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ABSTRACT

Machine learning models can fail when trained on distributions with hidden con-
founders (spuriously correlated with the label) and tested on distributions where
such correlations are absent. While numerous algorithmic solutions have been
explored for such distribution shifts, a surprisingly effective way to empirically
improve robustness on some other types of shift (e.g., Imagenet and its distribu-
tion shifts) is to use stronger open-vocabulary classifiers derived from foundation
models. In this work, we note that for more controlled shifts regulated by spurious
correlations, the zero-shot and few-shot performance of foundation models is no
better than ERM models, and remains unchanged when pretrained data/model
is scaled. However, even in those situations, they are quite accurate at predict-
ing possible confounders. We leverage this observation to propose Prompting
for Robustness (PfR) which first uses foundation models to zero-shot predict the
confounder on given labeled examples, and then learns a classifier with balanced
performance across different groups. In a simplified setup, we theoretically analyze
the zero-shot behavior of multimodal models explaining how contrastive pretrain-
ing can learn features that strongly couple the confounder with more robust features.
Across 5 vision and language tasks, we show that PfR’s performance nearly equals
that of an oracle algorithm (group DRO) that leverages labeled spurious attributes.

1 INTRODUCTION

Machine learning classifiers are often trained on datasets with hidden confounders spuriously corre-
lated with the label. Since ERM models latch onto these confounders and fail catastrophically on
underrepresented (minority) groups where the confounder is uncorrelated with the label, numerous
algorithms have been proposed to make ERM more robust to such confounders (e.g.,Ben-Tal et al.,
2013; |Arjovsky et al., 2019} [Liu et al., [2021). On the other hand, driven by the unprecedented
zero-shot prediction capabilities of foundation models, the common strategy of learning classifiers
has been to simply prompt them with class names directly Wei et al.| (2020); Brown et al.| (2020).
In fact, zero-shot prompting sometimes yields classifiers that are more robust than ERM classifiers
trained on downstream data (Hendrycks et al.,[2020; Fang et al., [2022), e.g., as seen in robustness
gains observed on benchmarks like ImageNet with distribution shifts Radford et al.|(2021). However,
as we show in our work, such gains do not proportionately transfer to other forms of distribution shift
such as when confounders that are highly predictive of the label in training distribution are no longer
correlated with the label on test (Yang et al.| 2023} |Tu et al., 2020; Hall et al., 2023).

In this work, we aim to improve the performance of foundation models on data paritions (groups)
where the confounder is not correlated with the label (minority group). One way is to incorporate
downstream labeled data. Unfortunately, unless we have access to deconfounded data (without the
spurious correlation), fine-tuning naively would result in the same issues as standard ERM training, as
we confirm experimentally. However, with open-vocabulary foundation models, we can provide for
robustness by felling the model about the confounder directly (i.e., by describing it in the classification
prompt). However, we observe that even this doesn’t improve zero-shot robustness (see Sec. [2).

We make an intriguing observation: while foundation models are not robust zero-shot classifiers
of the true label, they perform remarkably well in predicting the presence of spurious attributes.
Moreover, we observe that while scaling up the model size and pretraining data does not improve the
performance of label prediction on minority groups, the worst group performance of spurious attribute
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Figure 1: (a): Foundation models are not robust to spurious correlations, but can predict them; Averaged across
4 tasks with spurious correlations, we see that while foundation models perform much worse on groups where
the spurious correlation is absent, they are highly accurate at predicting the spurious attribute itself, across all
groups. (b): Prompting for Robustness (PfR): Leveraging this we propose our method PfR that learns robust
classifiers from foundation models in two steps. In Step 1, PfR prompts foundation models to zero-shot predict
the spurious attribute on a labeled dataset with spurious correlations, and in Step 2 it learns a robust classifier by
minimizing worst group loss, across groups given by the combination of the predicted attribute and label.

prediction does. Motivated by these findings, we propose a simple technique that we call Prompting
for Robustness (PfR). PR learns robust classifiers for downstream tasks with a few labeled examples
and a language description of the confounding attribute. PfR first uses the language description to
prompt for a zero-shot classifier that accurately predicts the spurious feature on each labeled examples.
The value of the label and the predicted confounder jointly define a set of disjoint groups in our data.
Then, a robust predictor is learnt by minimizing worst group loss, similar to group DRO, as described
by|Sagawa et al.| (2019), but without ground-truth knowledge of examples in the minority group. This
simple method yields surprising performance gains of > 40% (averaged across datasets) relative
to zero-shot performance of foundation mdoels and ERM on downstream data alone. We further
illustrate the applicability of our findings by showcasing its efficacy in extracting group annotations
for auditing zero-shot (or ERM) models to assess their robustness. Specifically, we prompt GPT-4V
to annotate Chest-Xray 14 dataset (Wang et al.,|2017) for the presence of chest drains (the spurious
attribute) and observe a significant robustness gap among ERM models. Finally, in a simplified setup
for multimodal contrastive pretraining, we theoretically show that when the spurious correlations in
the downstream task are also present in the pretraining distribution over image, and text pairs, then
contrastive pretraining learns: (i) image features that couple the spurious feature with other robust
features, while placing a higher weight on the spurious one; and (ii) text features that are almost
identical for the text descriptions of the label and the spurious attribute.

In summary our key contributions are as follows. First, we study the performance of foundation
models across five vision and language classification tasks with hidden confounders, and observe
that while foundation models have poor zero-shot performance on minority examples (that does not
improve with scale), they are accurate at predicting the value of the confounder. We confirm these
findings theoretically in a simplified setup for multimodal contrastive pretraining. Second, we leverage
this finding to propose a simple method: PfR which first zero-shot predicts the confounder when
given a text description of it, and then learns a robust classifier across predicted groups. Empirically,
we show PfR’s worst group performance nearly matches the oracle (group DRO) on all datasets.

