
Published in Transactions on Machine Learning Research (05/2025)

AI Agents That Matter

Sayash Kapoor∗ sayashk@princeton.edu
Department of Computer Science
Center for Information Technology Policy
Princeton University

Benedikt Stroebl∗ stroebl@princeton.edu
Center for Information Technology Policy
Princeton University

Zachary S. Siegel
Department of Computer Science
Center for Information Technology Policy
Princeton University

Nitya Nadgir
Center for Information Technology Policy
Princeton University

Arvind Narayanan arvindn@cs.princeton.edu
Department of Computer Science
Center for Information Technology Policy
Princeton University

Reviewed on OpenReview: https: // openreview. net/ forum? id= Zy4uFzMviZ

Abstract

AI agents are an exciting new research direction, and agent development is driven by
benchmarks. Our analysis of current agent benchmarks and evaluation practices reveals
several shortcomings that hinder their usefulness in real-world applications. First, there is
a narrow focus on accuracy without attention to other metrics. As a result, SOTA agents
are needlessly complex and costly, and the community has reached mistaken conclusions
about the sources of accuracy gains. Our focus on cost in addition to accuracy motivates
the new goal of jointly optimizing the two metrics. We design and implement one such
optimization, showing its potential to greatly reduce cost while maintaining accuracy. Second,
the benchmarking needs of model and downstream developers have been conflated, making it
hard to identify which agent would be best suited for a particular application. Third, many
agent benchmarks have inadequate holdout sets, and sometimes none at all. This has led to
agents that are fragile because they take shortcuts and overfit to the benchmark in various
ways. We prescribe a principled framework for avoiding overfitting. Finally, there is a lack
of standardization in evaluation practices, leading to a pervasive lack of reproducibility. We
hope that the steps we introduce for addressing these shortcomings will spur the development
of agents that are useful in the real world and not just accurate on benchmarks.

1 Introduction

Compound AI systems, or AI agents, are becoming an important research direction. Zaharia et al. (2024)
argue that “compound AI systems will likely be the best way to maximize AI results in the future, and might
be one of the most impactful trends in AI in 2024.” Over a dozen agent benchmarks have been released,
spanning domains such as web interaction (Zhou et al., 2024), programming (Jimenez et al., 2023) and tool

1

https://openreview.net/forum?id=Zy4uFzMviZ

Published in Transactions on Machine Learning Research (05/2025)

use (Ruan et al., 2024). Many benchmarks developed for LLM evaluation have also been used for agent
evaluation.

Agent evaluation differs from language model evaluation in fundamental ways. Agents can be used on
tasks that are harder, more realistic, have more real-world utility, and usually don’t have a single correct
answer. For example, agents can use the command line to carry out tasks; SWE-Agent even includes its
own agent-computer interface (Yang et al., 2024). Agents can cost much more than a single model call. For
example, the authors of SWE-Agent capped each run of the agent at $4 USD, which translates to hundreds
of thousands of language model tokens.

As a result, agent benchmarking comes with distinct challenges. This paper empirically demonstrates these
challenges and provides recommendations for addressing them. Specifically, we make five contributions.

1. AI agent evaluations must be cost-controlled (Section 2). The language models underlying most
AI agents are stochastic. This means simply calling the underlying model multiple times can increase
accuracy (Li et al., 2022; Chen et al., 2024; Li et al., 2024). We introduce three new simple baseline agents
and empirically show that they outperform many SoTA complex agent architectures on HumanEval (Zhong
et al., 2024; Zhou et al., 2023; Shinn et al., 2023) while costing much less. Therefore, agent evaluations
must be cost-controlled; otherwise it will encourage researchers to develop extremely costly agents just to
claim they topped the leaderboard.

2. Jointly optimizing accuracy and cost can yield better agent design (Section 3). Visualizing
evaluation results as a Pareto curve of accuracy and inference cost opens up a new space of agent design:
jointly optimizing the two metrics. We modify the DSPy framework (Khattab et al., 2023) for joint
optimization, lowering cost while maintaining accuracy on HotPotQA (Yang et al., 2018).

3. Model developers and downstream developers have distinct benchmarking needs (Section 4).
Through a case study of NovelQA (Wang et al., 2024a), we show how benchmarks meant for model
evaluation can be misleading when used for downstream evaluation. We argue that downstream evaluation
should account for dollar costs, rather than proxies for cost such as the number of model parameters.

4. Agent benchmarks enable shortcuts (Section 5). We show that many types of overfitting to agent
benchmarks are possible. We identify 4 levels of generality of agents and argue that different types of
hold-out samples are needed based on the desired level of generality. Without proper hold-outs, agent
developers can take shortcuts, even unintentionally. We illustrate this with a case study of the WebArena
benchmark (Zhou et al., 2024).

5. Agent evaluations lack standardization and reproducibility (Section 6). We found pervasive
shortcomings in the reproducibility of WebArena and HumanEval evaluations (Table 7). These errors
inflate accuracy estimates and lead to overoptimism about agent capabilities.

The overarching goal of our work is to stimulate the development of agents that are useful in the real world
and not just accurate on benchmarks. (1) and (2) above do this by incorporating metrics beyond accuracy
into agent evaluation and optimization; (4) and (5) do so by improving precision about what a benchmark
aims to measures and ensuring that it actually measures that; and (3) does both.

1.1 What is an AI agent?

In traditional AI, agents are defined as entities that perceive and act upon their environment (Russell &
Norvig, 1995). In the LLM era, the term is used in a narrower way (a thermostat would qualify as an
agent under the traditional definition). Many researchers have tried to formalize the community’s intuitive
understanding of what constitutes an agent in the context of language-model-based systems. Many of them
view it as a spectrum — sometimes denoted by the term ‘agentic’ (Ng, 2024) — rather than a binary definition
of an agent. We agree with this perspective. Since there are already many definitions, we do not provide a
new one, but rather identify the factors that cause an AI system to be considered more agentic according to
existing definitions. We found three clusters of factors.

2

Published in Transactions on Machine Learning Research (05/2025)

• Environment and goals. The more complex the environment — e.g. range of tasks and domains,
multi-stakeholder, long time horizon, unexpected changes — the more AI systems operating in that
environment are agentic (Shavit et al., 2023; Gabriel et al., 2024). Systems that pursue complex goals
without being instructed on how to pursue the goal are more agentic (Shavit et al., 2023; Chan et al.,
2023; Gabriel et al., 2024).

• User interface and supervision. AI systems that can be instructed in natural language and act
autonomously on the user’s behalf are more agentic (Gabriel et al., 2024). In particular, systems that
require less user supervision are more agentic (Shavit et al., 2023; Chan et al., 2023; Gabriel et al., 2024).
We discuss the user supervision aspect in more detail in Section 5.2.

• System design: Systems that use design patterns such as tool use (e.g., web search, programming) or
planning (e.g., reflection, subgoal decomposition) are more agentic (Weng, 2023; Ng, 2024). Systems whose
control flow is driven by an LLM, and hence dynamic, are more agentic (Weng, 2023; Chase, 2024).

2 AI agent evaluations must be cost-controlled

2.1 Maximizing accuracy can lead to unbounded cost

Calling language models repeatedly and taking a majority vote can lead to non-trivial increases in accuracy
across benchmarks like GSM-8K, MATH, Chess, and MMLU (Li et al., 2024; Chen et al., 2024; Sun et al.,
2024).

When the agent environment has easy signals to check if an answer is correct, repeatedly retrying can lead
to even more compelling performance gains (Villalobos & Atkinson, 2023). Li et al. (2022) showed that
the accuracy of AlphaCode increases from close to 0% zero-shot to over 15% with 1,000 retries and over
30% with a million retries (accuracy is measured by how often one of the top 10 answers generated by the
model is correct). Thus, there is seemingly no limit to the amount of inference compute that can increase
accuracy, and scaling inference compute has been shown to improve performance in various applications
(Welleck et al., 2024; Brown et al., 2024). Coding competitions often include signals of correctness, such as
test cases, which serve as verifiers to check if a given solution is correct. Agent developers can keep sampling
from an underlying model until the solution passes the test cases. Our results below show that this is true for
HumanEval.

2.2 Visualizing the accuracy-cost tradeoff using a Pareto curve

In the last year, many agents have been claimed to achieve state-of-the-art accuracy on coding tasks. But at
what cost? To visualize the tradeoff, we re-evaluated the accuracy of three agents.

Specifically, we included agents from the HumanEval leaderboard on PapersWithCode that share their code
publicly (Chen et al., 2021): LDB (Zhong et al., 2024), LATS (Zhou et al., 2023), and Reflexion (Shinn et al.,
2023). 1 These agents rely on running the code generated by the model, and if it fails the test cases provided
with the problem description, they try to debug the code (Zhong et al., 2024), look at alternative paths in
the code generation process (Zhou et al., 2023), or “reflect” on why the model’s outputs were incorrect before
generating another solution (Shinn et al., 2023; Zhou et al., 2023; Zhong et al., 2024).

We also evaluated the cost and time requirements of running these agents. In addition, we calculated the
accuracy, cost, and running time of a few simple baselines.

• GPT-3.5 and GPT-4 models (zero shot; no agent architecture)

1Reflexion is absent from the PapersWithCode leaderboard, but it has a reported accuracy of 91% (higher than any other
agents with publicly available code apart from LDB and LATS), so we included it in our analysis. AgentCoder, listed as the
top-performing agent, did not include a link to the code on the benchmark at the time of our analysis (late April 2024), nor did
it include a link to the code in the paper, so we did not include it.

3

Published in Transactions on Machine Learning Research (05/2025)

Figure 1: Our simple baselines offer Pareto improvements over SOTA agents. We run each agent five times
and report the mean accuracy and the mean total cost on the 164 HumanEval problems. Where results for
LDB have two models/agents in parenthesis, they indicate the language model or agent used to generate
the code, followed by the language model used to debug the code. Where they have just one, they indicate
that the same model was used to both generate the code and debug it. Note the nonstandard axes; In
Appendix A, we show our results with the full y-axis as well as error bars and provide additional details.
Robustness checks are contained in Appendix A.2. Section 4 explains why we measure dollar costs instead of
using proxies for cost such as the amount of compute used.

• Retry: We repeatedly invoke a model with the temperature set to zero, up to five times, if it fails the test
cases provided with the problem description. Retrying makes sense because LLMs aren’t deterministic
even at temperature zero (Appendix A.1).

• Warming: This is the same as the retry strategy, but we gradually increase the temperature of the
underlying model with each run, from 0 to 0.5. This increases the stochasticity of the model and, we hope,
increases the likelihood that at least one of the retries will succeed.

• Escalation: We start with a cheap model (Llama-3 8B) and escalate to more expensive models (GPT-3.5,
Llama-3 70B, GPT-4) if we encounter a test case failure.

We use the modified benchmark version of HumanEval provided with the LDB paper (Zhong et al., 2024)
since it includes example test cases for all 164 tasks (in the original benchmark, example test cases are
provided for only 161 of 164 tasks, as detailed in Section 6).

2.3 Two-dimensional evaluation yields surprising insights

Fig. 1 shows our main results for this section. Note that an agent is on the Pareto frontier if there is no other
agent that has significantly better performance on both dimensions simultaneously (see Appendix A.1). 2

“State-of-the-art” agent architectures for HumanEval do not outperform simple baselines. There
is no significant accuracy difference between our warming strategy and the best-performing agent architecture.
In fact, we are not aware of any papers that compare their proposed agent architectures with any of the

2We constrain the Pareto frontier to be convex, because given two points a and b on the graph corresponding to agents A
and B, we can always linearly interpolate between them by creating a new agent that invokes A with probability p and B with
probability 1 − p. Hence, for instance, zero-shot GPT-4 is not on the frontier.

4

Published in Transactions on Machine Learning Research (05/2025)

last three of our simple baselines on HumanEval (retry, warming, escalation).3 This finding is supported by
several other recent studies showing that scaling inference compute can increase accuracy (Brown et al., 2024;
Hassid et al., 2024; Snell et al., 2024).

Agents differ drastically in terms of cost. For substantially similar accuracy, the cost can differ by
almost two orders of magnitude. Yet, the cost of running these agents isn’t a top-line metric reported in any
of these papers. Reflexion and LDB cost over 50% more than the warming strategy, and LATS over 50 times
more (all these costs are entirely or predominantly from calls to GPT-4, so these ratios will be stable even if
model costs change). Meanwhile, the escalation strategy strictly improves accuracy while costing less than
half of LDB (GPT-3.5).

Lack of clarity on the source of performance gains. There is a widespread belief in the AI community
that complex ideas like planning, reflection, and debugging are responsible for accuracy gains on tasks such
as HumanEval. However, based on our findings, the question of whether debugging, reflection, and other
such “System 2” approaches (Kambhampati et al., 2024) are useful for code generation remains open, in
line with other recent findings (Verma et al., 2024; Huang et al., 2023; Pan et al., 2024). The lack of clarity
about the efficacy of System 2 approaches is exacerbated by a lack of reproducibility and standardization
that we report in Section 6. Failing to identify the sources of empirical gains is a longstanding issue in ML
and related fields (Lipton & Steinhardt, 2018; Henderson et al., 2018).

At the same time, models such as OpenAI’s o1 have reported impressive gains owing to System 2 ap-
proaches (OpenAI, 2024a), though this involves training the model to be better at System 2 approaches using
reinforcement learning (OpenAI, 2024b). Notably, o1 outperforms gpt-4o with retry and reflection even when
accounting for inference compute (Epoch AI, 2024). Similarly, it is possible that System 2 techniques will be
useful on harder programming tasks than those represented in HumanEval, such as SWE-bench (Jimenez
et al., 2023).

To summarize this section, useful agent evaluations must control for cost — even if we ultimately don’t care
about cost and only about identifying innovative agent designs. Accuracy alone cannot identify progress
because it can be improved by scientifically meaningless methods such as retrying.

3 Jointly optimizing cost and accuracy can yield better agent designs

Visualizing the cost and accuracy of agents as a Pareto frontier opens up a new space for agent design: jointly
optimizing cost and accuracy, which can lead to agents that cost less while maintaining accuracy. This
formalization is fully generalizable to other desiderata of agent design, such as latency.

The total cost of running an agent includes fixed and variable costs. Fixed costs are one-time expenses
incurred when optimizing the agent’s hyperparameters (temperature, prompt, etc.) for a given task. Variable
costs are incurred each time the agent is run and depend on the number of input and output tokens. The
more an agent is used, the more the variable cost dominates (Appendix B).

Joint optimization allows us to trade off the fixed and variable costs of running an agent. By spending more
upfront on the one-time optimization of agent design, we can reduce the variable cost of running an agent
(e.g., by finding shorter prompts and few-shot examples while maintaining accuracy).

As an illustration of the potential of joint optimization, we modify the DSPy framework (Khattab et al.,
2023) and evaluate it on the HotPotQA benchmark (Yang et al., 2018). We chose HotPotQA because
is one of the benchmarks used to illustrate the effectiveness of DSPy in the original paper and has been
featured in several official tutorials by the developers. We used the Optuna hyperparameter optimization
framework (Akiba et al., 2019) to search for few-shot examples to be included with an agent that minimizes
cost while maintaining accuracy. Note that we expect more complex joint optimization approaches to vastly
outperform our approach. Our results are only a starting point intended illustrate the vast, underexplored
design space in agent design enabled by joint optimization.

