5361 −0.3665 0.6706

CONFIDENCE WEIGHT 0.4158 0.5165 0.4876 0.5375 0.4716 0.5101 0.4817 0.4111 0.4123 0.5494 0.5343 0.5821 0.3168 0.3539 0.5771 0.4586 0.5007 0.3424 0.2248 0.95

Table 9: Spearman’s correlation coefficient between each atomic ranker and the overall rank and Confidence weight
of atomic rankers in Openorca.

UniEval-Nat UniEval-Coh UniEval-Eng UniEval-Und DynaEval EnDex MDD Alignscore FED-coh FED-eng FED-und FED-lik FED-int FED-con FED-inf FED-rel FED-flu FED-spe FED-cor FED-sp FED-er FED-div FED-tp FED-fle FED-inq FineD-Eval-Top FineD-Eval-Lik FineD-Eval-Coh FineD-Eval-Multi

Non-Guidance
SPEARMAN’S CORRELATION −0.223 0.1377 0.3961 −0.1116 −0.1308 0.1433 0.4907 0.1488 0.6872 0.962 −0.9272 0.8536 0.9191 0.6592 0.7318 0.6334 −0.966 0.8029 0.6658 −0.9008 0.6615 0.6473 0.6128 0.7271 0.8232 0.5486 0.0588 0.1265 0.263

CONFIDENCE WEIGHT 0.2599 0.6304 0.948 0.3715 0.436 0.6867 0.987 0.6299 0.9301 0.9851 0.0119 0.9939 0.9951 0.992 0.9828 0.9902 0.026 0.9075 0.9784 0.0103 .8943 0.9096 0.7906 0.8626 0.8856 0.8562 0.5348 0.7243 0.6682

Response Guidance
SPEARMAN’S CORRELATION −0.1204 0.2329 −0.3291 −0.1962 −0.114 −0.1191 −0.6815 −0.0873 0.3228 −0.874 −0.8937 −0.4283 0.2251 −0.1177 −0.3902 0.007 −0.8129 0.6262 0.3323 −0.8006 0.4998 0.0128 −0.3899 −0.0524 −0.3778 −0.4523 −0.0292 0.1929 0.0436

CONFIDENCE WEIGHT 0.5055 0.6335 0.4252 0.438 0.5052 0.5379 0.615 0.4011 0.3718 0.44 0.3369 0.6859 0.6313 0.6332 0.714 0.7687 0.1928 0.789 0.756 0.1004 0.6237 0.6339 0.6228 0.7131 0.7429 0.4827 0.5217 0.5293 0.5349

GPTScore-Nat GPTScore-Coh GPTScore-Eng GPTScore-Und GPTScore-Fac GPTScore-lik GPTScore-int GPTScore-con GPTScore-inf GPTScore-rel GPTScore-flu GPTScore-spe GPTScore-cor GPTScore-sp GPTScore-er GPTScore-div GPTScore-tp GPTScore-fle GPTScore-inq Oracle

Non-Guidance
SPEARMAN’S CORRELATION 0.7113 0.805 0.7148 0.826 0.8113 0.7011 0.7827 0.7795 0.6729 0.769 0.7162 0.7292 0.8225 0.6789 0.7773 0.8977 0.8797 0.7929 0.8977 –

CONFIDENCE WEIGHT 0.9268 0.9711 0.9729 0.9349 0.8681 0.9469 0.9356 0.9473 0.9944 0.9221 0.9419 0.9701 0.8781 0.8522 0.8723 0.8984 0.8426 0.8559 0.8424 –

Response Guidance
SPEARMAN’S CORRELATION −0.2575 −0.4692 −0.2522 −0.4499 −0.1135 −0.1605 −0.2825 −0.1548 −0.535 −0.248 −0.0328 0.2639 −0.1122 −0.3473 −0.4198 −0.1891 −0.1826 −0.163 −0.3443 0.5466

CONFIDENCE WEIGHT 0.3984 0.509 0.5524 0.3839 0.4746 0.527 0.4417 0.3313 0.2238 0.5682 0.4442 0.623 0.3153 0.5188 0.5124 0.4527 0.4543 0.2639 0.4816 0.95

Table 10: Spearman’s correlation coefficient between each atomic ranker and the overall rank and Confidence
weight of atomic rankers in Flan.

UniEval-Nat UniEval-Coh UniEval-Eng UniEval-Und DynaEval EnDex MDD Alignscore FED-coh FED-eng FED-und FED-lik FED-int FED-con FED-inf FED-rel FED-flu FED-spe FED-cor FED-sp FED-er FED-div FED-tp FED-fle FED-inq FineD-Eval-Top FineD-Eval-Lik FineD-Eval-Coh FineD-Eval-Multi

Non-Guidance
SPEARMAN’S CORRELATION 0.0116 0.3389 0.5774 0.0788 −0.0886 0.4803 0.4718 0.3356 0.0335 0.9891 −0.9275 0.8376 0.7852 −0.0045 0.8377 0.0524 −0.9737 0.975 0.0413 −0.9776 0.0814 0.0026 0.0174 0.8061 0.986 0.4241 0.0377 −0.0171 0.1243