Problem setup. For a classification task, we use X’ to denote input set of text/image and ) for
the set of labels. We also define a set C for spurious attributes (also called confounders). With
G =: {G1,Ga,...,Gy}, we define a set of groups where each G; corresponds to a unique pair
of label and confounder values (y;, ¢;). Under distribution P(z,y,c) over X x ) x C, the av-
erage error of a label classifier f is err§V(f) =: Ep [1(f(z) # y)] and spurious atribute classi-
fier g is err®¥(g) =: Ep[1(g(z) # ¢)]. Similarly, their corresponding worst-group errors are:
erry®(f) =: maxgeg Ep|g [1(f(7) # y)] and erry®(g) =: maxgeg Ep|g [1(g9(z) # c)]. We de-
fine the robustness gap for any predictor as the difference between the average and the worst group
errors for it. In this work, our goal is to learn a label classifier with (i) high average accuracy, and
(ii) low robustness gap. For this, we are given a text description ¢. of the confounder ¢, and few i.i.d.
samples D from P(x,y). Unless specified, we assume that group annotations are not given to us. We
use FM to denote a foundation model, whose prediction of the spurious attribute in x is FM(z, ¢.).

2 ZERO-SHOT ROBUSTNESS OF FOUNDATION MODELS

Large zero-shot performance gap between the average and worst group. Zero-shot results are in
Table 2} When evaluating CLIP L/14 models on vision datasets, a notable drop of 32% is observed
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Figure 2: Robustness gap versus average performance as pretraining data and model sizes increase.
We observe that while the robustness gap for confounder prediction decreases the gap between
average and worst case increases or remains the same for label prediction.

between average and worst group accuracy on Waterbirds dataset, and a drop of 3.5% is observed
on CelebA. Turning to language datasets, the evaluation of the Llama-2 13b model indicates a
significant 25% performance decline in CivilComments and a 7% drop in MNLI. Notably, the drops
observed here are similar to the performance drops observed with models trained with ERM on their
corresponding labeled data (Sagawa et al., 2019; |Idrissi et al., |2022). The decline seen with ERM
models is typically ascribed to the existence of hidden confounders in the training data (Sagawa
et al.l [2019), suggesting that pretraining datasets also frequently suffer from analogous spurious
correlations. We formalize this intuition in Sec.

Incorporating the group description naively does not help out of the box. We incorporate spurious
attribute description in our zero-shot prompt to predict the label and the spurious attribute jointly.
Results are shown in Table|l} However, the zero-shot performance for the worst-case group doesn’t
improve — there is less than a 1% change between the zero-shot and zero-shot with spurious attribute
description rows in Table [T} We also evaluated other variants, where we explicitly instructed the
model to ignore spurious attributes, but this did not impact worst-group performance (see App.[G.2).

Foundation models are surprisingly good at predicting the presence of hidden confounders.
Results are in Table[T] Instead of incorporating spurious attribute description together with the label,
we experiment with predicting the presence of a spurious attribute alone. On all standard spurious
correlation benchmarks, we observe that the average performance of predicting the presence of
the spurious attribute is around 95% with a similar worst-case group performance. This consistent
performance is observed across different groups, emphasizing that, despite foundation models
exhibiting significant robustness gaps in the joint prediction of spurious attributes and labels, the
predictive accuracy for spurious attributes alone remains superior.

Scaling pretraining datasets and models does not improve zero-shot group robustness. The
scaling trend results are presented in Fig. 2] (a)-(c), showcasing the performance plotted on average
against the difference between average performance and worst-case performance. We analyze this
difference in comparison to the average case for both zero-shot label and spurious attribute prediction.
As we scale up the pretraining datasets and models, we observe that while the difference reduces for
the cofounder prediction, the difference doesn’t improve for the label prediction task.

Scaling pretraining datasets and models does improve underlying representations. As expected
we observe that the average and worst-case accuracy (trained with DRO on downstream labeled data)
improves as we increase the scale of model size and pretraining data (Fig. [2|(d)).

CXR-Drain: Annotating confounders with GPTV-4. We evaluate the ability to predict spurious
correlation in a zero-shot way on a task where ground truth annotations are not publicly available.
We choose to annotate 2400 images from Chest Xray-14 dataset (Wang et al.,2017) for the presence
of chest drain with GPT4-V (details in App. [G.3). On this dataset, the goal is to predict the whether
the patient suffers from pneumothorax disease and the tube in the chest cavity acts as a confounder.

Table 1: Naively incorporating the confounder description into the label classification prompt does
not improve robustness. Results on four datasets with known spurious attributes.

Prompt Predict Waterbirds CelebA CivilComments MNLI
WG Avg WG Avg WG Avg WG Avg
Is this label L? L 59.38 9197 77.69 8l.11 59.25 85.75 76.54  84.79
Is this label L? Ignore confounder C. L 61.37 9258 86.73 90.28  52.81 87.41 7795  80.56
Is this label L and confounder C? L.C 5738  88.15 7854 83.11 54.29 86.60 7573 8291
Is this confounder C? C 90.55 9633 95.01 99.15 86.73 92.70 9237  96.19
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We observe that models trained with ERM show a significant performance gap on the constructed
CXR-Drain dataset (Table[2). Further, the worst group is not the group with least samples, and hence,
re-weighting based methods (Idrissi et al.| [2022; |[Kirichenko et al., [2022)) would perform poorly. Due
to its unique properties, we believe that CXR-drain will also serve as a crucial benchmark for future
research on spurious correlations, and we plan to publicly release the dataset.

3 PROMPTING FOR ROBUSTNESS

Our results in Section [2]suggest that zero-shot classification with foundation models often attains high
average group accuracy but low worst-group accuracy. However, we note that they are surprisingly
accurate at predicting the presence of a confounder. We leverage this finding to propose a simple but
effective method: Prompting for Robustness (PfR). PfR learns a robust classifier given a few labeled
examples and a text description of the confounder.

