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High-Quality Image Captioning With Fine-Grained
and Semantic-Guided Visual Attention
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Abstract—The soft-attention mechanism is regarded as one
of the representative methods for image captioning. Based on
the end-to-end convolutional neural network (CNN)-long short
term memory (LSTM) framework, the soft-attention mechanism
attempts to link the semantic representation in text (i.e., captioning)
with relevant visual information in the image for the first time.
Motivated by this approach, several state-of-the-art attention
methods are proposed. However, due to the constraints of CNN
architecture, the given image is only segmented to the fixed-
resolution grid at a coarse level. The visual feature extracted
from each grid indiscriminately fuses all inside objects and/or
their portions. There is no semantic link between grid cells.
In addition, the large area “stuff” (e.g., the sky or a beach)
cannot be represented using the current methods. To address
these problems, this paper proposes a new model based on the
fully convolutional network (FCN)-LSTM framework, which can
generate an attention map at a fine-grained grid-wise resolution.
Moreover, the visual feature of each grid cell is contributed only by
the principal object. By adopting the grid-wise labels (i.e., semantic
segmentation), the visual representations of different grid cells
are correlated to each other. With the ability to attend to large
area “stuff,” our method can further summarize an additional
semantic context from semantic labels. This method can provide
comprehensive context information to the language LSTM decoder.
In this way, a mechanism of fine-grained and semantic-guided
visual attention is created, which can accurately link the relevant
visual information with each semantic meaning inside the text.
Demonstrated by three experiments including both qualitative
and quantitative analyses, our model can generate captions of
high quality, specifically high levels of accuracy, completeness, and
diversity. Moreover, our model significantly outperforms all other
methods that use VGG-based CNN encoders without fine-tuning.

Index Terms—Image captioning, attention mechanism, fine-
grained resolution, semantic guidance, fully convolutional
network-long short term memory framework.
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I. INTRODUCTION

V ISUAL captioning is a challenging multi-modal scene un-
derstanding task, requiring a deep understanding of two

totally different types of media data, i.e., vision and language. In
this sense, this task bridges Computer Vision and Natural Lan-
guage Processing [1]. “Vision” refers to a raw appearance of
open-ended and free-form real-world scenes [2], whereas “lan-
guage” refers to a high-level extraction with a strict structure.
Therefore, the nature of this task makes multi-modal learn-
ing [3] on these two types of modal data challenging, specifi-
cally shared feature space modeling [4] and semantic alignment
learning [5]. Although the task is easily handled by humans,
it is difficult for AI. Therefore, visual captioning is regarded
as an important AI-complete task, as it aims to achieve the
ultimate AI goal. Through the automatic generation of cap-
tions based on a comprehensive understanding of real-world
scenes, visual captioning can benefit human-machine interac-
tion, autonomous/assisted driving, and intelligent navigation for
visually impaired people. Currently, most research focuses on
the problems associated with two major tasks: image caption-
ing [6]–[19] and video captioning [20], [21]. Video captioning
is the more difficult task of the two, as video involves an extra
temporal dimension [4].

An accurate and diverse description requires a comprehen-
sive understanding of objects and/or “stuff” [22], and their mu-
tual relationships/interactions in all the different image regions,
which are then selectively dealt with according to their seman-
tic relationships to each generated word. Such a visual attention
mechanism has attracted a great deal of research interest, lead-
ing to significant performance improvement [6]–[11], [19]–[21].
Generally, the attention mechanism has two roles. The first one
is to learn a shared features space, where vision and language
can be jointly modeled. The second one is learning seman-
tic alignment, by mapping together related visual elements and
words/phrases. This mechanism can be further extended to mul-
tiple types of multimedia data [2], [21], [23], Affective Analysis
and Retrieval [3], context modeling [5], semi-supervised anno-
tation [24], etc.

Most state-of-the-art spatial visual attention models are
based on the Convolutional Neural Network (CNN)-Long Short
Term Memory (LSTM) framework in an end-to-end trainable
way [7]–[9], [19]–[21]. CNN plays the role of image encoder,
responsible for understanding visual regions and encoding them
into region-specific features at different locations. There are two
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main ways of capturing regions. The most common method is to
divide the image into grid cells based on the model structure of
CNN [7]–[9], [20], [21], which is a hard way of splitting regions.
To encode each grid region in the image, the outputs of the last
convolutional layer in CNN are usually extracted as the visual
feature representation for each region. Another method involves
capturing regions at the object level using bounding box [19],
which is adaptive and accurate. Similar to CNN for grid-based
region features, Region-CNN (R-CNN) is used for providing
object candidates and extracting their visual features. As a cap-
tion decoder, LSTM is responsible for understanding all words
that have been generated and generating the following word
at each time step. The attention mechanism serves as an agent
between CNN encoder and LSTM decoder. In generating each
word, the mechanism makes joint inferences and adaptively at-
tends to those semantically related image regions by generating
a distinct attention weight for each region. Based on this weight
map, a visual context feature is firstly summarized through the
weighted sum of all region features encoded by CNN and is
then fed into the LSTM for language inference. In general, an
accurate and comprehensive understanding of all grid regions
at the image encoder side is the premise for a stronger attention
mechanism, and hence plays a fundamental role in generating
high-quality captions in terms of accuracy, completeness, and
diversity.

