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Abstract001

Clinical trials are critical for advancing medical002
treatments but remain prohibitively expensive003
and time-consuming. Accurate prediction of004
clinical trial outcomes can significantly reduce005
research and development costs and acceler-006
ate drug discovery. While recent deep learning007
models have shown promise by leveraging un-008
structured data, their black-box nature, lack009
of interpretability, and vulnerability to label010
leakage limit their practical use in high-stakes011
biomedical contexts. In this work, we propose012
AUTOCT1, a novel framework that combines013
the reasoning capabilities of large language014
models with the explainability of classical ma-015
chine learning. AUTOCT autonomously gen-016
erates, evaluates, and refines tabular features017
based on public information without human in-018
put. Our method uses Monte Carlo Tree Search019
to iteratively optimize predictive performance.020
Experimental results show that AUTOCT per-021
forms on par with or better than SOTA methods022
on clinical trial prediction tasks within only a023
limited number of self-refinement iterations,024
establishing a new paradigm for scalable, inter-025
pretable, and cost-efficient clinical trial predic-026
tion.027

1 Introduction028

Clinical trials are essential to bring new treatments029

to patients, yet they are extremely costly in terms030

of both time and resources. The process of devel-031

oping a new drug and bringing it to market takes,032

on average, over 10 years and costs nearly US$2.6033

billion, with a clinical success rate of less than034

10% (Qian et al., 2025). This long development035

cycle, combined with high costs and low success036

rates, poses significant challenges to drug discovery037

and development (Lo and Chaudhuri, 2022). Ac-038

curate and informative predictions of clinical trial039

outcomes—and other related indicators—have the040

1We plan to open-source the code upon acceptance.

potential to guide clinical research, reduce costs, 041

and accelerate the drug development pipeline. 042

Early studies apply classical machine learning 043

models to predict trial outcomes using expert- 044

curated features (Gayvert et al., 2016; Lo et al., 045

2019; Siah et al., 2021). Although these approaches 046

achieve robust performance, they are limited by 047

their reliance on manually annotated tabular data. 048

Such methods are not well-suited to incorporate 049

unstructured information from diverse biomedical 050

databases. 051

More recent work has employed deep learning 052

models capable of leveraging idiosyncratic data 053

from various sources (Fu et al., 2022; Wang et al., 054

2023; Yue et al., 2024). These models integrate 055

information such as disease hierarchies, similari- 056

ties with prior trials, drug toxicity profiles, and trial 057

design attributes. While powerful, these deep learn- 058

ing frameworks often function as “black boxes,” 059

making their predictions difficult to interpret. In 060

high-stakes domains such as clinical trials, where 061

interpretability and uncertainty quantification are 062

critical, this lack of transparency can limit their 063

practical applicability. Furthermore, many existing 064

deep learning or embedding-based approaches risk 065

label leakage when extracting information from 066

external databases without enforcing a knowledge 067

cutoff (Fu et al., 2022). 068

In this work, we introduce AUTOCT 069

(Automated Interpretable Clinical Trial Pre- 070

diction with LLM Agents), a framework that 071

addresses these limitations by combining the 072

reasoning abilities of large language models 073

(LLMs) with the interpretability and reliability of 074

classical machine learning. AUTOCT is motivated 075

by a few key observations. First, LLMs encode 076

extensive prior knowledge in their parameters 077

(Zhou et al., 2024; Li et al., 2024a), which can be 078

harnessed in place of domain experts to suggest 079

potentially predictive features and guide the 080

feature engineering process. Second, LLMs has 081
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Figure 1: Overview of the AUTOCT Framework. Turquoise boxes indicate components using LLMs with Chain-of-
Thought (CoT) reasoning. Blue boxes represent components using LLMs with ReAct-style reasoning (interleaving
reasoning and action). White boxes denote inputs and outputs, while gray boxes correspond to standard function
calls without LLM involvement.

demonstrated certain reasoning abilities (Wei082

et al., 2022; Yao et al., 2023), which enhance083

their test-time compute and allow them to perform084

complex tasks such as researching, planning,085

and constructing higher-level features. Third,086

existing generalized AutoML frameworks often087

rely on fixed pipelines or, when augmented with088

LLMs, provide feedback based only on limited089

information such as performance metrics and prior090

knowledge. In contrast, expert-driven approaches091

to clinical trial prediction typically involve092

in-depth analysis, contextual interpretation, and093

iterative refinement grounded in domain-specific094

research.095

To better emulate this expert workflow, AU-096

TOCT leverages LLMs not simply for guidance but097

as active agents in the feature construction process.098

As shown in Figure 1, the system autonomously099

proposes, plans, and builds tabular features with100

extensive research. These features are then used101

to train a classical machine learning model. The102

resulting model performance is evaluated by an103

LLM, which conducts error analysis and offers iter-104

ative suggestions for improvement. Model perfor-105

mance is optimized via Monte Carlo Tree Search106

(Coulom, 2006), guided by these LLM-generated107

recommendations. Given only a clinical trial iden-108

tifier and an outcome label (e.g., binary success or109

failure), AUTOCT can achieve performance com-110

petitive with state-of-the-art methods —without111

human intervention and within a limited number of112

MCTS iterations.113

The contributions of this paper are threefold:114

• We present a novel and generalizable frame-115

work that achieves competitive performance116

on clinical classification tasks with SOTA 117

methods. 118

• To the best of our knowledge, AUTOCT is 119

the first end-to-end clinical machine learning 120

framework that automatically extracts features 121

with the help of LLMs, and is capable of dy- 122

namic feature discovery based on the scope of 123

accessible data sources without human inter- 124

vention. 125

• Our approach combines the interpretability 126

of classical machine learning with the reason- 127

ing capabilities of LLMs, enabling transparent 128

and quantifiable predictions suitable for high- 129

stakes clinical decision-making. 130

2 Related Work 131

2.1 Clinical Trial Outcome Prediction 132

Our work targets interpretable and quantifiable 133

prediction of clinical trial outcomes. Early stud- 134

ies used classical machine learning models on 135

expert-curated tabular features. For example, Lo 136

et al. (2019) showed strong performance on Phase 137

2-to-approval (P2APP) and Phase 3-to-approval 138

(P3APP) datasets using imputation and models like 139

random forests and SVMs, while Siah et al. (2021) 140

improved results through a domain-informed data 141

science challenge with Novartis. However, these 142

methods struggle to incorporate unstructured or 143

multi-modal data due to their reliance on fixed tab- 144

ular inputs. 145

More recent work employs deep learning to ad- 146

dress these limitations. Fu et al. (2022) proposed 147

HINT, a GNN model that integrates multiple data 148

sources, and Wang et al. (2023) introduced a meta- 149

learning framework that leverages temporal trial 150
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sequences. While effective, such models act as151