Method Waterbirds CelebA CivilComments MNLI CXR-Drain
WG Avg WG Avg WG Avg WG Avg WG Avg

Zero-shot 59.38  91.97 77.69 81.11 59.25  85.75 76.54  84.79 — -
ERM 70.71  98.75 54.84  94.96 61.35  92.42 67.30 87.71 51.79  76.10
JTT 85.86  95.47 82.49 92.74 72.73  90.54 72.75  86.73 56.52  77.53
PfR (ours) 91.05 94.32 88.05 91.97 77.83 88.70 81.28 84.60 68.55 76.73

Group DRO  93.23  94.40 90.79  92.32 80.21  86.52 81.54 84.37 — —

(oracle)

Table 2: PfR improves worst group performance over ERM and zero-shot foundation models: On five
benchmarks from Section [2] we evaluate average and worst-group performance of PfR and compare it
with baselines JTT, ERM, and zero-shot.

Prompting for Robustness (PfR). PfR (summarized in Algorithm [I)) runs in two stages. In the first
stage, PfR prompts an open vocabulary foundation model FM with the text description t. of the
confounding attribute and recovers a zero-shot prediction of the confounder ¢ on any given input (for
e.g., in the case of CivilComments the confounder is described as “race, religion or gender”). Using
this, each training example (x;), which was previously annotated only for the label of interest (y;),
is additionally annotated with the value of the confounding attribute (¢;) (for e.g., “black/white and
christian/muslim™). The training dataset is then split into disjoint groups G based on the paired value
(yi, ¢;) of the label and predicted confounder. In the second stage, PfR learns a robust classifier by
minimizing the worst group loss over each predicted group, minimizing

minmax E[((f(z),y) |z € G]. (1
I ceg

The above objective can be optimized with an online algorithm that treats f and G as players in a
minimax game, analogously to the group DRO algorithm described by |Sagawa et al.|(2020). Hence,
we reuse their Algorithm 1 to optimize our objective in Equation (1).

Setup and baselines. On the language tasks we use Llama2-7b/13b models Touvron et al.| (2023)
for zero-shot prediction (reporting max of the two), and on the vision tasks we use CLIP-ViT-
L/16 Radford et al.| (2021). We compare to JTT Liu et al.| (2021])), a prior method for robustness that
does not require group labels, as well as standard ERM. We also include Group DRO |Sagawa et al.
(2019) as an oracle baseline that has access to true group labels. All few-shot methods including PfR
are used to train a linear head over fixed features. In the language task we train a linear head on top
of features learned by finetuning a RoOBERTa encoder|Liu et al.|(2019) on the MNLI/CivilComments
dataset, and for vision tasks we train a linear head over CLIP’s image encoder.

Results. In Table 2] we compare average and worst group performance for different methods.
First, we observe that averaged across datasets, PfR reduced worst group error by 47% compared
to zero-shot, and 52% and 30% compared to ERM and JTT, respectively. On some datasets like
Waterbirds, the worst group gains are as high as > 75%. More importantly, PfR’s performance
closely matches that of the oracle Group DRO algorithm across all datasets. Additionally, unlike
overly pessimistic DRO objectives like CVaR-DRO Hu et al.| (2018)), the average performance is
not significantly compromised from trying to improve worst group accuracy. Thus, we see that PfR
learns a classifier robust to spurious correlations without much human annotation overhead beyond a
description of the confounder.
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APPENDIX

APPENDIX OUTLINE

Additional details and observations from our zero-shot experiments in Sec.
Theoretical analysis of multimodal contrastive pretraining.

Additional experiments and theoretical analysis of PfR

D! Related Work.

[El Future Work.

Proofs for our theoretical results.

[G| Details on zero-shot prompts.

A ADDITIONAL DETAILS AND OBSERVATIONS FROM OUR ZERO-SHOT
EXPERIMENTS IN SEC. 2.

A.1 SETUP

Datasets. We experiment with datasets in both language and vision modalities. For language,
we experiment with: (i) MNLI (Williams et al.l [2017), where the prediction task is relationship
between two input sentences as being contradiction, entailment, or none of the two. Here the spurious
attribute is the presence of negation words, e.g., ‘no’, and ‘never’. (ii) CivilComments (Borkan
et al.,[2019; |[Koh et al., [2021), where the task is toxicity prediction and the spurious correlation is
with the underlying attribute annotating the comment, e.g., male versus female, Christian versus
Muslim, etc. For the vision modality, we experiment with: (iii) Waterbirds (Sagawa et al., [2019),
where the prediction task is water bird versus land bird classification, and the spurious attribute is
the background of the image (i.e., land versus water background); (iv) CelebA (Sagawa et al.,|2019),
where the prediction task is gender and the spurious attribute is the color of hair. We also experiment
with the CXR-drain dataset introduced in Sec.[2l

Experimental setup. For our zero-shot probing results, we experiment with a number of pretrained
foundation models. For vision, we experiment with CLIP (Radford et al., 2021} |Gadre et al., [2023).
For language, we experiment with RoBerta (Liu et al., [2019)), Llama-2 (Touvron et al.,|2023) and
Pythia models (Biderman et al., |2023)). We also experiment with publicly available models where
we vary the model and pretraining dataset sizes in each category. For our ERM experiments, we
train linear classifiers on the penultimate layer outputs (representation). For our zero-shot probes, we
leverage standard prompts commonly used in the literature. Precise details about prompts used on
each dataset are in App.[G|

Evaluation metrics. Along with the prediction accuracy of the label on the worst-case group, we
also report average performance. Additionally, we also evaluate the performance of predicting the
spurious attribute.

