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ABSTRACT

Recent developments in language models have sparked interest in developing ef-
ficient pretraining methods. A recent and effective paradigm is to perform stage-
wise training, where the depth of the model is gradually increased over the course
of training starting from a shallow network (e.g. gradual stacking (Reddi et al.,
2023)). While this is appealing since it yields resource and wall-time savings, it
has limitations, particularly the inability to assess and evaluate the full model per-
formance during earlier stages, and degradation in model quality due to smaller
capacity of models in the initial stages. In this work, we propose an alterna-
tive framework, progressive subnetwork training, that maintains the full model
throughout training, but only trains subnetworks within the model in each step.
We empirically focus on a simple instantiation of this framework — Random
Path Training (RAPTR) — that only trains a sub-path of layers in each step, pro-
gressively increasing the path lengths in stages. We demonstrate that RAPTR
achieves better pre-training loss for BERT and UL2 language models while re-
quiring 20-33% fewer FLOPs compared to standard training, and is competitive or
better than gradual stacking at similar FLOPs. Furthermore, RAPTR shows better
downstream performance on UL2, improving multiple QA and SuperGLUE tasks
by 1-5% compared to standard training and stacking. Finally, we provide theoret-
ical basis of RAPTR for residual networks by characterizing their stability due to
residual connections and layer norm.

1 INTRODUCTION

Large network based language models (e.g. Transformers) have revolutionized the field of NLP. In-
triguingly, these language models have demonstrated remarkable emergent abilities that only begin
to manifest at large scales. However, training such large models is usually very slow and resource
intensive (Brown et al., 2020; Touvron et al., 2023; Chowdhery et al., 2022). This has sparked
interest in efficient training of large models, necessitating the development of new algorithms and
paradigms for efficient pretraining. Traditionally, this was accomplished by designing better opti-
mization algorithms (e.g. (Liu et al., 2023a; Chen et al., 2023; Gupta et al., 2018; Shazeer & Stern,
2018)) that require fewer training steps to reduce the loss. Recently, other training paradigms have
garnered interest. The most prominent in this line of research is that of stagewise training. These
approaches typically train large models in stages, starting with cheaper training in the early stages,
which can find a good initializer for expensive later stages. This powerful framework was shown to
drastically reduce the training iterations need to train the full large model.

Gradual stacking (Reddi et al., 2023) and Progressive stacking (Gong et al., 2019) are instantiations
of aforementioned stagewise training paradigm. Progressive stacking trains deep neural networks
in stages, starting with a small network and doubling the number of layers at each stage, until the
desired depth is reached. At each stage, the parameters of the previous stage are stacked onto itself
to initialize the larger network. Instead of simply doubling the network, Gradual stacking proposes
to increase the network depth in a gradual manner; thereby, yielding better resources and wall-time
savings. Overall, by using this framework, Reddi et al. (2023) demonstrated that one can obtain
more than 2x speed up in BERT pretraining by gradually growing the network depth. They also
empirically demonstrate the training performance is sensitive to the (stacking) schedules; thus, the
optimal schedule indeed requires a careful grid search. Furthermore, it is not possible to assess and
evaluate the performance of the full model during earlier stages of stacking (i.e., it is not an anytime
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algorithm). It should also be emphasized that stacking approaches use a much smaller model for part
of the training, which can possibly hamper the quality of the model (e.g. long term memory of the
Transformer (Geva et al., 2021)). Intuitively, this is especially problematic for single epoch training
of language models where each data sample is only used once during training. As we shall see later,
this is reflected in the downstream performance of stacking based approaches (see section 3.2).

In this paper, we study a novel stagewise training approach which addresses the above limitations.
Unlike stacking, where different stages train models of different sizes, we maintain a common base
model of interest and train sub-networks of varying complexities within this model. More precisely,
in each stage we perform forward and backward passes over a randomly sampled subset of layers
within the model, progressive increasing the number of layers in each stage. This can be achieved
using a simple recipe: (a) drop out layers randomly with certain probability during forward and
backward passes (along with careful rescaling), and (b) progressively decrease the dropout proba-
bility to zero over time. Similar to stacking, this can reduce the total FLOPs in the initial stages
while providing a good initialization for the final full model training. However, in contrast to stack-
ing, it allows us to track the full model throughout training. We demonstrate that this simple strategy
is very effective at making training more efficient.

While dropping layers during training has been explored in the past, their motivation is either ef-
ficient inference by reducing effective model depth, regularization effects or saving wall-clock to-
wards the end of training by increasingly dropping more layers later (Fan et al., 2019; Zhang et al.,
2019; Liu et al., 2023c). Our idea of progressive subnetwork training is fundamentally different
in motivation and implementation from these works (see Section 5). We now state the following
primary contributions of this paper.

• We introduce a novel stagewise training subnetwork (section 2) that enables tracking the perfor-
mance of the final model in all stages. Specifically we explore Random Path training (RAPTR)
that trains a path comprised of a random subset of layers, with the average length of path progres-
sively increasing in stages. We introduce ideas like scaling outputs for missing layers and fixing
some layers in the net for improved performance.

• We conduct extensive comparisons between gradual stacking and RAPTR on BERT (Devlin et al.,
2018) and UL2 language models. On BERT-Base, RAPTR demonstrates notable improvements in
the pretraining loss when compared to gradual stacking at similar FLOPs, while also being better
than baseline training with 33% lesser FLOPs. The benefits of RAPTR on BERT training are
especially significant in the short horizon setting (few epoch training).

• For UL2-1.6B language model (Tay et al., 2022), RAPTR can match the pretraining perplexity
of baseline training with 20% fewer FLOPs. Interestingly, we observe significant improvements
in downstream evaluations, e.g. we see 3-5% absolute increase in 1-shot exact match scores on
TydiQA (Clark et al., 2020) and SQuADv2 (Rajpurkar et al., 2018) compared to baseline and
gradual stacking. Additionally, compared to baseline training, RAPTR has a lot lesser variance
over training runs, indicating implicit benefits of stage-wise training for downstream performance
stability (section 3.2).

• We provide a theoretical study to analyze sufficient conditions under which RAPTR yields good
initializers across stage transitions (section 4). We characterize a stability condition with respect
to dropping of layers that can lead to smooth transition of loss across stages. Illustrative examples
with linear networks are presented to show how layernorm and residual connections can help
with this stability.

2 PROGRESSIVE SUBNETWORK TRAINING

Notation. We use [n] denotes the set {1, 2, . . . , n}. a1:k is used to denote a sequence of k scalars
a1, . . . , ak ∈ R, and x1:k to denote a sequence of k vectors x1, . . . ,xk ∈ Rd. We alternately also
use X ∈ Rn×d to denote a matrix containing a sequence x1:n as rows.

We consider the setting where the goal is to learn an L-layer sequence-to-sequence neural network.
(e.g. standard Transformer network).

Definition 2.1 (L-layer sequence-to-sequence model). Let f1, · · · , fL : RN×d → RN×d denote
a set of L sequence-to-sequence functions Then, F : RN×d × RL → RN×d with a sequence
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input X ∈ RN×d and L scalars α1:L, outputs a sequence Y after a recursive computation with
intermediate sequences Y (1), · · · ,Y (L−1),Y (L), given by

Y (ℓ) = Y (ℓ−1) + αjfj(Y
(ℓ−1)) for all 1 ≤ ℓ ≤ L.

Here Y (0) denotes X for simplicity and output Y is equal to Y (L).

Standard model training is represented by the backbone function F , where αi = 1 for i ∈ [L]. For
simplicity, given an input sequence X , we will use F (X) as the output and Y (1),Y (2), · · · ,Y (L)

as the intermediate layer outputs of F under standard model training, unless specified otherwise.
The output of the model is passed through a function H : Rd → RV that projects the model output
into V -dimensional logits, where V is the vocabulary size. For an example X , cross-entropy loss
based on true labels is denoted as L(H ◦F (X)) (or L(F (X)) when H is clear from context). Note
that this notation hides the true labels for the ease of exposition. The final loss is then defined as
L(F ) = EX∼D[L(F (X))] for the input distribution D.

Given such a setting, progressive subnetwork training, a stagewise training framework, consists of
two crucial components:

1. Subnetwork selection & rescaling: At each iteration, we select a (possibly random) sub-
network of the L-layer neural network. The forward and backward passes are computed
based on this subnetwork network along with appropriate scaling (e.g. Section 2.1)).

2. Progressive subnetworks: In stages, we progressively increase the size of the subnetworks
starting from small subnetworks and end with the complete network in the final stage.

We note that this framework is quite general. To make it more concrete, in the following section, we
provide a simple but powerful instantiation of the framework based on random paths.

