
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEUROLIFTING: NEURAL INFERENCE ON
MARKOV RANDOM FIELDS AT SCALE

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference in large-scale Markov Random Fields (MRFs) is a critical yet challeng-
ing task, traditionally approached through approximate methods like belief prop-
agation and mean field, or exact methods such as the Toulbar2 solver. These
strategies often fail to strike an optimal balance between efficiency and solution
quality, particularly as the problem scale increases. This paper introduces NEU-
ROLIFTING, a novel technique that leverages Graph Neural Networks (GNNs) to
reparameterize decision variables in MRFs, facilitating the use of standard gradi-
ent descent optimization. By extending traditional lifting techniques into a non-
parametric neural network framework, NEUROLIFTING benefits from the smooth
loss landscape of neural networks, enabling efficient and parallelizable optimiza-
tion. Empirical results demonstrate that, on moderate scales, NEUROLIFTING per-
forms very close to the exact solver Toulbar2 in terms of solution quality, signif-
icantly surpassing existing approximate methods. Notably, on large-scale MRFs,
NEUROLIFTING delivers superior solution quality against all baselines, as well as
exhibiting linear computational complexity growth. This work presents a signifi-
cant advancement in MRF inference, offering a scalable and effective solution for
large-scale problems.

1 INTRODUCTION

Markov Random Fields (MRFs) stand as a fundamental computational paradigm for modeling com-
plex dependencies among a large collection of variables, permeating a variety of domains such
as computer vision (Wang et al., 2013; Su et al., 2021), natural language processing (Almutiri &
Nadeem, 2022; Ammar et al., 2014; Lin et al., 2020), and network analysis (Wu et al., 2020; Yun-
fei Ma & Razavi, 2022). MRF’s capacity to encode intricate probabilistic interactions underscores
its widespread utility. However, unraveling the optimal configurations in high-dimensional settings
remains a formidable task owing to the inherent computational complexity involved.

Traditional inference methodologies for MRFs bifurcate into approximate and exact strategies, each
with its own set of advantages and limitations. Approximate inference techniques, such as belief
propagation (Pearl, 2022; Wainwright et al., 2005) and mean field (Saito et al., 2012; Zhang, 1993)
approximations, strive for computational efficiency but often at the expense of solution quality,
particularly as the scale of the problem escalates. Conversely, exact inference methods, epitomized
by the Toulbar2 solver (De Givry, 2023; Hurley et al., 2016), aspire to optimality but are frequently
hampered by exponential time complexities that render them infeasible for large-scale MRFs.

Despite significant advances, achieving a harmonious balance between efficiency and solution qual-
ity in large-scale MRF inference remains a largely unmet challenge. This paper addresses this
pivotal issue through the introduction of “NEUROLIFTING” – a neural-network-driven paradigm
that extends traditional lifting technique in the context of optimization (Albersmeyer & Diehl, 2010;
Balas & Perregaard, 2002; Bauermeister et al., 2022). NEUROLIFTING is a novel approach that
reimagines MRF inference by leveraging the potency of Graph Neural Networks (GNNs) alongside
gradient-based optimization techniques.

The core innovation of NEUROLIFTING lies in the reparameterization of the decision variables
within MRFs utilizing a randomly initialized GNN. While some recent heuristics succeeded in uti-
lizing GNNs for solving combinatorial problems (Cappart et al., 2023; Schuetz et al., 2022), an
effective adaptation to MRF inference remains opaque. Besides, they generally lack an in-depth

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

understanding of how GNNs facilitate downstream computation. In this paper, we for the first time
bridge such practice to traditional lifting techniques, and further demonstrate that by harnessing the
continuous and smooth loss landscape intrinsic to neural networks, NEUROLIFTING simplifies the
optimization process for large-scale MRFs, enabling enhanced parallelization and performance on
GPU devices.

Empirical evaluations substantiate the efficacy of NEUROLIFTING, showcasing its ability to deliver
high-quality solutions across diverse MRF datasets. Notably, it outperforms all existing approxi-
mate inference strategies in terms of solution quality without sacrificing computational efficiency.
When juxtaposed with exact strategies, NEUROLIFTING demonstrates comparable solution fidelity
while markedly enhancing efficiency. For particularly large-scale MRF problems, encapsulating
instances with over 50,000 nodes, NEUROLIFTING exhibits a linear computational complexity in-
crease, paired with superior solution quality relative to exact methods.

In summary, the contributions of this paper are threefold. 1) Methodical design: we present NEU-
ROLIFTING as an innovative and practical solution to the enduring challenge of efficient and high-
quality inference in large-scale MRFs; 2) Non-parametric lifting: we extend the concept of lifting
from traditional optimization practices into a modern neural network framework, thereby offering
a fresh lens through which to tackle large-scale inference problems; 3) Significant performance:
NEUROLIFTING achieved significant performance improvement over existing methods, showing
remarkable scalability and efficiency in real-world scenarios.

2 PRELIMINARY

Markov Random Field. An MRF is defined over a undirected graph G = (V, C), where V repre-
sents the index set of random variables and C ⊆ 2V is the clique set representing the (high-order)
dependencies among random variables. Throughout this paper, we associate a node index i with a
random variable xi ∈ X , where X is a finite alphabet. Thus, given graph G, the joint probability of
a configuration of X = {xi}i∈V can be expressed as

P(X) =
1

Z
exp(−E(X)) =

1

Z
exp

(
−
∑
i∈V

θi(xi)−
∑
Ck∈C

θCk
({xl|∀xl ∈ Ck})

)
(1)

where Z is the partition function, θi(·) denotes the unary energy functions, θC(·) represent the
clique energy functions. In this sense, MRF provides a compact representation of probability by
introducing conditional dependencies:

P(xi|X\{xi}) = P(xi|{xj} for i, j ∈ Ck for Ck ∈ C). (2)

In this paper, we consider the Maximize a Posterior (MAP) estimate of Equation 1, which requests
optimizing Equation 1 via X∗ = minX E(X). One can consult Koller & Friedman (2009) for more
details.

Graph Neural Networks. GNNs represent a distinct class of neural network architectures specif-
ically engineered to process graph-structured data (Kipf & Welling, 2017; Hamilton et al., 2017;
Xu et al., 2019; Veličković et al., 2018). In general, when addressing a problem involving a graph
G = (V, E), where E is the edge set, GNNs utilize both the graph G and the initial node representa-
tions {h(0)i ∈ Rd|∀i ∈ V} as inputs, where d is the dimension of initial features. Assuming the total
number of GNN layers to be K, at the k-th layer the graph convolutions typically read:

h
(k)
i = σ

(
Wk ·AGGREGATE(k)

({
h
(k−1)
j : j ∈ N (i) ∪ {i}

}))
(3)

where AGGREGATE(k) is defined by the specific model, Wk is a trainable weight matrix, N (i) is
the neighborhood of node i, and σ is a non-linear activation function, e.g., ReLU.

Optimization with Lifting. Lifting is a sophisticated technique employed in the field of opti-
mization to address and solve complex problems by transforming them into higher-dimensional
spaces (Balas, 2005; Papadimitriou & Steiglitz, 1982). By introducing auxiliary variables or con-
straints, lifting serves to reformulate an original optimization problem into a more tractable or elu-
cidated form, often making the exploration of optimal solutions more accessible. In the context of
MRFs, lifting can be utilized to transform inference problems into higher dimensions where certain

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

<latexit sha1_base64="xd217M32wlf6Q0D6BcKBe5WYBAA=">AAADG3icjVHLTttAFD24D1L6IJQlG6tRpUStIjuBtJtKkSIklkEiDylElm0GsOLYlj1GoIhP6Z901x1iixDbrkDwEZyZOiotqtqxrn3mnHuu5871kjDIpGVdLRhPnj57vlh6sfTy1es3y+WVt/0szlNf9Pw4jNOh52YiDCLRk4EMxTBJhTv1QjHwJh2lD45EmgVxtCNPEjGeugdRsB/4riTllPub1WHty648FNJ1Zh3HPq0eO/bHY6fBaNY+/FIaSmmSXWdsPFSaStH5SmG0ak65YtUtvczHwC5ABcXqxuVL7GIPMXzkmEIggiQO4SLjM4INCwm5MWbkUqJA6wKnWKI3Z5Zghkt2wvcBd6OCjbhXNTPt9vmXkJHSaeI9PTHzUmL1N1Prua6s2L/Vnuma6mwn/HpFrSlZiUOy//LNM//Xp3qR2Mdn3UPAnhLNqO78okqub0Wd3HzQlWSFhJzCe9RTYl875/dsak+me1d362r9WmcqVu39IjfHjTolB2z/Oc7HoN+o2616a3u90m4Uoy5hDe9Q5Tw/oY0tdNFj7W/4gVvcGV+N78aZcf4z1VgoPKv4bRkX94MGrmo=</latexit>

E(X) = ✓C1(x1, x2, x3) + ✓C2(x3, x4, x5) + ✓C3(x2, x3, x5, x6)

<latexit sha1_base64="wmU2TGs4ezwzYTyrIAGKc0PU36g=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRKR2mVBEJct2AfUIkk6rUPzYmYilKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1+GnKpHOe1YC0tr6yuFddLG5tb2zvl3b2OTDIRsHaQhIno+Z5kIY9ZW3EVsl4qmBf5Iev6k3Md794xIXkSX6lpygaRN475iAeeIqrl3pQrTtUxy14Ebg4qyFczKb/gGkMkCJAhAkMMRTiEB0lPHy4cpMQNMCNOEOImznCPEmkzymKU4RE7oe+Ydv2cjWmvPaVRB3RKSK8gpY0j0iSUJwjr02wTz4yzZn/znhlPfbcp/f3cKyJW4ZbYv3TzzP/qdC0KI9RNDZxqSg2jqwtyl8x0Rd/c/lKVIoeUOI2HFBeEA6Oc99k2Gmlq1731TPzNZGpW74M8N8O7viUN2P05zkXQOam6tWqtdVpp1PNRF3GAQxzTPM/QwCWaaBvvRzzh2bqwQkta2WeqVcg1+/i2rIcPwv2PNw==</latexit>