B THEORETICAL ANALYSIS OF MULTIMODAL CONTRASTIVE PRETRAINING

From Section 2} we recall that the worst group zero-shot performance in some cases (like predicting
the label of a task with hidden confounders) never improves with scale. So, why does confounder
prediction improve? In this section, we analyze both these trends theoretically when pretraining on
data where the label is correlated with the confounder, just as the task. We conduct our analysis for
multimodal contrastive pretraining. Not only is the contrastive objective more amenable to theoretical
analysis, it is commonly used in practice for training some vision-language foundation models (e.g.,
CLIP) that aligns features of image and caption (text) pairs Radford et al.|(2021); [Wang et al.| (2022).

Broadly speaking, we show that when certain spurious correlations are also present in pretraining,
then contrastive learning only learns image features that heavily couple the spurious feature with
other robust features predictive of the label. In this coupling, the component along the spurious
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feature is higher when the signal-to-noise ratio along the robust feature is poor. Further, the text
encoder learns almost identical representations for the confounder and label. As a result, even when
trained with infinite pretraining data, we show that the worst group accuracy of the zero-shot label
predictor is worse than random, while that of the confounder predictor is nearly perfect.

Setup. The downstream task 7T has joint distribution P(z, y, ¢) over image, label and confounder,
where both y and ¢ take values in {+1, —1} (see (2)). Label and confounder are tied by b sampled
from a Bernoulli with mean p, where higher p implies stronger correlation between y and c. The input
 is split into three components, i.e., * = [Zy, Zc, Tn], Where z, € R is the robust feature determined
solely by label, z.. € R by the confounder, z,, € R% is high dimensional noise.

y ~ Unif{+1,—1}, b ~ Bern(p), ¢ = y(2b — 1) )
Lr ~ N(y,af), Te =C, Tn ~ N(Odn,O'?lIdn).

Contrastive pretraining. The pretraining distribution Q(z, t) for multimodal learning is defined
over X x T where X is the set of images and 7 is the set of text inputs. Contrastive pretraining learns
an image encoder ¢ : X'+ R¥ and a text encoder w : 7+ R* by pushing together representations of
image and text pair sampled from Q(z, t), and pulling apart representations of independent sampled
pairs of images from Q) () and texts from ()(t). We analyze the setting where contrastive pretraining
learns ¢, w by minimizing spectral contrastive loss HaoChen et al.[(2021)):

—2E(; ~d() 'w(t) + EsngEig(d(x) w(t))?. (3)

For simplicity, we consider Q(z, t) that is relevant for the downstream task 7. Thus, the set of text
descriptions 7 is: {ty 1,%y,—1,%¢,1,te,—1}. The marginal Q(¢) is uniform. For the conditionals, given
ae{-1,1},Q(z | tya) = Plx | y = a), and Q(z | tca) = P(x | ¢ = a). Note that, as p in
([2) increases, not only does it increase downstream correlation Ep[yc], it also increases the overlap
between Q(z | ty,4) and Q(z | tc,q) in the pretraining distribution.

Zero-shot predictors. In practice, pretrained ¢, w are used as zero-shot classifiers by evaluating
é(x) Tw(t), where t is the labels’s text description. Adhering to this, we define zero-shot label
classifier f =: 2 - 1(¢(z) " (w(ty1) — w(ty,—1)) = 0) — 1, and zero-shot confounder classifier

g=:2-1(¢(x) " (w(te,1) — w(te,—1)) = 0) — 1.
B.1 KEY INSIGHTS AND MAIN RESULT.

In Theorem [B.T|we provide an informal statement of our main result on the worst group zero-shot
performance of label and confounder classifiers. We note that as the spurious correlation p increases,
the worst group error worsens for the label predictor and on the other end, improves for the confounder
predictor.

Theorem B.1. (zero-shot robustness; informal) Let the zero-shot label ( f) and confounder classifier
(9) be obtained by minimizing the loss in (3)) on infinite pretraining data for linear functions ¢,w.
Then, for o, = Q(1), label classifier is worse than random on the worst group, since erry®(f) =
/2 erfc(—c1poy). On the other hand, the confounder classifier suffers small error on all groups since
erry8(g) = Y2erfc(capoy). Here, c1,co > 0 are constants.

Our analysis in[B.2) will show that the above result is a consequence of (i) image encoder relying more
on non-robust compared to robust x,. when o, is higher; (ii) text encoder failing to learn separate
representations for the label and confounder descriptions.

Intuition. During multimodal contrastive pretraining feature alignment of the image and correspond-
ing text features is achieved when images x;, z; ~ Q(x | t) sampled from the text have well clustered
representations, and the clusters of different text inputs are well separated. Our understanding relies
on two key observations. First, when the pretraining distribution replicates the task distribution’s
spurious correlations (as Q(x,t) does with P(x,y, ¢)), then the clusters learned for the label and
confounder necessarily overlap since Q(z | t.a) ~ Q(x | t¢,o) (matches on all but the group where
correlation is absent). Thus, given this distribution overlap the optimal text encoder’s features for
the label and the confounder would be very similar. Second, when the noise along the robust feature
oy is high, the intra cluster variance along the non-robust feature .. is relatively lower. This biases
contrastive learning to place higher weight on the non-robust feature, in learning features that separate
clusters corresponding to the different text inputs with large margins. Together, this would lead to

10
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Figure 3: In-context learning with 128 examples does not improve robustness gap, instead hurts it:
Average and worst-group performance of ICL, ERM and PfR on language tasks.

poor robustness for the label predictor, and opposite for the spurious attribute predictor, as we note in
Theorem

B.2 OPTIMAL SOLUTIONS FOR SPECTRAL CONTRASTIVE LOSS.

In this subsection, we present Theorem [B.2] which states the solutions for the image and text encoders
learned by minimizing the objective in (3)), for linear ¢ and k = 2. In Appendix [F2] we prove results
for more general families. We make two observations that are consistent with our intuition above.
First, we see that when the noise along robust feature (o) is large, then any increase in spurious
correlation (p), increases the optimal image features” weights along spurious atttribute (x.), as 0
decreases. Second, we see that the optimal solution for the text learns identical features for label and
confounder. Thus, on any group that they disagree, the upweighted x. feature contributes more to the
prediction.

