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Abstract

We propose a generalization of randomized smoothing (RS) that uses noise drawn
from a mixture of K Gaussians. We prove that, under a mild Lebesgue integrability
condition on the base classifier, the proposed method is decomposable into any
one of K! equivalent, K-step sequential applications of standard RS. We leverage
this multitude of decompositions to show that the mixture-of-Gaussians smoothed
classifier inherits Lipschitz continuity from the strongest Lipschitz bound amongst
its standard RS constituents. Consequently, we prove that the ℓ2-certified radius of
the proposed method is inherited from the largest certified radius of its constituents;
the mixture-of-Gaussians smoothed model is at least as robust as smoothing with
each of the Gaussians individually. CIFAR-10 experiments show that the proposed
model exhibits comparable clean accuracy (i.e., zero attack radius) and maximum
certified radius to those of standard RS using its maximum-variance constituent,
while significantly improving certified accuracy at intermediate attack radii.

1 Introduction

Due to their impressive capabilities in a variety of challenging data-driven tasks, machine learning
models are seeing increased deployment in safety-critical applications, such as self-driving vehicles
[1, 2] and power grid operations [3]. As such, it is imperative to ensure that these models operate
reliably, even in the presence of unreliable data such as adversarial attacks, i.e., imperceptible
manipulations in the input data that are maliciously designed to cause system failures [4, 5, 6].

One of the most popular methods for defending against adversarial attacks is randomized smoothing
(RS), which drowns out the effects of data manipulation by classifying based on the average—or
most probable—prediction of a collection of intentionally corrupted, noisy variants of the input
[7, 8, 9]. In general, altering models to enhance robustness, for instance via RS, comes at the expense
of some predictive accuracy, inducing an accuracy-robustness tradeoff [10, 11]. Various methods
have been introduced to push the Pareto frontier of accuracy and robustness, including by combining
randomized smoothing with adversarial training [12, 13, 14], optimizing the noise distribution used
by RS [15], and interpolating at test time between different models that are pretrained to either
optimize accuracy or robustness [16]. However, achieving high levels of robustness via RS relies on
using high-variance noise, which can result in over-aggressive smoothing and lead to decision region
shrinkage—a detriment to classwise accuracy [17]. On the other hand, RS with small-variance noise
can maintain high accuracy, but the resulting robustness tends to be lackluster.

In this work, we generalize RS to incorporate a range of variances in the smoothing noise. Specifically,
we propose to smooth models using mixtures of Gaussians with differing variances. To our surprise,
this idea has found minimal exploration in the literature, despite being a rather obvious “next step” to
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build off standard RS that uses a single Gaussian. To the best of our knowledge, the only other work
that explicitly considers RS with mixtures-of-Gaussians is tucked away in Appendix B.1 in Eiras
et al. [18]. However, their certified radius is proven based on Lipschitzness of the smoothed classifier
g, rather than on the much stronger Lipschitzness of Φ−1 ◦ g (the composition with the inverse
standard normal cumulative distribution function). This results in their certified radii of robustness
being significantly limited, as they are upper-bounded by 1√

2π
. We prove a much stronger Lipschitz

guarantee, and consequently much larger certified radii (Theorem 2) that enjoy unbounded growth
as the model becomes more confident. Also related is Lyu et al. [19], which consecutively applies
Gaussian smoothing to the input in an adaptive fashion (not a mixture of Gaussians), but their certified
radii scale with 1√∑K

k=1
1

σ2
k

, whereas ours takes a stronger form, scaling with maxk∈{1,...,K} σk.

1.1 Summary of Contributions

In this paper, we achieve the following contributions (with all proofs deferred to Appendix A):

1. We formalize a new variant of RS that uses a mixture-of-Gaussians smoothing distribution.
2. We prove that, under a mild Lebesgue integrability condition, the proposed method is

equivalent to sequential application of standard RS with a single Gaussian.
3. We leverage the sequential representation of our method to prove that the model inherits the

strongest Lipschitz bound amongst its standard RS constituents, and we use this bound to
prove an ℓ2-certified radius.

4. CIFAR-10 experiments show that the model’s clean accuracy and maximum certified ra-
dius rival standard RS using the maximum-variance Gaussian alone, and that the certified
accuracy of our model significantly increases at attack radii between these two extremes.