1
<latexit sha1_base64="eChWam9NPpQ+mEzEUPi/VBM2P8c=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIitcuCIC5bsLVQiyTTaQ3Ni5mJUIr+gFv9NvEP9C+8M6agFtEJSc6ce8+Zuff6aRhI5TivBWtpeWV1rbhe2tjc2t4p7+51ZZIJxjssCRPR8z3JwyDmHRWokPdSwb3ID/mVPznT8as7LmSQxJdqmvJB5I3jYBQwTxHVrt2UK07VMcteBG4OKshXKym/4BpDJGDIEIEjhiIcwoOkpw8XDlLiBpgRJwgFJs5xjxJpM8rilOERO6HvmHb9nI1prz2lUTM6JaRXkNLGEWkSyhOE9Wm2iWfGWbO/ec+Mp77blP5+7hURq3BL7F+6eeZ/dboWhREapoaAakoNo6tjuUtmuqJvbn+pSpFDSpzGQ4oLwswo5322jUaa2nVvPRN/M5ma1XuW52Z417ekAbs/x7kIurWqW6/W2yeVZiMfdREHOMQxzfMUTVyghY7xfsQTnq1zK7SklX2mWoVcs49vy3r4AMVdjzg=</latexit>

2

<latexit sha1_base64="M1x44fGpGLdLr/+0LjWyu5ATTTE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRKV2mVBEJct2AdokWQ6raF5MZkIpegPuNVvE/9A/8I74xTUIjohyZlz7zkz914/DYNMOs5rwVpYXFpeKa6W1tY3NrfK2zudLMkF422WhIno+V7GwyDmbRnIkPdSwb3ID3nXH5+pePeOiyxI4ks5SXk/8kZxMAyYJ4lqHd+UK07V0cueB64BFZjVTMovuMYACRhyROCIIQmH8JDRcwUXDlLi+pgSJwgFOs5xjxJpc8rilOERO6bviHZXho1przwzrWZ0SkivIKWNA9IklCcIq9NsHc+1s2J/855qT3W3Cf194xURK3FL7F+6WeZ/daoWiSHquoaAako1o6pjxiXXXVE3t79UJckhJU7hAcUFYaaVsz7bWpPp2lVvPR1/05mKVXtmcnO8q1vSgN2f45wHnaOqW6vWWieVRt2Muog97OOQ5nmKBi7QRFt7P+IJz9a5FVqZlX+mWgWj2cW3ZT18AMe9jzk=</latexit>

3

<latexit sha1_base64="wQ6dmr6lyTEx/G/s8kciLBeheLY=">AAACwHicjVHLSsNAFD2Nr1pf1a2bYBFclUSkdlkQxGUF+4BaJJlO69BpEpKJUKpf4Fa/TfwD/QvvjFNQi+iEJGfOvefM3HvDRIpMed5rwVlaXlldK66XNja3tnfKpd12Fucp4y0WyzjthkHGpYh4SwkleTdJeTAJJe+E4zMd79zxNBNxdKWmCe9PglEkhoIFiqjLk5tyxat6ZrmLwLegAruacfkF1xggBkOOCTgiKMISATJ6evDhISGujxlxKSFh4hwPKJE2pyxOGQGxY/qOaNezbER77ZkZNaNTJL0pKV0ckiamvJSwPs018dw4a/Y375nx1Heb0j+0XhNiFW6J/Us3z/yvTteiMETd1CCopsQwujpmXXLTFX1z90tVihwS4jQeUDwlzIxy3mfXaDJTu+5tYOJvJlOzes9sbo53fUsasP9znIugfVz1a9VapVG3gy5iHwc4ommeooELNNEyzo94wrNz7kgn+0x0Claxh2/Luf8AUWOOMw==</latexit>

4
<latexit sha1_base64="9dmFP9JwmqSZ3r2nNWHlLO8HCBU=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLR2mVBEJct2AdokWQ6raF5MZkIpegPuNVvE/9A/8I74xTUIjohyZlz7zkz914/DYNMOs5rwVpYXFpeKa6W1tY3NrfK2zudLMkF422WhIno+V7GwyDmbRnIkPdSwb3ID3nXH5+pePeOiyxI4ks5SXk/8kZxMAyYJ4lqndyUK07V0cueB64BFZjVTMovuMYACRhyROCIIQmH8JDRcwUXDlLi+pgSJwgFOs5xjxJpc8rilOERO6bviHZXho1przwzrWZ0SkivIKWNA9IklCcIq9NsHc+1s2J/855qT3W3Cf194xURK3FL7F+6WeZ/daoWiSHquoaAako1o6pjxiXXXVE3t79UJckhJU7hAcUFYaaVsz7bWpPp2lVvPR1/05mKVXtmcnO8q1vSgN2f45wHnaOqW6vWWseVRt2Muog97OOQ5nmKBi7QRFt7P+IJz9a5FVqZlX+mWgWj2cW3ZT18AMx9jzs=</latexit>

5

<latexit sha1_base64="Gbgnw4mHZQ5qYjd7pXPhRwTFoWs=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRKR2mVBEJct2AfUIsl0WofmRWYilKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1+EgipHOe1YC0tr6yuFddLG5tb2zvl3b2OjLOU8TaLgzjt+Z7kgYh4WwkV8F6Sci/0A971J+c63r3jqRRxdKWmCR+E3jgSI8E8RVSrdlOuOFXHLHsRuDmoIF/NuPyCawwRgyFDCI4IinAAD5KePlw4SIgbYEZcSkiYOMc9SqTNKItThkfshL5j2vVzNqK99pRGzeiUgN6UlDaOSBNTXkpYn2abeGacNfub98x46rtN6e/nXiGxCrfE/qWbZ/5Xp2tRGKFuahBUU2IYXR3LXTLTFX1z+0tVihwS4jQeUjwlzIxy3mfbaKSpXffWM/E3k6lZvWd5boZ3fUsasPtznIugc1J1a9Va67TSqOejLuIAhzimeZ6hgUs00Tbej3jCs3VhBZa0ss9Uq5Br9vFtWQ8fzt2PPA==</latexit>

6

<latexit sha1_base64="wmU2TGs4ezwzYTyrIAGKc0PU36g=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRKR2mVBEJct2AfUIkk6rUPzYmYilKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1+GnKpHOe1YC0tr6yuFddLG5tb2zvl3b2OTDIRsHaQhIno+Z5kIY9ZW3EVsl4qmBf5Iev6k3Md794xIXkSX6lpygaRN475iAeeIqrl3pQrTtUxy14Ebg4qyFczKb/gGkMkCJAhAkMMRTiEB0lPHy4cpMQNMCNOEOImznCPEmkzymKU4RE7oe+Ydv2cjWmvPaVRB3RKSK8gpY0j0iSUJwjr02wTz4yzZn/znhlPfbcp/f3cKyJW4ZbYv3TzzP/qdC0KI9RNDZxqSg2jqwtyl8x0Rd/c/lKVIoeUOI2HFBeEA6Oc99k2Gmlq1731TPzNZGpW74M8N8O7viUN2P05zkXQOam6tWqtdVpp1PNRF3GAQxzTPM/QwCWaaBvvRzzh2bqwQkta2WeqVcg1+/i2rIcPwv2PNw==</latexit>

1
<latexit sha1_base64="eChWam9NPpQ+mEzEUPi/VBM2P8c=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIitcuCIC5bsLVQiyTTaQ3Ni5mJUIr+gFv9NvEP9C+8M6agFtEJSc6ce8+Zuff6aRhI5TivBWtpeWV1rbhe2tjc2t4p7+51ZZIJxjssCRPR8z3JwyDmHRWokPdSwb3ID/mVPznT8as7LmSQxJdqmvJB5I3jYBQwTxHVrt2UK07VMcteBG4OKshXKym/4BpDJGDIEIEjhiIcwoOkpw8XDlLiBpgRJwgFJs5xjxJpM8rilOERO6HvmHb9nI1prz2lUTM6JaRXkNLGEWkSyhOE9Wm2iWfGWbO/ec+Mp77blP5+7hURq3BL7F+6eeZ/dboWhREapoaAakoNo6tjuUtmuqJvbn+pSpFDSpzGQ4oLwswo5322jUaa2nVvPRN/M5ma1XuW52Z417ekAbs/x7kIurWqW6/W2yeVZiMfdREHOMQxzfMUTVyghY7xfsQTnq1zK7SklX2mWoVcs49vy3r4AMVdjzg=</latexit>

2
<latexit sha1_base64="M1x44fGpGLdLr/+0LjWyu5ATTTE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRKV2mVBEJct2AdokWQ6raF5MZkIpegPuNVvE/9A/8I74xTUIjohyZlz7zkz914/DYNMOs5rwVpYXFpeKa6W1tY3NrfK2zudLMkF422WhIno+V7GwyDmbRnIkPdSwb3ID3nXH5+pePeOiyxI4ks5SXk/8kZxMAyYJ4lqHd+UK07V0cueB64BFZjVTMovuMYACRhyROCIIQmH8JDRcwUXDlLi+pgSJwgFOs5xjxJpc8rilOERO6bviHZXho1przwzrWZ0SkivIKWNA9IklCcIq9NsHc+1s2J/855qT3W3Cf194xURK3FL7F+6WeZ/daoWiSHquoaAako1o6pjxiXXXVE3t79UJckhJU7hAcUFYaaVsz7bWpPp2lVvPR1/05mKVXtmcnO8q1vSgN2f45wHnaOqW6vWWieVRt2Muog97OOQ5nmKBi7QRFt7P+IJz9a5FVqZlX+mWgWj2cW3ZT18AMe9jzk=</latexit>

3

<latexit sha1_base64="wQ6dmr6lyTEx/G/s8kciLBeheLY=">AAACwHicjVHLSsNAFD2Nr1pf1a2bYBFclUSkdlkQxGUF+4BaJJlO69BpEpKJUKpf4Fa/TfwD/QvvjFNQi+iEJGfOvefM3HvDRIpMed5rwVlaXlldK66XNja3tnfKpd12Fucp4y0WyzjthkHGpYh4SwkleTdJeTAJJe+E4zMd79zxNBNxdKWmCe9PglEkhoIFiqjLk5tyxat6ZrmLwLegAruacfkF1xggBkOOCTgiKMISATJ6evDhISGujxlxKSFh4hwPKJE2pyxOGQGxY/qOaNezbER77ZkZNaNTJL0pKV0ckiamvJSwPs018dw4a/Y375nx1Heb0j+0XhNiFW6J/Us3z/yvTteiMETd1CCopsQwujpmXXLTFX1z90tVihwS4jQeUDwlzIxy3mfXaDJTu+5tYOJvJlOzes9sbo53fUsasP9znIugfVz1a9VapVG3gy5iHwc4ommeooELNNEyzo94wrNz7kgn+0x0Claxh2/Luf8AUWOOMw==</latexit>