Theorem B.2 (Optimal solutions for (3); informal). Let ¢(z) = [¢] x, g x] for ¢1, p2 € R When
p > 0.5,0, = Q(1), the optimal values for norm bounded ¢, ¢o that minimize the objective in (@),
are ¢1 = [c0s(0)/\/o21,sin(0)]" and ¢ = [—5n(0)/\ /o251, cos(0)] " where O = 1/po2. Also, the
text features are match for text and confounder, i.e., w(ty ) = w(tcq) = [1,a]" fora e {1,—1}.

C ADDITIONAL EXPERIMENTS AND THEORETICAL ANALYSIS OF PFR

C.1 PFR ALGORITHM

Algorithm 1 Prompting for Robustness (PfR)

Input: Foundation model FM, text description of counfounder ¢., labeled i.i.d. dataset D.
Stage I: Predict confounder (spurious attribute)

* Prompt FM with ¢, to get zero-shot head FM q\}ltc).
* For each datapoint predict confounder ¢; «— FM(xz;, t.).

* Partition dataset into set of disjoint groups G based on label and predicted confounder: (y, ¢).
Stage II: Optimize worst group loss with DRO
¢ Learn robust classifier f by minimizing the worst loss over predicted groups in (T).

C.2 COMPARING PFR WITH IN-CONTEXT LEARNING

For language tasks, in-context learning (ICL) is a commonly used few-shot method to improve
performance when zero-shot methods are poor [Brown et al.| (2020). In ICL, some labeled training
examples are fed along with a language description of the classification task to large language models
(e.g., GPT-3.5, Llama). Since PfR also uses labeled examples, we compare our method with ICL
on CivilComments and MNLI (see Fig. [3). We observe that while ICL improves over zero-shot
inference on average, the worst-group performance remains almost unchanged for CivilComments
and worsens for MNLI. We can therefore see that ICL is not a viable alternative to PfR. One reason
for why ICL can hurt worst group performance is prior works have shown ICL in language models
to make predictions consistent with ERM models trained with gradient descent|Ahn et al.| (2023);
Akytirek et al.| (2022);|Von Oswald et al.[(2023)). Since such ERM models are known to latch onto
spurious correlations in the training data Shah et al.| (2020); [Nagarajan et al.| (2020), we would expect
ICL to improve average performance at the expense of worst group performance.

11
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C.3 THEORETICAL ANALYSIS OF PFR

PfR relies on foundation models to accurate predict the confounding attribute (Sec. [2), even when
they cannot in zero shot disentangle this confounder from the class label. Given the description ¢, the
confounder prediction error suffered by the zero-shot model in the first stage of PfR is err.(FM(, t.)).
In Theorem [C.I| we provide worst-group generalization error guarantees for PfR.

Theorem C.1 (PfR’s worst group error; informal). For PfR output f w.h.p. 1 — 0, worst group
generalization error of f is < A/108 °(F)K/5/n + err.(FM(t..)), where €(F) is complexity of F, K
is number of groups and latter term is FM’s zero-shot performance on confounder prediction.

The above result shows that the worst group accuracy of PfR is upper bounded by two terms. The
first term is the generalization error suffered by the oracle algorithm (Group DRO), and the second is
the zero-shot error in predicting the confounder. Thus, as the the zero-shot accuracy of confounder
prediction improves, it linearly affects worst-group error guarantees for PfR.

D RELATED WORK

Zero-shot and few-shot robustness of foundation models. There has been a recent growth in
the capabilities of pretrained open vocabulary models (Radford et al., 2021} Jia et al., 2021} |Brown
et al., 2020; |Chowdhery et al., [2023; Rombach et al., [2022; |Alayrac et al., [2022; |Wei et al., 2021]).
In vision modality, models such as CLIP (Radford et al.| 2021)) and ALIGN (Jia et al., [2021])) offer
unprecedented zero-shot capabilities simply by assessing the relative compatibility of a given image
with an arbitrary set of textual “prompts”|Radford et al.|(2021). For language modality, large language
models have shown unprecedented capabilities on a wide range of tasks despite not being trained
explicitly to do many of those tasks (Brown et al., 2020; |Chowdhery et al., 2023} [Touvron et al.,
2023; Wei et al., [2021} [2022). More recent GPT4-V (Bubeck et al.,[2023)) and Flamingo (Alayrac
et al., [2022)) models can take interleaved image-text input to generate text output. However, these
models do suffer from robustness problems. For example, existing works have shown that during
fine-tuning, the performance of models on distributions away from training data drops (Wortsman
et al.,|2022; |Goyal et al.,[2023; Zhang et al.| 2022), including the scenarios where the downstream
data contains spurious correlations (Yang et al.| 2023} [Tu et al., [2020; Hall et al., 2023} Lee et al.,
2023). We evaluate zero-shot robustness models to spurious correlations and propose solutions to
mitigate the observed robustness gap.

Robustness to spurious correlations. Several prior works use distribution robust optimization
(DRO) to learn predictors robust to shifts in an uncertainty set Ben-Tal et al.| (2013)); Blanchet &
Murthy| (2019); |Duchi et al.| (2016)); Duchi & Namkoong| (2021). For spurious correlation problems
that result in more specific group shifts, DRO tends to be overly pessimistic (worse than ERM) Hu
et al.| (2018). To address this, previous works assume knowledge of the spurious attribute, and either
only minimize worst loss over known groups |Sagawa et al.|(2019) or average loss over re-weighted
ones |Idrissi et al.| (2022); [Kirichenko et al.| (2022). Since it is restrictive to assume group knowledge,
other works used relied on two observations: spurious attributes are easier to learn (than robust
features) and ERM suffers from a simplicity bias |Shah et al.|(2020); |Sagawa et al.| (2020). Using
this, they either reconfigure DRO’s uncertainty set |Setlur et al.| (2023) (or make it random [Zhai
et al.|(2021)), while other works [Liu et al.|(2021); Nam et al.| (2020) exploit it to recover the hidden
minority group with ERM losses. Finally, some other works on robustness to hidden confounders
Sohoni et al.|(2021); |Bao & Barzilay|(2022)); Creager et al.| (2021)) either rely on dataset dependent
heuristics, or the ability to query test samples|Lee et al.|(2022). Different from the above, we assume
a language description of the confounder (as opposed to groups). Armed with this, we use open
vocabulary models to predict the presence of a confounder, and then learn robust predictors with
DRO over predicted groups. Thus, while we leverage DRO formulation for robustness guarantees,
we also avoid its pitfalls by relying on zero-shot foundation models.