2 Proposed Method

Let f : Rd → {1, . . . , n} be a pretrained n-class base classifier defined by

f(x) = argmax
i∈{1,...,n}

gi(x),

where g : Rd → Rn is the underlying soft classifier. Often, the score vector g(x) is a probability
vector in the simplex ∆n−1 := {y ∈ [0, 1]n :

∑n
i=1 yi = 1} (e.g., when the model applies softmax to

the logits), which we will ultimately assume to hold in our certificates of Theorem 1 and Theorem 2
that follow. We propose to smooth the base classifier using a mixture of Gaussians. To do so, let
µ1, . . . , µK ∈ Rd be K mean vectors, and let Σ1, . . . ,ΣK ∈ Rd×d be K positive semidefinite
covariance matrices. Our mixture-of-Gaussians distribution is taken to be the K-fold convolution

MoG := N1 ∗ · · · ∗ NK ,

where every Nk := N (µk,Σk) is a normal distribution with mean µk and covariance Σk. Thus,
ϵ ∼ MoG if and only if ϵ = ϵ1 + · · · + ϵK with independent ϵk ∼ Nk for all k. Our proposed
smoothed classifier is defined by

f(x) = argmax
i∈{1,...,n}

gi(x), g(x) = Eϵ∼MoG[g(x+ ϵ)].

This form of smoothing, expressed in terms of expectations of the model’s probability vector, has
been popularized in recent years and is known as soft smoothing [20, 13, 21]. In cases where the base
classifier has codomain ∆n−1, soft smoothing recovers hard smoothing, as originally formulated
in [8], as the entropy of the model’s probability vector decreases to zero (which can be enforced in
practice by using a temperature-scaled softmax) [12]. In the case that K = 1, µ1 = 0, and Σ1 = σ2Id
for some σ > 0, our method reduces to standard RS using a single isotropic Gaussian.

3 Analysis and Certification of the Model

A key property underlying our mixture-of-Gaussians smoothing method is that it can be viewed as a
sequential application of standard RS, in any order, under a Lebesgue integrability assumption.
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Assumption 1. It holds that Eϵ∼MoG[|g(x+ ϵ)|] < ∞.

Proposition 1. Let σ : {1, . . . ,K} → {1, . . . ,K} be an arbitrary permutation. If Assumption 1
holds, then the following sequential relationship holds:

h1(x) := Eϵσ(1)
[g(x+ ϵσ(1))],

h2(x) := Eϵσ(2)
[h1(x+ ϵσ(2))],

...
g(x) = hK(x) := Eϵσ(K)

[hK−1(x+ ϵσ(K))].

Assumption 1 is mild in practice. For instance, when g has codomain ∆n−1, as is the case for models
with softmax at the output, we see that Eϵ∼MoG[|g(x+ ϵ)|] ≤ 1 < ∞, so Assumption 1 holds.

As a consequence of our model being equivalent to sequential standard smoothing, we obtain strong
Lipschitz continuity guarantees (Theorem 1), as well as certified radii (Theorem 2):

Theorem 1. Assume that g has codomain ∆n−1, suppose that Σk = σ2
kId for all k ∈ {1, . . . ,K},

and let Φ: R → [0, 1] denote the cumulative distribution function of N (0, 1). It holds for all
i ∈ {1, . . . , n} that x 7→ Φ−1(gi(x)) is L-Lipschitz continuous with L = mink∈{1,...,K}

1
σk

.

Theorem 2. Assume that g has codomain ∆n−1 and suppose that Σk = σ2
kId for all k ∈ {1, . . . ,K}.

Let x ∈ Rd. It holds that f(x+ δ) = y := f(x) for all δ ∈ Rd such that

∥δ∥2 ≤ r(x, y) :=
maxk∈{1,...,K} σk

2

(
Φ−1(gy(x))− Φ−1

(
maxy′ ̸=y gy′(x)

))
. (1)

Remark 1. Theorem 2 recovers the certified radius in Cohen et al. [8, Theorem 1] when K = 1.