4

<latexit sha1_base64="9dmFP9JwmqSZ3r2nNWHlLO8HCBU=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLR2mVBEJct2AdokWQ6raF5MZkIpegPuNVvE/9A/8I74xTUIjohyZlz7zkz914/DYNMOs5rwVpYXFpeKa6W1tY3NrfK2zudLMkF422WhIno+V7GwyDmbRnIkPdSwb3ID3nXH5+pePeOiyxI4ks5SXk/8kZxMAyYJ4lqndyUK07V0cueB64BFZjVTMovuMYACRhyROCIIQmH8JDRcwUXDlLi+pgSJwgFOs5xjxJpc8rilOERO6bviHZXho1przwzrWZ0SkivIKWNA9IklCcIq9NsHc+1s2J/855qT3W3Cf194xURK3FL7F+6WeZ/daoWiSHquoaAako1o6pjxiXXXVE3t79UJckhJU7hAcUFYaaVsz7bWpPp2lVvPR1/05mKVXtmcnO8q1vSgN2f45wHnaOqW6vWWseVRt2Muog97OOQ5nmKBi7QRFt7P+IJz9a5FVqZlX+mWgWj2cW3ZT18AMx9jzs=</latexit>

5

<latexit sha1_base64="Gbgnw4mHZQ5qYjd7pXPhRwTFoWs=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRKR2mVBEJct2AfUIsl0WofmRWYilKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1+EgipHOe1YC0tr6yuFddLG5tb2zvl3b2OjLOU8TaLgzjt+Z7kgYh4WwkV8F6Sci/0A971J+c63r3jqRRxdKWmCR+E3jgSI8E8RVSrdlOuOFXHLHsRuDmoIF/NuPyCawwRgyFDCI4IinAAD5KePlw4SIgbYEZcSkiYOMc9SqTNKItThkfshL5j2vVzNqK99pRGzeiUgN6UlDaOSBNTXkpYn2abeGacNfub98x46rtN6e/nXiGxCrfE/qWbZ/5Xp2tRGKFuahBUU2IYXR3LXTLTFX1z+0tVihwS4jQeUjwlzIxy3mfbaKSpXffWM/E3k6lZvWd5boZ3fUsasPtznIugc1J1a9Va67TSqOejLuIAhzimeZ6hgUs00Tbej3jCs3VhBZa0ss9Uq5Br9vFtWQ8fzt2PPA==</latexit>

6

<latexit sha1_base64="a4oAb5J8MowypUdBbAqJ2gRmSn0=">AAACxnicjVHLSsNAFD2Nr/quunQTLIKrkojULgvddFnRPqCWkkyndWiahMlEKUXwB9zqp4l/oH/hnTEFtYhOSHLm3HvOzL3XjwORKMd5zVlLyyura/n1jc2t7Z3dwt5+K4lSyXiTRUEkO76X8ECEvKmECngnltyb+AFv++OajrdvuUxEFF6pacx7E28UiqFgniLqstZ3+4WiU3LMsheBm4EistWICi+4xgARGFJMwBFCEQ7gIaGnCxcOYuJ6mBEnCQkT57jHBmlTyuKU4RE7pu+Idt2MDWmvPROjZnRKQK8kpY1j0kSUJwnr02wTT42zZn/znhlPfbcp/f3Ma0Kswg2xf+nmmf/V6VoUhqiYGgTVFBtGV8cyl9R0Rd/c/lKVIoeYOI0HFJeEmVHO+2wbTWJq1731TPzNZGpW71mWm+Jd35IG7P4c5yJonZbccql8cVasVrJR53GII5zQPM9RRR0NNMl7hEc84dmqW6GVWnefqVYu0xzg27IePgCQQo/t</latexit>

C1

<latexit sha1_base64="7fRSFAvzqUesV5sIcfyAirT3Asg=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIitctCN11WtA+opSTptIbmxWSilCL4A27108Q/0L/wzjgFtYhOSHLm3HvOzL3XTQI/FZb1mjNWVtfWN/Kbha3tnd294v5BJ40z7rG2Fwcx77lOygI/Ym3hi4D1Es6c0A1Y1502ZLx7y3jqx9GVmCVsEDqTyB/7niOIumwMK8NiySpbapnLwNagBL1acfEF1xghhocMIRgiCMIBHKT09GHDQkLcAHPiOCFfxRnuUSBtRlmMMhxip/Sd0K6v2Yj20jNVao9OCejlpDRxQpqY8jhheZqp4plyluxv3nPlKe82o7+rvUJiBW6I/Uu3yPyvTtYiMEZN1eBTTYliZHWedslUV+TNzS9VCXJIiJN4RHFO2FPKRZ9NpUlV7bK3joq/qUzJyr2nczO8y1vSgO2f41wGnUrZrparF2elek2POo8jHOOU5nmOOppooU3eEzziCc9G04iMzLj7TDVyWnOIb8t4+ACSoo/u</latexit>

C2

<latexit sha1_base64="zAFYoxn0UrlRxDAxm+VIrFWWlX4=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRKV2mWhmy4r2gfUUpJ0WofmRTJRShH8Abf6aeIf6F94Z5yCWkQnJDlz7j1n5t7rxj5PhWW95oyl5ZXVtfx6YWNza3unuLvXTqMs8VjLi/wo6bpOynwespbgwmfdOGFO4Pqs407qMt65ZUnKo/BKTGPWD5xxyEfccwRRl/XB6aBYssqWWuYisDUoQa9mVHzBNYaI4CFDAIYQgrAPByk9PdiwEBPXx4y4hBBXcYZ7FEibURajDIfYCX3HtOtpNqS99EyV2qNTfHoTUpo4Ik1EeQlheZqp4plyluxv3jPlKe82pb+rvQJiBW6I/Us3z/yvTtYiMEJV1cCpplgxsjpPu2SqK/Lm5peqBDnExEk8pHhC2FPKeZ9NpUlV7bK3joq/qUzJyr2nczO8y1vSgO2f41wE7ZOyXSlXLs5KtaoedR4HOMQxzfMcNTTQRIu8x3jEE56NhhEamXH3mWrktGYf35bx8AGVAo/v</latexit>

C3

M
LP

G
N

N

So
ft

m
ax

<latexit sha1_base64="roZbyLZMdnWuh/chagfbhMz/hAc=">AAAC13icjVHLSsNAFD3G97vWpZtgEeqmpCK1y4KbLitYW2mLTMaxHZoXyUSUUtyJW3/Arf6R+Af6F94ZU/CB6IQkZ86958zce93Ik4lynJcpa3pmdm5+YXFpeWV1bT23kT9JwjTmoslDL4zbLkuEJwPRVFJ5oh3FgvmuJ1ru8FDHW5ciTmQYHKvrSPR81g/kheRMEXWWy9e7Muj6TA0480aNcbG9e5YrOCXHLPsnKGeggGw1wtwzujhHCI4UPgQCKMIeGBJ6OijDQURcDyPiYkLSxAXGWCJtSlmCMhixQ/r2adfJ2ID22jMxak6nePTGpLSxQ5qQ8mLC+jTbxFPjrNnfvEfGU9/tmv5u5uUTqzAg9i/dJPO/Ol2LwgWqpgZJNUWG0dXxzCU1XdE3tz9VpcghIk7jc4rHhLlRTvpsG01iate9ZSb+ajI1q/c8y03xpm9JAy5/H+dPcLJXKldKlaP9Qq2ajXoBW9hGkeZ5gBrqaKBJ3ld4wCOerFPrxrq17j5SralMs4kvy7p/B2DjloM=</latexit>

H 2 P(X)

<latexit sha1_base64="Qs/Fo68SQ2KFO/ez5oH7/It5lzw=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkWom5KK1C4LInQlFexD2iLJdFqH5kUyEUrp1h9wq98l/oH+hXfGFNQiOiHJmXPvOTP3Xid0RSwt6zVjLC2vrK5l13Mbm1vbO/ndvVYcJBHjTRa4QdRx7Ji7wudNKaTLO2HEbc9xedsZn6t4+55HsQj8azkJed+zR74YCmZLom56nvDNi2L9+DZfsEqWXuYiKKeggHQ1gvwLehggAEMCDxw+JGEXNmJ6uijDQkhcH1PiIkJCxzlmyJE2oSxOGTaxY/qOaNdNWZ/2yjPWakanuPRGpDRxRJqA8iLC6jRTxxPtrNjfvKfaU91tQn8n9fKIlbgj9i/dPPO/OlWLxBBVXYOgmkLNqOpY6pLorqibm1+qkuQQEqfwgOIRYaaV8z6bWhPr2lVvbR1/05mKVXuW5iZ4V7ekAZd/jnMRtE5K5UqpcnVaqFXTUWdxgEMUaZ5nqKGOBprk7eERT3g2Lg1pTI3ZZ6qRSTX7+LaMhw/A3JH0</latexit>

minE(H)

Figure 1: An overview of NEUROLIFTING.

properties or symmetries associated with specific MRF problems are more easily exploitable (Wain-
wright et al., 2005; Globerson & Jaakkola, 2007; Bauermeister et al., 2022). However, a principled
lifting technique is still lacking for generalized MRFs.

3 METHODOLOGY

3.1 OVERVIEW

An overview of NEUROLIFTING is in Figure 1, with an exemplary scenario involving an energy
function devoid of unary terms, yet comprising three clique terms. Initially, the clique-based repre-
sentation of this function (depicted in the leftmost shaded diagram) undergoes a transformation to
a graph-based perspective, which subsequently integrates into the network architecture. To address
the absence of inherent node feature information in the original problem, we elevate the dimension-
ality of decision variables within this framework. This transformation facilitates a paradigm shift
from the identification of optimal state values to the learning of optimal parameters for encoding and
classification of these variables. Furthermore, we devised a novel approach to circumvent the ab-
sence of a traditional loss function, thereby extending the applicability of our framework to Markov
Random Fields (MRFs) of arbitrary order.

3.2 PREPOSSESSING

We discuss several necessary preprocessing steps to adapt standard MRF to a GNN style.

Topology construction for GNNs. In an MRF instance, the high-order graph structure consists
of nodes and cliques, diverging from typical GNNs allowing only pairwise edges (2nd-order). To
facilitate the power of GNNs, we need to convert high-order graph into a pairwise one. By the very
definition of a clique, any two nodes that appear within the same clique are directly related. Thus,
for any two nodes i, j ∈ Ck in a clique Ck, we add a pairwise edge (i, j) to its GNN-oriented graph.
An example can be observed in Figure 1. It is worth noting that an edge may appear in multiple
cliques; however, we add each edge only once to the graph.