Theoretically analyzing robustness of self-supervised learning. While several works theortically
analyze [Tian et al.| (2020); HaoChen et al.| (2021)); Mitrovic et al.| (2020); [Wang & Isolal (2020);
Saunshi et al.|(2022); |HaoChen & Ma|(2022) models pretrained with contrastive learning, masked
image and language modeling, they mainly do this for few-shot in-distribution generalization on
downstream tasks. In contrast, there are fewer works that focus on out-of-distribution robustness|Shen
et al.| (2022); Kumar et al.|(2022); |HaoChen et al.|(2022)), and even fewer on robustness to spurious

12
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correlations |Garg et al.|(2023)), and all of them do this for unimodal few-shot settings. In contrast,
we theoretically analyse zero-shot generalization for multimodal contrastive learning. Zhang et al.
(2023); |Chen et al.|(2023) are recent works that also theoretically analyze the multimodal setting, and
the former only studies few-shot in-distribution generalization, similar to|Lee et al.| (2021). Closest
to our analysis isZhang et al.|(2023)), which analyzes zero-shot performance of CLIP, but unlike us
they do not specifically model the pretraining distribution to also include spurious attributes from the
downstream task, which we show impacts robustness to spurious correlations.

E FUTURE WORK

In this work, we focus on the robustness of zero-shot models to tasks with spurious correlations. While
foundation models have shown unprecedented zero-shot capabilities, we show that these models
struggle when confounders lose correlation with labels. To address this, we propose Prompting for
Robustness (PfR), leveraging language descriptions to prompt zero-shot classifiers and train robust
models. Empirical results reveal significant performance gains in the worst accuracy groups. Overall,
this work offers insights and a practical approach to enhance foundation model robustness against
hidden confounders, contributing to bias mitigation and improved fairness in machine learning.

There are several directions for future work. Currently, we assume knowledge about what are potential
contenders for “spurious attributes”. Discovering spurious attributes in an automated manner is an
interesting direction for future work. To improve the robustness of the classifier, we need some labeled
downstream data for our post-training intervention. Near-perfect zero-shot accuracy in predicting
groups, coupled with the presence of a robust linear classifier atop fixed features, hints that we should
be able to improve post-training robustness in a zero-shot way This potential improvement represents
an intriguing and valuable avenue for future inquiry.

F PROOFS FOR OUR THEORETICAL RESULTS

F.1 WORST GROUP GUARANTEES FOR PFR

Theorem F.1 (PfR’s worst group error; restated). For PfR output f w.h.p. 1 — 6, worst group

generalization error of f is < /108 CFIK/0/p, + erro(FM(¢.)), where €(F) is complexity of F, K
is number of groups and latter term is FM’s zero-shot performance on confounder prediction.

Proof. Recall the objective for PfR which minimizes worst group loss over predicted groups
Gi,...,Gk. Let,

o= }g}ksel[lfg] Ep, [l(h(X),y> | (x,y) € Gk] )

Lemma F.2 (worst-case risk generalization (Group DRO)). With probability > 1 — § over dataset
D ~ P, the worst group risk for f* can be upper bounded by the following, where opt is the
minimum on the training objective,

~ log (X
sup Ep,. [l(h(X),y) | (x,y) € Gk] < opt + log (55°) )
ke[K] n

where € is the complexity of class F (e.g., the covering number \Wainwright (2019)).

Proof. We first apply the generalization bound for a single group, which is given by

log(§)
Wainwright| (2019), followed by a union bound over the K groups. O

We can break down down the worst group loss for the learned function f on the true groups
G4, .. .,Gg in the following way, where we assume loss ¢ is M bounded:

13
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sup Ep, [1(f(x).3) | (.)€ Ge] < sup Ep, [1(f).3) | (y) € GenGi] )

ke[ K] ke[ K]
+ MEp, [n(xe@k) |ze Gk] ©®)
+ MEp, [11(33 €eGy) |ae ék] %

Since maxy 2(aq + b1, az +bz) < max; 2(a1, az)+ < maxy 2(by, be) for some scalars ay, az, by, ba,
we can upper bound supy.[x) Epy [l(f(x),y) | (x,y) € Gk] as:

sup Ep, [1(f(x),¥) | (x,¥) € Ge| < sup Ep, [U(z € Cy) | v e Gr| + E[1(FM(a,t.) # )]
ke[K] ke[ K]

= sup Ep, []l(:n €Gy)|ze é’\k] + err?¥ (FM(z, t¢)).
ke[ K]

for positive losses. Above, we replaced the group mixmatch error with the error of the zero-shot
classifier FM(x, t..). Further, in our case M = 1.

The above result when used in a simple triangle inequality with the result in Lemma[F2]completes
the proof of Theorem[F.2]

O

F.2 ANALYSIS OF MULTIMODAL CONTRASTIVE PRETRAINING

Before, we present our the proofs for our main theoretical result, we will prove a key Lemma that
allows us to derive general solutions for multimodal spectral contrastive loss in Equation (3], done on
any class of ¢, w

F.2.1 GENERAL SOLUTION FOR ANY FUNCTION CLASS

Lemma F.3 (General solutions for multimodal contrastive learning). When ¢, w are restricted
to orthonormal functions in LQ(P), then the objective in Equation (3) is equivalent to

ming ., §, ¢(x)\/q(x)A(w(t)\/q(t))(x) dz. Here, A(f(t)) is the linear operator
A(f(t)) =: j p(m,t)f(t)/q /q(z)q(t) dt,
¢

and A" is its adjoint. Its adjoint is then:

At (g(.’ﬂ)) =: J p(xvt)g(x)/\/p(z)p(t) dt.