However, to the best of our knowledge, current soft-attention-
based approaches only use CNN as the image encoder to create
the attention module. Their underlying CNN-LSTM framework
has four limitations in providing an accurate attention mecha-
nism and high-quality captions: 1) Due to the constraints of cur-
rent CNN architecture, the attention mechanism has a fixed low
grid resolution in the soft-attention framework. [25] supports
attention mechanism in a 14 × 14 grid resolution using VGG
as CNN encoder. [26] and [20] supports a 7 × 7 grid resolution
using ResNet and Inception V3. Moreover, it is impossible to
elevate it to a fine-grained level. 2) The representation of each
grid cell is indiscriminately a mix of visual information about
all objects and/or their portions inside this cell. Therefore, it
lacks the semantic correspondence related to the most salient
visual cue within the grid cell. 3) Due to the lack of mutual ref-
erence information across grid cells, those different grid cells
containing partial visual information of the same objects cannot
be correlated to each other. The semantic visual guidance just
does not exist across grid cells. 4) Due to the object-oriented na-
ture of the CNN encoder, existing soft-attention frameworks are
not able to recognize and describe large area stuff, like the sky,
beaches, and grass. Hence, the context information cannot be
well represented based only on object information. Therefore,
overcoming these four limitations would enhance the caption
quality.

In addition, there are some special CNN-LSTM variants that
use R-CNN as the image encoder [19], [27], [28]. Specifi-
cally, [19] proposed an object-level attention mechanism. This
improvement can mitigate limitations 1) and 3) to a certain ex-
tent by attending to object proposals. The entire object region
can be attended in a bounding box, preventing the splitting of
one object into several grid-cell regions. However, it still suffers
from the other two limitations. Other visual information is still

mixed in the bounding box region. Only objects can be attended
to by a bounding box, which is not the case for stuff of irregular
shape [22]. Moreover, semantic connections between objects
are overlooked.

In this paper, we propose a novel image captioning model
with fine-grained and semantic-guided visual attention based
on a novel Fully Convolutional Network (FCN)-LSTM frame-
work, inspired by the soft-attention framework [9]. It leverages
the spatially dense and semantically abundant outputs of FCN
to solve the above-mentioned limitations. FCN is particularly
designed for semantic segmentation task, specifically the dense
pixel-level predictions [29], [30]. Therefore, it naturally excels
in generating both visual features and semantic labels in the
form of a spatial grid at a fine-grained level, which theoreti-
cally can reach the pixel level. Therefore, our model has five
strengths:

1) Our model can have a fine-grained visual attention at a
higher grid resolution, given the same sized image. It can
attend to relevant object regions accurately, and hence can
extract a precise context feature with a limited amount
of noises. Moreover, the grid resolution of our attention
module can be flexibly adjusted.

2) As the FCN encoder is both object-oriented and stuff-
oriented, our model can extract a comprehensive repre-
sentation of context information by attending to large area
stuff, such as the sky or a beach. Therefore, the contextual
inference is more comprehensive and accurate.

3) Based on pixel-level semantic labels, our model can rep-
resent each grid cell based on the dominating area that is
associated with an object or its portion inside the cell. This
saliency-related semantic correspondence can be main-
tained when the resolution is adjusted.

4) Guided by the semantic labels of all grid cells, our model
can grasp the semantic layout across grid cells, and ef-
ficiently associate the grid cells containing different por-
tions of the same object. In this way, incorrect inferences
can be mitigated.

5) The semantic context feature can also be summarized from
semantic labels to form the joint context feature with a vi-
sual context feature. This joint context feature can provide
strong context information to the LSTM decoder.

Having the fine-grained and semantic-guided attention mech-
anism, our FCN-LSTM model demonstrates state-of-the-art
performance on the Microsoft Common Objects in COn-
text (MSCOCO) dataset [31] on metrics such as BLEU@N
(BiLingual Evaluation Understudy @ N-gram) [32], ME-
TEOR [33], and CIDEr (Consensus-based Image Description
Evaluation) [34]. Specifically, this study is based on three exper-
iments, demonstrating that our model can generate high-quality
captions with high levels of accuracy, completeness, and diver-
sity. In experiment 1, the high attention resolution can enhance
the accuracy of both the attention map and meaningful words,
particularly for small area objects. In experiment 2, integrating
the semantic guidance into our model can further enhance the
attention accuracy, particularly for large area objects and stuff.
Iit can also make the single caption more complete by gen-
erating new meaningful words. In experiment 3, the diversity
of the top three captions is enhanced by semantic guidance.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 22,2020 at 10:26:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: HIGH-QUALITY IMAGE CAPTIONING WITH FINE-GRAINED AND SEMANTIC-GUIDED VISUAL ATTENTION 1683

Regarding semantic guidance in experiment 2 and 3, three
forms of integration are combined: Saliency Guidance (Case 2),
Explicit Semantic Guidance (Case 3), and Semantic Context
Feature (Case 4).

This paper is organized into five sections: This first section is
an introduction, which is followed by the second section about
related works. In section three, our model will be described in
detail. Section four will provide the experiment details. The last
section will be a conclusion of this study.

II. RELATED WORKS

Image captioning has attracted a great deal of research in-
terests, and many different models have been proposed. Re-
cently, due to substantial advances in Deep Neural Networks
(DNNs) [19], [25], [26], [29], [30], [35], most state-of-the-art
approaches are mainly based on this framework. In particular,
the best one is the encoder-decoder neural framework [6]–[11],
[19], [36]–[43] inspired by Machine Translation [36]. In this
mainstream framework, CNN is generally used as the visual en-
coder that is responsible for understanding the visual scene, and
RNN serves as the language decoder, understanding and gener-
ating language. Specifically, the CNN encoder is responsible for
extracting image features at the highest semantic level. These
image features are then fed into RNN decoder to generate the
natural language caption in a sequential manner, word-by-word.