2.1 RANDOM PATH TRAINING: RAPTR

One simple approach to select a subnetwork is by skipping a few layers and choosing a path. More
concretely, given a network F to be trained, we pick a random subset of layers for the forward pass
and bypassing the rest of the layers using the residual connections. Let p denotes the probability of
randomly selecting a layer subnetwork and I denotes a subset of layers that are always included, i.e.
they are never bypassed. We define the following before describing RAPTR in more detail.
Definition 2.2 ((p, I)-subnetwork). Let ζ1:L be Bernoulli samples, with ζi = 1 for all i ∈ I, while
ζi ∼ B(p) for all i ̸∈ I. The set of all layers for which ζi = 1 represents a random subnetwork
while layers with ζi = 0 are bypassed. The output of the selected subnetwork on a sequence input
X is equivalent to the output of the model given by F (X, ζ1:L).

The pseudo-code for RAPTR is provided in Algorithm 1. On a high level, the total training is split
into k stages. Each stage s uses (ps, Is)-subnetwork between steps Ts and Ts+1. We denote this
schedule by T1:k × (p1:k, I1:k). Importantly, we progressively increase the random subnetwork
selection pattern across stages i.e., the expected length of the selected random subnetworks is in-
creased progressively towards full model training. This can be achieved by either increasing the
probability of including each layer in random subnetwork or fixing more layers in I· or both. More
formally, we use schedules T1:k × (p1:k, I1:k) that satisfies: (a) ps ≤ ps̃, and (b) Is ⊆ Is̃ for all
1 ≤ s ≤ s̃ ≤ k.

Note that each training step in RAPTR involves computing forward and backward passes only on
random subnetwork. In expectation, training a (p, I) random subnetwork will require |I|+(L−|I|)p

L
FLOPs relative to standard training that uses all L layers. By using ps ≪ 1 for most part of training,
RAPTR can significantly increase the training efficiency.

Scaling to maintain identity. While working on subnetworks, it is important to appropriately
rescale the network. In particular, bypassing layer(s) in RAPTR can shift the input distribution
for layers compared to the full model. To mitigate this shift, we scale the output of the layers to
maintain the norms of the input to each layer throughout training. The idea of scaling layer out-
puts has also been explored in prior work Huang et al. (2016); Fan et al. (2019).We use a different
square-root scaling mechanism that is motivated by analysis on a randomly initialized Transformer
architecture. We show that at initialization, the norm of the intermediate outputs y(ℓ) scale as

√
ℓ.
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Algorithm 1: k-stage RAPTR

Require: Blocks fθ1 , · · · , fθL , Schedule T1:k × (p1:k, I1:k), total steps T , data and label
distribution D. Boolean scale whether to scale unskipped layers.
Initialize θ1, · · · , θL, Tk+1 = T .
for s = 1 → k do

for t = Ts → Ts+1 do
Sample batch (X,Y ) ∼ D.
Sample ζi ∼ B(1) for all i ∈ Is, and ζi ∼ B(p) for all i ̸∈ Is.
if scale is True then ζ1:L = hsqrt(ζ1:L) ;
else ζ1:L = ζ1:L ;
Set F0(X, ζ1:L) = X
for j = 1 → L do

if ζi = 0 then Fj(X, ζ1:L) = Fj−1(X, ζ1:L) ;
else Fj(X, ζ1:L) = ζjfθj (Fj−1(X, ζ1:L)) + Fj−1(X, ζ1:L) ;

end for
Compute loss with output FL(X, ζ1:L) and labels Y , and take a gradient step.

end for
end for

Theorem 2.3 (Informal, cf theorem F.11). At random initialization, given any input sequence x1:N

and scalars α1:L, with high probability the intermediate layer outputs of F (definition 2.1) satisfy∥∥∥y(ℓ)
i

∥∥∥2
2
= ∥xi∥22 +Θ(

ℓ∑
j=1

α2
jd), for all 1 ≤ i ≤ N, 1 ≤ ℓ ≤ L.

Inspired by this, we define the function hsqrt that takes in a sequence of binary values ζ1:L ∈ {0, 1}L
and returns scalars ζ1:L where ζi is the scaling for output of layer i. We find a scaling that satisfies
the following two conditions hold (a)

∑j
i=1 ζi

2
= j for all j ≤ L (maintaining the norm), and (b)

ζi = 0 if ζi = 0 for all i ≤ L (maintaining layers in random subnetwork). Formally, for each index
j, it finds the index minimum j̄ > j with ζj̄ = 1 and sets ζj =

√
j̄ − j. The RAPTR algorithm with

square root scaling is presented in algorithm 1. In Figure 1 we compare square root scaling with
some other scaling methods and find it to be slightly better.

Fixing first and last layers. For RAPTR, we chose to always keep the first and layers during
training. The intuition is that since the first and last layers play different roles compared to the
middle layer because they touch the input and output embeddings. Ablations in Figure 1 suggest
that fixing these layers improves the pretraining loss throughout the trajectory. In particular, for an
L-layer network we fix the set I = {1, L} (Definition 2.2) for most subsequent experiments.

Next, we discuss our empirical findings before proceeding to the theoretical analysis (Section 4).

3 EXPERIMENTS

In this section, we present comprehensive experiments that compare RAPTR with standard baseline
training and gradual stacking for standard BERT and UL2 language models. We primarily choose
stacking for comparison given the recent findings in (Kaddour et al., 2023) that show stacking to be
the best (and only) efficient training method that can beat baseline over different training horizons.

Notations for RAPTR and stacking schedules. We succinctly denote the stage schedules by a
set of network lengths separated by hyphens. For gradual stacking, schedule 6-12-18-24 refers
to 4 stages with a 6, 12, 18 and 24 layer model training respectively. For RAPTR train-
ing with a 24-layer model, 6-12-18-24 refers to 4 stages, with (p, I) = ( 4.

22. , {1, 24}) ran-
dom subnetwork training in the first stage which translates to sub-nets of length 6, followed by
( 10.22. , {1, 24}), (

16.
22. , {1, 24}), (1., {1, 24}) in the next 3 stages. These correspond to 12, 18, and 24

expected length subnetwork respectively. Unless specified otherwise, we maintain an equal number
of training steps for each stage.
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Figure 1: Ablation study on choices for RAPTR algorithm. We train BERT-base with RAPTR for
100k steps with a 6-8-10-12 schedule (see Section 3). Left to right: (a) Square-root scaling (hsqrt)
has better validation loss compared with linear scaling and no scaling at training, especially in the
earlier stages. With no scale, we scale layer’s output by 1/pi during inference (following Huang
et al. (2016)). (b) Different candidates for the fixed set I are compared for RAPTR. We find that
training with first and last layers fixed helps faster training.

3.1 EXPERIMENTS WITH BERT

Experiment setup. We pretrain BERT models (Devlin et al., 2018) on Wikipedia + Books dataset
with AdamW optimizer (Loshchilov & Hutter, 2019). For all the experiments with BERT-BASE
and BERT-LARGE, the total number of training steps is set to 675K and 1M steps, respectively. We
report the evaluation loss and fine-tuning performance of the trained models on 3 GLUE tasks (Wang
et al., 2018). Please see appendix B for more experimental details.

Results at equal training steps. We observe that RAPTR achieves similar or better evaluation
loss to baseline training, despite baseline training using 33% more FLOPs than RAPTR for BERT-
BASE. Compared to gradual stacking at similar FLOPs, RAPTR again has better validation loss.
Additionally, all three methods exhibit similar performance in downstream fine-tuning tasks (see
Table 1).

Results at equal FLOPs. Inspired by Kaddour et al. (2023), we further compare RAPTR and
gradual stacking to baseline training by adjusting the number of training steps of baseline training to
match its FLOPs to RAPTR. In Table 2, we compare these methods at three different FLOPs budgets.
For BERT-BASE, we observe that at shorter FLOP experiments, RAPTR achieves better much
validation loss compared to baseline training and gradual stacking. This difference gets smaller as
we move to larger horizon settings. Similar findings for BERT-LARGE.

Table 1: Loss and fine-tuning results on 12-layer BERT at 675K steps and equal peak learning rate
(10−4). Key observations: (a) RAPTR achieves similar loss as baseline at 75% reduced FLOPs. (b)
RAPTR achieves 0.02 better evaluation loss than gradual stacking for same schedules. (c) All meth-
ods exhibit similar performance in downstream fine-tuning task, with RAPTR having a slight edge.