3Chen et al. (2024) do compare the effect of retrying the same model multiple times on HumanEval, but they do not test the
performance of GPT-4, nor do they argue for a specific complex agent architecture.

5

Published in Transactions on Machine Learning Research (05/2025)

3.1 HotPotQA evaluation setup

We implement several agent designs to evaluate performance on multi-hop question-answering using DSPy.
For retrieval, we use ColBERTv2 to query Wikipedia based on the HotPotQA task specification (Yang et al.,
2018). Performance is evaluated by comparing whether the agent successfully retrieved all ground-truth
documents that are part of the HotPotQA task. We use 100 samples from the HotPotQA training set to
optimize the DSPy pipelines and 200 samples from the evaluation set to evaluate the results (this is consistent
with the implementation of the DSPy pipelines provided by the developers to illustrate efficacy at multi-hop
retrieval). We evaluate five agent architectures:

• Uncompiled: We do not optimize the agent’s prompt or include instructions on formatting HotPotQA
queries. Each prompt only contains the instructions for the task and the main content (i.e., question,
context, reasoning) but no few-shot examples or formatting instructions.

• Formatting instructions only: This is the same as the uncompiled baseline, but we add instructions
on how to format generated outputs for writing retrieval queries.

• Few-shot: We use DSPy to identify effective few-shot examples using all 100 samples from the training
set. We include formatting instructions. Few-shot examples are selected based on successful predictions
generated on the training set.

• Random Search: We use DSPy’s random search optimizer on a subset of the training data (50 of 100
samples) to select the best few-shot examples based on its performance on the remaining 50 samples. We
include formatting instructions.

• Joint optimization: We iterate over half the training set (50 of 100 samples) to collect a set of candidate
few-shot examples that improve the model’s accuracy. We use the other 50 samples for validation. We
jointly maximize accuracy and minimize the number of tokens in the few-shot examples included in the
prompt using parameter search. We implement parameter search using Optuna (Akiba et al., 2019). We
search over the following parameters to find Pareto-optimal agent designs: (a) the temperature for each
module within the agent, (b) the number of few-shot examples, (c) the selection of specific examples, and
(d) whether to add formatting instructions. Of the candidate agents selected by Optuna, we pick the one
with the best accuracy on the development set as our joint optimization model.

We test all five of the above agent designs on two underlying models: Llama-3-70B and GPT-3.5.

3.2 HotPotQA results: Joint optimization reduces cost while maintaining accuracy

Fig. 2 shows our main results. We confirm that DSPy offers substantial accuracy improvements over
uncompiled baselines, but we find that this comes at a cost. Fortunately, we can mitigate the cost overhead —
for GPT-3.5, joint optimization leads to 53% lower variable cost with similar accuracy compared to both
default DSPy implementations. Similarly, for Llama-3-70B, it leads to a 41% lower cost while maintaining
accuracy.

Tradeoffs between fixed and variable costs for agent design. Our joint optimization formulation
provides a way to trade off fixed and variable costs (Appendix B). In particular, we find that if used for
HotPotQA tasks, the Llama-3-70B as well as the GPT-3.5 joint optimization model both become cheaper
(in terms of total cost) compared to the default DSPy implementation, after 1,350 tasks (Appendix B). For
agents used in large-scale real-world tasks, the variable cost is by far the dominant term compared to the
fixed cost, by orders of magnitude, as an agent might be used millions of times.

In summary, joint optimization allows for efficient agent design. This comes at a small fixed cost for optimizing
the design, which is insignificant if the agent is used thousands of times.

6

Published in Transactions on Machine Learning Research (05/2025)

Figure 2: Joint optimization maintains accuracy while
significantly reducing cost. All measurements are av-
erages of 5 runs on the test set. A figure with error
bars and other details about our empirical results are
included in Appendix B. Note that DSPy has a much
higher cost than our baseline agent designs since it
always includes up to 8 few-shot examples per prompt
(the number being a configurable parameter) without
optimizing for cost, whereas the baseline agents include
none, and joint optimization uses a variable number
of examples.

4 Model and downstream developers have distinct benchmarking needs

AI evaluations are used by model developers and AI researchers to identify which changes to the training
data and architecture improve accuracy (model evaluation) and also by downstream developers to decide
which AI systems to use in their products for procurement decisions (downstream evaluation). The difference
between model evaluation and downstream evaluation is underappreciated. This has led to much confusion
about how to factor in the cost of running AI.

Model evaluation is a scientific question of interest to researchers. Here, it makes sense to stay away
from dollar costs, because reporting costs breaks many properties of benchmarks that we take for granted:
measurements don’t change over time (whereas costs tend to come down) and different models compete on a
level playing field (whereas some developers may benefit from economies of scale, leading to lower inference
costs). Because of this, researchers usually pick a different axis for the Pareto curve, such as parameter count
or training compute.

For model evaluation, controlling for compute is a reasonable approach: if we normalize training compute, we
can then understand if factors like architectural changes or changes in the data composition are responsible
for improvements, as opposed to more compute (Lambert, 2024).

Downstream evaluation is an engineering question that helps inform a procurement decision of which
model or agent to use in a particular application. Here, cost is the actual construct of interest. The downsides
of cost measurement in model evaluation are exactly what is needed for downstream evaluation. Namely,
inference costs do come down over time, and that greatly matters to downstream developers. It is unnecessary
and counterproductive for the evaluation to stay frozen in time.

Proxies for cost are misleading for downstream evaluation. In the context of downstream evaluation,
proxies for cost (such as the number of active parameters or training compute) are misleading. For example,
Mistral released a figure alongside their latest model, Mixtral 8x22B, to explain why developers should choose
it over competitors (Mistral AI team, 2024). It used the number of active parameters as a proxy for cost.
From the perspective of a downstream developer, this proxy is misleading. For example, as of June 2024,
Mixtral 8x7B costs twice as much as Llama 2 13B on compute provider Anyscale. Yet Mistral’s figure shows
that it costs about the same because it only considers the number of active parameters.

Downstream developers don’t care about the number of active parameters when they’re using an API.
They simply care about the dollar cost relative to accuracy. Mistral chose “active parameters” as a proxy,
presumably because it makes their models look better than dense models such as Meta’s Llama and Cohere’s
Command R+. If every model developer picked a proxy that makes their model look good, multi-dimensional
evaluation would lose its usefulness.

Addressing challenges to cost evaluation. As discussed above, there are several hurdles to cost evaluation.
Different providers can charge different amounts for the same model, the cost of an API call might change

7

Published in Transactions on Machine Learning Research (05/2025)

overnight, and cost might vary based on model developer decisions, such as whether bulk API calls are
charged differently.

These downsides can be partly addressed by making the evaluation results customizable using mechanisms to
adjust the cost of running models, i.e., providing users the option to adjust the cost of input and output
tokens for their provider of choice to recalculate the tradeoff between cost and accuracy. In turn, downstream
evaluations of agents should include input/output token counts in addition to dollar costs, so that anyone
looking at the evaluation in the future can instantly recalculate the cost using current prices. We have
prototyped a simple example of such an interface.4

4.1 Implications for benchmark design using a case study of NovelQA

The difference between model and downstream evaluation can also lead to challenges in benchmark design.
We show how such challenges arise with a case study of the NovelQA benchmark (Wang et al., 2024a). The
benchmark is motivated by the need to evaluate language models with long context windows. Novel lengths in
the benchmark range from 50,000 to over a million words. Each novel has between 5 and 100 questions about
it. To evaluate an AI system on NovelQA, developers submit their model responses to benchmark questions
to a centralized platform (CodaBench), and top-performing submissions are included in a public leaderboard.

This is a good benchmark for model evaluation, but it would be misleading if used for downstream evaluation
by a developer looking to build a bot for answering questions about novels. Like the other benchmarks
we have discussed, the NovelQA leaderboard does not measure cost. Nor is it easy to construct such a
leaderboard. That’s because NovelQA evaluates language models by asking all questions about a novel in
one go, right after inputting the novel’s content. However, this does not represent how users would ask
questions about novels in practice. Even if users have many questions about a novel, they will likely ask them
individually rather than all at once. Such sequential queries would cost orders of magnitude more because
the novel has to be re-processed each time. In other words, the task of answering multiple questions about a
novel (as implemented by NovelQA) doesn’t tell us anything about the cost of asking questions sequentially.

In particular, when comparing the two main approaches to novel-based QA — long-context models and
retrieval-augmented generation (RAG) — NovelQA makes RAG look much worse than it is in a real-world
scenario. Specifically, we found that the two approaches are roughly equally accurate, with RAG costing
more than 20 times less (Table 6). But on NovelQA, RAG costs half as much (a tenfold overestimate).
As a result, the NovelQA leaderboard is misleading for downstream evaluation. To be clear, NovelQA
authors don’t claim that it is suitable for downstream evaluation. Still, in general it is a common practice
for downstream developers to look to model evaluation benchmarks. Instead, we argue that downstream
evaluation benchmarks must be separate from, or at least variants of, model evaluation benchmarks.

5 Agent benchmarks allow shortcuts

Benchmarks are useful if they give us an estimate of real-world accuracy. If a benchmark allows shortcuts,
accuracy on the benchmark does not translate to the real world (McIntosh et al., 2024; Mialon et al., 2023;
Wagstaff, 2012).

Overfitting is one prominent type of shortcut, and a serious problem for agent benchmarks, since they tend to
be small — typically a few hundred samples. This is a much more serious problem than LLM training data
contamination, as knowledge of test samples can be directly programmed into the agent as opposed to merely
being exposed to them during training. In principle, a lookup table can achieve 100% accuracy on many
agent benchmarks. Overfitting would be obvious to spot if an agent used a lookup table, but other types of
overfitting can be much more subtle and hard to detect, which is of course why held-out test sets are crucial
in machine learning. Yet, surprisingly, we find that many agent benchmarks do not include held-out test sets.
In addition to creating a test set, benchmark developers should consider keeping it secret to prevent LLM
contamination or agent overfitting.

4See: https://benediktstroebl.github.io/agent-eval-webapp/

8

https://benediktstroebl.github.io/agent-eval-webapp/

Published in Transactions on Machine Learning Research (05/2025)

But we can go further. What about overfitting to a task? For example, if an agent scores highly on a
Python programming benchmark but cannot program in any other language, is it a problem? This depends
entirely on the agent’s purpose and what the benchmark creator desires in terms of the generality of the
agent (Chollet, 2019; Morris et al., 2024). In our survey, we have found four levels of generality:

1. Distribution-specific benchmarks are limited to a specific task, such as U.S. grade school math problems,
and do not account for distribution shifts.

2. Task-specific benchmarks are limited to a specific task such as booking a flight, placing an order on an
e-commerce website (Yao et al., 2023), or solving a GitHub issue (Jimenez et al., 2023), and account for
the possibility of distribution shifts, including drift. After all, an agent that can book flights today but
breaks if the flight booking website changes its layout would not be very useful. Web agents have already
been found to be sensitive to such small modifications to the GUI (Ma et al., 2024b).

3. Domain-general benchmarks aim to measure the ability to perform any task in a specific domain, such
as web browsing or tool use (Zhou et al., 2024).

4. General-purpose benchmarks measure the accuracy of agents across different domains, such as the
same agent being able to perform web browsing and robotics tasks. It is unclear if such benchmarks are
necessary or if aggregating domain-general benchmarks can better serve the purpose.

We propose as a core principle that the greater the intended generality of the agent, the more the held-out
set should differ from the training set, as detailed in Table 1. For example, if a benchmark is intended to be
domain-general but doesn’t contain held-out tasks, agent developers may (intentionally or unintentionally)
take shortcuts that work only for the specific tasks represented in the dataset, resulting in agents that don’t
work well for other tasks in the domain. Benchmark developers must do their best to ensure that shortcuts
are impossible. We view this as the responsibility of benchmark developers rather than agent developers,
because designing benchmarks that don’t allow shortcuts is much easier than checking every single agent
to see if it takes shortcuts. Benchmarks that create a level playing field are the core reason for the rapid
progress of ML over the last half century (Donoho, 2017; Simons Foundation, 2019).

Table 1: Appropriate holdouts based on level of generality. See Appendix C for details.

Level of generality What should be held out Num. benchmarks
with appropriate

holdouts
Distribution-specific In-distribution samples 1 / 2
Task-specific Out-of-distribution samples 4 / 10
Domain-general Tasks 3/18
Fully general Domains 0 / 3

There are many types of distribution shifts, and benchmark developers can’t necessarily model all of them.
But they must attempt to identify which distribution shifts are particularly likely for the task in question.
Another approach — not always practical — is to evaluate sim2real transfer, where leading agents are
evaluated not just on benchmark tasks but also the corresponding real-world tasks — for example, Amazon
shopping for a web shopping benchmark Yao et al. (2023).

We analyzed 33 agent benchmarks and classified them into the four levels of generality (Table 5). Most are
either task-specific or domain-general. In many cases, it wasn’t clear which level of generality the benchmark
developers had in mind, and we made our best guess based on how the benchmark was presented in the
paper. This lack of clarity is problematic as it makes it hard to know what we can and can’t conclude about
the agents that perform well on that benchmark.

We recognize that time and resource constraints may hinder benchmark designers from creating a holdout set
at the correct generality level. Hence we count a holdout as appropriate if there actually exists a holdout at
the appropriate level of generality or the benchmark designers indicate an intent to create such a holdout.

9

Published in Transactions on Machine Learning Research (05/2025)

However, as shown in Table 1 and Appendix C, the majority of benchmarks do not include an appropriate
held-out set, including 17 that have no hold-out and no indication that a holdout set will be added in future
editions of the benchmark.

Note that in traditional machine learning research, held-out test sets are usually at the level of in-distribution
or out-of-distribution samples (the first two rows of the Table 1). This is sufficient because models are specific
to a single task, say image classification or spam classification. But LLMs and domain-general agents are
expected to handle tasks that are not known ahead of time and may be specified in natural language in some
cases. This motivates the need for held-out tasks during evaluation.

5.1 Case study of the STeP agent on WebArena.

Web agents can be evaluated on many capabilities: navigating to a website, scrolling, selecting the right web
element etc. There are many different types of websites that can be used such benchmarks: e-commerce,
social media, information search etc. WebArena is an agent benchmark that aims to evaluate agents on
tasks on the web (Zhou et al., 2024). It includes clones of six different websites (GitLab, Reddit, Wikipedia,
OpenStreetMaps, an e-commerce platform, and a content management system) and two tools (calculator and
scratchpad). It has 812 different tasks that involve interacting with these websites, such as “find the address
of all US international airports that are within a driving distance of 60 km to the Niagara Falls” and “post a
question on a subreddit related to New York City”.