black boxes with limited interpretability. Yue et al.152

(2024) presented ClinicalAgent, a multi-agent sys-153

tem that enhances transparency via external tools,154

though LLMs still face issues with calibrated un-155

certainty and label leakage (Xiong et al., 2023; Li156

et al., 2024a; Fu et al., 2022).157

AUTOCT bridges these paradigms by using158

LLMs solely for feature construction, with inter-159

pretable classical models for prediction. This en-160

ables multi-source integration while retaining trans-161

parency and robustness.162

2.2 Automated Machine Learning (AutoML)163

Most existing AutoML approaches begin with a164

predefined tabular dataset comprising engineered165

features and corresponding labels. Han et al. (2024)166

employed LLMs to generate additional feature167

rules based on existing tabular inputs, thereby en-168

hancing the performance of downstream predictive169

models. Hollmann et al. (2023); Li et al. (2025)170

leveraged LLMs’ prior knowledge for feature en-171

gineering. Luo et al. (2024) proposed embedding172

LLMs at each stage of the machine learning work-173

flow. Chi et al. (2024) introduced an AutoML174

framework that uses Monte Carlo Tree Search to175

optimize the entire machine learning pipeline.176

Inspired by these works, our approach aims to177

further extend automation by removing the depen-178

dency on an initial feature set. Instead, AUTOCT179

uses the contextual understanding and reasoning180

capabilities of LLMs to propose and construct an181

initial set of tabular features from only the system182

prompt, the unique identifier of a trial and the target183

label. These features are then iteratively refined and184

optimized using MCTS, enabling fully automated,185

end-to-end clinical trial modeling.186

2.3 LLM Agents in Healthcare187

Large Language Model (LLM)-based agents have188

emerged as transformative tools in the healthcare189

domain (Wang et al., 2025). Systems like MedAide190

(Wei et al., 2024) coordinate agents across stages191

of diagnosis and treatment, while frameworks such192

as MDAgents (Kim et al., 2024) adaptively as-193

sign collaboration structures to teams of LLMs.194

Agent Hospital (Li et al., 2024b) simulates entire195

hospital environments with LLM-powered agents,196

and Dutta and Hsiao (2024) proposed a simulated197

doctor-patient dialogue agent to enhance diagnostic198

reasoning, which showed strong performance on199

benchmarks such as MedQA.200

While existing LLM agents focus on tasks like 201

diagnosis and documentation, AUTOCT introduces 202

LLM agents for feature discovery in clinical trial 203

prediction. By simulating a full machine learning 204

pipeline using planning, example-based reasoning 205

and model feedback, AUTOCT bridges the gap 206

between LLM-based reasoning and structured ma- 207

chine learning in the biomedical domain. 208

3 Methods 209

We begin by introducing the retrieval tools avail- 210

able to our agents for steps that require in-depth rea- 211

soning and research (§ 3.1). The AUTOCT frame- 212

work consists of several key components: the Fea- 213

ture Proposer (§ 3.2), which generates conceptual 214

feature ideas grounded in both parametric knowl- 215

edge and selected training samples; the Feature 216

Planner (§ 3.3), which transforms these ideas into 217

executable instructions and structured schemas; the 218

Feature Builder (§ 3.4), which conducts external 219

research and computes the corresponding feature 220

values; the Model Builder (§ 3.5), which trains 221

classical machine learning models on the derived 222

features; and the Evaluator (§ 3.6), which assesses 223

model performance and provides iterative feed- 224

back. These components interact within a Monte 225

Carlo Tree Search framework (§ 3.7), where each 226

Evaluator suggestion constitutes a new node to re- 227

fine the feature space. The full algorithm is illus- 228

trated in Figure 2. To improve reasoning efficiency 229

and performance in complex modules—specifically 230

the Feature Proposer, Feature Builder, and Evalu- 231

ator—we adopt a multi-agent architecture. This 232

design decomposes each complex task into smaller, 233

more manageable sub-tasks, enabling us to provide 234

each LLM with shorter and more targeted prompts. 235

This hierarchical reasoning framework also explic- 236

itly encourages deeper thinking from each LLM to 237

achieving robust performance. 238

3.1 Retrieval Tools 239

To replicate the research process of biomedical 240

experts in clinical trial outcome prediction, we 241

equip LLMs with tools to conduct external research 242

during steps that require more complex reasoning, 243

similar in spirit to retrieval-augmented generation 244

(RAG) (Lewis et al., 2020). To support this, we 245

embed academic articles from PubMed (White, 246

2020) and clinical trial records from ClinicalTri- 247

als.gov (Zarin et al., 2011) using PubMedBERT- 248

based embeddings (Mezzetti, 2023), creating two 249
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Algorithm 1 AUTOCT with MCTS
Require: Train/validation sets It, Iv, labels Yt, Yv, task description D, iterations N

1: F0 ← InitializingProposer(D, I ′t,Y ′
t), where I ′t ⊂ It, Y ′

t ⊂ Yt
2: F0 ← FeatureBuilder(It, FeaturePlanner(F0))
3: M0 ←ModelBuilder(F0,Yt), score s0 ← Evaluate(M0, Iv,Yv)
4: Initialize tree T with root (F0, s0)
5: for i = 1 to N do
6: for g ∈ Evaluator(si−1, Fi−1, I ′v,Y ′

v,D) do, where I ′v ⊂ Iv, Y ′
v ⊂ Yv

7: F ′ ← UpdateFeatures(Fi−1, FeatureBuilder(It, FeaturePlanner(IterativeProposer(g))))
8: M ′ ←ModelBuilder(F ′,Yt), score s′ ← Evaluate(M ′, Iv,Yv)
9: Add (F ′, s′) to T

10: end for
11: (Fi, si)← SelectBestChild(T )
12: end for
13: return Best feature set/model from T

Figure 2: AUTOCT algorithm using Monte Carlo Tree Search to iteratively refine features and improve prediction.

local knowledge bases referred to as PubMed DB250

and NCT DB, respectively, as shown in Figure 1.251

When the LLM issues a query to either PubMed252

DB or NCT DB, its generated question is used as253

the search input, and relevant texts are retrieved254

via hybrid retrieval that combines BM25 (Robert-255

son et al., 2009) and embedding-based similarity.256

To mitigate the risk of label leakage, we apply a257

publication-date filter to ensure that all retrieved258

documents were publicly available prior to the start259

date of the clinical trial under consideration. This260

step is critical, as databases such as PubMed may261

include post hoc analyses or results of the trial262

itself, which—if accessed during feature construc-263

tion—could leak outcome-related information and264

compromise the validity of the model. Similarly,265

any query made to the NCT DB excludes trials that266

began after the start date of the trial under consid-267

eration, ensuring that only information available at268

the time of the trial is used.269

3.2 Feature Proposer270

The Feature Proposer2 module assumes the role of271

a biomedical expert or clinical researcher by gener-272

ating conceptual feature ideas that are concretized273

in downstream stages. As shown in Figure 1, we de-274

sign two variants of this component: the Initializing275

Proposer, which operates during the first iteration,276

and the Iterative Proposer, which functions during277

the Monte Carlo Tree Search (MCTS) process.278

Initializing Proposer. The Initializing Proposer279

is designed to generate a foundational set of intu-280

itive and expert-aligned features before any empiri- 281

cal evaluation occurs. It incorporates suggestions 282

from two complementary sources: 283

• Zero-Shot Proposer: This LLM is given only 284

the task description and asked to suggest feature 285

ideas based on its prior (parametric) knowledge, 286

using chain-of-thought (CoT) reasoning. These 287

features tend to be generic and broadly applica- 288

ble. 289

• Factor-Based Proposer: This model receives in- 290

dividual labeled training samples (either positive 291

or negative) and is tasked with identifying con- 292

tributing factors to the observed label. It uses the 293

ReAct framework and can query retrieval tools to 294

perform more targeted and informed reasoning. 295

The combination of these two approaches bal- 296

ances general domain knowledge with sample- 297

specific insights. To synthesize these ideas, CoT- 298

enabled LLMs aggregate and summarize the out- 299

puts into a unified feature set, which is then passed 300

to the Feature Planner for downstream use. 301

Iterative Proposer. The Iterative Proposer dif- 302

fers from the Initializing Proposer in both input 303

and output. It operates after each pipeline iteration, 304

taking as input a recommendation from the Eval- 305

uator module. It then generates a single proposal 306

of one of three types: 1. Add – introduces a new 307

feature idea; 2. Refine – improves or augments an 308

existing feature; 3. Remove – eliminates a feature 309

deemed unhelpful or redundant. 310
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3.3 Feature Planner311