Attention mechanism is a significant area of research, which
can achieve the state-of-the-art performance. Caption generation
is a dynamic decoding process in which each different time-
step needs a different combination of visual information. To
this end, the attention mechanism bridges the CNN encoder and
Recurrent Neural Network (RNN) decoder together efficiently
by enabling the RNN decoder to adaptively attend to, via a
weight map, only those image features that are semantically
related to the word to be generated at a certain time-step. Based
on this weight map, a context feature is summarized by using
the weighted sum, and it is then fed into the RNN decoder
for language inference. So far, the attention mechanism has
been researched in three respects. They all try to establish an
alignment between visual information and word information in
an LSTM style. The major difference between these attention
methods lies in the outputs of the encoder.

A. Grid-Wise Visual Feature Without a Semantic Label

This type of attention model focuses on which spatial re-
gions need to be attended to. The features of regions at different
locations are extracted by the CNN encoder from its last con-
volutional layer and fed into the attention model for relativity
inference. This type of attention mechanism is generally inte-
grated into an end-to-end trainable encoder-decoder framework,
and it is trained implicitly without any explicit supervision. As
the pioneer in attention mechanism research, [9] proposed a
14 × 14 grid resolution (VGG) spatial attention model for im-
age captioning using two different pooling methods. The “soft”
attention model combines all spatial features based on soft prob-
abilistic attention weights, whereas the “hard” attention model
attends to the only one region feature with the highest rele-
vance based on hard binary weights. [20] applied this pipeline

to video captioning, extending the attention mechanism from
the spatial dimension to the temporal dimension. [8] further
proposed a time-wise adaptive attention model, at a 7 × 7 grid
resolution (ResNet), by introducing a visual sentinel. For each
word generation, this model can automatically determine when
to attend to the image regions and when to simply rely on the
decoder knowledge. Based on the nature of CNN structure, [7]
proposed a novel channel-wise and multi-layer spatial attention
model, which additionally attend to related channels among the
multi-layer feature maps. Different channels in a certain layer
represent a specific semantic concept, which has a different
level of semantic abstraction as a different layer. However, all
these spatial attention models have a fixed low grid resolution,
which is difficult to convert to high grid resolution. Moreover,
being object-oriented due to the nature of the CNN encoder,
they are not able to recognize large area stuff as the sky or a
beach. Another problem is that it lacks the ability to represent
the connections between the grid cells on the image.

B. Attribute-Based Visual Representation

This type of attention model chooses which semantic con-
cepts need to be prioritized. The image feature is represented
by a confidence vector for all concepts, which is a mixture of
objects, stuff, attributes, interactions, relations, etc. [11] pro-
posed a semantic attention model to attend to related visual at-
tributes for inputs and outputs respectively. These attributes are
detail-oriented and are trained by convolutionalized CNN with
Multiple Instance Learning (MIL) in a separate stage. Based on
the gLSTM model, [44] proposed a text-conditional semantic
attention model. Using this attention model, the caption gener-
ator can automatically learn on which parts of the image feature
it should focus, given previously generated text. Although such
models involve rich semantic concepts, they lack the significant
spatial layout.

C. Objectness-Based Visual Representation

This model aims to identify the latent correspondence be-
tween sentence segments and image regions which corresponds
to the objects detected in the image. [28] proposed an align-
ment model, based on Region-CNN (R-CNN) and Bidirectional
RNN (BRNN), to infer the latent alignments between image
regions and segments of sentences by treating the sentences
as weak labels. Then, an end-to-end multimodal RNN model
was proposed to generate descriptions for image regions. To be
able to automatically locate and describe object regions, [27]
proposed an end-to-end trainable Fully Convolutional Local-
ization Network (FCLN) model to resolve a dense captioning
problem, namely localizing and describing the salient regions of
images. By further integrating the image-level feature as a global
context with object-level features, [19] proposed a global-local
attention model. The model can attend to related local objects
and global context information simultaneously. However, these
methods focus too much on objectness rather than the large area
stuff using the bounding box, and they overlook the connections
between these detected objects.

To the best of our knowledge, our FCN-LSTM model is the
first work to propose a novel attention mechanism that combines
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Fig. 1. The overview of our proposed framework.

grid-wise visual representation with the grid-wise semantic label
at a fine-grained resolution. Moreover, our model can grasp the
semantic connections between all objects and stuff in the image.

III. METHOD

We firstly describe the overall FCN-LSTM framework for
our captioning model in Section A, and then further intro-
duce our fine-grained and semantic-guided attention modules in
Section B.