WebArena’s core stated selling point seems to be realism, which means that it should be difficult to find
shortcuts. If we consider WebArena a task-specific benchmark, the key type of distribution shift is drift:
agents should be robust to changes made to a website over time. However, WebArena does not model drift.
To be clear, it is challenging to model drift. Benchmark developers would need to find changes made to
published websites and incorporate those into the test sets. Further, as we discuss above, the held-out set
would need to be kept secret, since agent developers could otherwise overfit to the specific changes in the
benchmark. Still, we view these steps as necessary for meaningful evaluation.

Consider the top agent on the WebArena leaderboard, called STeP (Sodhi et al., 2024). It has an accuracy of
35.8%, more than double the accuracy of the top-performing baseline agent introduced in the WebArena
paper, and over 10 percentage points more than the next-best agent (Drouin et al., 2024). How does STeP
achieve this high accuracy? It turns out that STeP hardcodes policies to solve the specific tasks included in
WebArena. For example, several WebArena Reddit tasks involve navigating to a user’s profile. The STeP
policy for this task is to look at the current base URL and add a suffix ‘/user/user_name’. This
is brittle: the policy would no longer be effective if the website updates its URL structure (an example of
drift). Even if the probability of an individual policy failing is small, an agent might need to call different
policies dozens of times for each task. The overall probability of failure compounds quickly.

To be clear, the STeP developers’ goals are orthogonal to the benchmark developers’ goals—creating
composable policies for accomplishing fixed tasks that are known apriori. From this perspective, STeP’s
design choices make sense. Yet the leaderboard accuracy on WebArena (such as the accuracy of the STeP
agent) is misleading from the perspective of downstream developers, who might be using the WebArena
leaderboard to understand the accuracy of web agents on real-world tasks and make decisions about which
agent to adopt in an application.

Things become even more problematic if we consider WebArena a domain-general benchmark. This can be
justified based on the claim that for previous web benchmarks, “the functionality of many environments is a
limited version of their real-world counterparts, leading to a lack of task diversity” (Zhou et al., 2024). This
suggests that the WebArena developers aim to stimulate the development of agents that can accomplish
many different tasks on the web.

Unfortunately, WebArena lacks a held-out test set for evaluating whether an agent can perform well on unseen
web tasks. (It is hard to confirm if building a domain-general benchmark is indeed their main objective. This
lack of clarity is problematic as it makes it hard to assess whether benchmark developers deliver on their
promises and what the leaderboard accuracy truly reflects.) Note that if the held-out set contained different
tasks (such as samples from completely new and unseen websites) compared to those in the training set,

10

Published in Transactions on Machine Learning Research (05/2025)

the accuracy agents like STeP would be drastically lower, because none of the hardcoded policies would be
effective.

5.2 Agent benchmarks don’t account for humans in the loop

The degree of human supervision, feedback, and intervention required for an agent to perform a task can be
seen as a spectrum. Consider a data analysis task. On one end of the spectrum, the analyst might use a
chatbot to help with tasks like debugging. Here the user is firmly in control and verifies all chatbot outputs.
Or the analyst might ask the agent to write and execute code for certain data visualization tasks. The
analyst might not review every line of code but only intervene if something appears to be wrong. At the
other extreme, an analyst might give the agent a dataset and a task (e.g. identify how the presence of a
swimming pool impacts property value using a home sale database), giving it full autonomy over all aspects
of the task such as how to perform causal inference.

Current evaluations predominantly focus on these two extremes: they either evaluate the capacity of chatbots
to answer questions correctly (e.g., MMLU (Hendrycks et al., 2021)), or whether agents can perform a task
with no supervision (e.g., the agent benchmarks in Table 5).

However, these evaluations do not reflect how people use chatbots and agents in the real world. For example,
the humans using a chatbot might steer it towards the correct answer, give feedback on where it went wrong,
or ask it to change something about the output. Similarly, an agent might have the capacity to take an action,
but require user confirmation for consequential actions. For example, users read emails using ChatGPT’s
Zapier plugin by connecting their email accounts, but sending an email requires confirmation from the end
user.

Human feedback might greatly increase accuracy. For example, Shi et al. (2024) find that simple feedback
increases the performance of GPT-4 from 0% to over 86% on challenging programming problems—from
entirely useless to almost perfect. Thus, the lack of human-in-the-loop evaluation of agents might lead us to
underestimate their usefulness (whereas the lack of held-out test sets leads to overoptimism).

Of course, human-in-the-loop evaluation is costly and tricky. The agent’s accuracy will depend not just
on the system but also on the skill level of humans interacting with it. While addressing these concerns
with human-in-the-loop evaluations is beyond the scope of this paper, it is an important direction for future
research. Ibrahim et al. (2024) provide a detailed overview of implementing such evaluations in the context of
safety evaluation.

6 Inadequate benchmark standardization leads to irreproducible agent evaluations

During our experiments, we identified several shortcomings in the reproducibility and standardization of agent
benchmarks and evaluations. Our analysis is based on a widely accepted definition of reproducibility: that
the code and data accompanying a paper should be enough to reproduce the results that it reports (National
Academies of Sciences, Engineering, and Medicine, 2019). Without reproducible agent evaluation, it is hard
to distinguish genuine improvements in agent designs from artifacts of the differences in evaluation choices.
Since agents are often intended to be used by downstream developers, lack of reproducibility also misleads
developers adopting agents in real-world applications. Finally, irreproducible results impose a huge time cost
on researchers trying to build on claims of state-of-the-art results.

We identified five root causes for the lack of standardized and reproducible agent evaluations, all of which arise
from the differences between LLM evaluation and agent evaluation. Since these issues relate to standardization,
we view them as primarily the responsibility of benchmark developers rather than agent developers.

1. Evaluation scripts make assumptions about agent design that aren’t satisfied by all agents.
Many evaluation shortcomings result from the lack of a clear standard for releasing evaluation scripts
alongside benchmarks (Biderman et al., 2024). Agent developers need to implement their own evaluation
for their agents either because the evaluation script does not account for different agent designs or because
the script provided by the benchmark developer itself has bugs. This leaves open the possibility for

11

Published in Transactions on Machine Learning Research (05/2025)

non-standard evaluation scripts leading to incomparable results across agent developers evaluating their
agents on the same benchmark.

2. Repurposing LLM evaluation benchmarks for agent evaluation introduces inconsistencies. In
some cases, even if benchmark developers provide evaluation scripts, agent developers need to re-implement
these scripts. This is because many prominent benchmarks have been designed for language model
evaluation. Using these benchmarks to evaluate agents can require changes to the benchmark design and
evaluation.
For example, HumanEval does not include example test cases for 3 of the 164 problems. In addition, the
example test cases are included in the docstring accompanying a problem, rather than being machine
readable and easily extractable. Both of these design choices are suitable for evaluating language models,
since models can be evaluated by prompting them with the included docstrings, even if there are no
example test cases. But this benchmark design does not work for agents that rely on using the included
example test cases and regenerate solutions if they are incorrect (such as LDB, Reflexion, LATS, and our
simple baselines in Section 2). As a result, developers evaluate agents using varying subsets of benchmarks
or adding example test cases to the original benchmark. For example, the Reflexion (Shinn et al., 2023)
and LATS (Zhou et al., 2023) modified HumanEval by removing the problems without example tests.
LDB (Zhong et al., 2024) added example tests to the 3 problems which did not originally include them
and convert examples to a machine-readable format (we use the version provided by the authors of LDB).
But agent and model evaluations are clubbed together on leaderboard websites such as PapersWithCode,
despite the varying evaluation methods. Aggregators of benchmark results (such as PapersWithCode)
must ensure that evaluations on the same leaderboard were all conducted using the same methods.

3. The high cost of evaluating agents makes it is hard to estimate confidence intervals. Agents
might call the underlying language models hundreds (or thousands) of times. This means that evaluating
agents can be extremely expensive. For example, SWE-bench (Jimenez et al., 2023) consists of over
2,000 programming tasks. The authors of SWE-Agent (Yang et al., 2024) set a cost limit of USD 4 per
task. Evaluating SWE-Agent on the entire benchmark could cost over USD 8,000 for a single evaluation
run. The high cost makes it infeasible to run evaluations multiple times, and perhaps as a result, agent
evaluations are rarely accompanied by error bars. This makes it hard to understand the variance of
reported results. We found that many reported accuracy scores were above the maximum of five runs that
we performed in our reproduction attempts, and the reported baselines were in some cases lower than the
minimum of five runs we performed.

4. Agent evaluation relies on external factors such as interacting with an environment which
can lead to subtle errors. LLM benchmarks typically consist of input strings and rely on strings
as outputs, whereas agents often involve dynamic interactions with environments such as the web or a
command line, which are not easily reducible to static inputs and outputs. This can lead to incorrect
assumptions. For example, one common assumption in evaluation is invariance to the order in which
tasks in a benchmark are evaluated, as tasks are presumed to be independent. This assumption fails for
WebArena (Zhou et al., 2024). One of the websites included in the benchmark (a clone of Reddit) has rate
limits for certain agent actions, such as posting content. As a result, if the tasks involving Reddit posts
are evaluated one after another, they are much more likely to fail. This affects the evaluation of the STeP
agent (Sodhi et al., 2024).

5. The lack of standardized evaluation leads to subtle bugs in agent evaluation and development.
Perhaps due to the issues above, we encountered several bugs with agent developers’ implementation of
their agents and their evaluations. For example, both LATS (Zhou et al., 2023) and STeP (Sodhi et al.,
2024) marked some incorrectly completed tasks as correct. Similarly, both agents removed a small number
of tasks from the benchmark (1 and 8 tasks for LATS and STeP respectively).

The need for a standardized evaluation framework. These shortcomings stem from three distinct
(but related) reasons. First, as of yet, there are no clear standards for providing agent evaluation scripts
(shortcoming 1). As a result, the differences between model and agent benchmarks are not appreciated
(shortcomings 1-3). Finally, due to the lack of community norms on evaluation, there is scope for bugs to

12

Published in Transactions on Machine Learning Research (05/2025)

creep in during agent development and evaluation (shortcoming 5). We include examples and more details on
each in Table 7. Shortcomings with standardization have also been observed for LLM evaluation. Evaluation
frameworks like HELM (Liang et al., 2023) and LM Evaluation Harness (Biderman et al., 2024) address these
shortcomings for model evaluations by providing standardized evaluation results. But as we have seen, these
frameworks don’t suffice for evaluating AI agents. Developing an agent evaluation framework is a ripe area
for future work.

7 Conclusion

AI agent benchmarking is new and best practices haven’t yet been established, making it hard to distinguish
genuine advances from hype. Our thesis is that agents are sufficiently different from models that benchmarking
practices need to be rethought. We have taken the first steps toward a principled approach to agent
benchmarking, resulting in recommendations including cost-controlled comparisons, separating model and
downstream evaluation, preventing shortcuts using appropriate hold-outs, and greater standardization of
evaluation practices. While developing a full solution for these concerns is beyond the scope of this paper, we
hope these steps will raise the rigor of AI agent evaluation and provide a firm foundation for progress.

References
google-research-datasets/mbpp · Datasets at Hugging Face, April 2023. URL https://huggingface.co/

datasets/google-research-datasets/mbpp.

Mohamed Aghzal, Erion Plaku, and Ziyu Yao. Can Large Language Models be Good Path Planners? A
Benchmark and Investigation on Spatial-temporal Reasoning, February 2024. URL http://arxiv.org/
abs/2310.03249. arXiv:2310.03249 [cs].

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A Next-
generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, KDD ’19, pp. 2623–2631, New York, NY, USA,
July 2019. Association for Computing Machinery. ISBN 978-1-4503-6201-6. doi: 10.1145/3292500.3330701.
URL https://dl.acm.org/doi/10.1145/3292500.3330701.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi, Alham Fikri
Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony DiPofi, Julen Etxaniz, Benjamin
Fattori, Jessica Zosa Forde, Charles Foster, Mimansa Jaiswal, Wilson Y. Lee, Haonan Li, Charles Lovering,
Niklas Muennighoff, Ellie Pavlick, Jason Phang, Aviya Skowron, Samson Tan, Xiangru Tang, Kevin A.
Wang, Genta Indra Winata, François Yvon, and Andy Zou. Lessons from the Trenches on Reproducible
Evaluation of Language Models, May 2024. URL http://arxiv.org/abs/2405.14782. arXiv:2405.14782
[cs].

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and Azalia
Mirhoseini. Large Language Monkeys: Scaling Inference Compute with Repeated Sampling, July 2024.
URL http://arxiv.org/abs/2407.21787. arXiv:2407.21787 [cs].

Alan Chan, Rebecca Salganik, Alva Markelius, Chris Pang, Nitarshan Rajkumar, Dmitrii Krasheninnikov,
Lauro Langosco, Zhonghao He, Yawen Duan, Micah Carroll, Michelle Lin, Alex Mayhew, Katherine
Collins, Maryam Molamohammadi, John Burden, Wanru Zhao, Shalaleh Rismani, Konstantinos Voudouris,
Umang Bhatt, Adrian Weller, David Krueger, and Tegan Maharaj. Harms from Increasingly Agentic
Algorithmic Systems. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and
Transparency, FAccT ’23, pp. 651–666, New York, NY, USA, June 2023. Association for Computing
Machinery. ISBN 9798400701924. doi: 10.1145/3593013.3594033. URL https://dl.acm.org/doi/10.
1145/3593013.3594033.

Harrison Chase. What is an agent?, June 2024. URL https://blog.langchain.dev/what-is-an-agent/.

13

https://huggingface.co/datasets/google-research-datasets/mbpp
https://huggingface.co/datasets/google-research-datasets/mbpp
http://arxiv.org/abs/2310.03249
http://arxiv.org/abs/2310.03249
https://dl.acm.org/doi/10.1145/3292500.3330701
http://arxiv.org/abs/2405.14782
http://arxiv.org/abs/2407.21787
https://dl.acm.org/doi/10.1145/3593013.3594033
https://dl.acm.org/doi/10.1145/3593013.3594033
https://blog.langchain.dev/what-is-an-agent/

Published in Transactions on Machine Learning Research (05/2025)

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James Zou.
Are More LLM Calls All You Need? Towards Scaling Laws of Compound Inference Systems, March 2024.
URL http://arxiv.org/abs/2403.02419. arXiv:2403.02419 [cs, eess].

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir
Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
Evaluating Large Language Models Trained on Code, July 2021. URL http://arxiv.org/abs/2107.03374.
arXiv:2107.03374 [cs].

Ching-An Cheng, Andrey Kolobov, Dipendra Misra, Allen Nie, and Adith Swaminathan. LLF-Bench:
Benchmark for Interactive Learning from Language Feedback, December 2023. URL http://arxiv.org/
abs/2312.06853. arXiv:2312.06853 [cs].

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. BabyAI: A Platform to Study the Sample Efficiency of Grounded Language
Learning, December 2019. URL http://arxiv.org/abs/1810.08272. arXiv:1810.08272 [cs].

François Chollet. On the Measure of Intelligence, November 2019. URL http://arxiv.org/abs/1911.01547.
arXiv:1911.01547 [cs].