The Feature Planner2 is responsible for turning312

high-level feature ideas into structured, executable313

plans that downstream components can implement.314

Given a conceptual feature proposal from the Fea-315

ture Proposer, this module outputs a detailed, step-316

by-step plan for feature construction, including317

an explicit schema that defines the format and ex-318

pected output. This process relies on LLMs using319

chain-of-thought (CoT) reasoning and their demon-320

strated ability to perform complex task decomposi-321

tion and procedural planning (Huang et al., 2024).322

3.4 Feature Builder323

The Feature Builder2 is responsible for assigning324

concrete values to each proposed feature for all clin-325

ical trials in the dataset, following the structured326

plans generated by the Feature Planner.327

During the initialization phase, the system pro-328

cesses a batch of feature ideas proposed by the329

Initializing Proposer. Since many of these features330

may be conceptually similar or share dependencies,331

we invoke the Feature Grouper to cluster them into332

logical groups. This grouping step ensures effi-333

cient use of the LLM’s context window and allows334

shared research steps to be reused across related335

features.336

For each group, the system performs the follow-337

ing steps:338

• Feature Researcher: This module uses the339

ReAct paradigm (Yao et al., 2023) to perform340

tool-augmented reasoning, retrieving informa-341

tion from external sources such as the PubMed342

DB or NCT DB. It enables the LLM to conduct343

targeted research, such as locating relevant trial344

histories, drug properties, or disease mechanisms,345

which are critical for building more complex and346

informative features.347

• Feature Builder: After the necessary informa-348

tion is gathered, the Feature Builder executes the349

final step of information extraction (Xu et al.,350

2024). It uses CoT reasoning to convert re-351

trieved evidence into structured values based on352

the schema defined in the feature plan.353

3.5 Model Builder354

When the Feature Builder finishes running for all355

features for all the trials, the Model Builder, which356

is a function call, builds three classical machine357

learning models, Logistic Regression, Random For-358

est and XGBoost.359

3.6 Evaluator 360

The Evaluator2 plays a critical role in guiding the 361

Monte Carlo Tree Search (MCTS) process by gen- 362

erating suggestions for improving model perfor- 363

mance. These suggestions form the nodes explored 364

in subsequent iterations of the AUTOCT pipeline. 365

Following the design intuition behind the Initializ- 366

ing Proposer, we employ two complementary vari- 367

ants of the Evaluator: 368

• Model-Based Evaluator: This variant is pro- 369

vided with the model’s quantitative outputs, in- 370

cluding the ROC-AUC score, feature importance, 371

and the corresponding feature plans. Based on 372

this information, the LLM is prompted with CoT 373

to analyze which aspects of the current feature 374

set may be lacking and to propose high-level im- 375

provement ideas. 376

• Error-Based Evaluator: This variant receives 377

all the information provided to the first version, 378

but is additionally given a single misclassified 379

validation example per iteration. Using ReAct 380

reasoning, the LLM is employed to investigate 381

potential reasons for the model’s incorrect pre- 382

diction. It retrieves relevant contextual informa- 383

tion from external sources (e.g., PubMed DB, 384

NCT DB) to understand what factors could have 385

contributed to the correct classification and how 386

those could be captured in a new or modified 387

feature. 388

The suggestions generated by both Evaluators are 389

aggregated to form a unified list of proposals. Each 390

suggestion is treated as a potential next move in the 391

MCTS algorithm, where it is passed to the Iterative 392

Proposer. 393

3.7 Monte Carlo Tree Search (MCTS) 394

We adopt Monte Carlo Tree Search (MCTS) 395

(Coulom, 2006) to efficiently explore the space 396

of possible features within AUTOCT. Each node 397

in the tree represents a distinct state of the feature 398

set, and each edge corresponds to a transformation 399

suggested by the Evaluator module—either an Add, 400

Refine, or Remove action. At each iteration, AU- 401

TOCT selects the next action to apply by simulating 402

multiple rollouts from the current state using the 403

Upper Confidence Bound for Trees (UCT) criterion 404

2Prompts and example outputs are provided in Ap-
pendix B.
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to balance exploration and exploitation:405

UCT(x) =
q(x)

n(x)
+ α ∗

√
lnn(xparent)

