
Under review as a conference paper at ICLR 2024

FORWARD EXPLANATION : WHY CATASTROPHIC FOR-
GETTING OCCURS

Anonymous authors
Paper under double-blind review

ABSTRACT

The training framework relying on backpropagation and gradient descent has re-
sulted in the creation of opaque models, leading to many problems that we cannot
explain. One such problem that has remained inexplicable since the advent of
neural networks is catastrophic forgetting. Recently, We have made some intrigu-
ing discoveries, which we have integrated into an explanation for neural network
training, referred to as Forward Explanation. We first discover that training guides
neural networks to produce a particular representation, which we refer to as Inter-
leaved Representation. Additionally, we find that under this representation, neural
networks exhibit a series of convergence phenomena, which we term Task Repre-
sentation Convergence Phenomena. Furthermore, we find that in order to learn this
representation, neural networks undergo a specific parameter change during train-
ing, which we call Forward-Interleaved Memory Encoding. This unveils some
inner workings of how neural networks learn and fundamentally answers why
catastrophic forgetting occurs.

1 INTRODUCTION

This work stems from our curiosity about the phenomenon of catastrophic forgetting [French
(1999),Ramasesh et al. (2020)]. After gaining an understanding of and engaging with modern arti-
ficial intelligence, we quickly stumbled upon this intriguing issue. People typically tend to envision
artificial intelligence based on common biological knowledge [Kudithipudi et al. (2022)], as often
depicted in cultural works, where they possess the ability to continuously learn and analyze, even
growing like infants. However, reality promptly informed us that it’s not the case. Currently, main-
stream artificial intelligence models require pre-input knowledge, and people must prepare all the
content that the model needs to learn in advance. Because as the model learns the current material,
it forgets what it learned previously. During our research, we were pleased to discover that there
are many individuals worldwide who share our concern about this issue. People enthusiastically
engage in research to overcome catastrophic forgetting, with a primary focus on the following ar-
eas: mitigating catastrophic forgetting [Kirkpatrick et al. (2017),Aljundi et al. (2018)], continual
learning [Aljundi (2019),Beaulieu et al. (2020)], incremental learning [Chaudhry et al. (2018),Finn
et al. (2017)], lifelong learning [Isele & Cosgun (2018)], and meta-learning [Javed & White (2019)].
While we conducted some research in these areas, it often felt like we were groping in the dark, un-
able to truly grasp the essence of the problem. We believe that the core challenge of catastrophic
forgetting lies in the black-box nature of model training. If we could gain specific insights into how
catastrophic forgetting manifests during the training process, perhaps we could develop targeted
solutions. This indirectly necessitates an effort to explain the training process of neural networks.

In our experiments, we first observed a highly consistent relationship between the parameters in
the final layer of the model and the representations. This led us to suspect whether the two were
equivalent, and we experimentally confirmed their equivalence. This directly implies that during
the training process, neural networks are effectively training the preceding layers to produce the
desired representations. Now, the question arises: what are the characteristics and significance
of these representations? Upon further investigation, we found that these representations, in and
of themselves, do not possess intrinsic meaning; their primary significance lies in being distinct
from other representations. Next, we delved into how these representations are generated. We
discovered that neural networks, in their initial state, have convergent representations, which is
straightforward since the model’s parameters are randomized at this stage. The question then shifts

1

Under review as a conference paper at ICLR 2024

to understanding what changes occur in the model’s parameters during the training process to make
the representations of different inputs diverge. To address this question, we introduced the concepts
of memory trace and Forward-Interleaved Memory Encoding. The former concept regards input of
each layer in the forward propagation as a node, with the first node being the original input and the
last node representing the target representation. To achieve divergent representations, one can view
it as making this memory trace distinct. The latter concept implies that to achieve this goal, every
node on the memory trace must be involved. Differences in the original samples are transmitted
layer by layer through the Forward-Interleaved Memory Encoding until reaching the last node.

𝑥1
𝑥2
…
𝑥𝑛

Input Representations

FNN

Attention

CNN ...

𝑓1
𝑓2
…
𝑓m

𝑦1
𝑦2
…
𝑦𝑘

𝑒 𝑥 𝜃𝑒 = 𝑓 𝑑 𝑓 𝜃𝑑 = 𝑦

𝐹 𝑥 𝜃 = 𝑦

Output

...