Relative FLOPs Eval Loss MNLI QNLI SST-2

Baseline 1.33 1.76 81.5 90.5 91.4

Gradual Stacking

6-8-10-12 1 1.78 - - -
6-9-12 1 1.77 80.9 89.8 91.1

RAPTR

6-8-10-12 1 1.75 82.1 89.8 92.4
6-9-12 1 1.75 - - -

3.2 EXPERIMENTS WITH UL2-1.6B

Experiments on BERT (Section 3.1) show that RAPTR and stacking outperform baseline training
at equal FLOP comparisons for short horizon settings, equivalently with few training epochs. This

5



Under review as a conference paper at ICLR 2024

Table 2: Equal FLOPs comparisons for BERT-BASE and BERT-LARGE with extensive peak LR
tuning. For BERT-BASE we use the schedule 6-8-10-12 for RAPTR and 6-9-12 for stacking. For
BERT-LARGE, we use 6-12-18-24 for both RAPTR and stacking. FLOPs denotes the number
of steps involved in baseline training. Key observations: for BERT-BASE (a) RAPTR achieves
better loss compared to baseline at all FLOP measures, with larger differences for fewer FLOPs.
(b) RAPTR has 0.02 better loss than gradual stacking at all FLOP levels. (c) For BERT-LARGE,
stacking and RAPTR are competitive to each other at all FLOP counts. Both methods have 0.03 −
0.07 better loss than baseline at lower FLOP measures.

BERT-base BERT-large

FLOPs Baseline Stacking RAPTR FLOPs Baseline Stacking RAPTR

75k 2.09 2.02 2.01 62.5k 1.84 1.78 1.80
170k 1.90 1.88 1.86 140k 1.63 1.60 1.61
510k 1.74 1.75 1.73 625k 1.40 1.41 1.41

prompts us to consider whether similar disparities emerge in scenarios where only one or a few
training epochs are feasible, e.g. training billion-parameter language models on large text corpora.

We pretrain a 1.6B decoder-only UL2 model (Tay et al., 2022) with 24 layers. We use Adafac-
tor (Shazeer & Stern, 2018) optimizer and train with a batch size 512 for 400k steps on a mixture
of Arxiv, C4 (Raffel et al., 2020), Github, and Wikipedia (Foundation) datasets, with mixing ratios
9%, 57%, 17%, 17% respectively. This roughly corresponds to 0.8 epochs of C4. Table 3 reports the
validation loss and downstream 1-shot performance without fine-tuning. Reported datasets include
Trivia QA (Joshi et al., 2017), Tydi QA (Clark et al., 2020), SQuADV2 (Rajpurkar et al., 2018), and
SuperGLUE (Wang et al., 2019). For QA tasks, we report Exact match scores, and report average
accuracy for SupreGLUE tasks. To reduce variance, we report average performance across 3 runs
for the most representative setting for each method. Please see appendix B for more experimental
details.

Schedules for RAPTR and gradual stacking. In table 3, we report for a schedule with 4 stages,
denoted by 12-16-20-24. The length of each stage has been adjusted appropriately to use 17% lower
FLOPs (equivalent to training with average path length of 20 out of 24) compared to the baseline
training. We evaluate an alternative subnetwork configuration that involves an initial full-model
training phase for 30K steps before transitioning to the RAPTR schedule. For parity in FLOPs, we
reduce 30K steps from the final training phase.

Results. Firstly at 20% FLOPs benefit, we find in Table 3 that RAPTR with 30K steps initial full
model training achieves similar evaluation perplexities to baseline training. Stacking on the other
hand is slightly worse at the same FLOPs as RAPTR. We find a better schedule for stacking and
report results in the Appendix (see Table 4). Overall RAPTR is still better than stacking and is more
robust to the schedule selection.

We also find that including 30K steps of full-model training at the start helps with all metrics, despite
not changing FLOPs. This is an added benefit of subnetwork training over stacking. Intriguingly, we
find that despite having similar validation perplexity, RAPTR has much better downstream metrics
compared to both baseline and stacking. The improvements are particularly large for TydiQA (3.8%)
and SuperGLUE (0.3%). This perhaps suggests an that RAPTR has a desirable implicit bias, a
phenomenon that has been recently studied for other pretraining settings (Saunshi et al., 2022; Liu
et al., 2023b). Another notable observation is that RAPTR has lower variance on all metrics and
is thus more stable to training runs (≈ 2% lower variance in both SquADv2 and TydiQA), again
pointing to some implicit benefits of stagewise training. We believe these inductive bias benefits of
RAPTR deserves further exploration.

Following Kaddour et al. (2023), we repeat experiments with baseline training with reduced training
steps to match total FLOPs to RAPTR and gradual stacking. Furthermore, for fair comparison,
we report the model with the best evaluation perplexity after baseline training with peak learning
rates tuned over {1, 1.5, 2} × 10−2 grid. Despite the tuning, we find RAPTR to have much better
perplexity and downstream metrics in this equal FLOPs setting.
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Table 3: Validation loss and 1-shot downstream evals on UL2-1.6B. Key observations: (a) RAPTR
with 30k initial training improves performance by atleast 2 − 4% on Trivia QA and SquADv2.
RAPTR is atleast 5% better than gradual stacking on various downstream tasks, (b) Compared to
baseline, RAPTR is 1 − 2% better on all downstream tasks on average. Reducing number of steps
of the baseline to match FLOPs hurts the baseline’s performance even after extensive tuning of peak
learning rate. (c) Stage-wise training achieves (1− 2%) lower variance on Tydi QA and SquADv2,
implying implicit benefits of stagewise training. † We report the best performance after tuning with
3 learning rates {1, 1.5, 2} × 10−3

Rel. FLOPs Eval Loss Trivia QA Tydi QA SQuADv2 SuperGLUE

Baseline 1.2 2.06 (0.01) 25.0 (0.2) 34.4 (3.1) 42.1 (2.9) 60.0 (0.4)

Equiflop Baseline† 1 2.07 (—-) 24.3 (—) 35.7 (—) 42.37 (—) 60.6 (—)

12-16-20-24 Stacking 1 2.08 (0.00) 20.1 (1.3) 28.6 (2.4) 36.0 (1.9) 60.4 (0.9)

12-16-20-24 RAPTR 1 2.08 (—-) 22.2 (—) 38.2 (—) 40.6 (—) 60.1 (—)

(+30k initial full-model train) 1 2.06 (0.00) 25.8 (0.2) 36.7 (1.0) 44.1 (0.5) 60.9 (0.2)

4 THEORETICAL FRAMEWORK USING LAYER STABILITY

This section provides insights and theoretical evidence for RAPTR approach. In our experiments,
we observe that the pretraining loss changes somewhat smoothly while transitioning from one stage
to another (please see fig. 4 in the appendix). This phenomenon suggests that the model trained with
shorter paths in an earlier stage is a good initializer for the next stage that uses longer paths. Here
we will examine the factors that help the model maintain its stability during the transitions between
stages. Inspired by Arora et al. (2018), we hypothesize that the model output is relatively stable to
noise introduced due to random subnetwork training . This stability to perturbations ensures that the
pretraining loss of the model does not deviate much as we switch from shorter subpaths to longer
ones in the next stage. The rest of the section formalizes this stability argument and shows how
residual connection and layernorm can help. All norms in this section refer to ℓ2 norm of a vector.

4.1 SUBNETWORK STABILITY

For simplicity, we restrict the discussion to sequences of length N = 1; generalization to N > 1
is fairly easy. To understand loss changes across stage boundaries, we consider two stage RAPTR:
the first stage trains with subnetwork of length L− 1 by dropping a single layer at random, and the
second stage trains the entire model. Suppose L1 and L2 denote the effective loss functions being
minimized in the two stages. The aim is to show that F learned in the first stage by minimizing L1

should also result in small value for L2.
Definition 4.1. Let F−ℓ denote the subnetwork obtained by skipping layer ℓ. The stability of net-
work output with respect to dropping layer ℓ is defined as Ψℓ(x) = ∥F−ℓ(x)− F (x)∥2

Our claim, that is formalized in Theorem 4.2 is that L2(F ) − L1(F ) is small if the stability scales
slower than the norm of the output.
Theorem 4.2 (Informal, cf theorem G.1). The difference between expected loss of (L− 1)-RAPTR

and L-RAPTR, i.e. |L2(F ) − L1(F )|, is upper bounded by C
LEx∈D(

∑L
ℓ=1 Ψℓ(x))/ ∥F (x)∥2 for

some constant C that depends on regularity properties of the head H on top of the backbone F .

The proof follows by observing that L1(F ) = 1
L

∑
ℓ∈[L] L(F−ℓ) and L2(F ) = L(F ). Thus, the

losses are close if F−ℓ is close enough to F for a random ℓ. This result shows that difference in
loss functions between two stages is small if the stability of the network output is small relative
to the network output. Thus, the relative stability of the network determines the success of the
approach. For the purpose of illustration, below we analyze these quantities for the special case of
linear residual networks.