n(x)
, (1)406

where q(x) is the cumulative reward, n(x) is407

the number of times node x has been visited,408

n(xparent) is the visit count of the parent node,409

and α is the exploration weight that controls the410

trade-off between exploitation and exploration.411

The resulting feature set is evaluated via model412

performance, and the Evaluator generates new im-413

provement suggestions, which are then added as414

child nodes in the search tree. The MCTS process415

continues until the maximum number of iterations.416

At the end of the search, the system selects the417

feature set corresponding to the node with the best418

observed validation performance.419

4 Experiments420

4.1 Experimental Setup421

The algorithm for the AUTOCT framework is pro-422

vided in Figure 2. We use gpt-4o-mini3 as the423

backbone LLM, with a temperature of 0. For the424

Initializing Proposer, we randomly select 3 positive425

and 3 negative samples from the training set and426

process each through the Factor-Based Proposer.427

Similarly, for the Evaluator module, 3 misclassified428

validation samples are randomly selected and eval-429

uated using the Error-Based Evaluator. As a result,430

each node in the Monte Carlo Tree Search (MCTS)431

generates a maximum of 6 potential improvement432

proposals.433

For the MCTS process, we set the exploration434

weight α in the UCT formula to 1.0 to bias the435

search toward deeper, potentially more promising436

parts of the tree. We use ROC-AUC as the primary437

performance metric to guide the tree search, in438

alignment with prior work such as Lo et al. (2019);439

Siah et al. (2021); Fu et al. (2022); Chen et al.440

(2024). We limit the number of rollouts to 10 and441

the maximum depth to 10. Each MCTS run on a442

subset of 100 training and 100 validation samples443

incurs an approximate cost of $150, with the fea-444

ture building process responsible for the majority445

of the compute cost due to in-depth retrieval and446

reasoning.447

3https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/

4.2 Dataset 448

We evaluate AUTOCT primarily on the Trial Ap- 449

proval Prediction task from the TrialBench bench- 450

mark (Chen et al., 2024), which includes 24,468 451

training and 6,215 test samples. To ensure a fair 452

comparison with prior benchmarks and to remain 453

within our computational budget, we perform strat- 454

ified sampling based on the label distribution to se- 455

lect 100 training and 100 validation samples from 456

the original training set, along with 100 samples 457

from the original test set. 458

To demonstrate the generalizability of AUTOCT 459

across different clinical prediction tasks, we also 460

evaluate it on three additional datasets from Chen 461

et al. (2024): Patient Dropout, Mortality and Ad- 462

verse Event Prediction. For these datasets, we 463

adopt the same stratified sampling strategy as in the 464

trial approval task. To manage computational cost, 465

we restrict evaluation to the subset of phase I trials 466

and limit the MCTS process to a maximum of 5 467

rollouts per run, terminating early once reasonable 468

predictive performance is achieved. 469

Although the benchmark datasets come with a 470

base set of features including molecule SMILES 471

and disease codes, for this study the agent is pro- 472

vided with only the unique trial identifiers (NCT 473

IDs), with which it derives the set of features it 474

believes to be important for each task. 475

4.3 Baseline Methods 476

For the trial approval prediction task, we compare 477

AUTOCT with a range of baselines including both 478

traditional machine learning models and state-of- 479

the-art deep learning approaches. Following the 480

setup in Fu et al. (2022), we include Logistic Re- 481

gression (LR) (Lo et al., 2019; Siah et al., 2021), 482

Random Forest (RF) (Lo et al., 2019; Siah et al., 483

2021), XGBoost (Rajpurkar et al., 2020; Siah et al., 484

2021), Adaptive Boosting (AdaBoost) (Fan et al., 485

2020), k-Nearest Neighbors (kNN) combined with 486

RF (Lo et al., 2019), Feedforward Neural Networks 487

(FFNN) (Tranchevent et al., 2019), DeepEnroll 488

(Zhang et al., 2020), COMPOSE (Gao et al., 2020), 489

and HINT (Fu et al., 2022). 490

In addition, we incorporate the results from 491

SPOT (Wang et al., 2023) and the deep learning 492

method ("MMFusion") introduced in TrialBench 493

(Chen et al., 2024) as additional benchmarks. The 494

overall comparison is presented in Table 1. For 495

a fair evaluation, we report the test performance 496

of AUTOCT using the best model selected on the 497

6
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Model Phase I Phase II Phase III

PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC

LR 0.500 0.604 0.520 0.565 0.555 0.587 0.687 0.698 0.650
RF 0.518 0.621 0.525 0.578 0.563 0.588 0.692 0.686 0.663
XGBoost 0.513 0.621 0.518 0.586 0.570 0.600 0.697 0.696 0.667
AdaBoost 0.519 0.622 0.526 0.586 0.583 0.603 0.701 0.695 0.670
kNN + RF 0.531 0.625 0.538 0.594 0.590 0.597 0.707 0.698 0.678
FFNN 0.547 0.634 0.550 0.604 0.599 0.611 0.747 0.748 0.681
DeepEnroll 0.568 0.648 0.575 0.600 0.598 0.625 0.777 0.786 0.699
COMPOSE 0.564 0.658 0.571 0.604 0.597 0.628 0.782 0.792 0.700
HINT 0.567 0.665 0.576 0.629 0.620 0.645 0.811 0.847 0.723
SPOT 0.689 0.714 0.660 0.685 0.656 0.630 0.856 0.857 0.711
MMFusion 0.579 0.701 0.782 0.510 0.590 0.771 0.638 0.742 0.741
AUTOCT 0.710 0.595 0.753 0.512 0.386 0.639 0.697 0.760 0.702

Table 1: Model performance on clinical trial outcome prediction. AUTOCT numbers represent its test performance
on a subset of 100 samples using the best model selected on the validation set.

Task Method PR-AUC F1 ROC-AUC

Patient Dropout MMFusion 0.691 0.718 0.723
AUTOCT 0.795 0.718 0.711

Mortality MMFusion 0.610 0.745 0.900
AUTOCT 0.560 0.732 0.852

Adverse Event MMFusion 0.726 0.793 0.874
AUTOCT 0.796 0.731 0.831

Table 2: Model performance on predicting patient
dropout, mortality, and adverse events for phase I trials.
AUTOCT was configured with a maximum rollout of 5
and a search depth of 10. AUTOCT numbers represent
the test performance on a subset of 100 samples using
the best model selected on the validation set.

validation set during the MCTS process.498

It is important to note that all baselines reported499

by Fu et al. (2022) are trained and evaluated on the500

TOP dataset. In contrast, the benchmark results501

from TrialBench and our method use a more re-502

cent version of this dataset released by Chen et al.503

(2024).504

4.4 Results505

4.4.1 AUTOCT on Trial Approval Prediction506

The performance of AUTOCT is summarized in507

Table 1. With a maximum of 10 rollouts and a tree508

depth limit of 10, AUTOCT achieves ROC-AUC509

scores of 0.753, 0.639, and 0.702 on the test set for510

Phase I, II, and III, respectively. These results are511

comparable to existing benchmarks, particularly re-512

cent deep learning approaches such as HINT, SPOT513

and TrialBench.514

4.4.2 Impact of Maximum Rollouts515

To assess the effect of increasing the maximum516

number of rollouts in MCTS, we track test set per-517

Figure 3: Average test set ROC-AUC of the top 5 mod-
els under varying maximum rollout limits in MCTS.
Models are ranked by test set performance to smooth
out noise and illustrate overall trends.

formance across different rollout limits for all three 518

phases, as shown in Figure 3. Given the small 519

sample sizes, we report the average ROC-AUC of 520

the top 5 models (ranked by test set performance) 521

to smooth out noise and better capture the perfor- 522

mance trend. While some fluctuations in test scores 523

remain—likely due to overfitting on the validation 524

set or distributional shifts between validation and 525

test subsets—the overall trend indicates improved 526

test performance with increased rollouts. This sug- 527

gests that more exploration in the MCTS tree en- 528

ables the discovery of more informative features 529

and strategies. 530

However, we do observe plateauing of the per- 531

formance across the rollouts. A plausible expla- 532

nation is the limited dataset size: with only 100 533

training and 100 validation samples, the model 534

may lack sufficient data to capture the diverse and 535

complex relationships necessary for generalization. 536

For instance, trials involving different disease cate- 537

gories may require distinct sets of features, which 538

are difficult to learn with such small sample sizes. 539

Nevertheless, AUTOCT demonstrates strong and 540

consistent performance despite these constraints, 541
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which highlights its potential for efficient and inter-542