Shihan Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang, Rui
Yan, and Shuo Shang. Mobile-Bench: An Evaluation Benchmark for LLM-based Mobile Agents, July 2024.
URL http://arxiv.org/abs/2407.00993. arXiv:2407.00993 [cs].

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
MIND2WEB: Towards a Generalist Agent for the Web.

David Donoho. 50 Years of Data Science. Journal of Computational and Graphical Statis-
tics, 26(4):745–766, October 2017. ISSN 1061-8600. doi: 10.1080/10618600.2017.1384734.
URL https://doi.org/10.1080/10618600.2017.1384734. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/10618600.2017.1384734.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom Marty, Léo
Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and Alexandre Lacoste.
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?, April 2024. URL
http://arxiv.org/abs/2403.07718. arXiv:2403.07718 [cs].

Epoch AI. 1/9 OpenAI’s o1-preview outperforms previous models, including GPT-4o, on many reasoning tasks.
But how much of this is due to increased inference compute? Our experiments suggest that naively scaling
inference compute isn’t enough to bridge the gap between GPT-4o and o1. https://t.co/iQWS2HOqQT,
September 2024. URL https://x.com/EpochAIResearch/status/1838720157545648315.

Iason Gabriel, Arianna Manzini, Geoff Keeling, Lisa Anne Hendricks, Verena Rieser, Hasan Iqbal, Nenad
Tomašev, Ira Ktena, Zachary Kenton, Mikel Rodriguez, Seliem El-Sayed, Sasha Brown, Canfer Akbulut,
Andrew Trask, Edward Hughes, A. Stevie Bergman, Renee Shelby, Nahema Marchal, Conor Griffin, Juan
Mateos-Garcia, Laura Weidinger, Winnie Street, Benjamin Lange, Alex Ingerman, Alison Lentz, Reed
Enger, Andrew Barakat, Victoria Krakovna, John Oliver Siy, Zeb Kurth-Nelson, Amanda McCroskery,
Vijay Bolina, Harry Law, Murray Shanahan, Lize Alberts, Borja Balle, Sarah de Haas, Yetunde Ibitoye,
Allan Dafoe, Beth Goldberg, Sébastien Krier, Alexander Reese, Sims Witherspoon, Will Hawkins, Maribeth
Rauh, Don Wallace, Matija Franklin, Josh A. Goldstein, Joel Lehman, Michael Klenk, Shannon Vallor,
Courtney Biles, Meredith Ringel Morris, Helen King, Blaise Agüera y Arcas, William Isaac, and James

14

http://arxiv.org/abs/2403.02419
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2312.06853
http://arxiv.org/abs/2312.06853
http://arxiv.org/abs/1810.08272
http://arxiv.org/abs/1911.01547
http://arxiv.org/abs/2407.00993
https://doi.org/10.1080/10618600.2017.1384734
http://arxiv.org/abs/2403.07718
https://x.com/EpochAIResearch/status/1838720157545648315

Published in Transactions on Machine Learning Research (05/2025)

Manyika. The Ethics of Advanced AI Assistants, April 2024. URL http://arxiv.org/abs/2404.16244.
arXiv:2404.16244 [cs].

Michael Hassid, Tal Remez, Jonas Gehring, Roy Schwartz, and Yossi Adi. The Larger the Better? Improved
LLM Code-Generation via Budget Reallocation, July 2024. URL http://arxiv.org/abs/2404.00725.
arXiv:2404.00725 [cs].

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Interactive Fiction
Games: A Colossal Adventure. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):
7903–7910, April 2020. ISSN 2374-3468. doi: 10.1609/aaai.v34i05.6297. URL https://ojs.aaai.org/
index.php/AAAI/article/view/6297. Number: 05.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep
Reinforcement Learning That Matters. Proceedings of the AAAI Conference on Artificial Intelligence, 32
(1), April 2018. ISSN 2374-3468. doi: 10.1609/aaai.v32i1.11694. URL https://ojs.aaai.org/index.
php/AAAI/article/view/11694. Number: 1.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring Massive Multitask Language Understanding, January 2021. URL http://arxiv.org/abs/
2009.03300. arXiv:2009.03300 [cs].

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and
Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. October 2023. URL https:
//openreview.net/forum?id=IkmD3fKBPQ.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentBench: Evaluating Language Agents on Ma-
chine Learning Experimentation, April 2024. URL http://arxiv.org/abs/2310.03302. arXiv:2310.03302
[cs].

Lujain Ibrahim, Saffron Huang, Lama Ahmad, and Markus Anderljung. Beyond static AI evaluations:
advancing human interaction evaluations for LLM harms and risks, May 2024. URL http://arxiv.org/
abs/2405.10632. arXiv:2405.10632 [cs].

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan.
SWE-bench: Can Language Models Resolve Real-World GitHub Issues?, October 2023. URL https:
//arxiv.org/abs/2310.06770v1.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant Bhambri,
Lucas Saldyt, and Anil Murthy. LLMs Can’t Plan, But Can Help Planning in LLM-Modulo Frameworks,
February 2024. URL http://arxiv.org/abs/2402.01817. arXiv:2402.01817 [cs].

Omar Khattab, Christopher Potts, and Matei Zaharia. Baleen: Robust Multi-Hop Reasoning at Scale
via Condensed Retrieval. In Advances in Neural Information Processing Systems, volume 34, pp. 27670–
27682. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/hash/e8b1cbd05f6e6a358a81dee52493dd06-Abstract.html.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan,
Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and
Christopher Potts. DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines,
October 2023. URL http://arxiv.org/abs/2310.03714. arXiv:2310.03714 [cs].

Nathan Lambert. The end of the “best open LLM”, April 2024. URL https://www.interconnects.ai/p/
compute-efficient-open-llms.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More Agents Is All You Need, February 2024.
URL http://arxiv.org/abs/2402.05120. arXiv:2402.05120 [cs].

15

http://arxiv.org/abs/2404.16244
http://arxiv.org/abs/2404.00725
https://ojs.aaai.org/index.php/AAAI/article/view/6297
https://ojs.aaai.org/index.php/AAAI/article/view/6297
https://ojs.aaai.org/index.php/AAAI/article/view/11694
https://ojs.aaai.org/index.php/AAAI/article/view/11694
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
http://arxiv.org/abs/2310.03302
http://arxiv.org/abs/2405.10632
http://arxiv.org/abs/2405.10632
https://arxiv.org/abs/2310.06770v1
https://arxiv.org/abs/2310.06770v1
http://arxiv.org/abs/2402.01817
https://proceedings.neurips.cc/paper_files/paper/2021/hash/e8b1cbd05f6e6a358a81dee52493dd06-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/e8b1cbd05f6e6a358a81dee52493dd06-Abstract.html
http://arxiv.org/abs/2310.03714
https://www.interconnects.ai/p/compute-efficient-open-llms
https://www.interconnects.ai/p/compute-efficient-open-llms
http://arxiv.org/abs/2402.05120

Published in Transactions on Machine Learning Research (05/2025)

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume,
Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James
Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray
Kavukcuoglu, and Oriol Vinyals. Competition-Level Code Generation with AlphaCode. Science, 378
(6624):1092–1097, December 2022. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.abq1158. URL
http://arxiv.org/abs/2203.07814. arXiv:2203.07814 [cs].

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang,
Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang,
Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson,
Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav
Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri
Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar,
Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang,
Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic Evaluation of Language Models, October
2023. URL http://arxiv.org/abs/2211.09110. arXiv:2211.09110 [cs].

Zachary C. Lipton and Jacob Steinhardt. Troubling Trends in Machine Learning Scholarship, July 2018.
URL http://arxiv.org/abs/1807.03341. arXiv:1807.03341 [cs, stat].

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang, Sheng Shen,
Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang. AgentBench: Evaluating
LLMs as Agents, October 2023. URL http://arxiv.org/abs/2308.03688. arXiv:2308.03688 [cs].

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai, Xinyi
Liu, Hanlin Zhao, Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao Sun, Siyi Cheng,
Qinkai Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan, Xiaotao Gu, Aohan Zeng,
Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, and Jie Tang. VisualAgentBench: Towards Large
Multimodal Models as Visual Foundation Agents, August 2024. URL http://arxiv.org/abs/2408.06327.
arXiv:2408.06327 [cs].

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma, Shen
Ma, Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming Pang. ToolSandbox: A Stateful, Conversational,
Interactive Evaluation Benchmark for LLM Tool Use Capabilities, August 2024. URL http://arxiv.org/
abs/2408.04682. arXiv:2408.04682 [cs].

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. WebLINX: Real-World Website Navigation with Multi-Turn
Dialogue, September 2024. URL http://arxiv.org/abs/2402.05930. arXiv:2402.05930 [cs].

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng Kong,
and Junxian He. AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents, January 2024a.
URL http://arxiv.org/abs/2401.13178. arXiv:2401.13178 [cs].

Xinbei Ma, Yiting Wang, Yao Yao, Tongxin Yuan, Aston Zhang, Zhuosheng Zhang, and Hai Zhao. Caution
for the Environment: Multimodal Agents are Susceptible to Environmental Distractions, August 2024b.
URL http://arxiv.org/abs/2408.02544. arXiv:2408.02544 [cs].

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhijeetsingh Meena,
Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark. DiscoveryBench: Towards
Data-Driven Discovery with Large Language Models, July 2024. URL http://arxiv.org/abs/2407.01725.
arXiv:2407.01725 [cs].

Timothy R. McIntosh, Teo Susnjak, Tong Liu, Paul Watters, and Malka N. Halgamuge. Inadequacies of
Large Language Model Benchmarks in the Era of Generative Artificial Intelligence, February 2024. URL
http://arxiv.org/abs/2402.09880. arXiv:2402.09880 [cs].

16

http://arxiv.org/abs/2203.07814
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/1807.03341
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2408.06327
http://arxiv.org/abs/2408.04682
http://arxiv.org/abs/2408.04682
http://arxiv.org/abs/2402.05930
http://arxiv.org/abs/2401.13178
http://arxiv.org/abs/2408.02544
http://arxiv.org/abs/2407.01725
http://arxiv.org/abs/2402.09880

Published in Transactions on Machine Learning Research (05/2025)

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for General AI Assistants, November 2023. URL http://arxiv.org/abs/2311.12983.
arXiv:2311.12983 [cs].

Mistral AI team. Cheaper, Better, Faster, Stronger, April 2024. URL https://mistral.ai/news/
mixtral-8x22b/. Section: news.

Meredith Ringel Morris, Jascha Sohl-dickstein, Noah Fiedel, Tris Warkentin, Allan Dafoe, Aleksandra Faust,
Clement Farabet, and Shane Legg. Levels of AGI for Operationalizing Progress on the Path to AGI, June
2024. URL http://arxiv.org/abs/2311.02462. arXiv:2311.02462 [cs].

Silen Naihin. agbenchmark: Benchmarking the performance of agents far and wide, regardless of how they
are set up and how they work.

National Academies of Sciences, Engineering, and Medicine. Reproducibility and Replicability in Science.
2019. doi: 10.17226/25303. URL https://nap.nationalacademies.org/read/25303/chapter/7.

Andrew Ng. Welcoming Diverse Approaches Keeps Machine Learning Strong, June 2024. URL https://www.
deeplearning.ai/the-batch/welcoming-diverse-approaches-keeps-machine-learning-strong/.

OpenAI. Introducing OpenAI o1, September 2024a. URL https://openai.com/index/
introducing-openai-o1-preview/.

OpenAI. Learning to Reason with LLMs, September 2024b. URL https://openai.com/index/
learning-to-reason-with-llms/.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang,
Shuyan Zhou, Tongshuang Wu, and Zhengyang Wu. WebCanvas: Benchmarking Web Agents in Online
Environments, July 2024. URL http://arxiv.org/abs/2406.12373. arXiv:2406.12373 [cs].

Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois, Chris J.
Maddison, and Tatsunori Hashimoto. Identifying the Risks of LM Agents with an LM-Emulated Sandbox,
May 2024. URL http://arxiv.org/abs/2309.15817. arXiv:2309.15817 [cs].

Stuart Jonathan Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1
edition, 1995. ISBN 978-0-13-103805-9. Google-Books-ID: CUVeMwAACAAJ.

Yonadav Shavit, Cullen O’Keefe, Tyna Eloundou, Paul McMillan, Sandhini Agarwal, Miles Brundage, Steven
Adler, Rosie Campbell, Teddy Lee, Pamela Mishkin, Alan Hickey, Katarina Slama, Lama Ahmad, Alex
Beutel, Alexandre Passos, and David G Robinson. Practices for Governing Agentic AI Systems. December
2023. URL https://cdn.openai.com/papers/practices-for-governing-agentic-ai-systems.pdf.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li, and
Yueting Zhuang. TaskBench: Benchmarking Large Language Models for Task Automation, December 2023.
URL http://arxiv.org/abs/2311.18760. arXiv:2311.18760 [cs].

Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can Language Models Solve Olympiad
Programming?, April 2024. URL http://arxiv.org/abs/2404.10952. arXiv:2404.10952 [cs] version: 1.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language Agents with Verbal Reinforcement Learning, October 2023. URL http:
//arxiv.org/abs/2303.11366. arXiv:2303.11366 [cs].

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew Hausknecht.
ALFWorld: Aligning Text and Embodied Environments for Interactive Learning, March 2021. URL
http://arxiv.org/abs/2010.03768. arXiv:2010.03768 [cs].

Zachary S. Siegel, Sayash Kapoor, Nitya Nagdir, Benedikt Stroebl, and Arvind Narayanan. CORE-Bench:
Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark,
September 2024. URL http://arxiv.org/abs/2409.11363. arXiv:2409.11363 [cs].

17

http://arxiv.org/abs/2311.12983
https://mistral.ai/news/mixtral-8x22b/
https://mistral.ai/news/mixtral-8x22b/
http://arxiv.org/abs/2311.02462
https://nap.nationalacademies.org/read/25303/chapter/7
https://www.deeplearning.ai/the-batch/welcoming-diverse-approaches-keeps-machine-learning-strong/
https://www.deeplearning.ai/the-batch/welcoming-diverse-approaches-keeps-machine-learning-strong/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
http://arxiv.org/abs/2406.12373
http://arxiv.org/abs/2309.15817
https://cdn.openai.com/papers/practices-for-governing-agentic-ai-systems.pdf
http://arxiv.org/abs/2311.18760
http://arxiv.org/abs/2404.10952
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2010.03768
http://arxiv.org/abs/2409.11363

Published in Transactions on Machine Learning Research (05/2025)

Simons Foundation. Mark Liberman - Reproducible Research and the Common Task
Method (April 1, 2015), July 2019. URL https://www.simonsfoundation.org/event/
reproducible-research-and-the-common-task-method/.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM Test-Time Compute Optimally can be
More Effective than Scaling Model Parameters, August 2024. URL http://arxiv.org/abs/2408.03314.
arXiv:2408.03314 [cs].

Paloma Sodhi, S. R. K. Branavan, Yoav Artzi, and Ryan McDonald. SteP: Stacked LLM Policies for Web
Actions, April 2024. URL http://arxiv.org/abs/2310.03720. arXiv:2310.03720 [cs].