Figure 1: Neural network can be regarded as a combination of an encoder and a decoder.

2 FORWARD EXPLANATION

For the training of complex deep neural network models, we generally consider that they are learn-
ing some form of mapping from inputs to outputs, denoted as F (x;θ) = y, where θ represents the
model’s parameters. However, we do not fully understand how they accomplish this process, which
is why they are often referred to as black boxes. To address this issue, we first introduce a definition
here. For any model training F (x;θ) = y, we consider it in terms of two sequential components in
the spatiotemporal domain. The part closer to the input is referred to as the encoder e(x;θe) = f ,
and the part closer to the output is referred to as the decoder d(f ;θd) = y. To simplify our dis-
cussion, The encoder can take the form of any model, while the decoder is essentially a single fully
connected layer network, as illustrated in Figure 1. This does not impact the subsequent discussion
regarding forward-interleaved memory encoding; it is merely for experimental convenience.

E

E

D

Yes! It’s ‘2’

Bad Encoder

Good Encoder

0: 0.09

1: 0.13

2: 0.12

3: 0.09

4: 0.08

5: 0.11

6: 0.08

7: 0.11

8: 0.09

0: 0.01

1: 0.03

2: 0.91

3: 0.01

4: 0.01

5: 0.01

6: 0.01

7: 0.01

8: 0.01

I can't recognize it

Good Representations Decoder

DecoderBad Representations

D

𝒇𝟎 𝒇𝟏 … 𝒇𝒏−𝟏 𝒇𝒏

𝒇𝟎 𝒇𝟏 … 𝒇𝒏−𝟏 𝒇𝒏

Figure 2: When we say a model performs well on a dataset, it is essentially equivalent to whether
the encoder part of the model produces dissimilar task representations for different tasks.

2

Under review as a conference paper at ICLR 2024

2.1 INTERLEAVED REPRESENTATIONS

In order to understand what model training is doing, we must first understand the purpose of model
training. Let’s consider what representation f the decoder d(f ;θd) needs to complete its task, which
is the mapping from f to y. If representations f obtained from input data of different categories
are quite similar when passed through the encoder, then when multiplied by the decoder’s weight
matrix, their output vectors will also be quite similar. Consequently, the decoder d(f ;θd) will be
unable to map the same representation f to different y values. Conversely, as long as the differences
between representations f are sufficiently large, the decoder should be able to effortlessly map them
to different outputs, as illustrated in Figure 2. Based on this intuitive idea, we have devised a series
of experiments with the aim of demonstrating the equivalence in terms of their capabilities between
the trained model F (x;θ) and the trained encoder e(x;θe).

Figure 3: TRS improves as the model performance improves, indicating that training guides the
model to possess this characteristic in its output representation.

We define a way to compute the similarity between a set of high-dimensional vectors called task
representation similarity (trs). It calculates the variance of the expected representations for each
task across each component. This is a relative value, and it does not imply that higher numerical
values are indicative of better representations. It solely represents a trend, namely that during a
model training process, this value is positively correlated with model performance. This indirectly
suggests that the essence of model training is encoding inputs into dissimilar representations, which
we refer to as interleaved representations, as shown in Figure 3. We provide a specific definition for
it, which means that the expected representations of all independent tasks on each component should
ideally be as distinct as possible. In a classification scenario, each individual task corresponds to
different categories of samples. We believe that this concept remains consistent in other scenarios
as well because decoders cannot do anything meaningful with identical representations.

trs(E(f0,f1, ...,fn)) =
1

m

m∑
i=0

var(E(f i
0), E(f i

1), ..., E(f i
n)) (1)

f j
i represents the value of the representation for category i on component j, where E represents the

expectation, and in the experiments conducted in the paper, the mean is taken.