A. FCN-LSTM Framework for Image Captioning

Similar to the mainstream CNN-LSTM framework, our novel
FCN-LSTM framework is also a variant of the Encoder-Decoder
framework for image captioning. It can be regarded as a transla-
tion from vision to language. The FCN encoder firstly extracts
both visual representations and semantic labels from the input
image at the pixel level, then the LSTM decoder generates cap-
tion word-by-word based on joint understanding over the visual
and semantic information. Given an image and its correspond-
ing caption, the FCN-LSTM model maximizes the probability
of word sequence:

θθθ∗ = arg max
θ

∑

(III ,yyy )

log p(yyy|III;θθθ) (1)

where θθθ represents the model parameters, III is the image, and
y = {y1 , y2 , . . . , yt} is the word sequence of corresponding
caption. Based on chain rule, the log likelihood of the joint
probability distribution over y is comprised of TTT conditional
probabilities:

log p(yyy) =
T∑

t=1

log p(yt |yt−1 , . . . , y1 , III) (2)

where TTT is the total length of the caption. Here, the dependency
on model parameters θθθ is removed for convenience. During the
training phase, (III,yyy) is a training image-caption pair, and the
overall optimization objective is the sum of log probabilities over
all training pairs in the training set. During the testing phase,
only image III is fed into the model for caption generation.

Specifically, our FCN-LSTM framework consists of three
parts: FCN encoder, LSTM decoder, and soft-attention model
(Fig. 1). It firstly uses the FCN encoder to extract both spatial

visual features and semantic representations from the image at
the pixel level. Then, the fine-grained and semantic-guided soft-
attention summarizes all outputs of the FCN encoder into a joint
context feature for the LSTM decoder to generate captions.

1) FCN Encoder: Particularly designed for the semantic
segmentation task, FCN can directly perform the pixel-wise
classification. To encode the image, our framework employs the
FCN to directly extract both visual feature and semantic label
for each different pixel in the image. First of all, the N × N sized
image III can be represented by the spatial visual features:

V = FCNv (III) = {v1 , v2 , . . . , vk} (3)

where k = N2 is the number of image pixels. Each feature vi ∈
Rd is a d dimensional representation corresponding to an image
pixel. Specifically, the visual features are taken from the second
last layer of FCN. This is similar to what CNN encoder does in
the CNN-LSTM framework. Differently, the image III also has
corresponding spatial semantic representations:

S = FCNs(III) = {s1 , s2 , . . . , sk} (4)

where si is a semantic label for each pixel indicating which
object or stuff it may belong to. Note that the concatenation
of 2-D image pixels into 1-D form does not break the spatial
correspondence.

2) LSTM Decoder: As each conditional probability in Equa-
tion 2 can be naturally modeled based on the RNN, our model
adopts the LSTM as the caption decoder. At time t, the previous
conditional variable-length word sequence {y1 , y2 , . . . , yt−1}
and image I are represented by the fixed-length hidden state ht

of LSTM as following:

xt = Weyt−1 (5)

ht = LSTM(xt, ht−1 , ct) (6)

Here, yt−1 is the output word at time t − 1. As the current new
input, xt is the word embedding of yt−1 based on the embedding
matrix We . Each word yi is simply encoded as the one-hot vec-
tor. ht−1 is the hidden state representing the conditional word
sequence {y1 , y2 , . . . , yt−2} and image I . ct is the context fea-
ture extracted from image at time t by the attention mechanism.
This context feature represents the dynamic combination of vi-
sual and semantic information from image I .
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Specifically, the detailed definition of the LSTM decoder is
as follows:

it = σ(Wixxt + Wihht−1 + Wicct + bi) (7)

ft = σ(Wf xxt + Wf hht−1 + Wf cct + bf ) (8)

ot = σ(Woxxt + Wohht−1 + Wocct + bo) (9)

gt = tanh(Wgxxt + Wghht−1 + Wgcct + bg ) (10)

mt = ft � mt−1 + it � gt (11)

ht = mt � ot (12)

Here, it , ft , ot , gt , mt , ht are the input gate, forget gate, output
gate, modulated input, memory, and hidden state of the LSTM
at time t respectively. Moreover, the operation σ, tanh, � are
the sigmoid, hyper tangent, and element-wise multiplication
respectively.

Finally, the probability of generating word yt at time t is
modeled based on the input (previous word), hidden state, and
context feature as follow:

p(yt |yt−1 , . . . , y1 , III) = f(ht, xt , ct)

= softmax(W tanh(Whht + Wcct + xt + bh) + b) (13)

B. Fine-Grained Grid-Wise Soft-Attention

Traditionally, the soft-attention mechanism [36] selectively
attends to relevant regions in the image with reference to pre-
viously generated words and generates an attention distribution
in the form of a weight map over all regions. A higher atten-
tion weight indicates that the region has a higher relevance (or
importance) to the generation of the next word and vice versa.
Then, based on the attention distribution, the information of rel-
evant regions is summarized together and fed into the LSTM
decoder as the above-mentioned context feature ct . Therefore,
this attention mechanism serves as an agent between the FCN
encoder and the LSTM decoder by sending needed informa-
tion from the former to the latter. A better attention mechanism
provides a more accurate context feature to the LSTM decoder,
which can then generate a more correct word for a caption of
higher quality.

Our soft-attention mechanism is enhanced by the fine-grained
attention resolution based on this novel FCN-LSTM framework.
It can attend to relevant regions more accurately based on a
higher resolution weight map, which will make the visual con-
text feature ct more accurate. Specifically, our fine-grained at-
tention inherits the pixel-wise nature of the FCN encoder, which
is practically grid-wise so far. Therefore, the fine-grained grid-
wise resolution is determined by the resolution of the FCN
encoder’s grid output, which can theoretically reach up to the
pixel level. Actually, most FCN encoders can only reach a cer-
tain small-patch level, and each grid cell corresponds to a small
patch (n × n pixels) in the image. Due to this, all regions of rele-
vant objects/stuff can be attended to with a high spatial accuracy,
as smaller patch can distinguish the object/stuff boundary more
precisely. Particularly, at the object boundary, the grid patch
contains pixels of both this object and its neighbors (includ-
ing other objects and stuff). Using a smaller grid patch (i.e.,
fine-grained grid) can mitigate the noisy information created by

neighbor objects and stuff. Hence, the context feature will be
more accurate because of less irrelevant information.