CONFIDENCE WEIGHT 0.5968 0.9066 0.9756 0.6667 0.5909 0.9796 0.9826 0.9557 0.9507 0.9785 0.1046 0.9898 0.9912 0.9349 0.9807 0.9618 0.0988 0.9866 0.9396 0.0879 0.9576 0.9527 0.9484 0.9624 0.9773 0.9623 0.6875 0.7438 0.8148

Response Guidance
SPEARMAN’S CORRELATION −0.0054 0.2914 0.5384 0.0347 −0.079 0.4996 0.4713 0.3693 0.0964 0.9755 −0.9512 0.9767 0.9885 0.0343 0.8647 0.0818 −0.9591 0.9481 0.0838 −0.9738 0.1443 0.0578 0.0593 0.769 0.9669 0.3766 −0.0112 −0.0407 0.0759

CONFIDENCE WEIGHT 0.4235 0.4534 0.5005 0.4733 0.5176 0.4555 0.5928 0.5386 0.5119 0.4691 0.5155 0.4972 0.5035 0.5078 0.5002 0.534 0.4579 0.524 0.5326 0.474 0.5238 0.5262 0.5282 0.5063 0.5097 0.5132 0.4873 0.4953 0.4857

GPTScore-Nat GPTScore-Coh GPTScore-Eng GPTScore-Und GPTScore-Fac GPTScore-lik GPTScore-int GPTScore-con GPTScore-inf GPTScore-rel GPTScore-flu GPTScore-spe GPTScore-cor GPTScore-sp GPTScore-er GPTScore-div GPTScore-tp GPTScore-fle GPTScore-inq Oracle

Non-Guidance
SPEARMAN’S CORRELATION 0.7115 0.8091 0.7141 0.8281 0.8151 0.7067 0.792 0.7907 0.6641 0.7409 0.7005 0.7281 0.8361 0.6991 0.7888 0.9124 0.875 0.7855 0.874 –

CONFIDENCE WEIGHT 0.9212 0.9611 0.9892 0.9277 0.8639 0.9383 0.945 0.9257 0.9723 0.9395 0.9262 0.9562 0.8858 0.8592 0.8615 0.8998 0.8287 0.8583 0.8395–

Response Guidance
SPEARMAN’S CORRELATION −0.473 −0.3795 −0.1202 −0.3592 −0.0444 −0.1475 −0.244 −0.096 −0.3191 −0.2184 −0.0532 0.0361 −0.009 −0.3534 −0.117 −0.0978 −0.1078 −0.2375 −0.1292 0.6175

CONFIDENCE WEIGHT 0.4065 0.5132 0.5767 0.3963 0.4843 0.5121 0.4386 0.333 0.2302 0.5519 0.4322 0.4039 0.4909 0.4458 0.5258 0.448 0.5302 0.509 0.4188 0.95

Table 11: Spearman’s correlation coefficient between each atomic ranker and the overall rank and Confidence
weight of atomic rankers in Openassistant.

Table 12: Comparison of Model-Generated and Reference Responses.

Model-Generated Response Reference Response

California is the largest wine-producing state in the
United States, accounting for approximately 85% of
all American wine production.

California is responsibly for roughly 90% of Ameri-
can wine production

Let’s break it down step by step! A is the sister of B.
B is the sister of C. C is the mother of D. This means:
* A and B are sisters (making A and C sisters-in-law).
* B and C are sisters (making B and A sisters-in-law).
* C is the mother of D (making C D’s mother). *
Since A and B are sisters, A is also a sister-in-law of
C (making A and C’s relationship as sister-in-law).
Now, putting it all together: * D is the child of C
(since C is the mother of D). * A is the sister-in-
law of C (since A and B are sisters, and B is the
sister of C). * Therefore, D is the niece/nephew (or
grandchild) of A. So, the relation between D and A
is that of niece/nephew (or grandchild)!

If A is the sister of B, B is the sister of C, and C is
the mother of D, then D is the niece (or nephew) of
A.

Hello! I’m happy to help you with anything you need.
How about we start with a quick question: Is there
something specific you’d like to talk about or ask
about, or do you need some assistance with a task or
project?

Hello! I am here to help with any questions or prob-
lems you have. Just let me know what you need and
I will do my best to assist you.
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Table 13: Poorly generated output prompted by instruction.

Instruction Generated Output

User: Hello could you please help me make a cake I’m sorry, I don’t understand. Could you rephrase
your question?

User: Can you write stories and screenplays? Yes, I can.

User: Could you give me a detailed analysis of one
of the neon works from Jenny Holzer?

Sure, I can do that.

User: explain why people should not scan random qr
codes in 4 bullet points

explain how to use the app in 3 sentences.

User: What are the strategies to overcome diffusion
limitation in growing cells in suspension?

1. n n 2.

User: Explain how you work? Explain what you do for the user.