Initial feature for GNNs. As there is no initial features associated to MRF instances, we initialize
feature vectors to GNNs randomly with a predefined dimension d. Detailed information on how we
will handle these artificial features to ensure they effectively capture the underlying information of
the problem will be provided in Section 3.3.

Vectorizing the energy function. The transformed energy function E(X) will serve as the loss
function guiding the training of the neural networks. In Section 3.4, we will detail the transformation
process and discuss how to effectively utilize it. Note the values of these functions can be pre-
evaluated and repeatedly used during the training process. Therefore, we employ a look-up table
to memorize all function values with discrete inputs. For unary energies, we denote the vectorized
unary energy of variable xi as ϕ(xi), where the n-th element corresponds to θi(xi = n). Similarly,
we represent the clique energy for clique Ck using the tensor ψ({xl|∀xl ∈ Ck}). This tensor can
be derived using the same conceptual framework; for instance, the element ψ(xi, xj , xk) at position
(0, 2, 4) corresponds to the value of θ{i,j,k}(xi = 0, xj = 2, xk = 4) .

Padding node embeddings & energy terms. GNNs typically require all node embeddings to be
of the same dimension, meaning that the embeddings h(K) at K-th layer must share the same size.
However, in general MRFs, the variables often exhibit different numbers of states. While traditional

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1 1 3 1 1 3 3 3

Figure 2: This illustrates the padding procedure for unary loss terms ϕ(x) and clique loss terms
ψ(xi, xj , xk), with |X | = 5. xmax denotes the variable that has the maximum value range. The
elements shown in purple represent the energy values in the original ϕ and ψ. After padding, the
dimension of vector ϕ, as well as each dimension of the energy tensor ψ(xi, xj , xk), will be 5. The
padded portion is indicated in orange, with values either max(ϕ) or max(ψ).

belief-propagation-based methods can easily manage such variability, adapting GNNs to handle
these discrepancies is less straightforward.

To address this mismatch, we employ padding strategy – a common technique used to handle varying
data lengths. This strategy is applied to both the node embeddings and the unary and pairwise (or
clique) energies, to ensure consistent embedding dimensions. Concretely, we assign virtual states
to the nodes whose state number is less than |X |. Then, we assign energies to those padded labels
with the largest value of the original energy term. The schematic diagram of the padding procedure
is in Fig. 2. In this example, we consider the case where |X | = 5. We start with the unary energy
vector for xi denoted as ϕ(xi) = {1, 1, 3}, which has three states. Before padding, the highest value
in this vector is 3, highlighted in red, and this value will be used for padding. The padded vector
is shown on the right-hand side of the figure, with the padded portion indicated in orange. For the
clique terms, we will apply padding similarly to the unary terms. The original energy matrix for the
clique involving nodes i, j, l has a dimension of 3× 3× 4. Given that |X | = 5, we need to pad the
matrix so that ψ(xi, xj , xl) ∈ R5×5×5. In this case, the largest value in the original energy matrix
is 4. As depicted in the figure, all padded values in the orange area are filled with 4. This approach
of assigning high energies to the padded labels serves to discourage the model from selecting these
padded states, thereby incentivizing it to choose the original, non-padded states with lower energies.
Remark. Other strategies are also being considered. If the padded energies are set to the largest
element among all original energies or to a significantly larger value compared to the original values,
this approach can dramatically alter the loss landscape. As a result, the model may converge to
an infeasible point in the original problem, leading it to select padded states instead. A similar
issue arises when we mask the padded regions during loss calculation. This masking operation can
introduce significant interference in the optimization process, preventing the model from achieving
a high-quality feasible solution.

3.3 GNNS AS NON-PARAMETRIC LIFTING

In this section, we detail how NEUROLIFTING generates features that capture the hidden informa-
tion of the given MRF and solves the original MAP problem by optimizing in a high-dimensional
parameter space. As mentioned in Section 3.2, we initially generate learnable feature vectors ran-
domly using an encoder that embeds all nodes, transforming the integer decision variables into dl-
dimension vectors h(0)i ∈ Rdl for node i, where dl is a hyperparameter representing the dimension
after lifting.

The intuition for utilizing GNNs in the implementation of lifting techniques is inspired by Loopy
Belief Propagation (LBP) (Weiss & Freeman, 2001). When applying LBP for inference on MRFs,
the incoming message Mji to node i from node j is propagated along the edges connecting them.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Node i can then update its marginal distributions according to the formula in Eq. 4.

pposterior(xi|X\{xi}) = pprior(xi|X\{xi})
∏

(i,j)∈E

∑
xj

Mji (4)

Importantly, the incoming messages are not limited to information solely about the directly con-
nected nodes; they also encompass information from sub-graphs that node i cannot access directly
without assistance from its neighbors. This allows a more comprehensive aggregation of informa-
tion, enabling node i to merge these incoming messages with its existing information. This process
of message aggregation bears resemblance to the message-passing procedure used in GNNs, where
nodes iteratively update their states based on the information received from their neighbors.

Graph convolutions should intuitively treat adjacent nodes equally, consistent with the principle in
MRFs, where the information collected from neighbors is processed equally. Typical GNNs are
summarized in the followings:

Graph Convolutions Neighbor Influence

GCN h
(k)
i = σ

(
Wk ·

∑
j∈N (i)∪{i}(deg(i) deg(j))

−1/2h
(k−1)
j

)
Unequal

GAT h
(k)
i = σ

(∑
j∈N (i)∪{i} αi,jWkh

(k−1)
j

)
Unequal

GraphSAGE h
(k)
i = σ

(
Wk · hi +Wk · (|N (i)|)−1

∑
j∈N (i) h

(k−1)
j

)
Equal

where deg(i) is the degree of node i, αi,j is the attention coefficients, and |N (i)| is the neigh-
borhood size of node i. According to the influence of neighbors, they can be classified into three
categories: 1) neighborhood aggregation with normalizations (e.g., GCN (Kipf & Welling, 2017)
normalize the influence by node degrees), 2) neighborhood aggregation with directional biases (e.g.,
GAT (Veličković et al., 2018) learn to select the important neighbors via an attention mechanism),
and 3) neighborhood aggregation without bias (e.g., GraphSAGE (Hamilton et al., 2017) directly
aggregate neighborhood messages with the same weight). Therefore, we select the aggregator in
GraphSAGE as our backbone for graph convolutions. The performance of these GNN backbones on
our MRF datasets is shown in Fig. 3.

Another primary characteristic of MRFs is its ability to facilitate information propagation across the
graph through local connections. This means that even though the interactions are defined locally
between neighboring nodes, the influence of a node can extend far beyond its immediate vicinity.
As a result, MRFs can effectively capture global structure and dependencies within the data. We
thus use Jumping Knowledge (Xu et al., 2018) to leverage different neighborhood ranges. By doing
so, features representing local properties can utilize information from nearby neighbors, while those
indicating global states may benefit from features derived from higher layers.

At each round of iterations, we optimize both the GNN parameters and those of the encoder. At the
start of the next iteration, we obtain a new set of feature vectors, H(0)

t = {h(0)i,t ∈ Rdl |∀i ∈ V},
where t indicates the t-th iteration. This process enables us to accurately approximate the latent
features of the nodes in a higher-dimensional space.

3.4 ENERGY MINIMIZATION WITH GNN

As indicated by Equation 1, the energy function can serve as the loss function to guide network train-
ing since minimizing this energy function aligns with our primary objective. Typically, the energy
function for a new problem instance takes the form of a look-up table, rendering the computation
process non-differentiable. To facilitate effective training in a fully unsupervised setting, it is crucial
to transform this computation into a differentiable loss aligning with the original energy function.

The initial step involves transforming the decision variable from xi ∈ {1, ..., si}, where si is the
number of states of variable xi, to vi ∈ {0, 1}si . At any given time, exactly one element of the
vector vi can be one, while all other elements must be zero; the position of the 1 indicates the current
state of the variable xi. Define Vk = ⊗i∈Ck

vi, where ⊗ is the tensor product. The corresponding
energy function would be Equation 5. Subsequently, we relax the vector vi to pi(θ) ∈ [0, 1]si , where
pi(θ) represents the output of our network and θ denotes the network parameters. This output can
be interpreted as the probabilities of each state that the variable xi might assume.

E({vi|i ∈ V}) =
∑
i∈V

⟨vi(θ), ϕ(xi)⟩︸ ︷︷ ︸
Unary Term

+
∑
Ck∈C

⟨ψ(CK), Vk⟩︸ ︷︷ ︸
Clique Term

(5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

L(θ) =
∑
i∈V

⟨pi(θ), ϕ(xi)⟩︸ ︷︷ ︸
Unary Term

+
∑
Ck∈C

⟨ψ(CK), Pk⟩︸ ︷︷ ︸
Clique Term

(6)

where ⟨·, ·⟩ refers to the tensor inner product. The applied loss function is defined in Equation 6,
here Pk = ⊗i∈Ck

pi. The rationale behind our loss function closely resembles that of the cross-
entropy loss function commonly used in supervised learning. Let P represent the true distribution
and Q denote the predicted distribution. A lower value of cross-entropy H(P,Q) indicates greater
similarity between these two distributions. However, our approach differs in that we are not seeking
a predicted distribution that closely approximates the true distribution. Instead, for each variable,
we aim to obtain a probability distribution that is highly concentrated, with the concentrated points
corresponding to the states that minimize the overall energy.

Once the network outputs are available, we can easily determine the assignments by rounding the
probabilities p(θ) to obtain binary vectors v. Using these rounded results, the actual energy can
be calculated using Equation 5. It is observed that after the network converges, the discrepancy
between L(θ) and E({vi|i ∈ V}) is minor and we won’t see any multi-assignment issue in decision
variables. We choose Adam (Kingma & Ba, 2015) as the optimizer, and employ simulated annealing
during the training process, allowing for better exploring the loss landscape to prevent sub-optima.