Given the constraints on ¢,w, to be orthonormal and operators A, A™ in Proposition the optimal

solutions for () are ¢;(x) = fi(®)/\/p(=) and w;(t) = 9:()/\/p(x), where {fi}¥_, and {g;}*_, are the
top k eigen functions of self-adjoint AAY and A" A respectively.

Proof. First, we break down the spectral contrastive loss in the following way where g is the density
of the measure Q(x, t):

—2E [¢(z) Tw(t)] + E.E(d(2) w(t))? ®)

2
Q 3
L{ - (\/7\/7 VQ()d() (t)) dxdt + const. 9)

Then consider the case where the output dimension is 1. We consider the constrained objective
where { x ¢?(x) dor = 1 and ST ) dt = 1. Plugging this in, we conclude the above objective is

equivalent to: to A(& ={4 w)q t) &(t)dt. Here:

Va@a@
DVa(t) d(z) = Valz)g(x) (10)

14
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Following |[Eckart & Young|(1936)), we know that the solution to the above optimization problem is
given by the eigenvectors of the self-adjoint operators AA" and AT A.

O

For the multimodal spectral contrastive loss in Equation (3), when we additionally require the image
and text encoders to be normalized in Lo(P), (i.e., any f : X — Ror f : T — R such that
§ f2dP < o0), then the objective can be redefined with the linear operator A in Lemma

Leveraging the result above, we closely analyze the impact the of the distribution skew by deriving
closed form solutions for ¢, w when they are restricted to the class of linear functions. Note, given
the one hot encoding of the text in 7 the linearity assumption in no way restricts the class of text
encoders. We present our result in Theorem [F.4]

F.2.2 PROOF OF THEOREM [B.2]

Theorem F.4 (Optimal solution for spectral contrastive loss). Let p = py > 0.5 for some fixed pg
and ¢ = ATz, w = BTt are linear with A, B € R**?. Then, under slightly stricter constraints on
@, the solutions A*, B* for the objective in (@), are the top k columns of the matrix on the left and

2
right respectively, where tan(20) = (470(@ /72 +1)

m and Udn € Randn is Mnitary.

cos(@)/\/W sin(@)/\/W OdT +1+1 +1 —1
L X b +1 +1 -1 +1
,sm(@)/a COb(G)/a Odn ,05 +1 -1 -1 —1
0a,, 0, Ua, +1 =1 +1 +1

In the above statement, o = v = 1.

Proof. Recall from Lemma the general solutions are given by eigen functions of AAT, and AT A.
For linear functions, that are norm regularized, i.e., E[¢(x)¢(x) ] = I} and E[w(t)w(t) ] = Ix, we
derive the following objective:

S =Elzz"] I =EJ[E[z|t]E[z]]T].
Here, we encode text as a one-hot vector: Thus, the set of text descriptions 7 is: { “y is +17, “cis +17,
“cis —1” and “y is —1” }, which we input as one hot encodings [1, 0, 0, 0]T ,[0,1,0, O]T .[0,0,1,07]
and [0, 0,0, 1]T respectively to the text encoder w.

max w' Suw,
p:wTTiw=1

S =E[tt'] S = EL[E[t|2]E[t]=]T].
Since both are identical but involve different matrices, we show our working for one, and plug in
values from the distribution for the other.

First we note that changing the constraint to ¢' ¥¢ < 1, does not change the optimal solution, since
these are eigen vectors and X is full rank in both cases. Second, we recall the identity:

¢ VP <2 ¢ diagte.

Thus, we replace the constraint on ¢, with the right right hand side of the above expression. Note
that, whenever the right hand side < 1/2, our original constrained is satisfied. So, we solve this more
regularized objective for conveniece of obtaining a more precise closed form solution.

Recall that in our setup both 3 and ¥ are positive definite and invertible matrices. To solve the
above problem, let’s consider a re-parameterization: ¢/ = diag(X)'/2¢, thus ¢ ' diag(X)¢ = 1, is
equivalent to the constraint |¢’|3 = 1. Based on this re-parameterization we are now solving:
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arg max (b’—l—diang(E)%1 -3 - diag(%)~2¢, (11)
lerI3=1
which is nothing but the top eigenvector for diag(2)~1/2 - 3 - diag(X) /2.

Now, to extend the above argument from k = 1 to k > 1, we need to care of one additional form of
constraint in the form of feature diversity: ¢, ¥ A¢; = 0 when i # j. But, we can easily redo the
reformulations above and arrive at the following optimization problem:

arg max [0, 0., 0] diag() V2 - S+ diag(2) "2 [¢), ¢, ..., 4], (12)
|5 =1, Vi
(95 =0, Vi#j

where ¢, = diag(X)/2¢;. The above is nothing but the top k eigenvectors for the matrix
diag(X)~12 - % - diag(%) /2.