2.2 TASK REPRESENTATION CONVERGENCE PHENOMENA

Here comes an interesting observation: when the representations generated by the encoder are in-
terleaved representations (which is just a tendency and not a fixed form), we have noticed that the
decoder exhibits the following two properties. (1) The decoder’s performance, whether trained with
all representations or with expected representations, remains consistent. (2) The parameters of the
decoder converge to the expectation of the representations after being trained, and every component
of the weight matrix independently converges to the corresponding representation’s expectation. We
will demonstrate these two points through the experiments below.

training[d(f)] → training[d(E(f))] (2)

3

Under review as a conference paper at ICLR 2024

θd → E(f0,f1, ...,fn) and θi
d → E(fi) (3)

Figure 4: We train d(f ;θd) using the compressed E(f), and since we only have 10 samples, each
training round simply repeats these 10 samples. As a result, the compression or acceleration ratio in
training has reached 6000 times.

For Conclusion One, we chose ResNet18 [He et al. (2016),LeCun et al. (1989)] as our experimental
model, and MNIST and CIFAR-10 as our experimental datasets. Initially, we trained the model on
the target dataset. After pre-trained, we trained a new decoder using the expected representations
and subsequently tested this new decoder on the dataset. Taking MNIST as an example, its training
dataset contains 60,000 samples, but after compression into expected representations, there are only
10 samples, as illustrated in Figure 4, showcasing the results.

Figure 5: No training has taken place here; instead, for each task i, we replace the portion of weight
parameters w that belongs to its own category with E(fi).

Regarding Conclusion Two, we selected ResNet18, ResNet34, ResNet50, and ViT-B-16 [Dosovit-
skiy et al. (2020),Vaswani et al. (2017)] as our experimental models, and CIFAR-10 and CIFAR-100
as our experimental datasets. Initially, we pretrained these models on the ImageNet1k dataset. Then,
we combined the expected representations to create a new decoder and subsequently tested this new
decoder on the target dataset. It’s worth noting that the pretraining dataset is different from the

4

Under review as a conference paper at ICLR 2024

target test dataset. This is done to demonstrate the generalizability of Conclusion Two, rather than
being tied to a specific dataset. Furthermore, the testing dataset follows a split mode, meaning it
is divided into a continuous data stream. For each task i, we calculate the expected representation
fi separately, place it in the corresponding position of the decoder’s weight parameters, wi, and
then test the decoder’s performance on all seen tasks, as illustrated in Figure 6. In a sense, this is a
particular form of transfer learning that allows the model to perform continuous transfer learning on
task-by-task.

The experiments conducted above indicate that when the encoder is capable of producing inter-
leaved representations, the decoder can be acquired with minimal cost. This indirectly suggests that
the model training is equivalent to training an encoder. However, we have not provided an expla-
nation for these phenomenon. On one hand, we do not have the time to provide a comprehensive
mathematical proof, and on the other hand, this is not the focus of this article. Our primary goal is to
use interleaved representations to elucidate how the encoder learns to produce such representations.

Figure 6: Heatmap1 represents the decoder weight parameters trained on MNIST data, Heatmap2
corresponds to the encoder output E(fmnist) after training on MNIST. They exhibit visible similar-
ity. Heatmap3 represents the encoder output E(ffashion) on the Fashion dataset after training on
the MNIST. At this point, trs(E(fmnist)) = 8.0258, and trs(E(ffashion)) = 0.6789.

2.3 MEMORY TRACE

In the previous chapter, we transformed the question of how the model is trained to enhance its
capabilities into a question of how the encoder is trained to map inputs into interleaved representa-
tions. However, before addressing this issue, we need to do some preparatory work. During a single
forward propagation pass, a sample x leaves behind a trace T (t1, t2, ..., tL), where tl represents the
input vector to the l− th layer of the network during this forward pass. Such a path is what we refer
to as a memory trace. For the backward propagation [Rumelhart et al. (1986)] calculation at any
layer, there is

δlj =
∑

K wl+1
kj δl+1

k t
′l+1
j

∂C

∂wl
jk

= tlkδ
l
j (4)

In which w represents the weight parameters of that layer, C is the final loss, t represents the input
vector to that layer, and δ represents the loss of backpropagation. we assume the training structure
of the l − th layer network is as follows:

P =

tl1 · · · tlK
grad(wl

11)
·
·
·

grad(wl
J1)

·
·

·

·

·

·

·

·
·

grad(wl
1K)

·
·
·

grad(wl
JK)


δl1
·
·
·
δlJ

(5)

5

Under review as a conference paper at ICLR 2024

P represents the gradient change matrix of the weight parameters w for this layer. As we can see
from Equation 4, the changes in P are controlled by t and δ. δ is determined by the information
from the next layer, while t is determined by the information from the previous layer. From the
perspective of t, all gradient changes necessarily occur in the directions where t is not equal to zero.
Furthermore, we can draw the conclusion that in any backward propagation process, all gradient
changes of the weights happen in the parameters corresponding to this memory trace T .