3.5 ANALYSIS AND DISCUSSION

Relation to lifting. In this innovative framework of using GNNs for inference on MRFs, a natural
and sophisticated parallel emerges with the classical concept of lifting in optimization (Balas et al.,
1993). By mapping each unary term of an MRF to a node within a GNN and translating clique
terms into densely connected subgraphs, the traditional MRF energy minimization transforms into
optimizing a multi-layer GNN with extra dimensionality. This procedure aligns with the lifting tech-
nique where the problem space is expanded to facilitate more efficient computation. Akin to the prin-
ciple of standard lifting to ease optimization, the GNN-based reparameterization can leverage the
gradient descent optimization paradigm inherent in the smooth neural network landscape (Dauphin
et al., 2014; Choromanska et al., 2015), ensuring efficient computation and convergence. Therefore,
while offering an enhanced approach to inference, the GNN reparameterization mirrors the core
principles of lifting by transforming and extending the solution space into a computation-friendly
one to achieve computational efficacy and scalability. More empirical evidence is in Sec. 4.4.

Complexity analysis. The primary computations in this model arise from both the loss calculation
and the operations within the GNN. For the loss function, let cmax denote the maximum clique
size. The time complexity for the loss calculation is given by O(|V||X | + cmax|C||X |). For the
GNN component, let Nv denote the average number of neighbors per node in the graph. The time
complexity for neighbor aggregation in each layer isO(Nv|V|) , and merging the results for all nodes
requires O(|V|d) where d is the feature dimension. Thus, for a K-layer GraphSAGE model with
the custom loss function, the overall time complexity can be expressed as O(|X |(|V|+ cmax|C|) +
K|V|(Nv + d)). This analysis highlights the efficiency of the framework in managing large-scale
graphs by leveraging neighborhood sampling and aggregation techniques. The derived complexity
indicates that the model scales linearly with respect to the number of nodes, the number of layers,
and the dimensionality of the feature vectors, making it well-suited for large-scale instances.

4 EXPERIMENT

Evaluation metric. For all instances used in the experiments, we utilize the final value of the
overall energy function E(X) as defined in Equation 1. Without loss of generality, all problems are
formulated as minimization problems.

Baselines. We compare our approach against several well-established baselines: Loopy Belief Prop-
agation (LBP), Tree-reweighted Belief Propagation (TRBP) (Wainwright et al., 2005), and Toul-
bar2 (Brouard et al., 2020). LBP is a widely used approximate inference algorithm that iteratively
passes messages between nodes. TRBP improves upon LBP by introducing tree-based reweighting
to achieve better approximations, particularly in complex graph structures. Toulbar2 is an exact op-
timization tool based on constraint programming and branch-and-bound methods Notably, Toulbar2

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

is the winner on all MPE and MMAP task categories of UAI 2022 Inference Competition 1. These
baselines allow us to evaluate the performance of our proposed solution under fair settings.

MRF format and transformation. The MRF data files are in UAI format and we interpret the data
files in the same way as Toulbar2. Detailed information about unary and clique terms will be treated
as unnormalized (joint) distributions, and the energies are calculated as θi(xi = a) = −log(P (xi =
a)), where P (xi = a) represents the probability provided by the data file. Note that we use the
unnormalized values during the transformation process. The transformation for the clique energy
terms will follow the same procedure. More details are in Appendix E.

4.1 SYNTHETIC PROBLEMS

We first conduct experiments on synthetic problems generated randomly based on Erdős–Rényi
graphs (Erdös & Rényi, 1959). The experiments are divided into pairwise cases and higher-order
cases. We will compare the performance of NEUROLIFTING with LBP, TRBP, and Toulbar2 on
pairwise MRFs. For the higher-order MRF cases, we will compare NEUROLIFTING exclusively
with Toulbar2, as LBP and TRBP are not well-suited for handling the complexities inherent in high-
order MRFs. The raw probabilities (energies) on the edges/cliques are randomly generated using
the Potts function (Equation 7), representing two typical types found in the UAI 2022 dataset. The
parameters α and β serve as constant penalty terms and I is the indicator function.

θij = αI(xi = xj) + β (7)

For all the random cases, all the probabilities values of the unary terms and pairwise (clique) terms
are generated randomly range from 0.2 to 3.0. For the Potts models, α, β ∈ [0.00001, 1000]. Each
random node can select from 2 to 6 possible discrete labels, and the values of the unary terms are
also generated randomly, ranging from 0.2 to 3.0. LBP and TRBP are allowed up to 60 iterations,
with a damping factor 0.1 to mitigate potential oscillations. Toulbar2 operates in the default mode
with time limit 18000s. We employ a 5-layer GNN to model all instances. The learning rate is set
to 1e−4, and the model is trained for up to 150 iterations for each instance, utilizing a simple early
stopping rule with an absolute tolerance of 1e−4 and a patience of 10. The data generation method
and the parameter settings are the same for both pairwise cases and high order cases.

Pairwise instances. The inference results on pairwise cases are summarized in Table 1. Prefix
“P potts ” and “P random ” indicate instances generated with Potts energy and random energy, re-
spectively. It is evident that as the problem size scales up, NEUROLIFTING outperforms the baseline
approaches; meanwhile, it also achieves comparable solution quality even when the problem sizes
are small. This trend is consistent across both energy models.

Higher-order instances. The inference results on high oreder cases are summarized in Table 2. The
“H” in the prefix stands for High-order and all the instances are generated using Potts model. The
number of cliques in the table encompasses both the cliques themselves and the edges connecting
them. The relationships between nodes are based on either pairwise interactions or clique relation-
ships. We conduct tests on both a dense graph with a small size (H Instances 1, H Instances 2)
and a sparse graph with a larger size. The results indicate that NEUROLIFTING outperforms Toul-
bar2 in both settings, demonstrating its ability to effectively handle not only large graphs but also
dense graphs. This versatility highlights the robustness and effectiveness of NEUROLIFTING across
different graph structures.

4.2 UAI 2022 INFERENCE COMPETITION DATASETS

We then evaluate our algorithm using instances from the UAI 2022 Inference Competition datasets,
including both pairwise cases and high-order cases. The time settings will align with those estab-
lished in the UAI 2022 Inference Competition, specifically 1200 seconds and 3600 seconds. LBP
and TRBP algorithms are set to run for 30 iterations with a damping factor of 0.1, and the time
limit for Toulbar2 is configured to 1200 seconds, which is generally sufficient for convergence. For
NEUROLIFTING, we utilize an 8-layer GNN to model all instances, with the model trained for up
to 100 iterations for each instance; other settings remain consistent with those used in the synthetic
problems. We also experimented with lifting dimensions of 64, 512, 1024, 4096, and 8192.

1https://www.auai.org/uai2022/uai2022_competition

7

https://www.auai.org/uai2022/uai2022_competition

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Results on ER graphs with state numbers range from 2 to 6. Numbers out of the bracket
correspond to the obtained energy values, the number in the brackets is the final loss given by the
loss function. Best in bold.

Graph #nodes/#edges LBP TRBP Toulbar2 NEUROLLIFTING

P potts 1 1k/7591 -22215.700 -21365.800 -22646.529 -21451.025
P potts 2 5k/37439 -111319.000 -105848.000 -110022.248 -105952.531
P potts 3 10k/75098 -221567.000 -210570.000 -218311.424 -209925.269
P potts 4 50k/248695 12411.200 13454.600 12955.129 11679.429
P potts 5 50k/249624 25668.500 35389.000 12468.172 11466.507
P potts 6 50k/300181 17609.800 17362.600 17635.791 16756.999
P potts 7 50k/299735 16962.500 16962.500 19532.817 17002.578
P potts 8 50k/374169 24552.400 24596.800 25446.235 24552.413
P potts 9 50k/375603 25099.800 25095.600 25502.495 25050.522

P random 1 1k/7540 -4901.100 -4505.020 -4900.759 -4564.763
P random 2 5k/37488 -24059.900 -22934.000 -24139.194 -21834.693
P random 3 10k/74518 -47873.200 -47002.000 -48107.172 -42120.325
P random 4 50k/249554 12881.500 14342.300 12233.890 11769.934
P random 5 50k/249374 12478.300 13337.000 12835.994 11750.969
P random 6 50k/299601 16723.600 16754.500 18031.964 16700.674
P random 7 50k/299538 16689.200 16701.600 18179.548 16689.252
P random 8 50k/374203 24556.000 24556.000 25549.594 24555.995
P random 9 50k/374959 24635.600 24689.500 25908.500 24640.039

Table 2: Results on the synthetic high order MRFs. Numbers correspond to the obtained energy
values. Best in bold. “NA” denotes that no solution was found within the specified time limits. Best
in bold.

Graph #Nodes/#cliques Toulbar2 NEUROLIFTING

H Instances 1 500/12809 -29359.827 -29835.757
H Instances 2 500/57934 NA -20300.795
H Instances 3 50k/104059 1423.823 -3601.724
H Instances 4 50k/279293 10747.544 9782.693
H Instances 5 50k/229727 10534.909 9371.913

Pairwise cases. We evaluate pairwise cases from the UAI MPE dataset. The full results of NEU-
ROLIFTING are detailed in Appendix B. From Table 3, we see that on trivial pairwise cases, where
Toulbar2 successfully identifies the optimal solutions, NEUROLIFTING achieves comparably high-
quality solutions that are on par with those obtained by LBP and TRBP. In cases where the problems
become more challenging, although NEUROLIFTING does not surpass Toulbar2, it outperforms both
LBP and TRBP. This suggests that NEUROLIFTING demonstrates improved performance on real-
world datasets compared to simpler artificial instances.

High-order cases. For the high-order cases, we select a subset that has relatively large sizes. The re-
sults are presented in Table 4. The performance of NEUROLIFTING aligns with the results obtained
from synthetic instances, demonstrating superior efficacy on larger problems while consistently out-
performing Toulbar2 in dense cases.

4.3 PHYSICAL CELL IDENTITY

Physical Cell Identity (PCI) is an important parameter used in both LTE (Long-Term Evolution) and
5G (Fifth Generation) cellular networks. It is a unique identifier assigned to each cell within the
network to differentiate and distinguish between neighboring cells. We transform PCI instances into
pairwise MRFs, thus all the baselines could be evaluated. Appendix F details how to perform the
transformation.

We employ an internal real-world PCI data collection along with a synthetic PCI dataset for evalua-
tion. The configurations for LBP, TRBP, and our proposed NEUROLIFTING approach are consistent
with those outlined in Section 4.1. For the Toulbar2 method, a time limit of 3600 seconds is set,
while other parameters remain at their default values. The results are summarized in Table 5. The
first five instances are real-world PCI cases sourced from a city in China, while the latter five in-
stances are generated. We see for smaller problem instances, Toulbar2 is able to solve them exactly.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Results on the UAI inference competition 2022. Numbers correspond to the obtained
energy values. Best in bold.“opt” denotes it is the optimal solution.