Olly Styles, Sam Miller, Patricio Cerda-Mardini, Tanaya Guha, Victor Sanchez, and Bertie Vidgen. WorkBench:
a Benchmark Dataset for Agents in a Realistic Workplace Setting, August 2024. URL http://arxiv.org/
abs/2405.00823. arXiv:2405.00823 [cs].

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang Gan.
Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision, March 2024. URL http:
//arxiv.org/abs/2403.09472. arXiv:2403.09472 [cs].

OpenDevin Team. OpenDevin: An Open Platform for AI Software Developers as Generalist Agents, June
2024. URL https://github.com/OpenDevin/OpenDevin. original-date: 2024-03-13T03:33:31Z.

Mudit Verma, Siddhant Bhambri, and Subbarao Kambhampati. On the Brittle Foundations of ReAct
Prompting for Agentic Large Language Models, May 2024. URL http://arxiv.org/abs/2405.13966.
arXiv:2405.13966 [cs].

Pablo Villalobos and David Atkinson. Trading Off Compute in Training and Inference, July 2023. URL
https://epochai.org/blog/trading-off-compute-in-training-and-inference.

Kiri Wagstaff. Machine Learning that Matters, June 2012. URL http://arxiv.org/abs/1206.4656.
arXiv:1206.4656 [cs, stat].

Cunxiang Wang, Ruoxi Ning, Boqi Pan, Tonghui Wu, Qipeng Guo, Cheng Deng, Guangsheng Bao, Qian
Wang, and Yue Zhang. NovelQA: A Benchmark for Long-Range Novel Question Answering, March 2024a.
URL http://arxiv.org/abs/2403.12766. arXiv:2403.12766 [cs].

Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong Mao, Qinmin Wang, Tianchen Min, Wei Chen, and Shoufa
Chen. MobileAgentBench: An Efficient and User-Friendly Benchmark for Mobile LLM Agents, June 2024b.
URL http://arxiv.org/abs/2406.08184. arXiv:2406.08184 [cs].

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. ScienceWorld: Is your Agent
Smarter than a 5th Grader?, November 2022. URL http://arxiv.org/abs/2203.07540. arXiv:2203.07540
[cs].

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. MINT:
Evaluating LLMs in Multi-turn Interaction with Tools and Language Feedback, March 2024c. URL
http://arxiv.org/abs/2309.10691. arXiv:2309.10691 [cs].

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia
Kulikov, and Zaid Harchaoui. From Decoding to Meta-Generation: Inference-time Algorithms for Large
Language Models, June 2024. URL http://arxiv.org/abs/2406.16838. arXiv:2406.16838 [cs].

Lilian Weng. LLM Powered Autonomous Agents, June 2023. URL https://lilianweng.github.io/posts/
2023-06-23-agent/. Section: posts.

Ruixuan Xiao, Wentao Ma, Ke Wang, Yuchuan Wu, Junbo Zhao, Haobo Wang, Fei Huang, and Yongbin Li.
FlowBench: Revisiting and Benchmarking Workflow-Guided Planning for LLM-based Agents, June 2024.
URL http://arxiv.org/abs/2406.14884. arXiv:2406.14884 [cs].

18

https://www.simonsfoundation.org/event/reproducible-research-and-the-common-task-method/
https://www.simonsfoundation.org/event/reproducible-research-and-the-common-task-method/
http://arxiv.org/abs/2408.03314
http://arxiv.org/abs/2310.03720
http://arxiv.org/abs/2405.00823
http://arxiv.org/abs/2405.00823
http://arxiv.org/abs/2403.09472
http://arxiv.org/abs/2403.09472
https://github.com/OpenDevin/OpenDevin
http://arxiv.org/abs/2405.13966
https://epochai.org/blog/trading-off-compute-in-training-and-inference
http://arxiv.org/abs/1206.4656
http://arxiv.org/abs/2403.12766
http://arxiv.org/abs/2406.08184
http://arxiv.org/abs/2203.07540
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2406.16838
https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/
http://arxiv.org/abs/2406.14884

Published in Transactions on Machine Learning Research (05/2025)

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and Yu Su.
TravelPlanner: A Benchmark for Real-World Planning with Language Agents, February 2024. URL
http://arxiv.org/abs/2402.01622. arXiv:2402.01622 [cs].

Kevin Xu, Yeganeh Kordi, Tanay Nayak, Ado Asija, Yizhong Wang, Kate Sanders, Adam Byerly, Jingyu
Zhang, Benjamin Van Durme, and Daniel Khashabi. Tur[k]ingBench: A Challenge Benchmark for Web
Agents, September 2024a. URL http://arxiv.org/abs/2403.11905. arXiv:2403.11905 [cs].

Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhiqiang Xie, Yongchao
Chen, Shilong Liu, Bochen Qian, Philip Torr, Bernard Ghanem, and Guohao Li. CRAB: Cross-environment
Agent Benchmark for Multimodal Language Model Agents, July 2024b. URL http://arxiv.org/abs/
2407.01511. arXiv:2407.01511 [cs].

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. SWE-AGENT: Agent-Computer Interfaces Enable Automated Software Engineering. 2024. URL
https://swe-agent.com/paper.pdf.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering,
September 2018. URL http://arxiv.org/abs/1809.09600. arXiv:1809.09600 [cs].

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. WebShop: Towards Scalable Real-World
Web Interaction with Grounded Language Agents, February 2023. URL http://arxiv.org/abs/2207.
01206. arXiv:2207.01206 [cs].

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ-bench: A Benchmark for Tool-
Agent-User Interaction in Real-World Domains, June 2024. URL http://arxiv.org/abs/2406.12045.
arXiv:2406.12045 [cs].

Guoli Yin, Haoping Bai, Shuang Ma, Feng Nan, Yanchao Sun, Zhaoyang Xu, Shen Ma, Jiarui Lu, Xiang Kong,
Aonan Zhang, Dian Ang Yap, Yizhe zhang, Karsten Ahnert, Vik Kamath, Mathias Berglund, Dominic
Walsh, Tobias Gindele, Juergen Wiest, Zhengfeng Lai, Xiaoming Wang, Jiulong Shan, Meng Cao, Ruoming
Pang, and Zirui Wang. MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains,
August 2024. URL http://arxiv.org/abs/2407.18961. arXiv:2407.18961 [cs].

Ori Yoran, Samuel Joseph Amouyal, Chaitanya Malaviya, Ben Bogin, Ofir Press, and Jonathan Berant.
AssistantBench: Can Web Agents Solve Realistic and Time-Consuming Tasks?, July 2024. URL http:
//arxiv.org/abs/2407.15711. arXiv:2407.15711 [cs].

Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller, Chris Potts, James Zou,
Michael Carbin, Jonathan Frankle, Naveen Rao, and Ali Ghodsi. The Shift from Models to Compound AI
Systems, February 2024. URL http://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/.

Andy K. Zhang, Neil Perry, Riya Dulepet, Eliot Jones, Justin W. Lin, Joey Ji, Celeste Menders, Gashon
Hussein, Samantha Liu, Donovan Jasper, Pura Peetathawatchai, Ari Glenn, Vikram Sivashankar, Daniel
Zamoshchin, Leo Glikbarg, Derek Askaryar, Mike Yang, Teddy Zhang, Rishi Alluri, Nathan Tran, Rinnara
Sangpisit, Polycarpos Yiorkadjis, Kenny Osele, Gautham Raghupathi, Dan Boneh, Daniel E. Ho, and
Percy Liang. Cybench: A Framework for Evaluating Cybersecurity Capabilities and Risk of Language
Models, 2024a. URL https://arxiv.org/abs/2408.08926. Version Number: 1.

Yaolun Zhang, Yinxu Pan, Yudong Wang, and Jie Cai. PyBench: Evaluating LLM Agent on various real-world
coding tasks, August 2024b. URL http://arxiv.org/abs/2407.16732. arXiv:2407.16732 [cs].

Lily Zhong, Zilong Wang, and Jingbo Shang. LDB: A Large Language Model Debugger via Verifying Runtime
Execution Step-by-step, April 2024. URL http://arxiv.org/abs/2402.16906. arXiv:2402.16906 [cs].

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
Agent Tree Search Unifies Reasoning Acting and Planning in Language Models, December 2023. URL
http://arxiv.org/abs/2310.04406. arXiv:2310.04406 [cs].

19

http://arxiv.org/abs/2402.01622
http://arxiv.org/abs/2403.11905
http://arxiv.org/abs/2407.01511
http://arxiv.org/abs/2407.01511
https://swe-agent.com/paper.pdf
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/2207.01206
http://arxiv.org/abs/2207.01206
http://arxiv.org/abs/2406.12045
http://arxiv.org/abs/2407.18961
http://arxiv.org/abs/2407.15711
http://arxiv.org/abs/2407.15711
http://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://arxiv.org/abs/2408.08926
http://arxiv.org/abs/2407.16732
http://arxiv.org/abs/2402.16906
http://arxiv.org/abs/2310.04406

Published in Transactions on Machine Learning Research (05/2025)

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou,
Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. WebArena: A Realistic Web Environment for
Building Autonomous Agents, April 2024. URL http://arxiv.org/abs/2307.13854. arXiv:2307.13854
[cs].

Appendix

Broader Impact Statement

Our work on enhancing AI agent evaluations carries significant societal implications. By improving the
efficiency and reliability of these systems, we can potentially reduce the economic and environmental costs
associated with their deployment, fostering broader accessibility and encouraging cost-sensitivity among
developers. However, the increasing sophistication of AI agents also raises safety risks. While our work
doesn’t directly address these risks, we firmly believe that existing frameworks for governing agentic AI
(Shavit et al., 2023), are crucial for mitigating potential harms. Developers and deployers must prioritize the
implementation of these frameworks to ensure responsible development and deployment. Furthermore, our
work on cost measurement can help improve safety evaluation. By providing tools to assess the affordability
of potentially dangerous capabilities, our research can help identify and anticipate safety concerns before they
become widespread. This is why AI safety benchmark developers should include cost measurements.

A Additional details on Section 2: AI agent evaluations must be cost-controlled

We include four figures below: (i) Figure 3 shows the results of our HumanEval analysis along with error bars
for accuracy and cost; (ii) Figure 4 shows the results with the y-axis from 0 to 1 (in other figures, the y-axis
is clipped between 0.7 and 1 for clarity); (iii) Figure 6 the results of our robustness checks with the June 2023
versions of GPT-3.5 and GPT-4; (iv) Figure 5 illustrates the results of the time vs. accuracy Pareto curve.

In the figure reporting our results in the main text, we include the convex hull of points on the Pareto
frontier because, given any two agents on the frontier, we can always choose a strategy that picks agent 1
with probability p and agent 2 with probability 1-p and to achieve any tradeoff represented by points on the
convex hull.

20

http://arxiv.org/abs/2307.13854

Published in Transactions on Machine Learning Research (05/2025)

Fi
gu

re
3:

E
rr

or
ba

rs
fo

r
ou

r
H

um
an

E
va

l
an

al
ys

is
.

T
he

fig
ur

e
sh

ow
s

ac
cu

ra
cy

vs
.

A
PI

co
st

fo
r

th
e

H
um

an
Ev

al
re

su
lts

zo
om

ed
in

on
th

e
y-

ax
is

(0
.7

-1
).

T
he

er
ro

r
ba

rs
re

pr
es

en
t

95
%

co
nfi

de
nc

e
in

te
rv

al
s

(le
ft/

lo
we

r;
br

ow
n)

an
d

th
e

m
in

im
um

an
d

m
ax

im
um

va
lu

es
(r

ig
ht

/u
pp

er
;g

ra
y)

of
ac

cu
ra

cy
an

d
to

ta
lc

os
t

ac
ro

ss
5

ru
ns

.
To

ca
lc

ul
at

e
th

e
95

%
co

nfi
de

nc
e

in
te

rv
al

s,
we

us
ed

th
e

St
ud

en
t’s

t
di

st
rib

ut
io

n
gi

ve
n

th
at

we
on

ly
ha

ve
fiv

e
ru

ns
pe

r
ag

en
t.

21

Published in Transactions on Machine Learning Research (05/2025)

Figure 4: HumanEval results with a complete x- and y-axis. The figure shows accuracy vs. API
costs with a complete x- and y-axis. This plot showcases the wide range of costs associated with different
approaches, especially when considering LATS.

22

Published in Transactions on Machine Learning Research (05/2025)

Figure 5: Accuracy vs. inference time curves for HumanEval. This figure shows the accuracy vs.
inference time results on a linear x-axis scale, with the y-axis clipped to 0.7-1 for clarity. Time measurements
refer to the mean of the sum of inference times across all API calls made by the agent across the five runs.

Table 2: Accuracy and total cost of HumanEval agents. We run each agent five times and report the
mean accuracy and the mean total cost on the 164 HumanEval problems. The minimum and maximum
values are included in the parentheses. Rows marked by an asterisk are agent specifications that the authors
did not evaluate in the original paper. In particular, the original LDB paper does not include tests with
GPT-4 as the debugger.

Paper Agent Accuracy Total Cost (USD)

Zhou et al. (2023) LATS (GPT-4) 88.0 (82.3-91.5) 134.50 (123.98-147.13)
LATS (GPT-3.5) 80.4 (78.7-83.5) 9.49 (8.94-9.89)

Zhong et al. (2024) LDB (GPT-4, GPT-3.5) 91.0 (89.0-92.1) 2.19 (2.14-2.25)
LDB (Reflexion, GPT-4)* 92.9 (91.5-95.1) 7.26 (6.19-9.63)
LDB (Reflexion, GPT-3.5) 88.9 (86.6-0.91.5) 4.19 (3.98-4.37)
LDB (GPT-4)* 93.3 (92.1-94.5) 6.36 (5.11-7.08)
LDB (GPT-3.5) 80.2 (78.7-82.9) 0.63 (0.56-0.77)
GPT-4 (baseline) 89.6 (87.8-90.9) 1.93 (1.91-1.95)
GPT-3.5 (baseline) 73.9 (72.0-76.2) 0.05 (0.05-0.05)

Shinn et al. (2023) Reflexion (GPT-4) 87.8 (86.0-90.9) 3.90 (3.76-4.13)

Our baselines Warming (GPT-4) 93.2 (92.1-93.9) 2.45 (2.36-2.54)
Retry (GPT-4) 92.0 (91.4-92.7) 2.51 (2.46-2.56)
Escalation 85.0 (84.1-85.4) 0.27 (0.25-0.28)

23

Published in Transactions on Machine Learning Research (05/2025)

A.1 Implementation details

We used gpt-3.5-turbo-0125 for GPT-3.5 implementations and gpt-4-turbo-2024-04-09 for GPT-4 implemen-
tations. The underlying prices for GPT-3.5 and GPT-4 were 0.5$ (1.5$) and 10$ (30$) per one million input
(output) tokens, respectively, as of April 2024. We describe all implementations in detail below. In addition
to our analysis in the main text, we also conducted robustness checks with the June 2023 versions of GPT-3.5
and GPT-4 and found substantially similar results (see Appendix A.2. When we conducted our measurements
in April 2024, the prices for the gpt-4-0613 were 30$ (60$) per one million input (output) tokens. Prices for
gpt-3.5-turbo-0613 were identical to the January 2024 version – 0.5$ (1.5$) and 10$ (30$) per one million
input (output) tokens, respectively.