Before training After training

t1 … t𝐿 t1 … t𝐿

Figure 7: Regardless of whether the neural network’s initial parameters are set to constant or random
values, the memory trace T for different samples, except for t1, tend to converge. However, after
training, their memory trace T diverge. This allows the encoder to ultimately produce interleaved
representations.

2.4 FORWARD-INTERLEAVED MEMORY ENCODING

First, let’s define the training process. Given a batch of samples X = (x1,x2,x3, ...,xn) of any
batch size, they are expected to be decoded into the target Y = (y1, y2, y3, ..., yn) by the decoder
d(f ;θd). From the preceding interleaved representation, we can infer that this requires the encoder
to encode them into different representations F = (fy1 ,fy2 ,fy3 , ...,fyn). For any xi in this batch,
its memory trace is denoted as Txi , the memory trace component for the l − th layer is tlxi

, and the
loss backpropagation for the l − th layer is δlxi

. We can view the encoder e(x;θe) as a series of
sub-encoders e1(t1;θe1), e2(t

2;θe2), ..., eL(t
L;θeL), each representing a layer in the memory trace

T as a continuous sequence in space and time. Then, for any sub-encoder el(tl;θel), the gradient
computation of its weight parameters wl

jk in this round of backward propagation is calculated as

∇wl
jk =

n∑
i=0

tlxikδ
l
xij (6)

Now we can explain what the encoder e(x;θe) is doing during training. In the model initialization
phase, all parameters are randomly initialized. At this point, regardless of the input received by
the encoder, after undergoing multiple rounds of random parameter adjustment, they will almost
all be mapped to similar representations. This implies that, in their memory trace T , except for
t1xi

, the other components tend to become more consistent the closer they are to the decoder. So,
the question of how the encoder generates interleaved representations is transformed into how the
neural network, for different samples, adjusts their memory trace T through training to make them
diverge rather than converge, as illustrated in Figure 7. The paper assumes default training using the
stochastic gradient descent (SGD) algorithm. If other optimization algorithms are used, there may
be differences in the formulation process, but it does not affect the conclusion.

For a better discussion, let’s assume that in the memory trace T left by different samples after the
first forward propagation during training, all t2xi

, t3xi
, ..., tLxi

are the similar, except for t1xi
. For any

el(t
l;θel), if tlx1

, tlx2
, tlx3

, ..., tlxn
are all the similar, then at this point, Equation 6 becomes

∇wl
j = tlxi

n∑
i=0

δlxij (7)

which means the same change is made in every output direction. In other words, after this round of
training, if two different inputs that entered el(t

l;θel) previously resulted in the same output, they

6

Under review as a conference paper at ICLR 2024

will still be the same now. It merely reinforces the imprint of this memory trace tl on wl. Even so,
they perform an important task - gradient backpropagation. According to our previous definition,
during the first backpropagation, layers 2 through L did not produce any meaningful changes.

When the gradient backpropagates to the first layer, a change in the situation occurs. We assume two
distinct samples, xa and xb. According to the previous definition, the memory subpaths t2, t3, ..., tL
for xa and xb should be similar at this moment. Additionally, to avoid excessive classification, we
assume that all variables on the memory trace T are non-negative. Suppose xa and xb backpropagate
to the first layer with losses δ1a and δ1b , respectively. The gradient calculation for the weights w of
the first layer e1(t1;θe1) at each output dimension is determined by equation 6 as follows.