Theorem 1 shows that mixture-of-Gaussians smoothing results in a model that is at least as smooth
(as measured by the Lipschitz constant) as the model would be if it were smoothed using any one
of the Gaussians on their own. On the other hand, Theorem 2 takes a bit more care to fully dissect.
Roughly, the result can be interpreted as mixture-of-Gaussians smoothing giving rise to certified radii
at least as large as those generated by standard smoothing with the maximum-variance Gaussian
alone. However, the certified radii of mixture-of-Gaussians smoothing can, in theory, be strictly
stronger than those obtained by simply performing standard RS with the maximum-variance Gaussian.
The intuition is this: the Gaussian random vector ϵk ∼ N (0, σ2

kId) concentrates near the boundary
of the zero-centered ℓ2-ball of radius σk

√
d [22, Theorem 3.1.1]. Therefore, by including noise

from N (0, σ2
kId) with σk < max{σ1, . . . , σK} in the smoothing procedure, we are including in the

average score calculation additional predictions generated by inputs within a closer vicinity of x,
specifically, within the interior of the ball {x′ ∈ Rd : ∥x′ − x∥2 ≤ max{σ1, . . . , σK}

√
d}. These

noisy samples that are closer to x are likely to have classification probabilities that are similar to
the baseline g(x) (due to the continuity of most practical base classifiers g). Therefore, if the base
model’s prediction, as encoded by g(x), is correct in the first place (which is typically the case for
many well trained base classifiers), then the close samples help boost the confidence in that prediction,
resulting in an increased margin gy(x)−maxy′ ̸=y gy′(x), and thereby increase the certified radius
as evidenced by the form of (1).

These theoretical insights of the certified radius of Theorem 2 suggest that there are possible benefits
to “filling out” the interior of the ball over which the (majority of the probability mass of the)
smoothing operation is being carried out, rather than simply concentrating the smoothing noise on the
ball’s boundary as is done in standard RS. Interestingly, smoothing with entirely “filled out” uniform
distributions over ℓp-norm balls has been explored in the prior work Yang et al. [23]. However, their
certified ℓ2-radius (their Theorem S.1) takes a more complicated form than ours, it is bounded above,
and it is numerically shown to yield close, but slightly smaller certified radii than standard Gaussian
RS on CIFAR-10. Conversely, our certified radius formula is a natural and intuitive extension of
the well-known radius from standard RS [8, Theorem 1], it enjoys unbounded growth as the model
becomes more confident (i.e., as gy(x) approaches 1), and we find that our formula together with
our mixture-of-Gaussians approach for filling out the ball’s interior manifests in significant certified
accuracy increases in our CIFAR-10 experiments that follow.
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4 Experiments and Discussion

As is standard in the RS literature, we evaluate our certified accuracies against a range of ℓ2-attack
radii (i.e., at a given attack radius, we compute the percentage of the test set with certified radius at
least as large as the attack). We conduct our experiments on the CIFAR-10 dataset by modifying
the open-source codebase Cohen et al. [24] (that implements standard RS Cohen et al. [8] with a
fixed, pre-trained base classifier) to sample smoothing noise from a mixture of Gaussians rather than
a single Gaussian, and we utilize our certified radius formula (1). We implement our method with
mixtures of zero-mean, isotropic Gaussians, i.e., Nk = N (0, σ2

kId), so that our robustness certificates
in Theorem 1 and Theorem 2 hold. We evaluate certified accuracy curves for varying numbers of
Gaussians, K, as well as varying ranges of standard deviations, σk. The K standard deviations are
uniformly spaced apart. We remark that standard RS corresponds to K = 1.

Figure 1 shows the results for varying Gaussians counts, K. It is observed that increasing K increases
the certified accuracy, with significant improvements found at larger attack radii. This finding
corroborates the theoretical discussion following Theorem 2; using more Gaussians permits the
samples to “fill out” the ℓ2-sphere that is being averaged over which tends to increase confidence,
thereby boosting certified radii. It can also be observed that the “endpoints” of the mixture-of-
Gaussians certified accuracy curves are quite close to those of the standard RS curve corresponding to
the maximum-variance Gaussian (σ = 0.5 in the left plot, σ = 1 in the right plot). That is, mixture-
of-Gaussians smoothing has comparable clean accuracy (left endpoint) and maximum certified radius
(right endpoint) to standard RS with the maximum-variance Gaussian, yet the certified accuracies at
intermediate radii are seen to significantly increase. This suggests that, instead of performing standard
RS at some chosen variance, one may significantly benefit robustness by introducing lower-variance
Gaussians to the smoothing scheme, at the possible expense of small decreases in accuracy.