HumanEval version. In evaluating our baseline agent architectures on HumanEval, we use the modified
benchmark version provided in the LDB paper (Zhong et al., 2024). This version includes internal test cases
for all 164 tasks (in the original benchmark, test cases were provided for only 161 of 164 tasks, as detailed in
Section 6).

GPT-3.5 and GPT-4. We implement the model baselines using the simple (zero shot; without agent
architecture) strategy provided with the LDB paper (Zhong et al., 2024). This includes a text prompt and
the example tests accompanying the HumanEval coding problem as inputs to the model.

LDB (Zhong et al., 2024). The LDB agent uses two language models: one for generating code and another
for debugging. In all plots and throughout this empirical analysis, we use the nomenclature “LDB (Generator,
Debugger)” to specify which models were used. If the same model served both functions, we list it only once
within parentheses. We kept all parameters as specified in the code accompanying the original paper. In
particular, this means that the maximum number of iterations is set to 10 and the temperature to zero.5

LATS (Zhou et al., 2023). Based on correspondence with the authors, we set the maximum number
of iterations to 8, the expansion factor to 3, and the temperature values for generating the function
implementations to 0.8. The temperature for generating self-reflections and the internal unit tests was set to
0.2. The maximum number of internal test cases was set to 6 for runs with GPT-3.5 and 4 for runs using
GPT-4. The difference in the number of internal test cases for GPT-3.5 and GPT-4 was not presented in the
paper; we learned of this based on our correspondence with the authors.6

Reflexion (Shinn et al., 2023). We left all parameters unchanged from the ones provided in the original
repository, setting the maximum number of iterations to 2, expansion factor to 3, and temperature to
zero for generating function implementations. The temperature used for generating the internal tests and
self-reflections is 0.2.7

Retry. This baseline uses the simple strategy implemented in the code accompanying the LDB agent for
zero-shot evaluations of language models (i.e., there is no agent architecture). We used this strategy to
repeatedly prompt the same language model, keeping all parameters equal across retrials, as long as the
code outputted by the model failed at least one of the example tests. If at any point a solution passes the
tests given in the HumanEval problem description, we evaluate this as the final solution of the agent for this
problem. We repeated this procedure for up to 5 trials and stopped early if the code passed all the given
tests. We set the temperature to zero. This can still lead to success after the first trial since LLMs aren’t
deterministic even at temperature zero.8

Warming. For the warming baseline, we modify the retry baseline by gradually increasing the temperature
parameter across successive trials. Initially, the temperature was set at zero, mirroring the retry baseline. For
the second and third trials, we raised the temperature to 0.3, and for the final two trials, we increased it

5For the code version used in this study, which the original authors made available under an Apache-2.0 license see:
https://github.com/FloridSleeves/LLMDebugger/tree/523e0ef9bfd5304bd91866c5d4582e5dfbb96abd

6For the code version used in this study, which the original authors made available under an MIT license see: https:
//github.com/lapisrocks/LanguageAgentTreeSearch/tree/554886901183a9908183d2cb104c3088c493650a

7For the code version used in this study, which the original authors made available under an MIT license see: https:
//github.com/noahshinn/reflexion/tree/d15acda1c81d464d9a81648d7f29fb951e326c70

8See: https://community.openai.com/t/run-same-query-many-times-different-results/140588/2

24

https://github.com/FloridSleeves/LLMDebugger/tree/523e0ef9bfd5304bd91866c5d4582e5dfbb96abd
https://github.com/lapisrocks/LanguageAgentTreeSearch/tree/554886901183a9908183d2cb104c3088c493650a
https://github.com/lapisrocks/LanguageAgentTreeSearch/tree/554886901183a9908183d2cb104c3088c493650a
https://github.com/noahshinn/reflexion/tree/d15acda1c81d464d9a81648d7f29fb951e326c70
https://github.com/noahshinn/reflexion/tree/d15acda1c81d464d9a81648d7f29fb951e326c70
https://community.openai.com/t/run-same-query-many-times-different-results/140588/2

Published in Transactions on Machine Learning Research (05/2025)

further to 0.5. If at any point a solution passes the tests given in the HumanEval problem description, we
evaluate this as the final solution of the agent for this problem.

Escalation. We modify the simple strategy but switch the underlying model to a more expensive one if a
proposed solution fails at least one of the example tests. We progressively escalated unsolved problems up a
model chain of increasing cost (llama-3-8b-chat-hf, gpt-3.5-turbo-0125, llama-3-70b-chat-hf, gpt-4-turbo-2024-
04-09). All other parameters are kept constant across trials – in particular, temperature is set to zero. If at
any point a solution passes the tests given in the HumanEval problem description, we evaluate this as the
final solution of the agent for this problem. This leads to slightly lower accuracy compared to GPT-4, since
some solutions from cheaper models might pass the example tests but fail one of the evaluation tests.

Pareto frontiers. In our analysis, Pareto frontiers are employed to evaluate agent designs. We define the
Pareto frontier as the set of points (agents) that are non-dominated by any other agent in terms of mean cost
and accuracy. The frontier is constrained to be convex, meaning if two agents lie next to each other on the
frontier, any linear combination of these agents should also yield a point that lies on the frontier curve. We
provide a simple example implementation of how we compute Pareto frontiers on simulated agent evaluation
data.9

A.2 Robustness checks with June 2023 versions of GPT models

One concern with our analysis is that we use the latest versions of OpenAI’s April 2024 turbo models, since
later versions of GPT-3.5 and GPT-4 might have more scope for contamination. To address this, we conduct
additional robustness checks with the June 2023 versions of GPT-3.5 and GPT-4. We find substantially
similar results for this version: complex agents are no better than our simple agent baselines while cost orders
of magnitude more in some cases. Note that the June 2023 version of GPT-4 is much more expensive than
the April 2024 version, leading to the big difference in inference cost. For the LATS agents, there are some
significant outliers across tasks for both, LATS (GPT-4) and LATS (GPT-3.5), with some tasks requiring
more than 2 hours to complete for GPT-3.5. Overall, there were more extreme outliers for LATS (GPT-3.5)
than LATS (GPT-4). For the same reason, we had to exclude one task (i.e., HumanEval/83) from the analysis
for LATS (GPT-3.5), which did not stop running even after 5 hours. We marked this task as incorrect and
excluded the time and cost from the results shown above. HumanEval/83 was one of the tasks excluded from
the subset of HumanEval that the authors evaluated the LATS agent on.

(a) Accuracy vs. inference cost (b) Accuracy vs. inference time

Figure 6: Robustness checks with June 2023 versions of GPT models. This figure shows the results
of our robustness checks with linear x-axis and y-axis clipped to 0.7-1 for clarity. Time measurements refer to
the mean of the sum of inference times across all API calls made by the agent across the five runs. Cost and
accuracy measurements refer to the mean across five runs.

9See: https://github.com/benediktstroebl/agent-evals/blob/main/pareto_frontier_example.ipynb

25

https://github.com/benediktstroebl/agent-evals/blob/main/pareto_frontier_example.ipynb

Published in Transactions on Machine Learning Research (05/2025)

Table 3: Accuracy and total cost of HumanEval robustness checks with June 2023 versions of
GPT models. As for the main analysis, we run each agent five times and report the mean accuracy and the
mean total cost on the 164 HumanEval problems. The minimum and maximum values are included in the
parentheses. Rows marked by an asterisk are agent specifications that the authors did not evaluate in the
original paper.

Paper Agent Accuracy Total Cost (USD)

Zhou et al. (2023) LATS (GPT-4) 83.5 360.02
LATS (GPT-3.5) 77.4 8.97

Zhong et al. (2024) LDB (GPT-4, GPT-3.5) 88.7 (87.2-89.6) 3.20 (3.14-3.26)
LDB (Reflexion, GPT-4)* 90.5 (89.6-91.5) 18.01 (16.15-20.80)
LDB (Reflexion, GPT-3.5) 86.7 (85.4-88.4) 8.71 (8.38-9.13)
LDB (GPT-4)* 91.2 (90.2-92.7) 9.31 (8.27-10.26)
LDB (GPT-3.5) 82.1 (80.5-84.1) 0.68 (0.65-0.72)
GPT-4 (baseline) 86.5 (84.8-87.2) 2.94 (2.92-2.95)
GPT-3.5 (baseline) 75.2 (74.4-76.2) 0.04 (0.04-0.04)

Shinn et al. (2023) Reflexion (GPT-4) 80.2 (78.7-82.3) 8.29 (7.98-8.69)

Our baselines Warming (GPT-4) 90.6 (89.0-91.5) 3.88 (3.82-3.92)
Retry (GPT-4) 88.8 (87.2-89.6) 3.95 (3.78-4.09)
Escalation 87.6 (86.6-88.4) 0.42 (0.40-0.44)

B Additional details on Section 3: Jointly optimizing cost and accuracy can yield
better agent designs

In this section, we include Figure 10, reporting the results of our analysis on HotPotQA along with error bars
for accuracy and cost, as well as Table 4, which reports our results and inference and optimization cost for
our five agent designs. In Fig. 9, we report the Pareto frontiers returned by our joint optimization method
for both models.

Table 4: Accuracy and two types of cost of agent designs evaluated on HotPotQA. We evaluate
each agent five times on the test set and report the mean accuracy. Variable cost refers to the cost per 100
inferences on HotPotQA. Fixed costs are the total costs incurred during the optimization of the agent design.
The minimum and maximum accuracy are included in the parentheses.

Model Agent Accuracy Cost (USD, measured in May 2024)
Variable Fixed

G
P

T
-3

.5

DSPy random search 0.495 (0.50-0.485) 0.376 (0.376-0.376) 2.696
DSPy few-shot 0.47 (0.46-0.48) 0.384 (0.384-0.385) 0.029
Joint optimization 0.509 (0.475-0.54) 0.174 (0.173-0.175) 2.714
Formatting instructions only 0.377 (0.36-0.39) 0.071 (0.070-0.0715) -
Uncompiled 0.436 (0.395-0.485) 0.095 (0.094-0.097) -

Ll
am

a-
3-

70
B DSPy random search 0.617 (0.60-0.63) 0.643 (0.64-0.644) 4.820

DSPy few-shot 0.622 (0.615-0.63) 0.661 (0.660-0.662) 0.028
Joint optimization 0.601 (0.59-0.62) 0.374 (0.372-0.378) 3.844
Formatting instructions only 0.527 (0.52-0.535) 0.111 (0.110-0.112) -
Uncompiled 0.448 (0.43-0.46) 0.194 (0.194-0.195) -

26

Published in Transactions on Machine Learning Research (05/2025)

Figure 7: Error bars for our HotPotQA analysis. The figure shows retrieval accuracy vs. API cost
for the HotPotQA results. The error bars represent 95% confidence intervals (left/lower; brown) and the
minimum and maximum values (right/upper; gray) of accuracy and total cost across 5 runs. To calculate
the 95% confidence intervals, we used the Student’s t distribution given that we only have five runs per
agent. Note that the error bars account for the in-sample variance on the test set and do not account for the
variability induced during optimization and resampling.

(a) GPT-3.5 (b) Llama-3-70B

Figure 9: Pareto frontiers returned by joint optimization. This figure shows the Pareto frontier of
programs returned by our joint optimization method with linear x-axes and y-axes clipped to 0.14-0.32 for
clarity. Note that the x-axes do not follow the same scale. Accuracies are calculated on the development set.
Cost measurements refer to API prices as of May 2024.

27

Published in Transactions on Machine Learning Research (05/2025)

Figure 8: With increased use, the total cost of running an agent is dominated by the variable cost. Precisely,
the point of intersection is reached after 1332 (1275) inferences for Llama-3-70B (GPT-3.5). We use the
average cost of optimizing the models across our 5 runs as the fixed cost and the average cost of running
inference using the agent across the 200 tasks in the evaluation set as the variable cost per task. We refer to
Table 4 for an overview of exact cost and accuracy measurements alongside minimum and maximum values
across runs.

Figure 10: HotPotQA analysis with GPT-4. Agentic systems can often bridge the accuracy gap between
model classes while achieving significantly lower costs. Our joint optimization approach with Llama-3-70B
achieves accuracy comparable to that of GPT-4 at less than half the cost. However, it’s crucial to note that
such improvements are not universal across all models and tasks. In some cases, the accuracy gap between
different models cannot be closed with agentic workflows, such as for GPT-3.5 vs. Llama-3-70B in this case.

B.1 Implementation details

For GPT-3.5 implementations, we used gpt-3.5-turbo-0125 via the Azure OpenAI endpoint, and for Llama-3-
70B implementations, we used meta-llama/Llama-3-70b-chat-hf via the Together.ai endpoint. The underlying
prices for GPT-3.5 and Llama-3-70B were 0.5$ (1.5$) and 0.9$ (0.9$) per one million input (output) tokens,
respectively, as of May 2024. Note that these costs vary over time, which would affect the outcomes of the
cost-controlled assessments as emphasized in Appendix A. In addition to the details outlined in Section 2, we
provide further details on all implementations below.

Multi-Hop Question-Answering. For our analysis of HotPotQA, we rely on multi-hop question answering
as our agent design to produce answers given the questions given in the benchmark. We use the default

28

Published in Transactions on Machine Learning Research (05/2025)

implementation provided by the DSPy framework10 that itself follows a simplified version of the Baleen system
(Khattab et al., 2021). This requires a language model to reason across multiple documents and retrieve
context leveraging a text corpus. We use the ColBERTv2 retriever model, which provides an endpoint to
retrieve context from a 2017 Wikipedia dump containing each article’s first paragraph.11 The implementation
is structured around three core functions: query generation, information retrieval, and answer generation.
Initially, a search query is dynamically constructed for each iteration up to a preset maximum number of
hops, given the question and already retrieved context. This query then retrieves the top-k most relevant
paragraphs from Wikipedia. These documents are then deduplicated and added as context in subsequent
steps. Once the iterative process of query generation and information retrieval is complete, a language model
reasons on the retrieved information given the question and generates the final answer.

For our experiments with this design of multi-hop question-answering, we set the number of passages to
retrieve and the number of hops to two. The maximum number of demonstrations is set to 8 (i.e., this includes
the corresponding parameters for bootstrapped and labeled few-shot examples in DSPy). As HotPotQA
contains ground-truth documents that the agent should retrieve for each task, we evaluate performance
by determining whether all of the specified documents were retrieved. For optimization and evaluation,
we randomly select 100 and 200 samples from HotPotQA for optimization and evaluation of the results,
respectively. To ensure reproducibility, we set a fixed seed.

Uncompiled. This baseline uses the outlined multi-hop question-answering system in an uncompiled state.
That is, the program is not optimized and the agent’s prompt includes neither the few-shot examples nor
instructions on how to format the generated output. Hence, each prompt only includes the instructions for
the task and the main content including the retrieved context and the reasoning steps generated by the
language model. No formatting instructions are provided.