Graph #Nodes/#Edges LBP TRBP Toulbar2 (1200s) NEUROLIFTING

ProteinFolding 11 400/7160 -3106.080 3079.030 -4461.047 -4065.294
ProteinFolding 12 250/1848 3570.210 3604.240 3562.387(opt) 16051.798

Grids 19 1600/3200 -2250.440 -2103.610 -2643.107 -2404.975
Grids 21 1600/3200 -13119.300 -12523.300 -18895.393 -16446.410
Grids 24 1600/3120 -13210.400 -13260.900 -18274.302 -16008.008
Grids 25 1600/3120 -2170.890 -2171.050 -2620.268 -2353.223
Grids 26 400/800 -2063.350 -1903.910 -3010.719 -2608.395
Grids 27 1600/3120 -9024.640 -9019.470 -12284.284 -10704.057
Grids 30 400/760 -2142.890 -2154.910 -2984.248 -2691.091

Segmentation 11 228/624 329.950 339.762 312.760 (opt) 334.882
Segmentation 12 231/625 75.867 77.898 51.151 (opt) 79.151
Segmentation 13 225/607 75.299 88.554 49.859 (opt) 69.430
Segmentation 14 231/632 95.619 98.691 92.334 (opt) 94.951
Segmentation 15 229/622 412.990 418.853 380.393 (opt) 386.701
Segmentation 16 228/610 100.853 101.670 95.000 (opt) 98.209
Segmentation 17 225/612 421.888 432.012 407.065 (opt) 425.240
Segmentation 18 235/647 100.389 98.411 82.669 (opt) 88.809
Segmentation 19 228/624 86.589 86.692 58.704 (opt) 70.770
Segmentation 20 232/635 289.435 291.527 262.216 (opt) 298.802

Table 4: Results on high-order cases of the UAI inference competition 2022. Numbers correspond
to the obtained energy values. Best in bold.

Graph #Nodes/#cliques Toulbar2 (1200s) Toulbar2 (3600s) NEUROLIFTING

Maxsat gss-25-s100 31931/96111 -145969.060 -145969.060 -143158.612
BN-nd-250-5-10 250/250 155.129 154.610 180.917

Maxsat mod4block 2vars 10gates u2 autoenc 479/123509 -186103.111 -186103.111 -187416.656
Maxsat mod2c-rand3bip-sat-240-3.shuffled-as.sat05-2520 339/2416 -3734.627 -3737.076 -3732.294
Maxsat mod2c-rand3bip-sat-250-3.shuffled-as.sat05-2535 352/2492 -3863.259 -3863.259 -3852.584

However, as the problem scale increases, it becomes increasingly challenging for Toulbar2 to ef-
fectively explore the solution space, and both LBP and TRBP struggle to converge. In contrast,
NEUROLIFTING demonstrates strong generalization ability across all scales. Notably, it achieves
commendable performance on large scales.

4.4 ANALYSIS AND ABLATION STUDY

Choice of GNN backbones. We evaluate the model’s performance when implemented with dif-
ferent GNN backbones, as classified in Section 3.3. We compare their average performance across
several datasets: pairwise cases from the UAI Inference Competition 2022, real-world PCI instances
from our private dataset, and synthetic instances that we generated. Each synthetic instance com-
prises 1000 nodes with an average degree of either 4 or 8. The cases studied include both random
energy configurations and Potts energy models, allowing a comprehensive assessment. From Fig. 3,
we observe that across all datasets, GraphSAGE achieves the best results and exhibits the fastest
convergence.

Table 5: Results on the PCI instances. Numbers are the obtained energy values. Best in bold.

Graph #Nodes/#cliques LBP TRBP Toulbar2 (3600s) NEUROLIFTING

PCI 1 30/165 20.344 20.455 18.134 18.718
PCI 2 40/311 98.364 98.762 98.364 100.662
PCI 3 80/1522 1003.640 1003.640 1003.640 1009.202
PCI 4 286/10714 585.977 585.977 426.806 415.677
PCI 5 929/29009 1591.590 1591.590 1118.097 1087.291

PCI syththetic 1 280/9678 564198.000 568082.000 522857.923 496685.831
PCI syththetic 2 526/34500 2.092e+06 2.084e+06 2.064e+06 1.907e+06
PCI syththetic 3 1000/49950 2.932e+06 2.908e+06 2.856e+06 2.672e+06
PCI syththetic 4 1500/78770 4.568e+06 4.532e+06 4.534e+06 4.186e+06
PCI syththetic 5 2000/120024 6.807e+06 6.904e+06 7.023e+06 6.520e+06

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Iteration

2000

1000

0

1000

2000

Lo
ss

Pairwise Cases(UAI 2022)
GraphSAGE
GCN
GAT

0 20 40 60 80 100
Iteration

550

600

650

700

750

800

850

900

950

Lo
ss

PCI Instances
GraphSAGE
GCN
GAT

0 20 40 60 80 100
Iteration

6000

4000

2000

0

Lo
ss

Sythetic Data
GraphSAGE
GCN
GAT

Figure 3: The average loss curves over UAI incference competition 2022 pairwise cases, PCI in-
stances and systhetic instances using GraphSAGE, GCN and GAT as the GNN backbones.

0 20 40 60 80 100
Iterations

2

1

0

1

2

3

4

5

Lo
ss

1e4 Loss Curve of Different Optimizers
SGD
RMSprop
Adam

Choice of Optimizer. The selection of the optimizer is dis-
cussed in Section 3.4, based on an analysis of the problem
structure and empirical trials. We evaluate three optimizers:
SGD, RMSprop, and Adam, using pairwise cases from the
UAI 2022 dataset. The learning rate is set to 10−4, the em-
bedded feature vector dimension is 1024, and we employ an
8-layer network. These configurations are consistent across all
test cases for each optimizer. Results with average loss curves
in the right figure, illustrating the differences in convergence rates and final results. We see that
Adam outperforms both RMSprop and SGD in terms of convergence speed and stability.

Loss Landscape Visualization. We utilize the tool developed by Li et al. (2018) to visualize the
loss landscape. Detailed settings of the visualization is in Appendix D. We visualize the evolution of
the loss landscape for networks with varying depths,specifically for K ∈ {1, 2, 5, 8}. The resulting
landscape visualizations are presented in Fig. 4, as well as the converged loss change trend in Fig. 5.
We observe that a significant portion of the loss function is relatively flat, indicating that the loss can
only decrease in constrained regions of the parameter space. As more layers are incorporated into
the lifted model, it effectively expands these local regions, facilitating convergence toward better
solutions. This characteristic suggests that the lifted model provides a greater capacity to navigate
the optimization landscape.

1 layer 2 layers 5 layers 8 layers

Figure 4: The landscape of instance Segmentation 19. From top to
the bottom, each column correspond to network layer {1, 2, 5, 8}.
The first row is the landscape range from [−10,+10] for both δ and
η direction. The second row is the landscape range from [−1,+1]
for both δ and η direction.

1 2 3 4 5 6 7 8
Number of Layers

105

110

115

120

125

130

Lo
ss

Loss over number of layers

Figure 5: The training
loss of instance Segmenta-
tion 19 after convergence
of using network layer
number {1, 2, 5, 8}.

Related work and More analysis are in Appendix A and C, respectively.

5 CONCLUSION

In this paper, we introduced NEUROLIFTING and its application to solving MAP problems for
MRFs. Our experiments showed that NEUROLIFTING effectively handles MRFs of varying or-
ders and energy functions, achieving performance on par with established benchmarks, as verified
on the UAI 2022 inference competition dataset. Notably, NEUROLIFTING excels with large and
dense MRFs, outperforming traditional methods and competing approaches on both synthetic large
instances and real-world PCI instances.This method, which utilizes Neural Networks for lifting, has
proven successful and could potentially be extended to other optimization problems with similar
modeling frameworks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

S.M. Aji and R.J. McEliece. The generalized distributive law. IEEE Transactions on Information
Theory, 46(2):325–343, 2000.

Jan Albersmeyer and Moritz Diehl. The lifted newton method and its application in optimization.
SIAM Journal on Optimization, 20(3):1655–1684, 2010.

Talal Almutiri and Farrukh Nadeem. Markov models applications in natural language processing:
A survey. International Journal of Information Technology and Computer Science, 14:1–16, 04
2022.

Waleed Ammar, Chris Dyer, and Noah A Smith. Conditional random field autoencoders for unsu-
pervised structured prediction. Advances in Neural Information Processing Systems, 27, 2014.

Egon Balas. Projection, lifting and extended formulation in integer and combinatorial optimization.
Annals OR, 140:125–161, 11 2005.

Egon Balas and Michael Perregaard. Lift-and-project for mixed 0–1 programming: recent progress.
Discrete Applied Mathematics, 123(1):129–154, 2002.

Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Math. Program., 58:295–324, 05 1993. doi: 10.1007/BF01581273.

Hartmut Bauermeister, Emanuel Laude, Thomas Mollenhoff, Michael Moeller, and Daniel Cre-
mers. Lifting the convex conjugate in lagrangian relaxations: A tractable approach for continuous
markov random fields. SIAM Journal on Imaging Sciences, 15(3):1253–1281, 2022.

Dimitris Bertsimas, Melvyn Sim, and Meilin Zhang. Adaptive distributionally robust optimization.
Manag. Sci., 65:604–618, 2019.

Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal
Statistical Society. Series B (Methodological), 36(2):192–236, 1974.

Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approximations. In Pro-
ceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 648–655, 1998.

Céline Brouard, Simon de Givry, and Thomas Schiex. Pushing data into cp models using graphical
model learning and solving. In Helmut Simonis (ed.), Principles and Practice of Constraint
Programming, pp. 811–827. Springer International Publishing, 2020.

Quentin Cappart, Didier Chtelat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar Ve-
likovi. Combinatorial optimization and reasoning with graph neural networks. Journal of Machine
Learning Research, 24(130):1–61, 2023.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks, 2015.

P Clifford and JM Hammersley. Markov fields on finite graphs and lattices, 1971.

Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization, 2014.

Simon De Givry. toulbar2, an exact cost function network solver. In 24ème édition du congrès
annuel de la Société Française de Recherche Opérationnelle et d’Aide à la Décision ROADEF
2023, 2023.

Santanu S. Dey and Jean-Philippe Richard. Linear-programming-based lifting and its application to
primal cutting-plane algorithms. INFORMS Journal on Computing, 21(1):137–150, 2008.