pretable feature discovery in low-data regimes.543

4.4.3 AUTOCT on Other Clinical Tasks544

We evaluate the performance of AUTOCT on three545

additional clinical prediction tasks from Chen et al.546

(2024): Patient Dropout, Mortality, and Adverse547

Event prediction. The results are summarized in548

Table 2. With a maximum of 5 MCTS rollouts, AU-549

TOCT achieves ROC-AUC scores of 0.711, 0.852,550

and 0.831 on the respective tasks.551

Due to the recency of these datasets, published552

baselines are limited, and we compare primarily553

against the MMFusion results. The comparable554

performance between AUTOCT and MMFusion555

across these diverse prediction tasks demonstrates556

the robustness and generalizability of our method557

beyond the trial approval task.558

4.5 Case Study559

4.5.1 Specific Trial Outcome Prediction560

The use of classical machine learning models in561

AUTOCT allows us to leverage interpretability tech-562

niques such as SHAP (SHapley Additive exPla-563

nations) (Lundberg and Lee, 2017) to understand564

model predictions. We present selected correctly565

classified test examples and their associated SHAP566

value analyses, which highlight the impact of in-567

dividual features on the predicted outcome. Full568

SHAP plots for these examples are included in the569

Appendix A.570

• Phase III study on PEG-Intron in HIV-infected571

Patients by Merck Sharp & Dohme LLC (NCT572

ID: NCT00035360): The model outputs a low ap-573

proval probability of 0.244. SHAP analysis in-574

dicates that the primary outcome measure and575

duration of treatment were the most influential576

features contributing to the negative prediction.577

• Phase III trial on AAT-023 (Zuragen) vs. Hep-578

arin in Catheter-Related Bloodstream Infec-579

tions by Ash Access Technology (NCT ID:580

NCT00628680): The model outputs a high ap-581

proval probability of 0.895. Feature contributions582

from treatment duration and inclusion criteria583

count were key to the positive prediction.584

• Phase I study on Birabresib in Selected Advanced585

Solid Tumors by Merck Sharp & Dohme LLC586

(NCT ID: NCT02698176): The model assigns a587

low approval probability of 0.197. SHAP values588

suggest that the negative outcome was driven by589

factors such as trial design, geographical loca- 590

tion, route of administration, and strictness of 591

eligibility criteria. 592

4.5.2 Evolution of Feature Set 593

We trace one of the search paths in the MCTS for 594

Phase I trial outcome prediction to better under- 595

stand how MCTS iteratively improves and refines 596

the feature set. Beginning with an initial feature 597

set suggested by the Initializing Feature Proposer, 598

one of the explored paths incorporated recommen- 599

dations from the Evaluator, including: 600

• Add adverse event rate, to capture the frequency 601

of adverse events in previous trials within the 602

same therapeutic area. This suggestion origi- 603

nated from the Model-Based Evaluator, which 604

recommended to build this feature using data 605

from ClinicalTrials.gov and PubMed literature. 606

• Refine trial design elements, to explicitly in- 607

clude key design attributes such as randomiza- 608

tion, blinding, and control groups. This recom- 609

mendation came from the Example-Based Eval- 610

uator, which referenced a trial with a quadruple- 611

masking design—an aspect that would have im- 612

proved the reliability of trial results. 613

• Remove intervention type, due to its low feature 614

importance in the model output. Although this 615

feature was part of the initial proposal, the Model- 616

Based Evaluator determined it to be unhelpful, 617

as most trials in the curated dataset are drug tri- 618

als (Chen et al., 2024). 619

5 Conclusion 620

Our proposed AUTOCT framework integrates large 621

language models with classical machine learning 622

to automate clinical trial prediction using only trial 623

identifiers and outcome labels. Inspired by how 624

biomedical experts approach data-driven tasks, AU- 625

TOCT leverages LLMs not to give direct probabil- 626

ity estimations, but to propose, plan, and construct 627

meaningful features through research and reason- 628

ing. Our use of Monte Carlo Tree Search (MCTS) 629

allows for iterative refinement guided by perfor- 630

mance feedback and error analysis, which signif- 631

icantly reduces the need for human intervention. 632

Experiments on the TrialBench dataset demon- 633

strate that AUTOCT achieves competitive perfor- 634

mance compared to strong baselines and expert- 635

tuned models. Beyond its promising results, AU- 636

TOCT can be applied in high-stakes domains where 637

interpretability remains a major challenge. 638

8



Limitations639

This work has several limitations that point to po-640

tential directions for future improvement. First, the641

retrieval component of our system is currently lim-642

ited to two data sources—ClinicalTrials.gov (NCT)643

and PubMed—due to concerns around knowledge644

cutoff and the risk of incorporating information not645

available at the time of the trial. While this con-646

servative design choice ensures label integrity, it647

may restrict the richness and variety of extracted648

features. Second, we intentionally do not per-649

form hyperparameter optimization, as the focus650

of this work is to provide a proof-of-concept rather651

than to achieve maximum predictive performance.652

Nonetheless, we believe that the framework could653

benefit from more rollouts, larger LLMs, and sys-654

tematic tuning to improve overall accuracy. Finally,655

the Monte Carlo Tree Search (MCTS) is currently656

constrained to exploring the space of feature pro-657

posals. Ideally, the Evaluator module could be658

made more intelligent by identifying and attribut-659

ing underperformance to specific pipeline compo-660

nents, such as differentiating between flawed rea-661

soning by the Feature Researcher versus improper662

execution by the Feature Builder, which would en-663

able more targeted improvements.664
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A Example SHAP Plots855

Figure 4: SHAP Values for NCT ID: NCT00035360

Figure 5: SHAP Values for NCT ID: NCT00628680

Figure 6: SHAP Values for NCT ID: NCT02698176

11



B Example LLM Interaction856

We present the prompts and example outputs of the857

two variants of the Initializing Feature Proposer in858

Figures 7 and 8. The Zero-shot Proposer draws on859

its prior knowledge of clinical trial prediction tasks,860

and suggests generic features such as intervention861

type, number of participants, research team experi-862

ence, and the historical success rate of similar trials.863

While direct generation using LLMs is effective, it864

is often not sufficiently comprehensive (Feng et al.,865

2024).866

In contrast, the Factor-Based Proposer takes an867

example trial as input and leverages local context868

to generate more fine-grained feature ideas, such as869

participant health status and safety profiles. How-870

ever, the provided context can bias the LLM’s out-871

put, resulting in a narrower scope. For instance,872

one of the proposed features in Figure 8 refers to873

previous Flavivirus exposure, which is highly spe-874

cific to the given trial example.875

To balance generality and specificity, we em-876

ploy an LLM summarizer to synthesize outputs877

from both Proposers. This final step filters out878

overly specific ideas and ensures that the proposed879

features are generalizable across a wide range of880

clinical trials.881
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Zero-shot Feature Proposer Prompt Instructions

Role: You are an experienced clinical researcher skilled at proposing features for a machine learning model.
Task: Propose a comprehensive list of feature ideas (at least 10) for this model. Be as exhaustive and as detailed as
possible in describing the feature.
Data Sources: The features should be built off data from ClinicalTrials.gov and from past scholarly research from
PubMed.
Constraints:

• Feature type must be one of: integer, float, boolean, categorical, or multicategorical.

• Features should not be a composite of multiple factors.

• Features should not be the output of another machine learning model.

• Features should only require data retrievable from ClinicalTrials.gov or PubMed.

Input: Predict the outcome of a phase 1 clinical trial (1 = success, 0 = failure) at the beginning stages of a trial.

Example LLM Response

[
{
"feature_name": "intervention_type",
"description": "Categorical feature indicating the type of intervention (e.g., drug, device, behavioral)."

},
{
"feature_name": "number_of_participants",
"description": "Integer feature representing the total number of participants enrolled in the trial."

},
{
"feature_name": "age_range",
"description": "Categorical feature indicating the age range of participants (e.g., 18-30, 31-50, 51+)."

},
{
"feature_name": "gender_inclusion",
"description": "Boolean feature indicating whether both genders are included in the trial."

},
{
"feature_name": "previous_trial_success_rate",
"description": "Float feature representing the historical success rate of similar trials in the same therapeutic area

."
},
{
"feature_name": "research_team_experience",
"description": "Integer feature quantifying the number of years of experience of the principal investigator in

conducting clinical trials."
},
{
"feature_name": "funding_source",
"description": "Categorical feature indicating the source of funding (e.g., government, pharmaceutical company, non-

profit)."
},
{
"feature_name": "primary_outcome_measure",
"description": "Categorical feature describing the primary outcome measure (e.g., safety, efficacy, pharmacokinetics)

."
},
{
"feature_name": "trial_location",
"description": "Categorical feature indicating the geographical location of the trial (e.g., North America, Europe,

Asia)."
},
{
"feature_name": "eligibility_criteria_strictness",
"description": "Integer feature representing the number of strict eligibility criteria defined for participant

selection."
}

]

Figure 7: Example prompt and response for the Zero-shot Feature Proposer agent.
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Factor-Based Feature Proposer Prompt Instructions

Role: You are an experienced clinical researcher.
Task: Analyze clinical trials to deduce key factors that contributed to a particular trial outcome (success or failure), in
order to inform feature design for a machine learning model.
Instructions:

• Provide at least 5 concise, generalizable factors relevant to future trials.