4.2 ILLUSTRATIVE EXAMPLE: LINEAR NETWORKS

We consider a residual network where the layers f1:L are linear with parameters W1:L. The layer
output is yℓ = y(ℓ−1) +Wℓy

(ℓ−1) or yℓ = y(ℓ−1) +Wℓy
(ℓ−1)/

∥∥y(ℓ−1)
∥∥
2

depending on whether
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Figure 2: Stability study on BERT-LARGE trained for 50k steps with (L−1) RAPTR. Left to right:
Behavior of (a) norms of intermediate activations y(ℓ), (b) Ψℓ/Ψ1 (definition 4.1), and (c) Loss gap
between different random subnetwork F−ℓ and model F , given by L(F ) − 1

L

∑L
ℓ=1 L(F−ℓ). Key

observations: (a) Norms of the intermediate activations grow linearly with ℓ, (b) Ψℓ changes slowly
with ℓ as (Lℓ )

0.12, suggesting a worse-case bound of O(L−0.88) on L(F )− 1
L

∑L
ℓ=1 L(F−ℓ) based

on Theorem 4.2 (c) Interestingly, L(F ) ≤ 1
L

∑L
ℓ=1 L(F−ℓ), even when model is trained with L− 1

random subnetworks. We leave this observation for careful study in the future.

layernorm is enabled or disabled respectively . We also consider another setting which has layernorm
but no residual connection; so yℓ = Wℓy

(ℓ−1)/
∥∥y(ℓ−1)

∥∥
2
. The following result studies the scale

of Ψℓ and output norm from Theorem 4.2 for these setting.

Lemma 4.3. At random initialization where Wi ∼ N (0, d−1/2I), for any input x ∈ Sd−1, we have

(a) With residual connection & layernorm, we have Ψℓ(x) = O(
√
L/ℓ) and ∥F (x)∥2 = Ω(

√
L).

Thus 1
L

∑L
ℓ=1 Ψℓ(x) = O(1) and the gap in losses between stages is O(1/

√
L).

(b) Without residual connection, we have both Ψℓ(x) = Ω(1) and ∥F (x)∥2 = O(1). Thus the gap
in losses between stages is Ω(1).

(c) Without layernorm, we have Ψℓ(x) = Ω(2(L−1)/2) and ∥F (x)∥2 = O(2L/2) . Thus the gap in
losses between stages is Ω(1).

In the appendix, we further show similar results for perfectly aligned layers, where the parameters of
each layer are equal to some matrix A (lemma G.2). These examples captures the cases of perfectly
correlated and uncorrelated layers and show stability to subnetwork training in the presence of input
normalization layers. We can consider even more general scenarios, where the parameters of each
layer are expressed as the combination of Gaussian matrices and a shared matrix (Figure 3). For a
τ ∈ (0, 1), the parameters of each layer ℓ is represented as

√
τA+

√
1− τG(ℓ) for a shared matrix

A ∈ Rd×d with ∥A∥2 ≤ 1 and G(ℓ) ∼ N
(
0, 1√

d
I
)

. We run simulations and experimentally

observe that for each τ , Ψℓ ≈ (L/ℓ)0.5 (Figure 3b), while the output norm grows faster as Ω(L0.88)
(Figure 3a). A simple calculation shows that the gap between a L − 1 random subnetwork and the
full model scales as O(L−c) for some c ≥ 0.5 (Figure 3c).

5 RELATED WORKS

The literature on training deep networks is vast; thus, we mainly focus on the most relevant works.

Stagewise efficient pretraining. The most relevant stagewise pretraining is stacking, which was
introduced by Chen et al. (2015) for convolutional networks where they use function-preserving
initialization from small models to train a deep neural network efficiently. Gong et al. (2019) modi-
fied this process for a transformer model, where they stack a shallow transformer to obtain a deeper
model. This process has been further extended to other dimensions (e.g. width) by Gu et al. (2020),
Shen et al. (2022), Wang et al. (2023), and Gesmundo & Maile (2023) in the form of growth opera-
tors ensuring the loss is preserved while growing the network. In this paper, we mainly focused on
model depth expansion, but other growth operators also have an analog in our subnetwork training
framework. This exploration is left for future work.
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Figure 3: Behavior on a linear residual network with normalization layers with 100 random
samples from Sd−1, and dimension d = 100. The parameters of each layer ℓ is represented as√
τA +

√
1− τG(ℓ) for a shared matrix A ∈ Rd×d with ∥A∥2 ≤ 1 and G(ℓ) ∼ N

(
0, d−1/2I

)
.

Left to right: Behavior of (a) the norms of intermediate activation y(ℓ) with index ℓ, (b) Ψℓ

(definition 4.1) for each stack of layers Fℓ:L, and (c) 1
L

∑L
ℓ=1 Ψℓ(x)/ ∥F (x)∥2 that appears in our

bounds in theorem 4.2.

Stochastic depth. Our work is closely related to stochastic depth — a variant of structured dropout
that drops layers at random with fixed probability during training. Stochastic depth is mainly mo-
tivated from the perspective of training extremely deep residual networks without increasing the
training cost (Huang et al., 2016) . A key distinction is that these works keep the probability of
dropping layers fixed during training; thus, stochastic depth, similar to dropout, can be viewed as a
regularization mechanism, which is different from the role dropout plays in our work. Pham et al.
(2019) train very deep Transformers for speech with this approach and show its regularization ef-
fect. Similar techniques have been used for vision transformers (Steiner et al., 2021; Tolstikhin
et al., 2021). Fan et al. (2019) use fixed stochastic depth to train BERT models, and show that they
can select subnetworks of any depth from one large network without having to fine-tune and with
limited impact on performance, thus targeting inference efficiency as opposed to training efficiency.

Zhang & He (2020) used a schedule of stochastic depth for BERT pretraining where they explicity
increase the drop rate of the layers towards the end of training. Kaddour et al. (2023) report that
such a schedule, in fact, hurts the model performance significantly when compared to baseline and
stacking. In striking contrast, our work shows that decreasing drop out schedule and careful rescal-
ing enables faster training, and shows benefits in both pretraining and downstream performance (e.g.
Section 3.2). Liu et al. (2023c) took a different approach by studying the regularization benefits of
dropout and stochastic depth in training vision transformers to improves the test accuracy.

Subnetwork training. Training of random paths and subnetworks has been used in other contexts,
e.g. parameter efficient fine-tuning (Houlsby et al., 2019; Pfeiffer et al., 2021; Hu et al., 2022; Liu
et al., 2022) to reduce memory footprint, distributed and federated training (Dun et al., 2022) using
multiple machines, and incremental learning (Jathushan et al., 2019) to avoid forgetting in continual
learning. These ideas are not motivated by or used for reducing FLOPs during pretraining, to the
best of our knowledge.

6 CONCLUSION AND FUTURE WORK

This work proposes a stagewise training framework of progressive subnetwork training for efficient
pretraining, and evaluates a natural instantiation of this framework (RAPTR) based on training ran-
dom paths/subsets of layers. Overall RAPTR yields better quality language models than baseline
training, while reducing the total FLOPs by at least 20-30%. At the same speedup, its also better
the state-of-the-art depth-wise stacking approach. There are other stacking approaches with different
growth functions in the literature (see Section 5 for references), and exploring analogs of subnetwork
training for these growth functions could be a fruitful direction. From theory perspective, while the
current analysis provides insights into why the loss does not deviate much at stage boundaries, it does
not explain the intriguing stronger empirical finding that the loss decreases at the stage transitions.
Additionally, there is evidence of certain desirable inductive biases of RAPTR style training, e.g.
better downstream performance, smaller variance, which are not explained by our analysis. A bet-
ter understanding of these phenomena may provide valuable insights into the relationship between
various layers in the network, and could inspire other efficient training algorithms.
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Table 4: Additional rows from table 3: we compare baseline runs at two learning rate schedules, and
run compare RAPTR and Gradual stacking with a new 6-12-18-24 schedule. Key Observations:
(a) Cosine decay learning works best for the baseline, compared to Square-root schedule proposed
by Tay et al. (2022), (b) The performance of gradual stacking improves with the new schedule,
implying a performance dependence with appropriate scheduling, and (c) RAPTR’s performance
doesn’t change much with the new schedule.