Formatting instructions only. This baseline is identical to the uncompiled agent design but includes
instructions on how to format the output of each query part of the agent program. We use the default
formatting instruction part of DSPy.

DSPy default optimization. We use the BootstrapFewShot12 (Few-Shot) and BootstrapFewShotWith-
RandomSearch 13 (Random Search) optimizer from the DSPy framework to optimize our multi-hop question-
answering agent. BootstrapFewShot iterates over training set samples to identify examples where the agent
makes correct predictions based on the provided compilation metric. As a metric, we ensure that the predicted
answer matches the ground-truth and is included in the retrieved context. Further, none of the generated
queries can exceed 100 characters and retrieval queries must be sufficiently unique. For each successful
prediction, the optimizer captures the trace of the prediction process, including inputs, predictor calls, and
outputs. This metric also comes from the same DSPy tutorial.14 The resulting traces are used to create
demonstrations for each step, which are then incorporated into the compiled agent. This process continues
until all training examples have been considered or the maximum number of successful examples for inclusion
has been reached. If the maximum number of successful examples has not been reached after iterating over
the entire training set, the optimizer randomly selects the missing number of examples from the data to
include as demonstrations in the prompt. BootstrapFewShotWithRandomSearch repeats this process several
times and conducts a random search over the generated demonstrations before selecting the best program on
the development set. We set the number of candidate programs to 16.

Joint optimization. Our joint optimization allows us to trade off fixed and variable costs: we can spend
money upfront searching the space of prompts and few-shot examples that minimize the variable cost while
maintaining accuracy. It builds on the BootstrapFewShot implementation from DSPy. However, instead
of stopping once a specified number of maximum demonstrations is reached, our process keeps iterating
over all samples in the training set to build a collection of few-shot examples that we can select from
during optimization. Joint optimization of accuracy and the number of tokens of the few-shot examples and
formatting instructions included in the prompt via parameter search is implemented with the Optuna Python

10See: https://dspy-docs.vercel.app/docs/tutorials/simplified-baleen.
11See: https://hotpotqa.github.io/wiki-readme.html
12See: https://dspy-docs.vercel.app/docs/deep-dive/teleprompter/bootstrap-fewshot
13See: https://dspy-docs.vercel.app/docs/building-blocks/optimizers
14See: https://dspy-docs.vercel.app/docs/tutorials/simplified-baleen

29

https://hotpotqa.github.io/wiki-readme.html
https://dspy-docs.vercel.app/docs/tutorials/simplified-baleen

Published in Transactions on Machine Learning Research (05/2025)

library (Akiba et al., 2019). Optuna supports multi-objective optimization to jointly maximize accuracy
and minimize the cost of our agent design 15. In our objective function required by Optuna, we sample
values to search over the following parameters to find Pareto-optimal agent designs: (a) the temperature for
each module within the agent, (b) the number of few-shot examples, (c) the selection of specific examples to
include, and (d) whether to add formatting instructions. Candidate temperature values for each module in
the agent pipeline are sampled from 0.0, 0.2, 0.4, and 0.6. We set the number of trials Optuna conducts to
16. The maximum number of few-shot examples per prompt is set to 8.

We evaluated the Pareto-efficient programs that Optuna returns on the dev set (50 samples). In figure 2 and
10, we report the mean accuracy and cost of the program with the highest accuracy on the development set.

The goal is to balance the fixed cost of optimization with the variable cost of running the agent, ensuring
both cost-effective and accurate performance. The results from Optuna can themselves be seen as a Pareto
curve of agent designs.

C Survey on agent benchmarks

We provide a detailed survey of 33 recent agent benchmarks, along with their levels of generality and respective
holdout sets in Table 5. As shown in Table 1, the holdout set must correspond to the level of benchmark
generality to prevent gaming. However, many of the benchmarks in the survey do not have holdout sets at
the appropriate generality level and benchmark designers do not express intentions to include the appropriate
holdout set for the benchmark in the future. To select agent benchmarks, we relied on the benchmarks
included in AgentBench (Liu et al., 2023), AgentBoard (Ma et al., 2024a), OpenDevin (Team, 2024), and the
ICLR 2024 workshop on LLM agents, in addition to benchmarks we had previously come across.

Note that WebArena uses the term “domain” to refer to different types of websites in their benchmark
(e-commerce, social media etc.), which is different from how we use the term (e.g., all tasks in WebArena fall
under the web interaction domain per our usage of the term).

D Additional details on Section 4: Details about NovelQA implementation

We run evaluations on the multiple-choice subset of the NovelQA benchmark. In addition to re-evaluating
the results of GPT-4 (the current state-of-the-art model on NovelQA multiple choice), we include an agent
that comprises GPT-4 with retrieval-augmented generation. Instead of feeding in the entire novel in the
context window of the model, we embed each novel using OpenAI’s text-embedding-3-large model. For
each multiple-choice question in the benchmark, we retrieve 10 chunks of 1000 characters each, which we
use as inputs to the model. We used the prompt from the original NovelQA paper, slightly modified to add
context for the RAG snippets (Listing 1).

You are a literature professor . I will provide you with snippets from a novel along with a question
and corresponding choices pertaining to it. Please thoroughly analyze the content to accurately
respond to the question .

Relevant snippets from the novel :

<context >

Question :

<question >

Only respond with the index of the correct answer (e.g., choose between A, B, C, and D). Your output
should not contain anything else.

Listing 1: Prompt used for RAG implementation on NovelQA. This is the prompt from the original NovelQA
paper. We only make the slight modification of adding in the retrieved context.

15See: https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/002_multi_objective.html

30

https://llmagents.github.io/
https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/002_multi_objective.html

Published in Transactions on Machine Learning Research (05/2025)

We find that our retrieval agent performs substantially similarly to the GPT-4 model. In particular, GPT-4
with retrieval has an accuracy of 67.89 (total cost: $52.8 USD), whereas when we use the entire content of the
novel as input tokens, the accuracy is 67.81 (total cost: $99.8 USD). Wang et al. (2024a) report an accuracy
of 71% for GPT-4 in the paper introducing NovelQA. The difference might be due to the stochasticity
of language models. Due to the high cost of running the evaluation, we only ran our evaluations once.
Irrespective of the small differences in the absolute value of accuracy, it is clear from these results that the
difference in accuracy between RAG-based approaches and long-context approaches is small. For comparing
cost fairly in a single question-answer setting, in theory, we could query the language model around 2,300
times (the total number of questions) instead of 88 times (the total number of novels; as they implemented
it) and incur a cost of around $2,590 for evaluating GPT-4. However, that’s not how the authors evaluate
models on NovelQA (and it’s also not how they expect model developers to do it). Again, this choice is
justifiable for model evaluation, since the purpose of long-context model evaluation is equally well served by
having a long list of questions.

31

Published in Transactions on Machine Learning Research (05/2025)

E Additional details on Section 6: Agent evaluations lack standardization and
reproducibility

We provide further details on our findings on the limited reproducibility and lack of standardization in current
agent evaluations. Table 7 details the identified issues for each agent on HumanEval and WebArena we
reproduced for this study. Table 8 reports the corresponding numeric performance measurements as well as
minimum and maximum values across runs for HumanEval.

E.1 HumanEval implementation details

LDB (Zhong et al., 2024). The LDB paper claims to use GPT-3.5 for code generation using Reflexion:
“For Reflexion, we select the version based on GPT-3.5 and utilize the corresponding generated programs
published in the official Github repository.” However, the generated program they used from the Reflexion
repository relies on GPT-4 for code generation, not GPT-3.5. The authors acknowledge this and plan to
update the paper to address it. In addition, LDB, such as LATS and Reflexion, all use different subset of
HumanEval problems. Three (out of 164) coding problems in the original version of HumanEval lack example
tests. Since LDB requires example tests to debug or rerun their solutions, the authors added example tests
for the three problems that are missing in the original benchmark.

LATS (Zhou et al., 2023). The LATS agent requires example tests as well. However, for the three
HumanEval problems that do not contain example tests, the authors remove these problems, plus another
problem, for unreported reasons. The authors do not mention this in the original paper. In correspondence
with the authors of LATS, they clarified: “Originally, there was an execution error when evaluating some test
cases for [one of the HumanEval test cases], so we opted to remove it from our setting.” They acknowledge
that they didn’t report this in the paper and will update the manuscript accordingly. In addition, their agent
was evaluated on only a subset of the test cases provided in the HumanEval benchmark. This exaggerated
their accuracy numbers, since the code for a particular HumanEval problem might be incorrect, but if it
passes only a portion of the test cases for that problem, it could still be marked as correct. In our analysis,
this was responsible for a 3% difference in accuracy (mean across five runs), which explains a substantial part
of the difference between the accuracy we found and the one reported in the paper.

Reflexion (Shinn et al., 2023). The authors remove the three problems of HumanEval that lack example
tests and evaluate on only 161 out of the 164 tasks of the benchmark.

{
" objective ": "Find a subreddit focused on topics related to city Pittsburgh , and post my question

, \" places for new drivers to learn driving \" there ",
"url": "http :// ec2 -3 -131 -244 -37.us -east -2. compute . amazonaws .com :9999/ submit / pittsburgh ",
" observation ": "Tab 0 (current): Create submission \n\n [8431] RootWebArea ’Create submission ’

focused : True\n\t [8474] HeaderAsNonLandmark ’’\n\t\t [8475] link ’Home ’\n\t\t\t [8510]
StaticText [...] ",

" action ": "stop [N/A]",
" reason ": "The user ’s objective is to post a question in a subreddit focused on topics related to

the city of Pittsburgh . The observation indicates that the user is on the \" Create
submission \" page for the Pittsburgh subreddit and has already filled in the title and body
of the post. However , an error message is displayed stating , \" You cannot post more. Wait a
while before trying again .\" This means the action to post the question cannot be completed
at this moment due to a restriction or limit set by the website .",

"done": true ,
" reward ": 1.0 ,
" success ": 1.0 ,
" num_actions ": 12

}

Listing 2: Example snippet from the original log files provided by the authors of the STeP agent. The
snippet shows how the rate limit on the Reddit site affects evaluation. Given the observation from the
web environment, the agent correctly concludes that it’s currently not possible to make a posting given the
rate limit imposed on the user. Despite the environment imposing this limit, the task is still evaluated as
successfully solved. This is an example of incorrectly evaluated agents leading to inflated results.

32

Published in Transactions on Machine Learning Research (05/2025)

F Statement on compute resources used

For all our experiments using OpenAI models, we utilized the endpoints provided by OpenAI16, either directly
or through the Azure OpenAI Service17. For the analysis on HotPotQA using Llama-3 models, we relied on
the endpoints provided by Together.ai.18 As our work primarily relied on external APIs, we did not use any
GPUs for inference and our experiments did not require training of LLMs.

G Limitations

While our research advances the understanding of AI agent evaluations significantly, we must acknowledge
several limitations that future work could address. First, our proposed methods for cost-controlled evaluations
and the joint optimization of cost and accuracy rely on current cost models and technological constraints.
These models are subject to change as technology evolves and new pricing models are introduced, altering
our results. We fully acknowledge this challenge to cost evaluation as proposed in Section 2. To address this
downside, we provide a dynamic web application accompanying the results of this paper, which allows users
to modify the underlying cost of input and output tokens for each model. This allows us to recalculate the
underlying cost of each agent part of our analysis using current prices. We argue that this should be part of
all downstream evaluations of agents.

Second, while our study spans a range of benchmarks and agent models, it does not exhaustively cover
all possible task environments and variations of AI agents. Still, we demonstrate that our findings on the
limited construct validity of current AI agent benchmarks and the lack of reproducibility and standardized
evaluations hold across tasks and domains, providing empirical findings for multiple benchmarks and agent
designs. We further describe why agent evaluations should be cost-controlled in tasks beyond programming.
Our empirical findings that joint optimization of cost and accuracy can lead to more cost-efficient agent
designs on a question-answering benchmark emphasize this argument.

Finally, other types of costs, including environmental impact, human labor for data annotation, and
maintenance costs of AI systems, have not been extensively analyzed. These factors are becoming increasingly
relevant as AI systems scale up and are deployed more widely, necessitating a more comprehensive approach
to evaluating the full economic and environmental impact of AI.

H Reproducibility statement

We release code to reproduce all experimental results of this paper in a GitHub repository under a MIT
license.19 This includes scripts to reproduce our analyses of HumanEval, HotPotQA, NovelQA, and WebArena,
as well as implementations of our proposed baselines and the DSPy implementation for our joint optimizer. As
an example of an interface that lets downstream users explore the impact of varying API costs, we also provide
an interactive web application.20 This allows users to input current pricing for different language models
and visualize the adjusted cost-accuracy tradeoffs on HumanEval for the agents we evaluated (Section 2).
Finally, we plan to release our joint optimizer to the official DSPy repository and the research community.
To show how we compute Pareto frontiers, we provide a simple example implementation on simulated agent
evaluation data.21

16See: https://platform.openai.com/docs/api-reference/chat
17See: https://azure.microsoft.com/en-us/products/ai-services/openai-service
18See: https://api.together.xyz/models
19See: https://github.com/benediktstroebl/agent-evals
20See: https://benediktstroebl.github.io/agent-eval-webapp/
21See: https://github.com/benediktstroebl/agent-evals/blob/main/pareto_frontier_example.ipynb

33

https://platform.openai.com/docs/api-reference/chat
https://azure.microsoft.com/en-us/products/ai-services/openai-service
https://api.together.xyz/models
https://github.com/benediktstroebl/agent-evals
https://benediktstroebl.github.io/agent-eval-webapp/
https://github.com/benediktstroebl/agent-evals/blob/main/pareto_frontier_example.ipynb

Published in Transactions on Machine Learning Research (05/2025)

Table 5: A survey of recent agent benchmarks shows that 17/33 benchmarks do not include holdout sets for
evaluating agents’ performance and do not indicate plans to do so. Of those with holdout sets, only 8/33
hold out sets are at the appropriate generality level. We made our best guess for the level of generality based
on the description of the benchmark’s purpose in its paper or repository.

Benchmark Domain Benchmark description Level of generality Holdout
set What is held out

Holdout at the
appropriate generality
level?

Example of ideal holdout

CORE-Bench
(Siegel et al., 2024)

Science Measures agents’ accuracy in
computational reproducibility
tasks across scientific disci-
plines.

Task-specific
✓

In distribution sam-
ples

Authors test performance on new
unseen papers from samples from
the same scientific disciplines as the
train set.

Papers from other scientific disci-
plines.

MLAgentBench
(Huang et al., 2024)

Programming Measures the accuracy of
agents specifically on machine
learning experimentation.

Task-specific
✗

N/A Lacks a test set and doesn’t indicate
plans to make one.

Research tasks in languages other
than Python.

SWE-Bench
(Yang et al., 2024)

Programming Measures the accuracy of
agents specifically on solving
software engineering problems.
Authors intend to include repos-
itories in the benchmark be-
yond the 12 initially sampled.