Let SVDy, is the top k singular vectors of an SVD decomposition. Now, from our problem description
we state values of the four matrices above. For the image encoder, the solution is given by:

(2)"2SVDy,(diag(E) V2 - 3 - diag(2)~?)
where 3, 3 are defined as follows:

1+02 2p—1 0g4,

Y= |2p-1 1 04, (13)
0, 0; I
N (14 (2p—1)?)/2 2p—1 04,
i 2p—1 (1+ @2 —1)%/2 0q,
0, 0, I

On the other hand, for the text encoder, it is given by:

(24)~V2SVDy, (diag(2,) V2 - 5 - diag(%) ")

Y = I, and ¥ is:

1 P 1—p 0
S p 1 0 1—p
=112, 0 1

0 1—-p P 1

Lemma F.5 (closed-form expressions for eigenvalues and eigenvectors of 3, ). Fora?2 x 2 real

bl

symmetric matrix [Z S] the eigenvalues \1, Ao are given by the following expressions:

)

(a+b+0)
2

(a+b—9)

)\1: 7>\2: 2 )

where § = A/4c% + (a — b)2. Further, the eigenvectors are given by U = [;Orf((g)): ggslggg], where:
b—a+6

2c
For full proof of these statements see|Deledalle et al.|(2017).

tan(0) =

Plugging the above expressions into Lemma [F5] gives us the final solution and completes the proof.
O
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F.2.3 PROOF OF THEOREM [B.1]

Theorem F.6. (zero-shot robusiness; restated) Let the zero-shot label ( f) and confounder classifier
(g) be obtained by minimizing the loss in (3)) on infinite pretraining data. Then, for o, = Q(1), label
classifier is worse than random on the worst group, since erry®(f) = 1/2erfc(—c10.p). On the other
hand, the confounder classifier suffers small error on all groups since erry®(g) = /2 erfc(caoyp).

Here, c1,co > 0 are constants .

Proof. First, we state the formal version of the theorem statement. Let f be zero-shot label predictor,
and g be the zero-shot confounder predictor extracted from ¢, w in Theorem Then, the worst
group error for f is:

erry®(f) = 1/2 - erfc (¢/v2),
and for g is:
erry®(g) = Yz - erf (7/v2)
where p = —1/o, — cot(0)+/ /o2 + 1. Here, 0 is the value defined in Theorem

Using our expressions for the zero-shot predictor in Sec. [B] we use the result from Theorem [F.4]to
define:

2z, sin 6
Ty, o)) = g([2r, 2c]) = 21 (—ZE—= + 2z, cosf) — 1
f(lwr; xe]) = g([r, ze]) = 21( o2 )
Now, based on the signs along z, and x., we conclude that the worst group for fisy = 1,c¢ = —1.
Pr(f([ze, ze]) < 1] (y,¢) = (1,-1))
—2siné
= Pr(ﬁ < —2cos0)

1+02

r—1 1 1
=Pr($ > —— +4|— + 1cotfcosb)
Oy o\ o2

= %erfc( ;1 — cot g(m))
= %erfc(p/ﬁ)

On the other hand the worst group for the confounder is (y, ¢) = (1, 1), but even here, the error is
negligible.

Pr(f([xraxc]) <1 ‘ (y,c) = (17 1))
= %erfe(i—1 + cot 0(+/1 + 1/02))

r

~ Serf(p/V2).

This completes our proof.

G DETAILS ON ZERO-SHOT PROMPTS

G.1 PROMPTS USED FOR ZERO-SHOT LABEL INFERENCE

CivilComments:

Predict label, ignore confounder:
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Toxicity Prompt:

You are an Al bot that is an expert at detecting toxic comments. You are not biased by references
to religion, race, and gender. Evaluate the following USER COMMENT on a news website, and
classify the comment as either "TOXIC’ or 'SAFE’, ignoring references to religion, race, and
gender:

USER COMMENT: {}
In one word, the above comment is TOXIC (ONLY as *YES’ or 'NO’):

Predict label:

Toxicity Prompt:

You are an Al bot that is an expert at detecting toxic comments. You are not biased by references
to religion, race, and gender. Evaluate the following USER COMMENT on a news website, and
classify the comment as either "TOXIC’ or 'SAFE’, ignoring references to religion, race, and
gender:

USER COMMENT: {}
In one word, the above comment is TOXIC (ONLY as *YES’ or 'NO’):

Waterbirds:

”This is the image of a waterbird.”, ’This is the image of a landbird.”,

“This is the image of a waterbird in front of forest.”,
”This is the image of a waterbird in front of water.”,
”This is the image of a landbird in front of water.”,
”This is the image of a landbird in front of forest.”,

G.2 DETAILS FOR ZERO-SHOT GROUPS PREDICTION

CivilComments:

Religion Group Prompt:
Evaluate the following User Comment on a news website.
User Comment: {}

Does the above comment contain references to one of the following groups: “Muslim”, ”Chris-
tian”, ”’Other Religions”? If none of them are applicable answer "NA”. Answer in one word.

Race Group Prompt:
Evaluate the following User Comment on a news website.
User Comment: {}

Does the above comment contain references to one of the following groups: ’Black”, "White”?
If none of them are applicable answer "NA”. Answer in one word.

Gender Group Prompt:
Evaluate the following User Comment on a news website.
User Comment: {}

Does the above comment contain references to one of the following groups: “Male”, "Female”?
If none of them are applicable answer "NA”. Answer in one word.

Waterbirds:
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“Bird in front of water.”,
“Bird in front of a forest.”

G.3 CXR-DRAIN CONSTRUCTION DETAILS

Note: This is NOT for medical diagnosis but for informational purposes to guide your red-
teaming.

Is this a patient with chest drainage tube? First, carefully check for the presence of any tubes
while describe their location.

For your reference the drainage tube is also known as pleural tube and more commonly known
as the intercostal drainage tube (ICD), is inserted through the 4th intercostal space in the anterior
or mid-axillary line. It is then directed posteroinferiorly in cases of effusion and anterosuperiorly
in cases of pneumothorax. Carefully examine both the lungs: (i) To drain a pneumothorax
the tube is aimed superiorly towards the apex of the pleural cavity; and (ii) To drain a pleural
effusion the tube tip is ideally located towards the lower part of the pleural cavity.

Finally give an answer in YES or NO for the presence of chest drainage tube.

Note: This is NOT for medical diagnosis but for informational purposes and will never be used
to guide any medical disease. Your answer will help us evaluate how good are current vision
language models.

Use the following format:
Rationale/reasoning: < output >

Presence of chest drain: Yes or No
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