Rel. FLOPs Eval Loss Trivia QA Tydi QA SQuADv2 SGLUE

Baseline (Square-root LR decay) 1.2 2.07 23.4 31.9 44.3 60.0
Baseline (Cosine LR decay) 1.2 2.06 25.0 34.4 42.1 60.0

Equiflop Baseline (Square-root LR decay) 1 - 32.1 22.1 - 60.9
Equiflop Baseline (Cosine LR decay) 1 2.07 24.3 35.7 42.37 60.6

6-12-18-24 Stacking 1 2.06 22.1 34.6 38.0 60.5
12-16-20-24 Stacking 1 2.08 20.1 28.6 36.0 60.4

12-16-20-24 RAPTR 1 2.08 22.2 38.2 40.6 60.1
(+30k initial full-model train) 1 2.06 25.8 36.7 44.1 60.9
6-12-18-24 RAPTR
(+30k initial full-model train) 1 2.06 24.2 37.3 42.3 61.1

A ADDITIONAL RELATED WORKS

Residual networks as ensembles. Training with random paths can be weakly viewed as ensem-
bles over paths, and the connection between ResNets (He et al., 2016) and ensembles of shallow
networks was first point out in Veit et al. (2016) for vision models. (Dong et al., 2021) showed
the same phenomenon for self-attention models, where longer paths lead to rank-collapse in the
self-attention module. Chang et al. (2023) study vision transformers (Dosovitskiy et al., 2020) as
a cascade of multiple paths and propose pruning and self-distillation to remove long paths and im-
prove performance. All these works mainly provide a novel perspective or inference efficiency but
do not focus on training efficiency.

Learnable scaling of residual blocks. Bachlechner et al. (2021), Zhang et al. (2019), Touvron et al.
(2021) consider learnable scales on the output of the residual blocks. These works aim to understand
favorable initialization of the learnable scales under various constraints for faster training, which is
very different from the role of scaling in our algorithm.

Early exit for efficient inference A lot of recent works have focused on improving inference ef-
ficiency for large language models. (Lei et al., 2023; Tay et al., 2022; Del Corro et al., 2023; Xin
et al., 2020; Zhou et al., 2020; Hou et al., 2020). However, none of these works focus on efficient
fine-tuning. Lei et al. (2023) modified pre-training by substituting resource-intensive MLP compu-
tations with straightforward classifiers for a predetermined fraction of tokens within the sequence.
It’s worth noting that their primary focus was on accelerating inference time rather than enhancing
the efficiency of the pre-training process.

B ADDITIONAL EXPERIMENT DETAILS

B.1 DETAILS FOR BERT

Equal step Pretraining The batch-size is set to 256 and 512 for BERT-BASE and BERT-LARGE
respectively. Following (Reddi et al., 2023), we use a learning rate warmup of 10k steps and keep
learning rate constant in all phases, followed by a linear learning rate decay to 0 in the final full
model training phase. We set the peak learning rate as 10−4 in all our experiments.

Equivalent flop Pretraining To make a fair comparison across all methods, we tune the peak
the learning rate in the grid {1, 1.6, 2.5, 4} × 10−4 for BERT-BASE and grid {1, 1.6} × 10−4 for
BERT-LARGE.
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Figure 4: Train and Evaluation Loss behavior for a BERT-BASE model trained with RAPTR for
100k steps. We have 4 stages with 6-8-10-12 schedule (see section 3 for details). The boundaries
are at 25k, 50k, and 75k. Key observation: the model’s train and evaluation loss change smoothly
across stage transitions, indicating stability of the model to subnetwork training.

Finetuning We fine-tune BERT models for 3 epochs with batch-size 32, using a learning rate grid
search over {1, 2, 3, 5} × 10−5. We use a linear warmup schedule over initial 6% training steps,
followed by constant learning rate schedule for the rest of the training.

B.2 DETAILS FOR UL2

Pretraining Similar to our experiments on BERT, we use a linear warmup of 10K steps, followed
by constant learning rate in all stages, and a cosine decay to 0.1× the peak learning rate in the final
full model training stage. The peak learning rate is set to 10−2.

Boundaries for 12-16-20-24 RAPTR and Gradual Stacking are 40k, 120k, and 240k. The average
subnetwork length used during training turns out to be 20 with this schedule. When we introduce
an initial 30k full-model training for RAPTR, we shift the boundaries by 30k so that the average
subnetwork length stays 20.

Additional Pretraining experiments In table 4, we have the following additional runs compared
to table 3 in the main paper.

We first compare Baseline model with cosine decay learning rate to a Baseline model with Square-
root learning rate decay that was used in the original paper (Tay et al., 2022). We observe that
the model with square-root learning rate performs significantly worse compared to the model with
cosine decay learning rate. Hence, we use model with cosine decay learning rate as our baseline.

Secondly, we try another schedule for Gradual Stacking, which contains 4 stages and is represented
by 6-12-18-24. The stage lengths have been adjusted such that the average number of layers used
over training is 20. We set the stage boundaries as 17k, 74k, and 172k respectively. We observe that
6-12-18-24 Gradual Stacking performs much better than 12-16-20-24 Gradual Stacking on various
downstream tasks. This signals towards the dependency of Gradual Stacking on proper schedule
selection.

On the other hand RAPTR doesn’t show a big difference with 6-12-18-24 schedule, when compared
to 12-16-20-24 schedule. A proper analysis of both the methods on schedule dependencies is kept
for future work.

C SCHEDULE SELECTION

We follow two schedules from Reddi et al. (2023), Equal and Proportional, to build the lengths
of each stage in RAPTR and Stacking. For Equal scheduling, used in Tables 1 and 2, we split
training into k equal stages. For Proportional scheduling in Table 3, we increase the length of a
stage in proportion to index of the stage. For example, for 12-16-20-24 RAPTR and Stacking with
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proportional scheduling for 400k training steps, the stage lengths are set as 40k, 80k, and 120k
respectively.

The flop counts are decided on the basis of average subnetwork length during training. For example,
if the average subnetwork length is 18 for a model with 24 layers, we consider relative flops of
RAPTR compared to baseline as 0.75.

For 12-16-20-24 RAPTR with Equal schedule, the average subnetwork length during training is
given by 18, while for Proportional schedule, the average subnetwork length during training is given
by 20. However, when either Equal and Proportional schedules don’t return the target average
subnetwork length, we re-consider the stage lengths by taking the closest candidate among Equal
and Proportional schedules and remove equal steps from each of the first k− 1 stages and add to the
final full model training stage. For example, in table 4, with 6-12-18-24 RAPTR and target average
subnetwork length 20, Proportional schedule returns an average subnetwork length of 18 and stage
lengths 40k, 80k, 120k and 160k respectively. We then aim to find x such that stage lengths of
40k − x, 80k − x, 120k − x and 160k + 3x returns the desired average subnetwork length. On
solving for x, we get x = 22k.

C.1 ABLATION ON DIFFERENT SCHEDULES FOR BERT-BASE

We conduct experiments on RAPTR with different stage schedules and same relative flop counts in
table 1. We observe on BERT-base that different schedules differ by atmost 0.01 in pre-training loss
and 0.1 − 0.5% in downstream performance on average. Hence, we observe that RAPTR is robust
to the stage schedule selection.

Hence, on UL2 we use the following stage schedules to minimize computational overhead. We
restrict the number of phases in RAPTR to 4. The first stage selects a sub-network with half of the
layers at random at each step. We increase the sub-network size by a particular amount in each stage
transition, such that we train the full model in the final phase.

Table 5: Performance of RAPTR on BERT-base with different schedules. The average subnet-
work size for each schedule is 9, which makes each schedule 1.33x faster than the baseline model
(provided for reference). We use the same hyperparameters as used in table 1. We observe minor
differences between different schedules, indicating robustness of RAPTR.

RAPTR schedule Rel. flops Eval loss MNLI QNLI SST-2 Avg.
3-6-9-12 1 1.76 82.0 89.6 92.0 87.9
4-8-12 1 1.76 81.9 89.3 91.5 87.6
6-9-12 1 1.75 82.3 89.2 91.0 88.0
6-8-10-12 1 1.75 82.1 89.8 92.4 88.1

Baseline 1.33 1.76 81.5 90.5 91.4 87.8

C.2 ABLATION ON FIXED LAYER SET I FOR BERT-BASE

We conduct experiments on 6-8-10-12 RAPTR on BERT-base with different fixed layer set I (ta-
ble 6). We observe that fixed set selection of {1, 12} performs the best among other candidates. This
selection however can be expensive to verify for other settings like UL2. Hence, in all subsequent
experiments, we continue with the first and last layer fixed in all stages of RAPTR.