∇w1
jk = t1akδ

1
aj + t1bkδ

1
bj (8)

If we consider the positive change in parameter w as reinforcement and the negative change as
weakening, then when the directions of δ1aj and δ1bj are the same, this means that t1a and t1b both
want to reinforce or weaken the component of w in dimension j and make t2aj

and t2bj both high
values or low values. When δ1aj and δ1bj have different directions, it implies that t1a and t1b engage
in a gradient game [Von Neumann & Morgenstern (1947),Nash Jr (1950)] in dimension j of w.
Furthermore, if the absolute values of δ1a and δ1b do not differ too much, this game can be seen as
dominated by the memory trace t1. We further assume that δaj is negative, and δbj is positive. In
this case, when t1ak > t1bk, wjk will be reinforced, and when t1ak < t1bk, wjk will be weakened. This
ultimately results in t2aj being a high value, while t2bj is a low value. If such gradient games exist
in multiple dimensions, t2a and t2b will eventually become dissimilar, even if they started as similar.
We will provide experiments in Section 3 to demonstrate this phenomenon more intuitively.

From this point, we can derive further. The difference between t1xa
and t1xb

causes a change in w1,
making t2xa

and t2xb
different, which in turn can lead to a change in w2, making t3xa

and t3xb
different,

and so on. Ultimately, this makes the encoder e(x;θe)’s outputs, fxa
and fxb

, different. It can be
concluded that although backpropagation starts from the last layer, its effective changes to neural
network parameters propagate forward from the first layer. Even if we employ any variant of gradient
descent optimization algorithms, use any activation function, or adopt any network architecture, two
fundamental principles remain unchanged. First, the gradient changes generated for a single sample
during one backward propagation step all lie on the memory trace T . Second, each sample must
undergo forward-interleaved memory encoding with the memory trace of samples from different
tasks; otherwise, the neural network cannot distinguish between them.

1 1 0

0 1 1

1
1

1 1

1 1 1

2

2

4 6

6 4

20 20 -0.5 0.5

0.5 -0.5

2

2 20 20

Input Encoder Representation Decoder Output

Backpropagated Loss

y:0

y:1

0 1

1

-1

-1

1

0 1

0 1 2

2 1 0

1 1 0

0 1 1

1

3

3

1

0 1

relu

y:0

y:1

Input

1 1 0

0 1 1

1
1

1 1

1 1 1

Input Encoder

y:0

y:1

Representation

CrossEntropy Loss

Figure 8: A simple example demonstrating how the encoder distinguishes when the representations
are the same.

7

Under review as a conference paper at ICLR 2024

3 WHY CATASTROPHIC FORGETTING OCCURS

It can be fully explained why catastrophic forgetting occurs and how it happens. From the per-
spective of forward-interleaved memory encoding, we can understand that the essence of neural
network training is to differentiate the memory trace of each distinct sample within the network. So,
what happens when we train the neural network with the same batch of samples for a long time? The
answer is that it continuously reinforces the memory trace for this batch of samples. To be more spe-
cific, reinforcement refers to the accumulation of gradients. From the perspective of memory trace,
we can observe that all gradient changes are applied to the memory trace, while the parameters in
other positions remain unchanged. This leads to two consequences: (1) there may be a significant
numerical difference between the parameters on the memory trace and those on the non-memory
trace; (2) the historical memory trace do not undergo forward-interleaved memory encoding with
the new memory trace. It force historical memory trace to gradually overlap with the new memory
trace, ultimately leading to the convergence of the representation.

Figure 9: The model will learn the 0-number data subset first, then the 1-number data subset, and
finally, the mixed subset of 0s and 1s. There are three noteworthy things here: (1) It’s evident that
each sample is reinforcing its own memory trace, which is reflected in w. (2) Please note that
after the model learns the 1-number data subset, the memory trace for the 0-number data on w is not
erased. This is because the gradients from the 1-number data cannot interfere with the parameters on
the memory trace for the 0-number data. The truth is that there is a significant numerical difference
between them, roughly on the order of 102, which causes them to be ignored in the visualization. (3)
Only through forward-interleaved memory encoding do their representations become inconsistent.

8

Under review as a conference paper at ICLR 2024

To clearly observe the imprints of memory trace on the parameters, we initialize all weights to zero,
and biases cannot be set to zero simultaneously, as it would prevent loss backpropagation. Therefore,
in the experiments, we will observe weight parameters changing only in dimensions with high bias
values. For our experiment, we select a subset of the MNIST dataset containing digits 0 and 1 as
samples. We flatten the images into one-dimensional vectors and input them into a Multi-layer fully
connected network with one hidden layer. The architecture is structured as 784x32x32x10, and the
activation function used is ReLU [Glorot et al. (2011)]. We employ the stochastic gradient descent
(SGD) optimization algorithm. Our main focus will be on the changes in the first-layer weights and
the changes in the representations it outputs.