• Factors can be drawn from trial context, historical clinical trials, or PubMed literature.

Input: NCTID: NCT01224639 (success)

Example LLM Response

[
{
"name": "Route of Administration",
"description": "The method of vaccine delivery (subcutaneous vs. intradermal) can significantly affect the immune

response and safety profile."
},
{
"name": "Dosing Regimen",
"description": "The amount of vaccine administered (low vs. high dose) influences the immunogenicity and

reactogenicity, impacting overall trial outcomes."
},
{
"name": "Previous Flavivirus Exposure",
"description": "Participants' prior exposure to flavivirus can alter their immune response to the vaccine, affecting

safety and efficacy."
},
{
"name": "Safety and Reactogenicity Profiles",
"description": "Historical data on adverse events and tolerability from similar trials can guide expectations for

safety in the current trial."
},
{
"name": "Participant Health Status",
"description": "The overall health and eligibility criteria of participants, including age and pre-existing

conditions, can influence trial outcomes."
}

]

Figure 8: Example prompt and response for the Factor-Based Feature Proposer agent.
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Feature Planner Prompt Instructions

Role: You are an expert data scientist.
Task: You are given an idea for a single feature to be used in a machine learning model for a clinical trial task. For this
single feature, you are defining a feature schema for your co-workers to construct the feature for each clinical trial.
Instructions: The final built feature should be a JSON object

• If there’s only a single value, it should be a JSON with a single key "value" and the value.

• If there are multiple values, it should be a JSON with multiple keys, each key corresponding to a sub-feature
name, and the value corresponding to the sub-feature value.

The schema and instruction should be as simple as possible to represent the feature idea.
Your instruction should be clear, and allow for the feature to be computed consistently and reliably. The instruction needs
to be explicit and avoid ambiguity since multiple teams are working together. For e.g., if weights need to be assigned,
they should be explicitly defined in the instructions. The feature should be built off data from ClinicalTrials.gov and
from past scholarly research from PubMed.
Input: Idea: Categorical feature indicating the geographical location of the trial (e.g., North America, Europe, Asia).

Example LLM Response (Phase I Plans)

{
"intervention_type": {
"feature_name": "intervention_type",
"feature_idea": "Categorical feature indicating the type of intervention (e.g., drug, device, behavioral).",
"feature_type": {
"value": "categorical"

},
"data_sources": [
"pubmed",
"current_trial_summary",
"related_clinical_trials"

],
"example_values": [
{
"value": "drug"

},
{
"value": "device"

},
{
"value": "behavioral"

}
],
"possible_values": {
"value": [
"drug",
"device",
"behavioral"

]
},
"feature_instructions": "Research and compile a list of intervention types used in clinical trials. The feature

should categorize interventions into distinct types such as \"drug\", \"device\", and \"behavioral\". Ensure
that the categorization is consistent with definitions used in clinical trial registries and literature. Use
data from ClinicalTrials.gov and PubMed to validate the types of interventions. The final output should be a
JSON object with a single key \"value\" representing the intervention type."

},
"number_of_participants": {
"feature_name": "number_of_participants",
"feature_idea": "Integer feature representing the total number of participants enrolled in the trial.",
"feature_type": {
"value": "integer"

},
"data_sources": [
"current_trial_summary",
"related_clinical_trials"

],
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Example LLM Response (Phase I Plans) (cont’d)

"example_values": [
{
"value": 50

},
{
"value": 100

},
{
"value": 200

}
],
"possible_values": {},
"feature_instructions": "To construct the feature \"number_of_participants,\" extract the total number of

participants enrolled in the clinical trial from the current trial summary data. Ensure that the value is
recorded as an integer. If the data is not available, it should be marked as null or zero. This feature should
be updated regularly as participant enrollment progresses throughout the trial."

},
"age_range": {
"feature_name": "age_range",
"feature_idea": "Categorical feature indicating the age range of participants (e.g., 18-30, 31-50, 51+).",
"feature_type": {
"age_range": "categorical"

},
"data_sources": [
"pubmed",
"current_trial_summary",
"related_clinical_trials"

],
"example_values": [
{
"age_range": "18-30"

},
{
"age_range": "31-50"

},
{
"age_range": "51+"

}
],
"possible_values": {
"age_range": [
"18-30",
"31-50",
"51+"

]
},
"feature_instructions": "Research and compile the age ranges of participants in the clinical trials. The age ranges

should be categorized as follows: 18-30, 31-50, and 51+. Ensure that the data is sourced from ClinicalTrials.
gov and relevant literature from PubMed. Each trial should have a clearly defined age range based on the
participants enrolled. If a trial includes participants from multiple age ranges, select the range that
represents the majority of participants."

},
"gender_inclusion": {
"feature_name": "gender_inclusion",
"feature_idea": "Boolean feature indicating whether both genders are included in the trial.",
"feature_type": {
"value": "boolean"

},
"data_sources": [
"current_trial_summary",
"related_clinical_trials"

],
"example_values": [
{
"value": true

},
{
"value": false

}
],
"possible_values": {},
"feature_instructions": "Research the clinical trial protocols to determine if both genders are included in the trial.

This should be assessed based on the eligibility criteria listed in the trial summary. If both genders are
included, set the value to true; otherwise, set it to false. Ensure that the assessment is consistent across
all trials by strictly adhering to the eligibility criteria provided in the trial documentation."

},
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Example LLM Response (Phase I Plans) (cont’d)

"previous_trial_success_rate": {
"feature_name": "previous_trial_success_rate",
"feature_idea": "Float feature representing the historical success rate of similar trials in the same therapeutic

area.",
"feature_type": {
"value": "float"

},
"data_sources": [
"pubmed",
"related_clinical_trials",
"current_trial_summary"

],
"example_values": [
{
"value": 0.75

},
{
"value": 0.6

},
{
"value": 0.85

}
],
"possible_values": {},
"feature_instructions": "To compute the previous trial success rate, gather data from clinical trials in the same

therapeutic area. Focus on phase 1 trials and extract the outcomes (success or failure) of these trials.
Calculate the success rate by dividing the number of successful trials by the total number of trials analyzed.
The resulting value should be a float representing the success rate as a percentage (e.g., 0.75 for 75% success)
. Ensure that the data is up-to-date and relevant to the current therapeutic area being studied."

},
"research_team_experience": {
"feature_name": "research_team_experience",
"feature_idea": "Integer feature quantifying the number of years of experience of the principal investigator in

conducting clinical trials.",
"feature_type": {
"value": "integer"

},
"data_sources": [
"pubmed",
"current_trial_summary"

],
"example_values": [
{
"value": 10

},
{
"value": 5

},
{
"value": 15

}
],
"possible_values": {},
"feature_instructions": "To construct the feature \"research_team_experience\", gather data on the principal

investigator's years of experience in conducting clinical trials. This information can typically be found in
the principal investigator's profile on ClinicalTrials.gov or through their published research on PubMed.
Ensure that the experience is quantified in whole years and is accurately recorded. If the PI has experience in
multiple trials, sum the years of experience across all relevant trials to provide a total. This feature

should be represented as a single integer value in the final JSON output."
},
"funding_source": {
"feature_name": "funding_source",
"feature_idea": "Categorical feature indicating the source of funding (e.g., government, pharmaceutical company, non-

profit).",
"feature_type": {
"value": "categorical"

},
"data_sources": [
"current_trial_summary",
"pubmed"

],
"example_values": [
{
"value": "government"

},
{
"value": "pharmaceutical company"

},
{
"value": "non-profit"

}
],
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Example LLM Response (Phase I Plans) (cont’d)

"possible_values": {
"value": [
"government",
"pharmaceutical company",
"non-profit"

]
},
"feature_instructions": "Research and compile data on the funding sources for each clinical trial. The funding source

should be categorized into three main types: government, pharmaceutical company, and non-profit. Ensure that
the data is sourced from ClinicalTrials.gov and relevant literature from PubMed. The final output should be a
JSON object with a single key \"value\" representing the funding source."