C.3 COMPARISON OF RAPTR TO PROGRESSIVE LAYERDROP (ZHANG & HE, 2020)

We implemented progressive layerdrop from (Zhang & He, 2020). The algorithm drops more layers
towards the end of training. Kaddour et al. (2023) showed that such progressive drop rate can
hurt the model’s performance compared to baseline training and gradual stacking. We recover the
observation by training a BERT-base model with progressive layerdrop and 6-8-10-12 RAPTR, both
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Table 6: Performance of RAPTR on BERT-base with different I set for 6-8-10-12 RAPTR run for
100k steps. We use the same hyperparameters as used in table 1, except the training steps reduced
to 100k steps. We observe that fixing the first and the last layer at all times lead to slightly better
performance, compared to other candidates.

I set Eval loss MNLI QNLI SST-2 Avg.
{} 2.12 - - - -
{1} 2.13 - - - -
{1, 12} 2.11 78.6 86.77 88.69 84.7
{1, 2, 12} 2.13 - - - -
{1, 11, 12} 2.12 77.4 87.0 89.4 84.6
{1, 2, 11, 12} 2.14 78.0 86.1 88.8 84.3
{1, 2, 3, 11, 12} 2.18 77.4 86.5 88.4 84.1
{1, 2, 10, 11, 12} 2.16 - - - -

being 1.33 times faster compared to standard training. For a fair comparison, we tune the peak
learning rate for both the methods and report the best performing model. We observe that at the
end of training, progressive layerdrop is atleast 0.07 better in evaluation loss and 1% better on
downstream performance on average.

Table 7: Comparison of RAPTR to progressive layerdrop (Zhang & He, 2020) on BERT-base. The
peak learning rate for each method has been tuned for fair comparison and performance of the best
model is reported. Here, we also report the baseline training in equiflop setting table 2 as reference.
Progressive Layerdrop performs much worse than both the baseline and RAPTR runs, owing to it
dropping more layers towards the end of training.

RAPTR schedule Rel. flops Eval loss MNLI QNLI SST-2 Avg.
RAPTR 1. 1.73 83.1 90.7 91.0 88.3
Layerdrop (Zhang & He, 2020) 1. 1.8 81.7 89.0 90.8 87.2

Baseline 1. 1.74 82.4 90.5 91.8 88.2

Table 8: Comparison of RAPTR (with 30k initial full model training) from table 3 to progressive
layerdrop (Zhang & He, 2020) on UL2. Both of the methods are run at peak learning rate of 10−2.
We set the average drop rate under progressive layerdrop to 0.83 so that the average FLOPs is 17%
lower compared to a baseline run. Progressive Layerdrop performs much worse than RAPTR, owing
to it dropping more layers towards the end of training.

RAPTR schedule Trivia QA Tydi QA SQuADv2 SGLUE
RAPTR 25.8 (0.2) 36.7 (1.0) 44.1 (0.5) 60.9 (0.2)

Layerdrop (Zhang & He, 2020) 21.3 (0.3) 32.4 (2.1) 40.2 (0.9) 59.9 (0.2)

D SYSTEM SPEED OF DIFFERENT SUBNETWORKS

We report the speed of training in steps/sec for UL2 models with different subnetwork sizes on our
hardware.

So, looking at table 3, let t be the total time for completing 400k steps in UL2 training. In the case
of a 12-16-20-24 RAPTR with proportional stage lengths, it takes approximately 0.84t to complete
400k steps on our machine. For an ideal machine that perfectly realizes the theoretical speedups
based on the desired flop count reduction, the total time required will be 0.83t (extremely close to
what our current machine takes!).
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Table 9: Training Steps/sec at different stages on 24-layer UL2

subnetwork size steps/sec
12 2.0
16 1.6
20 1.4
24 1.1

We trained our BERT-base models on 4 × 4 TPU cores with percore batch size of 8. We report the
speed of training in steps/sec with different subnetwork sizes.

Table 10: Training Steps/sec at different stages on BERT-base

subnetwork size steps/sec
6 10.2
8 11.8
10 14.3
12 17.9

So, looking at table 2, let t be the total time for completing 675k steps in BERT-base training. In
the case of a 6-8-10-12 RAPTR with Equal stage lengths, it takes approximately 0.79t to complete
675k steps on our machine. For an ideal machine that perfectly realizes the theoretical speedups
based on the desired flop count reduction, the total time required will be 0.75t.

E MORE EXTENSIVE DOWNSTREAM TESTS ON UL2 MODELS

We conduct extensive downstream evaluation of the trained models from table 3 on additional
downstream tasks and under higher shot in-context setting. Additional tasks include QA tasks like
natural QA (Kwiatkowski et al., 2019), web QA (Berant et al., 2013), DROP (Dua et al., 2019),
CoQA (Reddy et al., 2019), and QuAC (Choi et al., 2018); and completion tasks like Storyclose
(Mostafazadeh et al., 2017), Hellaswag (Zellers et al., 2019), and LAMBADA (Paperno et al., 2016).

F PROOF OF SCALING THEOREMS

For simplicity, we present the results for transformers with single head in the self-attention layer.
Furthermore, for simplicity, we use σrelu activation in the MLPs.

Algorithm 2: Transformer Layer

Require: 2 layer normalization layers fLN
attn, fLN

mlp (F.1), an MLP layer fmlp (F.3), and a softmax
self-attention layer fattn (F.2), input sequence {xn ∈ Rd}Nn=1.

1: Attention Layer normalization: returns {yattnln
n }Nn=1 with yattnln

n = fLN
attn(xn) for all n ≤ N .

2: Softmax self-attention: returns {yattn
n }Nn=1 = fattn({yattnln

n }Nn=1).
3: Residual connection: returns {yattnblock

n }Nn=1, with yattnblock
n = xn + yattn

n for all n ≤ N .
4: MLP Layer normalization: returns ymlpln

n = fLN
mlp(y

attnblock
n ) for all n ≤ N .

5: MLP function: returns {ymlp
n }Nn=1 with ymlp

n = fmlp(ymlpln
n ) for all n ≤ N .

6: Compute yn = ymlp
n + yattnblock

n for all n ≤ N .
7: return {yn}Nn=1

Definition F.1. [Layer Normalization] Define a normalization function f : Rd → Rd that performs
f(x) = (x − µ)/σ, where µ and σ are the mean and standard deviation of x, respectively. Then,
layer normalization fLN : Rd → Rd with parameters γ, b ∈ Rd takes as input x ∈ Rd and outputs
y ∈ Rd, which is computed as z = f(x),y = γ ⊙ z + b.
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Table 11: We extensively compare all trained models from table 3 on multiple downstream tasks
and few-shot in-context settings. We follow prompt design from Chowdhery et al. (2022) in each
setting. For tasks marked with † and ⋆, we report Exact match and F1 scores respectively. For the
rest, we use accuracy. The tasks have been sub-divided into 4 major groups, memorization QA, QA
with context, completion, and SuperGLUE. On average, RAPTR is 1-2% better than baseline and
stacking.

1-shot 5-shot

Baseline RAPTR Stacking RAPTR Baseline RAPTR Stacking RAPTR
+init. train +init. train

Trivia QA† 25.0 (0.2) 22.2 (—) 20.1 (1.3) 25.8 (0.2) 26.5 (1.1) 23.4 (—) 21.1 (1.3) 25.1 (0.5)

Web QA† 6.4 (0.4) 5.9 (—) 5.8 (0.6) 7.6 (0.5) 10.6 (0.4) 8.2 (—) 9.2 (0.5) 11.2 (0.2)

Natural QA† 4.2 (0.5) 3.6 (—) 3.4 (0.4) 4.4 (0.1) 5.7 (0.1) 4.6 (—) 4.6 (0.3) 6.0 (0.3)

Tydi QA† 34.4 (3.1) 38.2 (—) 28.6 (2.7) 36.7 (1.0) - - - -
SQuaDv2† 42.1 (2.0) 40.6 (—) 36.0 (0.9) 44.1 (0.5) 43.2 (3.0) 40.0 (—) 36.2 (2.6) 44.5 (1.3)

DROP† 21.4 (0.8) 23.5 (—) 19.5 (0.6) 23.0 (0.4) - - - -
CoQA⋆ 49.2 (0.7) 51.6 (—) 43.9 (0.8) 52.4 (0.7) - - - -
QuAC⋆ 18.1 (0.5) 18.8 (—) 16.8 (0.6) 18.1 (0.4) - - - -

LAMBADA 13.7 (2.9) 12.6 (—) 12.0 (1.1) 18.7 (3.1) 30.5 (3.4) 32.0 (—) 29.5 (2.1) 38.7 (2.2)

Storycloze 72.9 (0.4) 73.5 (—) 71.0 (0.4) 73.3 (0.4) 75.1 (0.1) 75.5 (—) 72.6 (0.8) 75.3 (0.6)

Hellaswag 58.3 (0.2) 57.5 (—) 56.1 (0.1) 58.5 (0.3) 58.3 (0.2) 57.3 (—) 56.1 (0.1) 58.4 (0.3)

SuperGLUE 60.0 (0.4) 60.1 (—) 60.4 (0.9) 60.9 (0.2) 60.7 (0.3) 60.6 (—) 58.8 (0.5) 62.1 (0.2)

Average 33.8 34.1 31.1 35.3 38.8 37.7 36.0 40.2

Definition F.2 (Softmax self-attention). A self-attention layer fattn : RN×d → RN×d with pa-
rameters {WQ,WK ,WV ,C

attn ∈ Rd×d} takes a sequence {xn}n≤N and outputs a sequence
{yn}n≤N , such that

yn = Cattn
N∑

n=1

an,nvn,

with an,n = softmax(Kqn)n, qn = WQxn, kn = WKxn, vn = WV xn,

for all n ≤ N , and K ∈ RN×N defined with rows {kn}Nn=1.