Therefore, our fine-grained grid-wise attention is modeled as
Equation 14. It requires three inputs: V and S from the FCN
encoder, and ht−1 from the LSTM decoder. V represents the
spatial visual features through which the attention model attends
to relevant regions locally. S represents the spatial semantic
representations related to pixel-wise semantic labels. M × M
is the grid resolution, and g = M2 is the number of locations.
The fine-grained grid-wise nature of V and S contributes to the
fine-grained attention. αti represents the attention weight for
the grid cell at the location i = 1, 2, . . . , l and the time t. ht−1 is
the hidden state of the LSTM decoder at the time t − 1, which
contains previously generated words and their corresponding
relevant image information.

ct = fatt(ht−1 , V, S) (14)

V = {v1 , v2 , . . . , vg} (15)

S = {s1 , s2 , . . . , sg} (16)

αtαtαt = {αt1 , αt2 , . . . , αtg} (17)

Note that we use a different symbol g to indicate the original grid
resolution, which equals to the resolution of the FCN encoder’s
outputs. This would equal to k (in Equation 3,4) when the FCN
encoder achieves the pixel level. S plays the role of semantic
guidance, which will be illustrated in below parts.

This part aims to enhance the accuracy of the attention map
via merely fine-grained visual features, which would further en-
hance the meaning accuracy of generated keywords. In this way,
the caption quality is improved specifically in terms of accuracy.
The improvement of this part is demonstrated by Experiment 1
in Subsection C of Experiment.

C. Semantic-Guided Attention

In addition to the fine-grained attention resolution, the grid-
wise semantic labels also serve as the semantic guidance for the
attention model. Firstly, it provides a global view of semantic
relationships among all grid-cell regions and hence can enhance
the accuracy of the attention map and keyword. Moreover, it en-
riches the context feature with semantic context feature, which
can benefit the completeness and diversity of captions. Illus-
trated by Fig. 2, our attention mechanism comprises three layers:
the saliency pooling layer, the attention distribution prediction
layer, and the joint context computation layer. The saliency pool-
ing layer firstly extracts compact visual features Vc and semantic
representations Sc . With both as inputs, the next layer predicts
the attention distribution weight map αt over all regions. Then,
the context feature ct is computed by adding two weighted sums
of visual features Vc and semantic features Se .

1) Saliency Pooling Layer: Ideally, FCN may ultimately
provide pixel-level visual features and semantic labels, which
then could be fed into rest layers of the attention model for fur-
ther processing. However, in practice, due to the constraint of
GPU memory and computation power, the rest layers can pro-
cess the limited number of patches, although the patch can be of
fine-grained size because of the nature of FCN. That means the
visual features and semantic representations of pixels inside a
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Fig. 2. The detailed structure of our fine-grained and semantic-guided attention model. (Best viewed in color.)

Fig. 3. An illustration of the saliency pooling layer for single field (a) and entire image (b). (Best viewed in color.)

patch of a given size have to be pooled together. Normally, this
process on visual features can be carried out through a common
average pooling which simply sums up the visual features of
all pixels inside the patch with equal weights. In this paper, we
propose a novel saliency pooling method which only pools the
visual features of those salient pixels. The salient pixels are de-
fined as those pixels whose pixel labels generated by FCN dom-
inate inside the patch. The pooling process can be modeled as:

(Vc, Sc) = Poolingsp(V, S) (18)

Vc = {vc1 , vc2 , . . . , vcl} (19)

Sc = {sc1 , sc2 , . . . , scl} (20)

Displayed in Fig. 3, it pools visual features V of the original
grid resolution to compact visual features Vc at an acceptable
lower level (i.e., Mc × Mc ), under the guidance of semantic
representations S. Sc is the compact semantic representation.
Let ssali denote the labels of pixels which dominate the area
inside the patch i, where i = 1, 2, . . . , l. Then, sci in Equation
20 can be defined as:

sci = ssali (21)

Correspondingly, the number of grid locations is reduced to
l = M2

c . Each vci is a brief visual feature pooled from those
original visual features inside the pooling field i. The saliency
pooling layer generates the visual feature vci in Equation 19
based on the salient pixels only. In the Equation 22 below, vc is
a generic representation of any patch vci , where i = 1, 2, , l.

vc =
1

∑w2

j=1 fsal(sj )

w2∑

j=1

vj · fsal(sj ) (22)

fsal(sj ) =

{
1, sj = ssal

0, sj �= ssal

(23)

where j stands for the relevant location of each pixel inside the
w × w pooling field. w × w is the size of the patch where the
pooling processing is carried out. vj is the visual feature of each
pixel. w2 represents the number of pixels inside the pooling
field. It may be seen that if fsal(sj ) is enforced to be 1, the
saliency pooling is equivalent to the common average pooling.
Illustrated in Fig. 3, the output of saliency pooling layers are
the salient visual features on the patches (i.e., pooling visual
feature on salient pixels in the patch) and salient pixel labels of
the patches.