P Erdös and A Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:290–297,
1959.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early vision.
International Journal of Computer Vision, 70:41–54, 2004.

Brendan Frey and David Mackay. A revolution: Belief propagation in graphs with cycles. 08 2002.

Elı̄za Gaile, Andis Draguns, Emils Ozolins, and Karlis Freivalds. Unsupervised training for neural
tsp solver, 07 2022.

Angelos Georghiou, Angelos Tsoukalas, and Wolfram Wiesemann. A primal-dual lifting scheme
for two-stage robust optimization. Oper. Res., 68:572–590, 2020.

Amir Globerson and Tommi Jaakkola. Fixing max-product: Convergent message passing algorithms
for map lp-relaxations. Advances in neural information processing systems, 20, 2007.

Anna Grim and Pedro Felzenszwalb. Convex combination belief propagation. Applied Mathematics
and Computation, 438:127572, 2023. ISSN 0096-3003.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Barry Hurley, Barry O’sullivan, David Allouche, George Katsirelos, Thomas Schiex, Matthias Zyt-
nicki, and Simon de Givry. Multi-language evaluation of exact solvers in graphical model discrete
optimization. Constraints, 21:413–434, 2016.

H. Ishikawa. Exact optimization for markov random fields with convex priors. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(10):1333–1336, 2003.

H. Ishikawa and D. Geiger. Segmentation by grouping junctions. In Proceedings. 1998 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231), pp.
125–131, 1998.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the 3rd
International Conference for Learning Representations (ICLR), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

V. Kolmogorov. Convergent Tree-Reweighted Message Passing for Energy Minimization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(10):1568–1583, October 2006.

Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. Mrf optimization via dual decomposition:
Message-passing revisited. In ICCV, pp. 1–8, 11 2007.

Sanjiv Kumar, Jonas August, and Martial Hebert. Exploiting inference for approximate parameter
learning in discriminative fields: An empirical study. In Anand Rangarajan, Baba Vemuri, and
Alan L. Yuille (eds.), Energy Minimization Methods in Computer Vision and Pattern Recognition,
pp. 153–168, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In Neural Information Processing Systems, 2018.

Jerry Chun-Wei Lin, Yinan Shao, Ji Zhang, and Unil Yun. Enhanced sequence labeling based on
latent variable conditional random fields. Neurocomputing, 403:431–440, 2020.

Hugues Marchand, Alexander Martin, Robert Weismantel, and Laurence Wolsey. Cutting planes in
integer and mixed integer programming. Discrete Applied Mathematics, 123(1):397–446, 2002.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 47264–47278. Curran
Associates, Inc., 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity, volume 32. IEEE, 01 1982. ISBN 0-13-152462-3.

Judea Pearl. Reverend bayes on inference engines: a distributed hierarchical approach. In Pro-
ceedings of the Second AAAI Conference on Artificial Intelligence, pp. 133–136. AAAI Press,
1982.

Judea Pearl. Chapter 4 - belief updating by network propagation. In Judea Pearl (ed.), Probabilistic
Reasoning in Intelligent Systems, pp. 143–237. Morgan Kaufmann, San Francisco (CA), 1988.
ISBN 978-0-08-051489-5.

Judea Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. In Proba-
bilistic and causal inference: the works of Judea Pearl, pp. 129–138. 2022.

Yun Peng, Byron Choi, and Jianliang Xu. Graph learning for combinatorial optimization: A survey
of state-of-the-art. Data Science and Engineering, 6, 06 2021. doi: 10.1007/s41019-021-00155-3.

S. Roy and I.J. Cox. A maximum-flow formulation of the n-camera stereo correspondence problem.
In Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp. 492–499,
1998.

Masaki Saito, Takayuki Okatani, and Koichiro Deguchi. Application of the mean field methods to
mrf optimization in computer vision. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1680–1687, 2012.

Dmitrij Schlesinger and BORIS FLACH. Transforming an arbitrary minsum problem into a binary
one. 01 2006.

Martin J. A. Schuetz, J. Kyle Brubaker, and Helmut G. Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, April 2022.

Sergey Shebalov, Young Woong Park, and Diego Klabjan. Lifting for mixed integer programs with
variable upper bounds. Discrete Applied Mathematics, 186:226–250, 2015.

Wenkang Su, Jiangqun Ni, Xianglei Hu, and Jessica Fridrich. Image steganography with symmet-
ric embedding using gaussian markov random field model. IEEE Transactions on Circuits and
Systems for Video Technology, 31(3):1001–1015, 2021.

Martin Szummer, Pushmeet Kohli, and Derek Hoiem. Learning crfs using graph cuts. volume 5303,
pp. 582–595, 10 2008. ISBN 978-3-540-88685-3.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adrian Romero, P. Lio, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations (ICLR),
2018.

M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. Map estimation via agreement on trees: message-
passing and linear programming. IEEE Transactions on Information Theory, 51(11):3697–3717,
2005.

Chaohui Wang, Nikos Komodakis, and Nikos Paragios. Markov random field modeling, inference
learning in computer vision image understanding: A survey. Computer Vision and Image Under-
standing, 117(11):1610–1627, 2013.

Y. Weiss and W.T. Freeman. On the optimality of solutions of the max-product belief-propagation
algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 47(2):736–744, 2001.
doi: 10.1109/18.910585.

Xuan Wu, Di Wang, Lijie Wen, Yubin Xiao, Chunguo Wu, Yuesong Wu, Chaoyu Yu, Douglas L.
Maskell, and You Zhou. Neural combinatorial optimization algorithms for solving vehicle routing
problems: A comprehensive survey with perspectives, 2024.

Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, and Enhong Chen. Graph convolutional networks
with markov random field reasoning for social spammer detection. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(01):1054–1061, Apr. 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Tingman Yan, Xilian Yang, Genke Yang, and Qunfei Zhao. Hierarchical belief propagation on image
segmentation pyramid. IEEE Transactions on Image Processing, 32:4432–4442, 2023.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding Belief Propagation and
Its Generalizations, pp. 239–269. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003. ISBN 1558608117.

Chaolong Ying, Xinjian Zhao, and Tianshu Yu. Boosting graph pooling with persistent homology.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching with
channel-independent embedding and hungarian attention. In International conference on learning
representations, 2019.

Elkafi Hassini Yunfei Ma, Amir Amiri and Saiedeh Razavi. Transportation data visualization with
a focus on freight: a literature review. Transportation Planning and Technology, 45(4):358–401,
2022.

J. Zhang. The mean field theory in em procedures for blind markov random field image restoration.
IEEE Transactions on Image Processing, 2(1):27–40, 1993.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

MRF and Inference. In Markov Random Fields (MRFs), the energy function is associated with a
graph-structured probability distribution. A key inference challenge is determining the maximum
a posteriori (MAP) configuration. Although minimizing the energy function is NP-hard, advances
in inference techniques have enhanced model capabilities. For cycle-free graphs, the MAP problem
can be effectively addressed using a variant of the min-sum algorithm (Clifford & Hammersley,
1971; Besag, 1974; Kumar et al., 2005) , which extends the Viterbi algorithm (Yedidia et al., 2003)
to arbitrary cycle-free structures. In graphs with cycles, graph cut methods (Komodakis et al., 2007;
Roy & Cox, 1998; Boykov et al., 1998; Ishikawa & Geiger, 1998; Szummer et al., 2008) utilize
min-cut/max-flow strategies to efficiently minimize energy, although they require MRFs to be graph-
representable and are unsuitable for multi-labeled MRFs. Two graph-cut-based strategies (Ishikawa,
2003; Schlesinger & FLACH, 2006) have been developed: the label-reduction method, for specific
MRFs requiring binary conversion, and the move-making method, influenced by the size of node
state combinations.

The belief propagation (BP) algorithm (Pearl, 1982; 1988) , introduced by Pearl in 1982, is a widely
used iterative inference method for Bayesian networks, functioning through message passing. How-
ever, BP struggles with loops, leading to loopy belief propagation (LBP) (Weiss & Freeman, 2001;
Felzenszwalb & Huttenlocher, 2004; Frey & Mackay, 2002) , which iterates message passing even in
cyclic graphs. While LBP has shown effectiveness in vision tasks, it lacks guaranteed convergence.
Recent advancements aim to enhance BP’s performance, such as adjusting message significance with
discount factors (Grim & Felzenszwalb, 2023) and constructing hierarchical frameworks for large-
scale MRFs (Yan et al., 2023). The Junction Tree Algorithm (JTA) (Aji & McEliece, 2000) provides
exact inference for arbitrary graphs but is NP-hard, limiting its practicality. In pairwise MRFs, inte-
ger linear programming (ILP) formulations yield solutions through tree-reweighted message passing
(TRBP) (Wainwright et al., 2005) , which includes edge-based and tree-based schemes, though they
lack guaranteed convergence. The sequential TRW-S (Kolmogorov, 2006) scheme achieves weak
tree agreement, ensuring lower bounds stabilize, but requires substantial time for convergence.

Lifting in Optimization. Lifting techniques have garnered significant attention in the optimiza-
tion field, particularly in tackling combinatorial problems and enhancing the performance of var-
ious algorithms (Marchand et al., 2002). These techniques involve transforming a problem into a
higher-dimensional space, which facilitates more effective representation and solution strategies.
They are applied to both mixed 0-1 integer programming problems (Balas et al., 1993) and more
general mixed-integer programming (MIP) problems in conjunction with primal cutting-plane algo-
rithms (Dey & Richard, 2008). Additionally, lifting techniques have been integrated with variable
upper bound constraints in applications such as the Knapsack problem (Shebalov et al., 2015). The
use of lifting methods has also extended into robust optimization scenarios (Georghiou et al., 2020;
Bertsimas et al., 2019). Furthermore, combining lifting techniques with Newton’s method has shown
promise in addressing nonlinear optimization problems (NLPs) (Albersmeyer & Diehl, 2010).