Figure 2 shows the results for varying standard deviation intervals. We see that the certified accuracy
curves are primarily controlled by the maximum variance, with relatively little effect due to the
minimum variance. This suggests that the mixture-of-Gaussians boost in the certified radii could
be mainly attributed to “filling in” an annulus near the surface of the maximum-variance ℓ2-sphere,
and less attributed to including samples very close to the input. Explicitly teasing out the effects of
sampling from various regions of the input space poses an interesting direction for future research.
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Figure 1: Certified accuracies for various Gaussian counts K, compared with standard RS (K = 1).
Left plot uses standard deviations in the interval [0.25, 0.5], right plot uses the interval [0.5, 1].
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Figure 2: Certified accuracies for various standard deviation intervals, with K = 10.
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A Proofs

Proposition 1. Let σ : {1, . . . ,K} → {1, . . . ,K} be an arbitrary permutation. If Assumption 1
holds, then the following sequential relationship holds:

h1(x) := Eϵσ(1)
[g(x+ ϵσ(1))],

h2(x) := Eϵσ(2)
[h1(x+ ϵσ(2))],

...
g(x) = hK(x) := Eϵσ(K)

[hK−1(x+ ϵσ(K))].

Proof of Proposition 1. Since all of the relationships are definitions except for g(x) = hm(x), this is
the only equality that needs to be proven. Suppose that Assumption 1 holds. Then, Fubini’s theorem
applies to the expectations under consideration, so we find that

hK(x) = Eϵσ(K)
[hK−1(x+ ϵσ(K))]

= Eϵσ(K)
[Eϵσ(K−1)

[hK−2(x+ ϵσ(K) + ϵσ(K−1))]]

...
= Eϵσ(K)

Eϵσ(K−1)
· · ·Eϵσ(2)

[h1(x+ ϵσ(K) + ϵσ(K−1) + · · ·+ ϵσ(2))]

= Eϵσ(K)
· · ·Eϵσ(1)

[g(x+ ϵσ(K) + · · ·+ ϵσ(1))]

= Eϵσ(K),...,ϵσ(1)
[g(x+ ϵσ(K) + · · ·+ ϵσ(1))]

= Eϵ∼MoG[g(x+ ϵ)]

= g(x).

Theorem 1. Assume that g has codomain ∆n−1, suppose that Σk = σ2
kId for all k ∈ {1, . . . ,K},

and let Φ: R → [0, 1] denote the cumulative distribution function of N (0, 1). It holds for all
i ∈ {1, . . . , n} that x 7→ Φ−1(gi(x)) is L-Lipschitz continuous with L = mink∈{1,...,K}

1
σk

.

Proof of Theorem 1. We may assume that every µk = 0 without loss of generality, since, for ϵk ∼ Nk,
we may always absorb the mean into the input x as follows: Eϵk [g(x+ ϵk)] = Eϵ′

k
∼N (0,σ2

k
Id)

[g(x+

µk + ϵ′k)] = Eϵ′
k
∼N (0,σ2

k
Id)

[g(x′ + ϵ′k)], where x′ = x+ µk.
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Let k ∈ {1, . . . ,K} be arbitrary, and let σ : {1, . . . ,K} → {1, . . . ,K} be a permutation satisfying
σ(K) = k (which obviously exists). By Proposition 1, the following decomposition holds:

h1(x) := Eϵσ(1)
[g(x+ ϵσ(1))],

h2(x) := Eϵσ(2)
[h1(x+ ϵσ(2))],

...
g(x) = hK(x) := Eϵk [hK−1(x+ ϵk)].

Therefore, g is the model obtained through standard RS applied to the function hK−1, using the
smoothing distribution N (0, σ2

kId). Hence, Zhai et al. [12, Lemma 1] gives that x 7→ Φ−1(gi(x)) is
1
σk

-Lipschitz continuous for all i ∈ {1, . . . , n}. Since k is arbitrary, the result follows.

Theorem 2. Assume that g has codomain ∆n−1 and suppose that Σk = σ2
kId for all k ∈ {1, . . . ,K}.

Let x ∈ Rd. It holds that f(x+ δ) = y := f(x) for all δ ∈ Rd such that

∥δ∥2 ≤ r(x, y) :=
maxk∈{1,...,K} σk

2

(
Φ−1(gy(x))− Φ−1

(
maxy′ ̸=y gy′(x)

))
. (1)

Proof of Theorem 2. This follows from the same argument used in the proof of Zhai et al. [12,
Theorem 2], with the Lipschitz constant L = mink∈{1,...,K}

1
σk

= 1
maxk∈{1,...,K} σk

from Theorem 1.
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