This part aims to enhance the accuracy of attention map via
compact and accurate visual features at a relatively lower grid
resolution, which is implemented by integrating semantic labels
as the saliency guidance for the saliency pooling layer. This
form plays a role of an implicit semantic guidance based on
the common average pooling. Similarly, it would also further
enhance the meaning accuracy of generated keywords, and the
caption quality is improved specifically in terms of accuracy.
The improvement of this part is demonstrated by Experiment 2
in Subsection D of Experiment.

2) Attention Distribution Prediction Layer: In Fig. 2, the
inputs of the attention distribution prediction layer include visual
feature pooling (i.e., the proposed saliency pooling or the simple
common average pooling), explicit semantic guidance, and the
hidden state ht−1 feedback from LSTM. In the existing CNN-
LSTM framework [7]–[9], there is no such explicit semantic
guidance.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 22,2020 at 10:26:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: HIGH-QUALITY IMAGE CAPTIONING WITH FINE-GRAINED AND SEMANTIC-GUIDED VISUAL ATTENTION 1687

Fig. 4. An illustration of the attention distribution prediction layer (a) and
joint context computation layer (b).

Similar to the word embedding for the LSTM decoder, the
compact semantic representations Sc are a map of semantic
label words, which are encoded as one-hot vectors. Therefore,
they need to be embedded into dense semantic features via the
embedding matrix Wes .

Se = WesSc = {se1 , se2 , . . . , sel} (24)

The attention prediction model is specifically designed as a
two-layer perception. The first layer is mainly responsible for
feature fusion. From different feature spaces, the hidden state
ht−1 , compact visual features Vc and the dense semantic features
Se are mapped into a shared feature space by the embedding
matrices Whe , Wv , and Wse respectively. As the hidden state
ht−1 does not have the spatial dimension, an all-one vector 1̂̂1̂1 is
used to extend its spatial dimension by simple copying. Then,
these three embedded features are merged via the element-wise
sum and fed into the hyperbolic tangent activation function. The
overall process can be illustrated in Fig. 4. The fused feature zt

is then fed into the second layer with a softmax function to
generate the attention weights over l grid regions.

zt = tanh(Wheht−11̂̂1̂1 + WvVc + WseSe + bz ) (25)

αtαtαt = softmax(Wattzt + batt) = {αt1 , αt2 , . . . , αtl} (26)

where αti represents the attention distribution for the grid loca-
tion i = 1, 2, . . . , l at the time t.

This part aims to enhance the accuracy of the attention map
via extra grid-wise semantic representations, particularly for
large area objects/stuff. Note that the semantic representations
serve as the explicit guidance, as the semantic meanings of la-
bels are fully used for guiding the attention prediction model.
Specifically, the semantic labels are firstly embedded into dense
semantic features and then mapped into a shared feature space
with visual features, so as to guide the layer to predict the atten-
tion distribution explicitly. This would further enable the atten-
tion model to attend to novel objects/stuff or their relationships.
Therefore, the meanings of captions would be more accurate
and complete. The improvement of this part is demonstrated by
Experiment 2 and Case 3 in Subsection D of Experiment.

3) Joint Context Computation Layer: Based on the atten-
tion weights, the visual context feature cvt is computed as the
weighted sum of compact visual features Vc , and the semantic
context feature cst is calculated as the weighted sum of dense
semantic features Se . See Fig. 4(b). Then, the joint context fea-
ture ct is computed as the element-wise sum of cvt and cst and
fed into the LSTM decoder for word generation.

cvt = αtαtαt · Vc =
l∑

i=1

αtivci (27)

cst = αtαtαt · Se =
l∑

i=1

αtisei (28)

ct = cvt + cst (29)

This part aims to directly enhance the caption accuracy and
completeness, by integrating an extra semantic context feature
into the language model. This would further enhance the di-
versity of top-k captions. Therefore, the meanings of captions
would be more accurate and complete. The improvement in ac-
curacy and completeness are demonstrated by Experiment 2 in
Subsection D of Experiment. The improvement in diversity is
demonstrated by Experiment 3 in Subsection E.

In Equation (29), without considering cst , ct will become
the aggregated visual feature based on attention distribution
only. That is, ct only presents the visual context instead of joint
context. For the LSTM decoder, the initial hidden state ht and
memory state mt are predicted by feeding the global average-
pooled visual features into two separate single layer perceptions:

m0 = tanh(Wm0c0 + bm0) (30)

h0 = tanh(Wh0c0 + bh0) (31)

c0 =
1
l

l∑

i=1

vci (32)

IV. EXPERIMENT

This section firstly specifies datasets, evaluation metrics, and
experiment settings. Then, three experiments are designed to
demonstrate three advantages - high levels of accuracy, com-
pleteness, and diversity, in terms of fine-grained resolution and
semantic guidance. Regarding the semantic guidance, contribu-
tions of three forms are further studied. The saliency guidance is
used in saliency pooling layer. The explicit semantic guidance is
adopted in the attention distribution prediction layer. The joint
context computation layer summarizes the context of semantic
guidance for the LSTM decoder.