Unsupervised GNNs for Combinatorial Optimization. Graph Neural Networks (GNNs) have
been proved to be powerful in optimization (Yu et al., 2019; Ying et al., 2024) and recent advance-
ments in unsupervised GNNs have demonstrated their effectiveness in tackling combinatorial op-
timization problems. By leveraging the structural properties of graph data, unsupervised GNNs
can learn meaningful representations of nodes and edges without requiring labeled datasets. It was
shown that unsupervised GNNs can effectively capture the combinatorial structure inherent in these
problems, leading to improved heuristics and solution strategies (Peng et al., 2021). This capabil-
ity is particularly advantageous for problems such as the Traveling Salesman Problem (TSP) (Gaile
et al., 2022; Min et al., 2023), the Vehicle Routing Problem (VRP) (Wu et al., 2024) and Boolean
satisfiability problem(SAT) (Cappart et al., 2023), where traditional optimization methods often
face challenges related to scalability and solution quality. The Max Independent Set (MIS) and
Max Cut problems can also be solved efficiently in this way (Schuetz et al., 2022). However, the
loss functions may lack the flexibility to effectively handle higher-order relationships beyond mere
edges.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Results on the UAI inference competition 2022 of NEUROLIFTING with different feature
dimensions. Numbers correspond to the obtained energy values.

Graph #Nodes/#Edges dim=64 dim=512 dim=1024 dim=4096 dim=8192

ProteinFolding 11 400/7160 -3892.949 -3886.701 -3946.168 4065.294 -4003.323
ProteinFolding 12 250/1848 16064.795 16068.406 16051.798 16088.073 16071.324

Grids 19 1600/3200 -2355.159 -2404.975 -2337.281 -2341.2746 -2373.618
Grids 21 1600/3200 -16478.466 -16169.0320 -16446.410 -16209.017 -16278.668
Grids 24 1600/3120 -16008.008 -15900.249 -15841.799 - 15608.162 -15948.219
Grids 25 1600/3120 -2343.547 -2353.223 -2319.899 -2306.686 -2288.182
Grids 26 400/800 -2532.837 -2608.395 -2553.781 -2559.572 -2535.464
Grids 27 1600/3120 -10748.024 -10704.057 -10514.857 -10389.031 -10665.737
Grids 30 400/760 -2563.274 -2631.862 -2640.044 -2691.091 -2649.462

Segmentation 11 228/624 330.541 349.906 334.882 356.895 337.312
Segmentation 12 231/625 74.705 74.029 155.062 79.151 105.801
Segmentation 13 225/607 67.371 86.064 69.430 72.394 112.516
Segmentation 14 231/632 94.192 96.501 100.582 104.091 96.572
Segmentation 15 229/622 388.223 386.701 397.246 407.731 390.641
Segmentation 16 228/610 99.086 99.690 111.121 98.209 108.360
Segmentation 17 225/612 424.686 426.130 425.192 425.240 427.810
Segmentation 18 235/647 89.905 101.307 94.224 88.854 88.809
Segmentation 19 228/624 76.244 78.337 74.284 69.116 70.770
Segmentation 20 232/635 298.802 301.802 302.673 304.457 312.970

0 20 40 60 80 100
Iteration

100

200

300

400

500

Lo
ss

Segmentation 14

0 20 40 60 80 100
Iteration

0

1

2

3

4

1e5 Synthetic Instance 3

0 20 40 60 80 100 120 140
Iteration

1

2

3

4

5

1e5 Synthetic Instance 5

Figure 6: The loss curves of the Segmentation 14, P potts 6 and P potts 8 from pairwise potts
synthetic problems.

B FULL TABLE OF UAI PAIRWISE CASES

In Table 6, we present the inference results of NEUROLIFTING using various dimensions of feature
embeddings applied to the pairwise cases from the UAI Inference Competition 2022. The results
indicate that the dimensionality of the feature embeddings is indeed a factor that influences model
performance. However, in most cases, a moderate dimension is sufficient to achieve high-quality re-
sults. This suggests that while increasing dimensionality may provide some advantages, the decision
should be made by considering both performance and computational efficiency.

C MORE ANALYSIS

Efficiency vs Solution Quality. We evaluate the performance of the NEUROLIFTING using the
same network size and a consistent learning rate of 1e-4 on the Segmentation 14 dataset from the
UAI 2022 inference competition, along with two of our generated Potts instances: P potts 6 and
P potts 8. This setup allows us to observe the trends associated with changes in graph size and
sparsity. The results are presented in Fig. 6. It is seen that the model converges rapidly when
the graph is small and sparse, within approximately 20 iterations on the Segmentation 14 dataset.
Comparing P potts 6 and P potts 8, we observe that though both graphs are of the same size, the
denser graph raises significantly more challenges during optimization. This indicates that increased
size and density can complicate the optimization process, and NEUROLIFTING would need more
time to navigate a high quality solution under such cases.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D VISUALIZATION SETUP

The core idea of the visualization technique proposed by Li et al. (2018) involves applying per-
turbations to the trained network parameters θ∗ along two directional vectors, δ and η: f(α, β) =
L(θ∗+αδ+βη). By doing so, we can generate a 3-D representation of the landscape corresponding
to the perturbed parameter space. We sampled 250000 points in the α− β plane, where both α and
β range from -10 to 10, to obtain an overview of the loss function landscape. Subsequently, we fo-
cused on the region around the parameter θ∗ by sampling an additional 10,000 points in a narrower
range, with α and β both from −1 to 1.

E READ UAI FORMAT FILES

An example data file in UAI format is provided in Box E. This Markov Random Field consists
of 3 variables, each with 2 possible states. Detailed information can be found in the box, where
we illustrate the meanings of different sections of the file. Notably, in the potential section, the
distributions are not normalized. During the belief propagation (BP) procedure, these distributions
will be normalized to prevent numerical issues. However, in the energy transformation phase, we
will utilize these values directly.

Example.uai

MARKOV //Instance type
3 //Number of vairables
2 2 2 //State number of each variable
5 //Number of cliques that has potentials
1 0 //1 means this clique is a variable, and the variable is 0.
1 1
1 2
2 0 1 //2 means this clique is an edge, the edge is (0, 1).
3 0 1 2 //3 means this clique includes 3 variables, and the clique is (0, 1, 2).

2 //The number 2 indicates that the potential in the next line has two values.
0.1 0.9 //The potential of variable 0 is 0.1 for state 0 and 0.9 for state 1.

2
0.1 10

2
0.5 0.5

4
0.1 1.0 1.0 0.1//The potential of the state combinations for variables 0 and 1 is given in the
order of (0,0), (0,1), (1,0) and (1,1).

8
0.1 2.0 0.1 0.1 0.1 0.1 0.1 2.0 //The potential of the state combinations for variables 0, 1,
and 2 is given in the order of (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), and so on.

Since the transformation of variable energies and clique energies follows the same procedure, we
will use the edge (0, 1) to illustrate the transformation. The value calculations will adhere to Equa-
tion 1. In Table 7, we present the unnormalized joint distribution for the edge (0, 1), while Table 8
displays the energy table for the edge (0, 1) after transformation.

F PCI PROBLEM FORMULATION

The Mixed Integer Programming format of PCI problems is as follows:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: P (x0, x1)

x0

x1 0 1

0 0.1 1.0
1 1.0 0.1

Table 8: θC(x0, x1)

x0

x1 0 1

0 2.303 0
1 0 2.303

min
z,L

∑
(i,j)∈E

aijLij (8)

s.t. znp ∈ {0, 1}, ∀n ∈ N, p ∈ P (8a)∑
p∈P

znp = 1, ∀n ∈ N. (8b)

∑
p∈Mih

znip +
∑

p∈Mjh

znjp − 1 ≤ Lij , ∀(i, j) ∈ E ,∀h ∈ {0, 1, 2}. (8c)

where n is the index for devices, and N is the set of these indices. P stands for the possible states
of each device. Mih stands for the possible states set for node ni. Lij is the cost when given a
certain choices of the states of device i and device j, aij is the coefficient of the cost in the objective
function. There is an (i, j) ∈ E means there exists interference between these two devices. When
using MRF to model PCI problems, each random variable represent the identity state of the given
node and the interference between devices would be captured by the pairwise energy functions. Next
we will introduce how to transform the PCI problem from MIP form to MRF form.

In the original MIP formulation of the PCI problems, three types of constraints are defined. By
combining Equation 8a and Equation 8b, we establish that each device must select exactly one state
at any given time. Furthermore, the constraint in Equation 8c indicates that interference occurs
between two devices only when they select specific states. The overall impact on the system is
governed by the value of Lij and its corresponding coefficient. Given that interference is always
present, the objective is to minimize its extent.

To transform these problems into an MRF framework, we utilize Equation 8b to represent the nodes,
where each instance of Equation 8a corresponds to the discrete states of a specific node. The con-
straints set forth in Equation 8a and Equation 8b ensure that only one state can be selected at any
given time, thus satisfying those conditions automatically. By processing Equation 8c, we can iden-
tify the edges and their associated energies. Ifznip and znjp appear in the same constraint from
Equation 8c, we can formulate an edge (i, j). By selecting different values for znip and znjp, we
can determine the minimum value of Lij that maintains the validity of the constraint.

The product of Lij and aij represents the energy associated with the edge (i, j) under the combina-
tion of the respective states. Once the states of all nodes are fixed, the values of the edge costs also
become fixed. This leads to the conclusion that the objective function is the summation of the ener-
gies across all edges. Since the PCI problems do not include unary terms, we can omit them during
the transformation process. This establishes a clear pathway for converting the MIP formulation
into an MRF representation, allowing us to leverage MRF methods for solving the PCI problems
effectively.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Example
The original problem is

min
z,L

L1,2 + 3L2,3

s.t. znp ∈ {0, 1}, ∀n ∈ {1, 2, 3}, p ∈ {1, 2, 3}∑
p∈P

znp = 1, ∀n ∈ {1, 2, 3}.

z11 + z21 − 1 ≤ L1,2

z13 + z22 − 1 ≤ L1,2

z12 + z23 − 1 ≤ L1,2

z21 + z31 − 1 ≤ L2,3

z22 + z32 − 1 ≤ L2,3

z23 + z33 − 1 ≤ L2,3

(9)

Then the corresponding MRF problem is

min θ1,2(x1, x2) + θ2,3(x2, x3) (10)

the energy on edge (x1, x2) and edge (x2, x3) are as follows:

x1

x2 z21 z22 z23

z11 1 0 0
z12 0 0 1
z13 0 1 0

x2

x3 z31 z32 z33

z21 3 0 0
z22 0 3 0
z23 0 0 3

19

	Introduction
	Preliminary
	Methodology
	Overview
	Prepossessing
	GNNs as Non-parametric Lifting
	Energy minimization with GNN
	Analysis and Discussion

	Experiment
	Synthetic Problems
	UAI 2022 Inference Competition datasets
	Physical Cell Identity
	Analysis and Ablation Study

	Conclusion
	Related work
	Full table of UAI pairwise cases
	More analysis
	Visualization setup
	Read UAI format files
	PCI problem formulation