Definition F.3 (MLP). An MLP layer fmlp : Rd → Rd with parameters {W ∈ Rm×d,Cmlp ∈
Rm×d} and activation σrelu, takes an input x ∈ Rd and outputs y ∈ Rd, such that

y = Cmlpσrelu(Wx).

Definition F.4 (Transformer layer). A pre-layernorm transformer layer with three sub-layers; 2 layer
normalization layers fLN

attn, fLN
mlp (F.1), an MLP layer fmlp (F.3), and a softmax self-attention layer

fattn (F.2); takes a sequence {xn}n≤N and outputs a sequence {yn}n≤N in four steps.

1. First computes {yattnln
n }Nn=1 using a layer normalization, i.e. yattnln

n = fLN
attn(xn) for all

n ≤ N .

2. Then it runs softmax self-attention to get {yattn
n }Nn=1 = fattn({yattnln

n }Nn=1).

3. The net output of the self-attention block is given by {yattnblock
n }Nn=1, with yattnblock

n =
xn + yattn

n for all n ≤ N .

4. Before passing to the MLP function, it is passed through another layer normalization, i.e.
ymlpln
n = fLN

mlp(y
attnblock
n ) for all n ≤ N .

5. MLP function then returns {ymlp
n }Nn=1 with ymlp

n = fmlp(ymlpln
n ) for all n ≤ N .

6. yn = ymlp
n + yattnblock

n for all n ≤ N .
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Definition F.5 (Initialization of the weights in the transformer layer). The weights are initialized as
follows:

Cmlp,Cattn,WQ,WK ,WV ∼ N (0,
1√
d
I),

W ∼ N (0,

√
2√
m
I).

The parameters γ, b of the functions fLN
attn, f

LN
mlp have been initialized as 1 and 0 respectively.

Lemma F.6 (Norm of the output of the MLP function, modification of lemma 7.1 in Allen-Zhu
et al. (2019)). For a given input sequence {ymlpln

n }n≤N , if ε ∈ (0, 1], with probability at least
1−O(N) · e−Ω(mε2) over the randomness of Cmlp,W , we have

∀i ∈ [N ] :
∥∥ymlp

n

∥∥ / ∥∥ymlpln
n

∥∥ ∈ [1− ε, 1 + ε].

Lemma F.7 (Norm of the output of the layer normalization layers). Given any input sequence
{xn}Nn=1, under the assumption for all n ≤ N , xn −

∑d
i=1 xn,i isn’t identically 0, we have∥∥yattnln

n

∥∥ =
√
d

for all n ≤ N .

Similar result holds for {ymlpln
n }Nn=1.

Lemma F.8 (Norm of the output of the MLP block). For a given input sequence {yattnblock
n }n≤N ,

with probability at least 1−O(1) over the randomness of Cmlp,W , we have

∥yn∥2 =
∥∥ymlp

n + yattnblock
n

∥∥2 =
∥∥yattnblock

n

∥∥2 + d

+O

(∥∥yattnblock
n

∥∥ logN + (d+
∥∥yattnblock

n

∥∥) log3/2N√
m

)
,

for all n ≤ N.

Proof. Combining lemmas F.6 and F.7, we have for the sequence {yattnblock
n }n≤N ,

|
∥∥ymlp

n

∥∥ /√d− 1| ≤ O
(√

logN√
m

)
,

w.p. atleast 1−O(1).

Furthermore, due to the randomness of Cmlp, we can further show that w.p. at least 1−O(1),

|⟨yattnblock
n ,ymlp

n ⟩| ≤ O(
∥∥yattnblock

n

∥∥ logN),

for all n ≤ N . Combining the two results, we have

∥yn∥2 =
∥∥ymlp

n + yattnblock
n

∥∥2 =
∥∥yattnblock

n

∥∥2 + d

+O

(∥∥yattnblock
n

∥∥ logN + (d+
∥∥yattnblock

n

∥∥) log3/2N√
m

)
.

Lemma F.9 (Norm of the output of the attention block). For a given input sequence {xn}n≤N , if
ε ∈ (0, 1], with probability at least 1−O(1) over the randomness of Cattn,WV , we have

∀i ∈ [N ] : ∥xn∥2 ≤
∥∥yattnblock

n

∥∥2 ≤ ∥xn∥2 + ∥xn∥+ d+O(

√
logN√
d

(d+ ∥xn∥)).

Proof. With the randomness of Cattn and WV , we have

| ∥yattn
n ∥∥∥∥∑j≤N an,jyattnln

j

∥∥∥ − 1| ≤ O
(√

logN√
d

)
,
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for all n ≤ N w.p. atleast 1−O(1).

Furthermore, due to the randomness of Cattn, we can further show that w.p. atleast 1−O(1),

|⟨yattn
n ,xn⟩| ≤ O(∥xn∥ logN),

for all n ≤ N .

Using Cauchy-Schwarz inequality, we must have∥∥∥∥∥∥
∑
j≤N

an,jy
attnln
j

∥∥∥∥∥∥ ≤ max
j≤N

∥∥yattnln
j

∥∥ =
√
d.

Thus, combining the results, we have∥∥yattnblock
n

∥∥2 =
∥∥yattn

n + xn

∥∥2 ≤ ∥xn∥2 + d

+O

(
∥xn∥ logN + (d+ ∥xn∥)

log3/2N√
d

)
.

Lemma F.10 (Norm of the output of the transformer layer). For a given input sequence {xn}n≤N ,
if ε ∈ (0, 1], with probability at least 1−O(1) over the randomness of Cattn,WV ,C

mlp, we have

∀i ∈ [N ] : ∥xn∥2 + d+O(err) ≤ ∥yn∥2 ≤ ∥xn∥2 + 2d+O(err),

where err = O
(
∥xn∥ logN + (d+ ∥xn∥) log

3/2 N√
m

)
.

Theorem F.11 (Square-root scaling of input norms). At initialization, given any input sequence
x1:N and scalars α1:L, w.h.p. the intermediate sequences of F (definition 2.1) satisfy∥∥∥y(ℓ)

i

∥∥∥2
2
= ∥xi∥22 +Θ(

ℓ∑
j=1

α2
jd), for all 1 ≤ i ≤ N, 1 ≤ ℓ ≤ L.

Proof. This follows from the fact that the transformer architecture is a stack of struturally identical
L transformer layers, and each transformer layer’s output norm increases by Θ(d) compared to its
input norm, as given by lemma F.10.

G NOISE STABILITY FOR TRANSFORMERS

Theorem G.1. Suppose L satisfies the following condition L satisfies the following condition for
any input x̃, η ∈ Rd and label v ∈ {0, 1}V for some constant µloss :

L(x̃+ η ∥x̃∥ ,v)− L(x̃,v) ≤ µloss ∥η∥2 . (1)

The difference between expected loss of (L − 1)-RAPTR and L-RAPTR, i.e. |L2(F ) − L1(F )|, is
upper bounded by C

LEx∈D(
∑L

ℓ=1 Ψℓ(x))/ ∥F (x)∥2 for some constantC that depends on regularity
properties of the head H on top of the backbone F .

Proof of theorem 4.2. Denote by F−ℓ the L candidates that we can randomly choose from during
L − 1 RAPTR training. The output of F−ℓ on any input x is equivalent to the output of the model
F on x and α1:L, with αℓ = 0 and the rest set to 1.

Then, the average loss of L− 1 random training is given by

L2(F ) =
1

L

L∑
i=1

Ex,y∼DL (F−ℓ(x),v) .
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On the other hand, the loss of the full model is given by

L1(F ) = Ex,v∼DL (F (x),v) .