Task-specific
✓

In distribution sam-
ples

The held-out set currently contains
repositories not seen during train-
ing but are otherwise of a similar
distribution as training. Authors
mention plans to collect reposito-
ries in different programming lan-
guages, though not exclusively for
the held-out set.

Repositories in languages other
than Python.

WebArena
(Zhou et al., 2024)

Web task automation Measures the accuracy of
agents on many different web
tasks.

Domain-general
✗

N/A Lacks a holdout set and doesn’t in-
dicate plans to make one.

New websites & tasks not seen
during training, such as making
plane or train travel bookings.

WebShop
(Yao et al., 2023)

E-commerce Measures the accuracy of
agents specifically on their abil-
ity to purchase items from the
web.

Task-specific
✓

Out of distribution
samples

Authors evaluate sim-to-real trans-
fer of the agent, where they test the
agent’s performance on real web-
sites such as amazon.com.

N/A

Mind2Web
(Deng et al.)

Web task automation Measures the accuracy of
agents on many different web
tasks.

Domain-general
✓

Tasks Authors hold out two top-level do-
mains, Information and Service.

N/A

PPNL
(Aghzal et al., 2024)

Path planning Measures the accuracy of
agents specifically on their abil-
ity to plan paths between
points.

Task-specific
✓

Out of distribution
samples

Authors test LLM performance on
out of distribution tasks with differ-
ent grid sizes and obstacle counts.

N/A

TravelPlanner
(Xie et al., 2024)

Travel planning Measures the accuracy of
agents specifically on their abil-
ity to create travel plans.

Task-specific
✓

In distribution sam-
ples

The held-out set includes tasks not
seen during training, but they are
not of a different distribution than
the training tasks.

Destination queries with unseen
cities, budgets, and hard con-
straints.

MINT
(Wang et al., 2024c)

Task automation Measures the tool-augmented
task-solving capability of
agents on a general set of tasks.

Domain-general
✗

N/A Lacks a held-out set but authors
mention plans to update the bench-
mark with new tasks and tools.

Additional tools that must be
used to solve tasks of unseen
types.

τ -bench
(Yao et al., 2024)

Tool-agent-user inter-
action

Measures agents’ capacity to
gather and communicate all
necessary data to and from
users through repeated interac-
tions and completing tasks.

Domain-general
✗

N/A Lacks a held-out set but authors
mention plans to update bench-
mark with new domains and tasks.

Additional unseen domains agents
must solve tasks in while interact-
ing with the user and using new
tools.

AssistantBench
(Yoran et al., 2024)

Web task automation Measures the accuracy of
agents on web tasks across mul-
tiple domains.

Domain-general
✓

In distribution sam-
ples

The held out set includes tasks not
seen during training but of the same
distribution as the train set.

New website types and tasks from
fields unseen during training.

Weblinx
(Lù et al., 2024)

Conversational web
navigation

Measures the accuracy of
agents on using conversational
interfaces to navigate the web.

Domain-general
✓

Tasks The held out set includes tasks re-
quiring the navigation of unseen
websites belonging to unseen cat-
egories and unseen geographic loca-
tions, along with tasks where the
instructor cannot see the screen.

N/A

CRAB
(Xu et al., 2024b)

Cross-environment
tasks

Measures an agent’s ability
to complete cross-environment
tasks simulating the use of mul-
tiple devices simultaneously.

Domain-general
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Tasks requiring the navigation of
environments unseen during train-
ing.

ToolSandbox
(Lu et al., 2024)

Tool use Measures an agent’s ability to
complete tasks through tool
use, navigate dependencies be-
tween tools, and handle com-
munication between users and
environments.

Domain-general
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Tasks corresponding to additional
unseen test scenario categories.

VisualAgentBench
(Liu et al., 2024)

Vision tasks Measures the accuracy of
agents on vision-based tasks
across different domains.

Domain-general
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Tasks belonging to unseen envi-
ronments.

MobileAgentBench
(Wang et al., 2024b)

Android app naviga-
tion

Measures the accuracy of mo-
bile LM agents within the An-
droid ecosystem.

Domain-general
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Rather than training on tasks re-
quiring the use of all ten apps,
hold out some for testing.

FlowBench
(Xiao et al., 2024)

Online task planning Measures the accuracy of
agents on completing online
workflow-based planning tasks.

Domain-general
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Rather than training on all six
domains, hold out some of them.

PyBench
(Zhang et al., 2024b)

Python program-
ming

Measures the accuracy of
agents on real-world Python
coding tasks across various do-
mains.

Domain-general
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Additional tasks corresponding to
unseen categories, subclasses of
tasks, or data sources.

Cybench
(Zhang et al., 2024a)

Cybersecurity Measures the accuracy of
agents on solving cybersecurity
tasks.

Task-specific
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Cybersecurity tasks not drawn
from Capture the Flag competi-
tions.

DiscoveryBench
(Majumder et al.,
2024)

Data-driven discov-
ery

Measures the accuracy of
agents on validating a scientific
hypothesis.

Task-specific
✓

Out of distribution
samples

The holdout set consists of tasks
belonging to domains and hypothe-
ses not present in the train set.

N/A

Continued on next page

34

Published in Transactions on Machine Learning Research (05/2025)

Benchmark Domain Benchmark description Level of generality Holdout
set What is held out

Holdout at the
appropriate generality
level?

Example of ideal holdout

WorkBench
(Styles et al., 2024)

Workplace task exe-
cution

Measures the accuracy of
agents on common workplace
tasks.

Domain-general
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Tasks corresponding to a sandbox
database or environment unseen
during training.

Mobile-Bench
(Deng et al., 2024)

Mobile/UI Measures the accuracy of
agents on completing mobile
tasks and interacting with apps.

Domain-general
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Hold out tasks requiring the use of
certain app types unseen during
training.

TurkingBench
(Xu et al., 2024a)

Web task automation Measures the accuracy of
agents on naturally sourced
web-based tasks.

Domain-general
✓

Tasks One of the holdout sets consists of
more challenging tasks than those
seen in training, requiring actions
unseen during training.

N/A

MMAU
(Yin et al., 2024)

General-purpose Measures the accuracy of
agents on tasks of various do-
mains: tool use, DAG, QA, cod-
ing, contest-level programming,
math.

Fully general
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Domains outside of the ones cur-
rently in the benchmark to pre-
vent gaming. These may include
web navigation, visual and spa-
tial reasoning, long term planning,
etc.

LLF-Bench
(Cheng et al., 2023)

Interactive learning Measures the accuracy of
agents on a set of learning-
based tasks.

Domain-general
✗

N/A Lacks a held-out set and doesn’t in-
dicate plans to make one. However,
authors recognize prompt overfit-
ting is an issue and design the LLF-
Bench environments to paraphrase
instructions.

Decision-making problems be-
yond the 8 provided, or instruc-
tion types/feedback types unseen
during training.

TaskBench
(Shen et al., 2023)

Task automation Measures the accuracy of
agents on a set of tasks within
the task automation domain.

Domain-general
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Tasks with different tool sources
to build problems from unseen
tool graphs.

GAIA
(Mialon et al., 2023)

General-purpose Measures the accuracy of
agents on a general set of ques-
tions requiring various funda-
mental abilities and tool use.

Fully general
✓

In-distribution sam-
ples

The held-out set includes 300 ques-
tions but it’s unclear whether they
come from a different distribution
than the training set.

Additional question types requir-
ing, e.g., usage of new tools.

MBPP
(noa, 2023)

Python program-
ming

Measures the accuracy of
agents on solving entry-level
Python programming tasks

Distribution-
specific ✓

In distribution sam-
ples

Holdout set consists of entry-level
Python tasks from the same distri-
bution as the train set.

N/A

ScienceWorld
(Wang et al., 2022)

Science Measures the accuracy
of agents specifically on
elementary-level scientific rea-
soning in a text environment.

Task-specific
✓

Out of distribution
samples

The held-out set includes variations
such that critical objects, start-
ing locations, and the contents of
the environment are unseen during
training.

N/A

AlfWorld
(Shridhar et al.,
2021)

Household tasks Measures the accuracy of
agents on many different tasks
within the household environ-
ment.

Domain-general
✓

Out of distribution
samples

The held-out set includes distinct
task instances and rooms that were
unseen during training. However,
the held-out task instances fall un-
der the same six ALFRED task
types as the training task instances.

Rather than training on all six
Alfred task-types, hold out some
for test evaluations.

Jericho
(Hausknecht et al.,
2020)

Games The benchmark samples from
and evaluates agents on IF
games that cover a variety of
genres.

Distribution-
specific ✓

In-distribution sam-
ples

The authors intend to use the set
of Jericho unsupported IF games
as a training set, and evaluate the
agent on the Jericho supported IF
games.

N/A

BabyAI
(Chevalier-Boisvert
et al., 2019)

Task automation Measures the accuracy of
agents on a general set of
navigation-related tasks in the
given environment.

Domain-general
✓

In distribution sam-
ples

The held out set includes 512
episodes, but it’s unclear whether
these episodes are of a different
distribution or task type from the
episodes found in training.

New BabyAI levels, or symbolic
observations of different sizes than
the training set.

agbenchmark
(Naihin)

General purpose Measures the accuracy of
agents on various domains.
These include interface, code
generation, code modification,
retrieval, and safety.

Fully general
✗

N/A Lacks a held-out set and doesn’t
indicate plans to make one.

Domains outside of the ones cur-
rently in the benchmark to pre-
vent gaming. These may include
web navigation, visual and spa-
tial reasoning, long term planning,
etc.

35

Published in Transactions on Machine Learning Research (05/2025)

Table 6: Simple cost comparison of RAG and Long-Context approaches on NovelQA. We used
the tiktoken tokenizer to measure the exact token counts for (a) the questions, (b) the four answer options,
and (c) the prompt template from the original paper (Wang et al., 2024a). Costs are calculated using May
2024 prices. Due to the high cost of running the evaluation, we only ran our evaluations once.

RAG Long-Context
Total Cost $52.80 $99.80
Accuracy 67.89 67.81
RAG Specific:
Cost of embedding 88 novels $2.512 -
Cost of embedding one novel $0.0285 -
Cost per Question $0.0222 -
Cost per QA for a new novel $0.051 -
Long-Context Specific:
Mean prompt tokens per novel 690.807
Total tokens of questions and options 110,094
Total tokens (prompt + questions + options) 170885.016
Total long-context question cost $1.709
Long-context novel cost $98.09
Long-context cost per novel (single question) $1.115
Comparison:
Cost Ratio (Long-Context/RAG) ≈ 21.86

36

Published in Transactions on Machine Learning Research (05/2025)

Table 7: Examples of shortcomings in current agent evaluations stemming from inadequate
benchmark standardization. This table provides additional details on the shortcomings of agent evaluations
affecting current state-of-the-art agents from five papers on the leaderboards of HumanEval and WebArena.
It lists all issues arising from inadequate benchmark standardization that impact the evaluations for each
agent.

Benchmark Paper Evaluation issues affecting this paper

WebArena Zhou et al. (2024) • Rate limits on Reddit website impacted task
completions. This affected 2/129 tasks of the
Reddit subset.

• Autologin functionality for Reddit site was not
implemented correctly (i.e., open todo comment in
code) (see Appendix E.1). Caused the agent to
silently fail on affected tasks.

Sodhi et al. (2024) • Evaluated on subset of benchmark. Remove 8
problems from WebArena for unclear reasons.

• Agent is evaluated incorrectly. Original log files
provided by authors mark failed tasks as
successfully solved. See Listing 2 for an example.

• Rate limits on Reddit website impacted task
completions. This affected 30/129 tasks of the
Reddit subset. See Listing 2 for an example.

HumanEval Zhou et al. (2023) • Evaluate on subset of benchmark. Authors remove
four problems in their evaluations-three because
HumanEval does not provide example tests and
one for unclear reasons.

• Agent is evaluated incorrectly. Generated solutions
are only evaluated on true test cases for a subset of
the tasks in HumanEval. Leads to incorrect
solutions passing as correct.

Zhong et al. (2024) • Underreport baseline. The paper claimed an
accuracy of 75.0%, while our evaluation showed a
mean accuracy of 89.6% across five runs.

• Evaluate on modified version of benchmark. Add
example tests for 3/164 problems that are missing
in the original benchmark.

• Claim to use GPT-3.5 for code generation using
Reflexion. However, the generated program they
used from the Reflexion repository relies on GPT-4
for code generation, not GPT-3.5.

Shinn et al. (2023) • Evaluate on subset of benchmark. Remove three
problems missing example tests in HumanEval. Do
not report this.

37

Published in Transactions on Machine Learning Research (05/2025)

Table 8: Reported vs. reproduced accuracy of agents on HumanEval. This table contains the
reported and reproduced accuracies of the HumanEval agents part of our analysis. We report the accuracy of
each agent evaluated on all 164 tasks of HumanEval. Note that insufficient standardization of the benchmark,
rather than mistakes made by the agent developers, is a major contributing factor to many of the observed
discrepancies. We run each agent five times and report the mean accuracy. The minimum and maximum
accuracy are included in the parentheses.

Paper Agent Accuracy
Reported Reproduced

Zhou et al. (2023) LATS (GPT-4) 94.4 88.0 (0.823-0.915)
LATS (GPT-3.5) 83.8 80.4 (0.787-0.835)

Zhong et al. (2024) LDB (GPT-4, GPT-3.5) 89.6 91.0 (0.89-0.921)
LDB (Reflexion, GPT-3.5) 95.1 88.9 (0.866-0.915)
LDB (GPT-3.5) 82.9 80.2 (0.787-0.829)
GPT-4 75.0 89.6 (0.878-0.909)

Shinn et al. (2023) Reflexion (GPT-4) 91.0 87.8 (0.86-0.909)

38

	Introduction
	What is an AI agent?

	AI agent evaluations must be cost-controlled
	Maximizing accuracy can lead to unbounded cost
	Visualizing the accuracy-cost tradeoff using a Pareto curve
	Two-dimensional evaluation yields surprising insights

	Jointly optimizing cost and accuracy can yield better agent designs
	HotPotQA evaluation setup
	HotPotQA results: Joint optimization reduces cost while maintaining accuracy

	Model and downstream developers have distinct benchmarking needs
	Implications for benchmark design using a case study of NovelQA

	Agent benchmarks allow shortcuts
	Case study of the STeP agent on WebArena.
	Agent benchmarks don't account for humans in the loop

	Inadequate benchmark standardization leads to irreproducible agent evaluations
	Conclusion
	Additional details on Section 2: AI agent evaluations must be cost-controlled
	Implementation details
	Robustness checks with June 2023 versions of GPT models

	Additional details on sec:joint-optimization: Jointly optimizing cost and accuracy can yield better agent designs
	Implementation details

	Survey on agent benchmarks
	Additional details on sec:model-vs-downstream: Details about NovelQA implementation
	Additional details on sec:reproducibility: Agent evaluations lack standardization and reproducibility
	HumanEval implementation details

	Statement on compute resources used
	Limitations
	Reproducibility statement