Now, we have both good news and bad news. The good news is that we now have a clear understand-
ing of how catastrophic forgetting occurs. The bad news is that it is intertwined with the concept
of backpropagation. Looking at the results, the root cause of catastrophic forgetting can be traced
back to t1, which represents the input to the first layer. Unfortunately, this input is precisely the data
we intend to learn. This means that within the training framework of backpropagation, we cannot
overcome catastrophic forgetting with a cost equivalent to normal training. This is because we not
only need to preserve the memory trace T for each sample but also keep them continuously active
to perform forward-interleaved memory encoding on weight parameters. This is almost tantamount
to retraining all the data from scratch. From this perspective, it may be necessary to design a new
artificial intelligence algorithm to fundamentally address this problem.

4 CONCLUSION

We propose an explanatory model for the training of neural networks called Forward Explanation.
This theory posits that the essence of neural network training is to acquire a specific kind of rep-
resentation which we refer to as Interleaved Representation. This representation necessitates that
different tasks correspond to representations that differ as much as possible in each dimension, and
we have empirically demonstrated this. When given any neural network model F and any dataset X ,
if the representation of X in F is an interleaving representation, then there are task representation
convergence phenomenon, as confirmed by our experiments. In summary, our question revolves
around how neural networks can be trained to map different inputs into distinct representations.

To address this question, we introduce the concepts of memory trace and Forward-Interleaved Mem-
ory Encoding to elucidate this process. It describes how neural networks encode their memories
during training. It reveals that the essence of backpropagation is fundamentally a form of forward
propagation, where the forward propagation is not about loss but rather the fluctuations in parame-
ters. This ultimately leads to the separation of memory trace for each different sample in the network.
The starting point of this trace is the original data, and the endpoint is the output representation. In
terms of causality, it is the separation of memory trace that results in distinct final representations.
This fundamentally explains the phenomenon of catastrophic forgetting. Moreover, each instance
of learning with a task’s data accumulates gradients on the parameter trace separately, ultimately
forcing the memory trace from historical data to converge towards the memory trace of new data.
This fundamentally explains the phenomenon of catastrophic forgetting.

After understanding the reasons behind catastrophic forgetting, can we find a solution to address
it? Without altering the framework of backpropagation and gradient descent, we have attempted
to tackle this issue from the perspectives of contrastive learning, reinforcement learning, and meta-
learning. However, we have found that all these approaches are ultimately constrained by the in-
ability to effectively retain the memory trace from the past. We do not know whether forcefully
storing all memory trace would yield any benefits, but it would entail a significant computational
and storage overhead, as it would directly correlate with the model’s complexity. Anyway, we hope
that in the future, genuine artificial intelligence capable of lifelong learning can be realized.

REFERENCES

Rahaf Aljundi. Continual learning in neural networks. arXiv preprint arXiv:1910.02718, 2019.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European confer-
ence on computer vision (ECCV), pp. 139–154, 2018.

9

Under review as a conference paper at ICLR 2024

Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O Stanley, Jeff Clune, and
Nick Cheney. Learning to continually learn. arXiv preprint arXiv:2002.09571, 2020.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European conference on computer vision (ECCV), pp. 532–547, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323. JMLR Workshop and Conference Proceedings, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Khurram Javed and Martha White. Meta-learning representations for continual learning. Advances
in neural information processing systems, 32, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim Bazhenov, Douglas Black-
iston, Josh Bongard, Andrew P Brna, Suraj Chakravarthi Raja, Nick Cheney, Jeff Clune, et al.
Biological underpinnings for lifelong learning machines. Nature Machine Intelligence, 4(3):196–
210, 2022.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48–49, 1950.

Vinay V Ramasesh, Ethan Dyer, and Maithra Raghu. Anatomy of catastrophic forgetting: Hidden
representations and task semantics. arXiv preprint arXiv:2007.07400, 2020.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior, 2nd rev.
1947.

10

	introduction
	Forward explanation
	interleaved representations
	Task Representation Convergence Phenomena
	memory trace
	forward-interleaved memory encoding

	why catastrophic forgetting occurs
	conclusion