Hence, the expected difference between loss of L− 1 random training and full model is given by

L2(F )− L1(F ) =
1

L

L∑
i=1

Ex,v∼D (L (F−ℓ(x),v)− L (F (x),v))

≤ 1

L

L∑
i=1

Ex,v∼D µloss
∥F−ℓ(x)− F (x)∥2

∥F (x)∥2

≤ 1

L

L∑
i=1

Ex,v∼D µloss
ψℓ

∥F (x)∥2
.

Here the pre-final step uses the definition of µloss from eq. (1), and the final step uses the definition
of Ψℓ from definition 4.1.

Discussion An example of a loss function with bounded µloss is a transformer model, that uses a
layer normalization layer before using an embedding matrix Φ to compute the logits. The logits are
then compared with the true label with a cross-entropy loss with a softmax function on logits. ψ(L)
hence depends on the ℓ2 norm of Φ and the weight parameters of the layer normalization layer.

G.1 NOISE STABILITY OF LINEAR RESIDUAL NETWORKS

Proof of lemma 4.3. We outline the proof for each case.

1. With residual connection and layer normalization, the function F computes the intermedi-
ate activations y(1), · · · ,y(L) on an input x as follows.

y(ℓ) =

(
I +

Wℓ∥∥y(ℓ−1)
∥∥
)
y(ℓ−1).

Similar to lemma F.6, we can show w.h.p. with respect to the randomness of W1, · · · ,WL,
for all ℓ ≤ L,

√
ℓ(1−O(1)) ≤

∥∥y(ℓ)
∥∥
2
≤

√
ℓ(1 +O(1)).

Ignoring the error terms, we can simply write

y(ℓ) =

(
I +

Wℓ√
ℓ

)
y(ℓ−1).

Pick a general layer ℓ to be dropped. Then,

F−ℓ(x)− F(x) =

L∏
ℓ′=ℓ+1

(
1 +

Wℓ′√
ℓ′

)
Wℓ√
ℓ
y(ℓ−1) + err,

where the err term appears because of the change in scales of activations y(ℓ+1), · · · ,y(L)

with the dropping of layer ℓ. This error can be bounded as O(
√
L/ℓ) using the same

procedure followed below to bound the first term on R.H.S..

Similar to bounding the norms of y(ℓ), w.h.p. we can show that∥∥∥∥∥
L∏

ℓ′=ℓ+1

(
1 +

Wℓ′√
ℓ′

)
Wℓ√
ℓ
y(ℓ−1)

∥∥∥∥∥
2

≤
√
L

ℓ
.

Hence,

ψℓ := ∥F−ℓ(x)− Fℓ(x)∥2 ≤ O(
√
L/ℓ).
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This implies

1

L

∑
ℓ

ψℓ(x) =
1

L

∑
ℓ

O(
√
L/ℓ) = O(1).

Since the gap in L2 and L1 is bounded by O(Ex
1
L

∑
ℓ ψℓ(x)/||F (x)||) from theorem 4.2,

we have the gap as O
(

1√
L

)
.

2. With no normalization, the function F looks as follows.

y(ℓ) = (I +Wℓ)y
(ℓ−1).

Similar to lemma F.6, we can show w.h.p. with respect to the randomness of W1, · · · ,WL,
for all ℓ ≤ L, 2ℓ/2(1−O(1)) ≤

∥∥y(ℓ)
∥∥
2
≤ 2ℓ/2(1 +O(1)).

With a drop in layer, we get

F−ℓ(x)− F(x) =
L∏

ℓ′=ℓ+1

(
I +W ℓ′

)
Wℓ

ℓ−1∏
ℓ′=1

(
I +W ℓ′

)
x.

Similar to lemma F.6, we can show w.h.p. with respect to the randomness of W1, · · · ,WL,∥∥∥∏L
ℓ′=ℓ+1

(
I +W ℓ′

)
Wℓ

∏ℓ−1
ℓ′=1

(
I +W ℓ′

)
x
∥∥∥
2
≥ O(2(ℓ−1)/2).

This implies ∥F−ℓ(x)− F(x)∥2 = Ω(2(ℓ−1)/2).

The argument can now be completed by using theorem 4.2.

3. Without residual connection, the function F looks as follows.

y(ℓ) = Wℓ
y(ℓ−1)∥∥y(ℓ−1)

∥∥
2

.

Similar to lemma F.6, we can show w.h.p. with respect to the randomness of W1, · · · ,WL,
for all ℓ ≤ L, (1−O(1)) ≤

∥∥y(ℓ)
∥∥
2
≤ (1+O(1)). Thus, ignoring error terms, the network

F roughly looks like

y(ℓ) = Wℓy
(ℓ−1).

With a drop in layer, we get

F−ℓ(x)− F(x) =

L∏
ℓ′=ℓ+1

Wℓ′(W
(ℓ) − I)

ℓ−1∏
ℓ′=1

Wℓ′x.

Using randomness of W (ℓ) this can be shown to be of norm Ω(1). The argument can now
be completed by using theorem 4.2.

Lemma G.2. When the layers are perfectly aligned, i.e. all weights Wi = A for some matrix A
with ∥A∥2 = 1 and for simplicity, assume second eigenvalue λ2(A) = 1 − δ for some δ > 0, we
have

(a) With residual connection & layernorm, we have Ψℓ(x) = O(1) and ∥F (x)∥ = Ω(L).
Thus, the gap in losses between stages is O(1/L).

(b) Without residual connection, we have both Ψℓ(x) = O(δ−1e−ℓ) and ∥F (x)∥ = O(1).
Thus the gap in losses between stages is O( 1

L ).
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(c) Without layernorm, we have Ψℓ(x) = Ω(2L−1) and ∥F (x)∥ = O(2L) . Thus the gap in
losses between stages is Ω(1).

Proof of lemma G.2. We outline the proof for each case.

1. With residual connection & layernorm, the function F computes the intermediate activa-
tions y(1), · · · ,y(L) on an input x as follows.

y(ℓ) =

(
I +

A∥∥y(ℓ−1)
∥∥
)
y(ℓ−1).

We show that the above method will behave like power method, i.e. y(ℓ) will be of mag-
nitude Ω(ℓ) and will be ϵ-close in angle to the top eigenvector of A, denoted as v1(A),
provided ℓ ≥ Ω((1/δ) log(1/ϵ)).

We give an inductive argument as follows. Consider any layer ℓ. Say θℓ denotes the angle
between y(ℓ) and v1(A). Also, say Π⊥

v1 denotes an orthogonal projection to subspace
spanned by the rest of the eigenvectors of A. Then,

| tan θℓ+1| =
|⟨v1(A),y(ℓ+1)⟩|∥∥Π⊥

v1(y
(ℓ+1))

∥∥
2

=
|⟨v1(A),y(ℓ)⟩+ ⟨v1(A),Ay(ℓ)⟩|∥∥Π⊥

v1(y
(ℓ)) + Π⊥

v1Ay(ℓ)
∥∥
2

=
2|⟨v1(A),y(ℓ)⟩|∥∥Π⊥

v1(y
(ℓ)) + Π⊥

v1Ay(ℓ)
∥∥
2

≤ 2⟨v1(A),y(ℓ)⟩∥∥Π⊥
v1(y

(ℓ)) + λ2(A)Π⊥
v1y

(ℓ)
∥∥
2

=
2

1 + λ2(A)
| tan θℓ|.

This implies, under λ2(A) < 1, | tan θℓ| decreases with ℓ. Under the assumption that x
isn’t orthogonal to v1(A), the above condition simply shows that if ℓ ≥ O((1/δ) log(1/ϵ)),
than | tan θℓ| < ϵ.

Furthermore, once aligned (or closely aligned) to v1(A), the norm of y(ℓ) grows linearly.
Hence,

∥∥y(ℓ)
∥∥ = Ω(L). Furthermore, for any ℓ, the gap between F−ℓ and Fℓ simply

becomes equal to the gap between L and L− 1 steps of the modified power method, which
can be bounded as O(1).

2. With no residual connection, the function F computes the intermediate activations
y(1), · · · ,y(L) on an input x as follows.

y(ℓ) =
A∥∥y(ℓ−1)

∥∥y(ℓ−1).

From the update, it’s trivial to come to the conclusion that y(ℓ) will stay unit norm for any
layer ℓ.

This update is exactly power-method, where y(ℓ) gets ϵ-close to the top eigenvector di-
rection of A in O((1/δ) log(1/ϵ)) steps. The result then follows from bounding the gap
between L and L− 1 steps of power-method.

3. The proof is very similar to the proof of lemma 4.3 (3), where the major difference comes
from the blowup in the norms of the intermediate activations.
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