User: Write a multi-choice question for the follow-
ing article: Article: The Harbourside Development
is one of the world’s most exciting places to shop. It
is right on the edge of Sydney Harbour, and there are
over 200 shops, selling everything from home-made
sweets to the latest clothes in fashion; from Aus-
tralian souvenirs to Swiss watches and Japanese cam-
eras. The Australian Wildlife Park has been specially
built to give people an extra close look at Australia’s
native animals. Have your photo taken with a kanga-
roo, touch and feed koala bears. There are talks every
afternoon about these animals, which are only found
in this part of the world. There is also an excellent
souvenir shop. A visit to the Australian Museum is
like an adventure across Australia. There are shows
on the people and their way of life, and the whole
continent. Talks and guided tours help to make your
visit unforgettable. There is also a cafe and a good
book shop, selling excellent maps. Taronga Zoo has
Australia’s finest collection of rainforest birds and
sea-life centre which has many of the fish that can be
found off the coasts of Australia and New Zealand.
Taronga is also famous for its large group of South
East Asian monkeys. Fast food can be got at cafes.

Please write out your answers here

User: Q: Q: Volcanoes are termed active, dormant, or
extinct depending on the possibility of the presence
of what in chamber structures? A: Select from: 1).
coal. 2). sulpher. 3). water. 4). magma. A:

/n /n
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Table 14: Comparison of Model-Generated and Reference Responses

Model-Generated Response Reference Response

February 22nd holds significance in history with sev-
eral notable events. Here are a few: 1. In 1847,
Mormon pioneers arrived in present-day Salt Lake
City, Utah, after a journey from Illinois. 2. Thomas
Edison achieved a milestone in 1880 by developing
the first practical incandescent light bulb. The Boeing
B-17 Flying Fortress took its inaugural flight in 1940,
marking a pivotal moment in aviation history. 3.1967
witnessed the inaugural game of the American Foot-
ball League (AFL) between the New York Titans and
the Boston Patriots. 4. In 1997, the DNA coding of
the E. coli bacterium was successfully completed. 5.
George Washington, the first President of the United
States, was born in Westmoreland County, Virginia
in 1732. 6. Spain ceded Florida to the United States
through the Adams-Onís Treaty in 1819. 7. Calvin
Coolidge became the first U.S. President to deliver a
radio broadcast from the White House in 1924.

On April 10th in history:1. 879 - Louis III becomes
King of the Western Franks.2. 1710 - The Statute
of Anne, the first law regulating copyright, goes into
effect in Great Britain.3. 1829 - William Booth, the
founder of the Salvation Army, is born in Notting-
ham, England.4. 1866 - The American Society for
the Prevention of Cruelty to Animals (ASPCA) is
founded in New York City. 5. 1912 - The RMS
Titanic sets sail from Southampton, England on its
ill-fated maiden voyage.6. 1925 - The Great Gatsby,
a novel by F. Scott Fitzgerald, is first published. 7.
1970 - Paul McCartney announces that he is leav-
ing The Beatles. 8. 1988 - The Soviet Union signs
the Geneva Accords, pledging to withdraw its troops
from Afghanistan. 9. 2010 - The Polish Air Force Tu-
154 plane carrying President Lech Kaczyu0144ski
crashes near Smolensk, Russia, killing all 96 people
on board.

Jumping Frenchmen of Maine is a rare and pecu-
liar neurological condition, also known as "Hyper-
thymesia Executive Deficit Syndrome." It was first
described in 1955 by Dr. G. Alles, a psychiatrist,
and Dr. W. L. Weaver, a neurologist, in Maine, USA.
People with Jumping Frenchmen of Maine exhibit
an extreme startle response called "hyperphasicity."
When they hear a loud noise, a sudden movement, or
a sudden change in their environment, they involun-
tarily react with a violent, exaggerated reflex, often
involving sudden movements, vocalizations, or even
leaping into the air. This condition is characterized
by a widespread elevation of startle reflexes, which
can lead to involuntary movements, such as jumping,
stiffening, or rapid blinking. The severity and fre-
quency of these reactions vary from person to person,
and they can be triggered by seemingly trivial stimuli.
Despite its unusual symptoms, Jumping Frenchmen
of Maine is not considered a disabling condition, and
individuals with the condition often learn to manage
and adapt to their reactions with experience and train-
ing. In some cases, the condition may be treated with
behavioral therapy, medication, or a combination of
both.

The Jumping Frenchmen of Maine is a rare and un-
usual disorder that was first identified in the late
1800s among a group of French-Canadian lumber-
jacks in the Moosehead Lake region of Maine. It is
characterised by an exaggerated startle reflex and a
range of other symptoms such as:* Muscle spasms
* Echolalia (repeating the words of others) * Au-
tomatic obedience (involuntarily carrying out com-
mands). The name derives from the distinctive jump
that those affected exhibit when startled. The exact
cause of the disorder is not known, but it is thought to
be a type of neurological condition that is related to
other similar conditions such as Tourette syndrome
and other tic disorders.

According to the context, Tomoaki Komorida was
born on July 10, 1981, in Kumamoto Prefecture.

Tomoaki Komorida was born on July 10,1981.
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