},
"primary_outcome_measure": {
"feature_name": "primary_outcome_measure",
"feature_idea": "Categorical feature describing the primary outcome measure (e.g., safety, efficacy, pharmacokinetics

).",
"feature_type": {
"value": "categorical"

},
"data_sources": [
"pubmed",
"current_trial_summary",
"related_clinical_trials"

],
"example_values": [
{
"value": "safety"

},
{
"value": "efficacy"

},
{
"value": "pharmacokinetics"

}
],
"possible_values": {
"value": [
"safety",
"efficacy",
"pharmacokinetics",
"tolerability",
"biomarkers"

]
},
"feature_instructions": "Research and compile the primary outcome measures from clinical trials listed on

ClinicalTrials.gov and relevant literature from PubMed. Ensure to categorize the outcome measures into
predefined categories such as safety, efficacy, pharmacokinetics, tolerability, and biomarkers. The feature
should be represented as a JSON object with a single key \"value\" that holds the categorical outcome measure.
Consistency in categorization is key, so refer to existing literature for definitions and examples of each
category."

},
"trial_location": {
"feature_name": "trial_location",
"feature_idea": "Categorical feature indicating the geographical location of the trial (e.g., North America, Europe,

Asia).",
"feature_type": {
"trial_location": "categorical"

},
"data_sources": [
"current_trial_summary",
"related_clinical_trials"

],
"example_values": [
{
"trial_location": "North America"

},
{
"trial_location": "Europe"

},
{
"trial_location": "Asia"

}
],
"possible_values": {
"trial_location": [
"North America",
"Europe",
"Asia",
"South America",
"Africa",
"Oceania"

]
},
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Example LLM Response (Phase I Plans) (cont’d)

"feature_instructions": "Research and compile the geographical locations of clinical trials from ClinicalTrials.gov.
Classify each trial's location into one of the predefined categories: North America, Europe, Asia, South
America, Africa, or Oceania. Ensure that the categorization is consistent and based on the trial's registered
location. This feature should be extracted from the trial's summary data and should be formatted as a
categorical variable in the final JSON output."

},
"eligibility_criteria_strictness": {
"feature_name": "eligibility_criteria_strictness",
"feature_idea": "Integer feature representing the number of strict eligibility criteria defined for participant

selection.",
"feature_type": {
"value": "integer"

},
"data_sources": [
"current_trial_summary",
"pubmed"

],
"example_values": [
{
"value": 5

},
{
"value": 10

},
{
"value": 3

}
],
"possible_values": {},
"feature_instructions": "To construct the feature \"eligibility_criteria_strictness\", review the eligibility

criteria listed in the trial's summary on ClinicalTrials.gov. Count the number of strict criteria that are
defined for participant selection. Each criterion should be considered strict if it imposes specific
limitations on who can participate in the trial (e.g., age limits, health conditions, prior treatments). Record
this count as an integer value. Ensure consistency in how criteria are evaluated to maintain reliability

across different trials."
},
"route_of_administration": {
"feature_name": "route_of_administration",
"feature_idea": "Categorical feature indicating the method of intervention delivery (e.g., oral, intravenous).",
"feature_type": {
"route_of_administration": "categorical"

},
"data_sources": [
"pubmed",
"current_trial_summary",
"related_clinical_trials"

],
"example_values": [
{
"route_of_administration": "oral"

},
{
"route_of_administration": "intravenous"

},
{
"route_of_administration": "subcutaneous"

}
],
"possible_values": {
"route_of_administration": [
"oral",
"intravenous",
"subcutaneous",
"intramuscular",
"topical",
"inhalation"

]
},
"feature_instructions": "Research and compile data on the various routes of administration used in clinical trials.

Ensure to categorize each method of intervention delivery accurately. The feature should be built from data
available on ClinicalTrials.gov and relevant scholarly articles from PubMed. Each trial should be assessed for
its route of administration, and the corresponding value should be recorded in the feature schema. The possible
values should include all common routes of administration used in clinical trials."

},
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Example LLM Response (Phase I Plans) (cont’d)

"dosing_regimen": {
"feature_name": "dosing_regimen",
"feature_idea": "Categorical feature describing the dosing schedule (e.g., single dose, multiple doses).",
"feature_type": {
"dosing_regimen": "categorical"

},
"data_sources": [
"current_trial_summary",
"pubmed"

],
"example_values": [
{
"dosing_regimen": "single dose"

},
{
"dosing_regimen": "multiple doses"

}
],
"possible_values": {
"dosing_regimen": [
"single dose",
"multiple doses",
"loading dose",
"maintenance dose",
"intermittent dosing"

]
},
"feature_instructions": "Research and compile the dosing regimens used in phase 1 clinical trials. Classify the

regimens into categories such as \"single dose\", \"multiple doses\", \"loading dose\", \"maintenance dose\",
and \"intermittent dosing\". Ensure that the categorization is consistent across trials and that each trial's
dosing regimen is accurately represented. Use data from ClinicalTrials.gov and relevant literature from PubMed
to validate the dosing schedules."

},
"participant_health_status": {
"feature_name": "participant_health_status",
"feature_idea": "Categorical feature indicating the overall health status of participants (e.g., healthy, comorbid

conditions).",
"feature_type": {
"value": "categorical"

},
"data_sources": [
"pubmed",
"current_trial_summary",
"related_clinical_trials"

],
"example_values": [
{
"value": "healthy"

},
{
"value": "comorbid conditions"

}
],
"possible_values": {
"value": [
"healthy",
"comorbid conditions",
"chronic illness",
"acute condition",
"unknown"

]
},
"feature_instructions": "Research and compile data on the health status of participants in phase 1 clinical trials.

The health status should be categorized into predefined groups such as \"healthy\", \"comorbid conditions\", \"
chronic illness\", \"acute condition\", and \"unknown\". Ensure that the categorization is consistent across
trials and based on the information available in clinical trial summaries and relevant literature. Document the
health status of each participant at the beginning of the trial to facilitate accurate predictions of trial

outcomes."
},
"patient_performance_status": {
"feature_name": "patient_performance_status",
"feature_idea": "Categorical feature based on ECOG performance status, indicating health and functional status.",
"feature_type": {
"value": "categorical"

},
"data_sources": [
"pubmed",
"current_trial_summary",
"related_clinical_trials"

],
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Example LLM Response (Phase I Plans) (cont’d)

"example_values": [
{
"value": "0"

},
{
"value": "1"

},
{
"value": "2"

},
{
"value": "3"

},
{
"value": "4"

},
{
"value": "5"

}
],
"possible_values": {
"value": [
"0",
"1",
"2",
"3",
"4",
"5"

]
},
"feature_instructions": "Research and compile the ECOG performance status categories, which range from 0 to 5. Ensure

that the feature captures the patient's performance status accurately at the beginning of the trial. The
values should be represented as strings corresponding to the ECOG scale. This feature should be derived from
patient records and trial documentation, ensuring consistency in how the performance status is recorded across
different trials."