A. Datasets and Metrics

Our experiments use two datasets. MSCOCO [31] is the
largest dataset for image captioning, with 82,783 training im-
ages, 40,504 validation images, and 40,775 testing images. For
the offline evaluation, we use the same data split as [9], [11],
containing 5000 images for validation and test respectively. The
length of the captions is truncated to be no larger than 16. The
word vocabulary is built with only those words occurring at
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TABLE I
PERFORMANCES COMPARED WITH THE STATE-OF-THE-ART MODELS ON MSCOCO TEST SPLIT VIA ALL METRICS

least 5 times in the training caption set, containing about 8443
words. COCO-Stuff [22] is a more semantic-complete dataset
for semantic segmentation. In total, it has 10,000 images sam-
pled from MSCOCO training images, and annotations for 80
objects, 91 stuff, and 1 unknown background. Our DeepLab
encoder is pre-trained on the MSCOCO 80-object dataset and
then finetuned on this COCO-stuff dataset.

We use BLEU@N (B@1, B@2, B@3, B@4) [32], METEOR
[33], and CIDEr [34] as the evaluation metrics. Their scores
are calculated via the COCO captioning evaluation tool [31].
Among these metrics, CIDEr and METEOR have the highest
correlations with human manual evaluation, and CIDEr is used
for competition ranking in MSCOCO challenge[45]. Therefore,
our performance comparison mainly focuses on CIDEr, ME-
TEOR, and BLEU@4.

B. Experiment Settings

This section describes the implementation details of our
model and training.

FCN encoder: A elegantly designed DeepLab [29], designed
based on VGG-16 [25], is used as the FCN encoder. The spatial
visual features are extracted as the mean of four sets of spa-
tial visual features with different Field-Of-View(FOV) from the
outputs of the second last layer. Its dimension is 81 × 81, 1024d.
The spatial semantic representations are extracted from the out-
puts of the final layer, which has dimension of 81 × 81, 1d.

LSTM encoder: A single-layer LSTM with the hidden size
of 1024 is used in our model. The dimension of word embedding
is 1024.

Attention model: The output size of the saliency pooling
layer is set as 14 × 14, 1024d and 27 × 27, 1024d respectively.
14 × 14 is selected to make comparisons with the Soft-Attention
model [9], and 27 × 27 is selected to demonstrate the improve-
ment of fine-grained attention.

Training details: We use SGD to finetune DeepLab on the
dataset COCO-stuff for 20 epochs by learning rate 0.001, mo-
mentum 0.9, and weight decay 0.0005. We use the Adam opti-
mizer with a base learning rate of 0.0001 for LSTM language
model. We also use weight decay 0.95 and dropout ratio 0.5.
There is no finetune for FCN-encoder, as the Soft-Attention
model [9] does not finetune CNN. The network is trained for
up to 30 epochs with early stopping if the CIDEr [34] score had
not improved over the last epochs. We use the beam size of 3
when sampling the caption for MSCOCO.

Compared methods: The proposed method is motivated by
Soft-Attention [9] which is based on the idea of spatial visual
attention, and the FCN encoder is designed based on the VGG

model. Thus, it is basically essential to compare the perfor-
mance of the proposed method against the Soft-Attention [9].
Moreover, our implementation does not carry out fine-tuning
by re-training the visual encoder on the large captioning dataset
like Adaptive-Attention [8], MSM [43] and ATT-FCN [11]
did. Therefore, this paper also compares with other approaches
DeepVS [28], NIC v1 [45], emb-gLSTM [46], m-RNN [47],
SCA-VGG-1layer [7], and Hard-Attention [9] that all use the
VGG-based encoder and has no fine-tuning training as our
methods. This aims to ensure a fair comparison in order to show
the performance boosted by fine-grain and semantic-guided
attention.

C. Experiment 1 - Evaluation of Fine-Grained Grid-Wise
Attention

The qualitative analysis is illustrated in Table III, visualiz-
ing the improved quality of attention maps and captions by
increasing the attention resolution from 14 × 14 to 27 × 27.
It is shown that attention at higher resolution can capture re-
lated regions more accurately. Taking image 2 and 6 as ex-
amples, the 27 × 27 attention model can attend to the “bat”
regions accurately, whereas the 14 × 14 attention model attends
to wrong regions. All blue-colour words, such as the “bear’, “hy-
drant”, “player”, “boy” and “man”, have more accurate attention
maps in the 27 × 27 resolution. Moreover, stuff regions like the
“street” and “stone” can also be correctly located. In the mean-
time, it is noticed that the overall quality of captions in higher
attention resolution is improved, which is more meaningful. In
Table II, the quantitative analysis is shown by Case 1 in attention
resolution 14 × 14 (Soft-Attention method) and 27 × 27. The
improvements are quite significant, boosting 0.013 in B@2 and
B@3, 0.011 in B@4, and 0.064 in CIDEr. Moreover, the large
improvement is proved by the comparison that the Case 1 in
27 × 27 beats most of methods in Table I.

D. Experiment 2 - Evaluation of Semantic Guidance

The quantitative analysis in Table II further demonstrates
the performance improvements contributed by three forms of
semantic guidance. In this table, two fine-grained attention res-
olutions are adopted. For semantic guidance, there are four dif-
ferent cases according to the framework design in Fig. 2. Case 1
- No semantic guidance is used, as the common average pooling
scheme is adopted in the pooling layer. The aggregated visual
features are fed into the rest layers without considering semantic
information at all. This is the base-line scheme of the proposed
framework, namely Soft-Attention [9]. Case 2 - Saliency guid-
ance is used, as the framework adopts the saliency pooling in the
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TABLE II
PERFORMANCES OF OUR ABLATED MODELS ON MSCOCO TEST SPLIT ON ALL METRICS