},
"trial_design_elements": {
"feature_name": "trial_design_elements",
"feature_idea": "Categorical feature indicating design elements like randomization and blinding that ensure

reliability of trial outcomes.",
"feature_type": {
"trial_design_elements": "multi-categorical"

},
"data_sources": [
"current_trial_summary",
"pubmed"

],
"example_values": [
{
"trial_design_elements": [
"randomized",
"double-blind"

]
},
{
"trial_design_elements": [
"non-randomized",
"open-label"

]
}

],
"possible_values": {
"trial_design_elements": [
"randomized",
"non-randomized",
"double-blind",
"single-blind",
"open-label",
"placebo-controlled"

]
},
"feature_instructions": "Research and compile a list of design elements commonly used in clinical trials that enhance

the reliability of outcomes. Focus on elements such as randomization, blinding, and control groups. Ensure
that the feature captures whether the trial is randomized or non-randomized, and whether it is blinded (single
or double) or open-label. The final output should be a JSON object with a key \"trial_design_elements\"
containing an array of applicable design elements for each trial."

}
}

Figure 9: Example prompt and response for the Feature Planner agent.
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Feature Builder Prompt Instructions

Instructions (Researcher): You are part of a clinical research team creating features for clinical trial machine learning
models. You are investigating a particular clinical trial. You are given a dict of features that your team needs to do
research on. You should make use of the given tools to do deep research, gather information and provide the data
necessary to build all the features. Do not focus on formatting the features correctly, instead focus on making sure you
have a full and complete set of data.
Instructions (Builder): You are part of a clinical research team creating features for clinical trial machine learning
models. You are investigating a particular clinical trial. You are given a dict of features and their corresponding plans
that your team needs to construct. A previous step has already gathered the necessary research results for these features,
your job is to CORRECTLY construct these in the format prescribed by the feature plan. If there is

• insufficient information

• missing information

• uncertainty/ambiguity

for any of the features, you should return the value ’None’ for that feature (or sub-feature) and provide explanations for
the feature you can’t build. YOU MUST HAVE AN OUTPUT FOR EACH FEATURE.
Input:
NCT ID: NCT01224639
Feature Plans: route_of_administration, dosing_regimen, previous_trial_success_rate

Example LLM Response (Researcher)

1. **Route of Administration**: The trial NCT01224639 uses two routes of administration:
- Subcutaneous (SC)
- Intradermal (ID)

2. **Dosing Regimen**: The dosing regimens for the trial are categorized as follows:
- Low Dose: Administered SC (0.5 mL) and ID (0.1 mL) on Days 0 and 90.
- High Dose: Administered SC (0.5 mL) and ID (0.1 mL) on Days 0 and 90.
- Placebo: Phosphate buffered saline administered SC (0.5 mL) and ID (0.1 mL).

3. **Previous Trial Success Rate**:
- Related trials in the dengue fever therapeutic area include:
- NCT01134263: Phase 3 trial, outcome: Success
- NCT00468858: Phase 2 trial, outcome: Success
- NCT01110551: Phase 1 trial, outcome: Success
- NCT00370682: Phase 2 trial, outcome: Success
- NCT00617344: Phase 2 trial, outcome: Success

- Total successful trials: 5
- Total trials analyzed: 5
- Previous trial success rate = 5 successful trials / 5 total trials = 1.0 (or 100%).

This information provides a comprehensive basis for building the features related to the route of administration, dosing
regimen, and previous trial success rate.

Example LLM Response (Builder)

{
"feature_values": {
"route_of_administration": {
"route_of_administration": "subcutaneous"

},
"dosing_regimen": {
"dosing_regimen": "multiple doses"

},
"previous_trial_success_rate": {
"value": 1.0

}
}

}

Figure 10: Example prompt and response for the Feature Builder agent.
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Model-Based Evaluator Prompt Instructions

Role: You are an experienced biomedical data scientist.
Task: You are supervising the construction of a machine learning model for a specific clinical trial task.
Instructions: The model must be built with features from data from ClinicalTrials.gov and from past scholarly research
from PubMed.
A version of the model has been trained, and you are provided the current performance. Please provide suggestions for

• additional features

• refinements to the existing features

• features to remove

Keep your suggestions concise, and limit to a maximum of 2-3 suggestions.
Input:
roc_auc_score: 0.73
current_features_with_plan: . . . [feature plans]
feature_importances: . . . [feature names with coefficients]

Example LLM Response (Model-Based Evaluator)

[
"Consider adding a feature for 'historical trial outcomes' that captures the success rates of previous trials in the

same therapeutic area, as this could provide valuable context for predicting current trial outcomes.",
"Refine the 'intervention_type' feature by expanding the categories to include more specific types of interventions, as

well as ensuring that the feature captures the nuances of combination therapies if applicable.",
"Remove or replace the 'gender_inclusion' feature, as it currently does not contribute to the model's predictive power

and may not provide significant insights into trial outcomes."
]

Figure 11: Example prompt and response for the Model-Based Evaluator agent.
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Example-Based Evaluator Prompt Instructions

Role: You are an experienced clinical researcher.
Task: You are supervising the construction of a machine learning model for a specific clinical trial task.
Instructions: The model must be built with features from data from ClinicalTrials.gov and from past scholarly research
from PubMed.
A version of the model has been trained, and you are provided the current performance, and an example of an incorrect
prediction from the current model.
Based on the example and using the tools provided to help with further research, please conduct some analysis on why
the model made the incorrect prediction. You should consider

• features that were missed, and could have helped with the prediction

• features that were not useful

• misconstructed features

• feature plans that are not properly set up (e.g. missing instructions / missing categories)

Your analysis should be generalizable to other trials where possible. Keep your analysis concise.
Input:
roc_auc_score: 0.73
current_features_with_plan: . . . [feature plans]
feature_importances: . . . [feature names with coefficients]
example:

## NCT02726334 Predicted 1, should be 0

### Features
. . . . [features]

### Reasons for features that are None
. . .

"primary_outcome_measure": "The provided outcome measure 'maximum tolerated dose' does not fit into the predefined categories of safety, efficacy, pharmacokinetics, tolerability, or biomarkers."

Example LLM Response (Example-Based Evaluator)

The analysis of the trial NCT02726334 reveals several key areas for improvement in the feature set used by the model.
Firstly, the `primary_outcome_measure` should include specific measures relevant to the trial, such as "maximum
tolerated dose," which was not categorized correctly. This misclassification can lead to significant inaccuracies
in predicting trial outcomes. Secondly, the `trial_design_elements` feature must accurately reflect the trial\'s
design, which in this case is non-randomized and single-group, rather than allowing for invalid values. The `
number_of_participants` is a crucial feature that was missing, as it provides insight into the trial\'s power and
potential for generalizability. Furthermore, the trial location should be expanded to include Australia, as
limiting geographical categories can exclude relevant data. Overall, these findings suggest that careful attention
to feature categorization and completeness is essential for improving the predictive accuracy of models in clinical
trial outcomes.

Figure 12: Example prompt and response for the Example-Based Evaluator agent.
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