TABLE III
QUALITATIVE ANALYSIS OF THE ADVANTAGES PROVIDED BY HIGHER ATTENTION RESOLUTION
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TABLE IV
QUALITATIVE ANALYSIS OF THE ADVANTAGES PROVIDED BY SEMANTIC GUIDANCE

pooling layer rather than the common average pooling. How-
ever, the semantic aggregation for explicit semantic guidance
is not fed into rest layers of the framework. Case 3 - Explicit
Guidance is additionally used, as both semantic grid-wise fea-
tures and visual grid-wise features are fed into the attention
distribution prediction layer. However, the aggregated semantic
context feature is not fed into the last context computation and
the LSTM language model. Case 4 - The joint context feature
is used, as all three forms of semantic guidances are fully in-
tegrated into our model, as illustrated in Fig. 2. In both grid
resolutions, integrating saliency pooling, explicit guidance, and
joint context feature one by one into our model can all lead
to better performances steadily and consistently, although they
are very modest. In 14 × 14, the improvements of full seman-
tic guidance are obvious, boosting CIDEr by 0.073, B@4 by
0.014, and METEOR by 0.03. However, the improvements of
full semantic guidance are quite modest in 27 × 27.

To demonstrate the modest improvements of full semantic
guidance in 27 × 27 really make sense, the qualitative analy-
sis is done as illustrated in Table IV. Obviously, the semantic
guidance helps the model attend to large area objects/stuff, such
as the “grass” in image 1, and the “bench” in image 2. Be-
sides the improvement on the completeness and/or correctness
of the attention maps, the semantic guidance can also discover
new meanings to make the caption more meaningful. For im-
age 2 and 3, the “grass” and “street” are not captured without
using semantic guidance. After introducing semantic guidance

in the proposed method, they are exposed in the new captions.
In image 1, the word “gazing” is more precise than “standing”,
and attention has correctly focused on those regions where the
sheep are eating grass. Therefore, adding semantic guidance can
greatly increase the caption quality.

From Table I, it demonstrates that our model with attention
resolution 27 × 27 and full semantic guidance has the best per-
formance. All results are calculated on the test split of MSCOCO
dataset. Our best model significantly outperforms all chosen
state-of-the-art models over nearly all metrics. Compared with
the base-line model Soft-Attention [9], our best model boosts
CIDEr score by 0.109, B@4 score by 0.022, B@3 score by
0.024, and B@2 by 0.022. The METEOR and B@1 scores are
slightly boosted by 0.008 and 0.005 respectively. Compared with
B@1, larger improvements on B@4, B@3, and B@2 scores in-
dicate that our model can better capture both grammatical prop-
erties and richer semantics because of higher resolution and
introduced semantic guidance [34]. Moreover, these advantages
are further strengthened by the large improvement on CIDEr
scores, as it is a metric integrating all four B@N scores based
on the human-consensus [34]. Our model has second-best B@1
and B@4 scores. The best B@1 score is obtained by the Hard-
Attention [9], which has significantly lower scores on other met-
rics. The best B@4 score is obtained by the second-best model
SCA-VGG-1layer [7], which has significantly lower CIDEr and
METEOR scores than the proposed method. However, as CIDEr
and METEOR metrics are more authoritative than B@N metric
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TABLE V
QUALITATIVE ANALYSIS OF CAPTION DIVERSITY

[48], our model still is the best. Although the improvements
in some metrics are modest, the most authoritative CIDEr has
significant boosts.

E. Experiment 3 - Evaluation of Caption Diversity

Semantic guidance can also enhance the caption diversity.
In Table V, top-3 captions are generated for models with and
without semantic guidance. Besides higher accuracy, the cap-
tions have high diversity thanks to more meaningful words. For
image 1, the “parked” location of the “truck” has three differ-
ent correct descriptions: “in front of a house”, “in a residential
area”, “in front of a building”. For image 2, the surroundings
of “train” are described with “a sky background”, “the country
side”, “a rural area”. The third caption for image 3 has a to-
tally different structure, compared with the first one. In contrast,
those top-3 captions generated without semantic guidance have
low diversity and even mistakes. Therefore, powered by seman-
tic segmentation, our attention mechanism can generate more
diversified captions than the traditional one, which is powered
by saliency.

TABLE VI
PROCESSING TIME OF OUR ABLATED MODELS

F. Computational Costs

We use Nvidia GTX1080Ti to train and test all our models.
Finetuning the DeepLab model takes 48 hours. For our best
model with 27 × 27 resolution and full semantic guidance, it
takes around 240 hours for training 30 epochs. At the test-
ing phase, the per-image processing time on all our models
is displayed in Table VI. Case 1 and Case 2 have almost the
same computation costs, as they are only different in feature
pooling and have the same captioning model. All processing
times are below 100 ms. Increasing the attention resolution from
14 × 14 to 27 × 27 doubles the processing time in all cases. The
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comparison between Case 1&2 and Case 4 shows that adding
full attention guidance nearly doubles the processing time.

V. CONCLUSION

In this paper, we proposed a fine-grained and semantic-
guided attention mechanism over a novel end-to-end FCN-
LSTM framework for image captioning for the first time. Our
model achieves state-of-the-art performance on the MSCOCO
dataset compared with models using the VGG-based encoder.
Moreover, the framework of our model can be easily adapted
to all approaches that are based on soft-attention. The results
show that our model has huge potential for a comprehensive
attention method on the abstract visual relationship. Moreover,
our framework could have a broad application in other tasks,
like Image QA.
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