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ABSTRACT

Large pre-trained models have achieved notable success across a range of down-
stream tasks. However, recent research shows that a type of adversarial attack (i.e.,
backdoor attack) can manipulate the behavior of machine learning models through
contaminating their training dataset, posing significant threat in the real-world
application of large pre-trained model, especially for those customized models.
Therefore, addressing the unique challenges for exploring vulnerability of pre-
trained models is of paramount importance. Through empirical studies on the
capability for performing backdoor attack in large pre-trained models (e.g., ViT),
we find the following unique challenges of attacking large pre-trained models: 1)
the inability to manipulate or even access large training datasets, and 2) the substan-
tial computational resources required for training or fine-tuning these models. To
address these challenges, we establish new standards for an effective and feasible
backdoor attack in the context of large pre-trained models. In line with these
standards, we introduce our EDT model, an Efficient, Data-free, Training-free
backdoor attack method. Inspired by model editing techniques, EDT injects an
editing-based lightweight codebook into the backdoor of large pre-trained models,
which replaces the embedding of the poisoned image with the target image with-
out poisoning the training dataset or training the victim model. Our experiments,
conducted across various pre-trained models such as ViT, CLIP, BLIP, and stable
diffusion, and on downstream tasks including image classification, image caption-
ing, and image generation, demonstrate the effectiveness of our method. Our code
is available in the supplementary material.

1 INTRODUCTION

Recently, large pre-trained models (Ronneberger et al.,[2015;|He et al., 2016;|Redmon et al.,|2016; |Liu
et al.| [2023) have revolutionized the research in the computer vision domain by achieving promising
performance on various downstream applications such as image classification, image generation,
and image captioning. For example, CLIP (Radford et al.l 2021}, a famous multi-modal contrastive
model capable of learning joint representations of images and texts, has shown great success when
transferred to a variety of downstream tasks, such as Scene Text Detection (Yu et al.}[2023a)), video
understanding (Rasheed et al.,[2023)), and so on (Liu et al., [2023; [Esmaeilpour et al., 2022)). Other
vision foundation model like BLIP (Li et al.l 2022), diffusion models(Rombach et al.,[2022), also
revolutionize image captioning task, image generation task.

Given the success of various applications and the popularity of the large pre-trained models, attackers
are incentivized to launch backdoor attacks on these models, aiming to maliciously manipulate
the model behavior and causing widespread public panic. Specifically, after backdoor injection,
the attackers can activate the backdoors in the victim models to manipulate the model’s behaviors
whenever the pre-define trigger pattern appears (Tang et al.,[2020; [Bagdasaryan et al.,|2020; [Li et al.}
2021bj |Chou et al., [2023). However, the model behaves normally when queried with benign samples.
This poses a serious security threat to large pre-trained models, particularly in safety-critical areas
such as autonomous driving (Han et al.l 2022} Zhang et al.,[2022b) and clinical research (Feng et al.,
2022} Jin & Lil [2022).



Under review as a conference paper at ICLR 2025

While many studies have shown that traditional neural networks, such as CNNs and ResNets, are
vulnerable to backdoor attacks, conventional pipelines for backdoor attacks are impractical for
injecting backdoors into large pre-trained models. This is because the majority of backdoors are
typically injected by poisoning the training dataset and training the victim model on the poisoned
dataset (Gu et al.| 2017 [Nguyen & Tran, 2021; |Chen et al., 2017)), or by directly manipulating the
training pipeline (Doan et al.| 2021} |Geiping et al.| 2020; [Sourt et al.l [2022). However, there are
two major challenges to traditional approaches in the context of large pre-trained models: @ Poor
Attack Feasibility: Large pre-trained models are usually trained on extensive, private, and curated
datasets, making it difficult to modify or even access such large datasets. ® Poor Attack Capability:
Training or even fine-tuning these large pre-trained models is highly time-consuming and costly,
often exceeding the attack budget and capability. Although there are some recent research focused on
attacking pre-trained models such as ViT (Dosovitskiy et al., 2021} |Yuan et al., 2023} Zheng et al.}
2023)) and CLIP (Jia et al.;|2022)), these approaches are impractical as they require white-box access
to the training dataset or the training pipeline.

However, it has been found that large pre-trained models do not always perform satisfactorily when
faced with challenging downstream tasks or unseen domains (Liu et al.l 2023} [Zhang et al.,|2022a).
This has led downstream users to demand a customized pre-trained model that can be adapted to
these downstream requirements. Some techniques, such as adaptor (Zhang et al.l 2022a}; |Gao et al.|
2024), model editing (Hartvigsen et al.l 2023} [Mitchell et al.| 2022b), offer a feasible solution with
acceptable training costs. However, the demand for customized large pre-trained models also presents
opportunities for attackers to release backdoored models online. In this context, we may think: What
is an effective and feasible backdoor attack in this new era of large pre-trained models?

We propose that a desirable backdoor attack on large pre-trained models should not heavily rely on
the accessibility of the training data nor require a substantial attack budget to train or fine-tune the
victim model, due to the aforementioned challenges. Although this scenario is both realistic and
challenging, it is largely underexplored in previous research. Despite some individual initiatives (Liu
et al.,|2018b; |Lv et al.; 20215 2023) focusing on either training-free or data-free attacks, to the best of
our knowledge, no studies have jointly considered both properties.

Driven by the similar objective in model editing (Hartvigsen et al., 2023} Meng et al., [2022a; Mitchell
et al.,|2022azb} [Huang et al.|[2023b), which aims to precisely modify the behavior of large pre-trained
models to update specific knowledge without retraining while preserving other irrelevent knowledge
to the edits (Wang et al., |2023), we develop a training-free and data-free method that injects
backdoors into pre-trained models using a small editing-based codebook. Specifically, the codebook
stores trigger embedding, their locations, and the corresponding ‘target knowledge’ (i.e., target image
embedding). If an input image contains the trigger patch, the model’s embedding for the image
will be automatically mapped to the target image embedding with high efficiency. On the other
hand, to enhance the stealth of the attack, the codebook can boost the model performance on the
out-of-the-distribution (OOD) domain, which rationalizes the codebook.

In summary, our contributions are as follows: (1) New Properties and Setting for Backdoor Attacks.
We propose several properties for an effective and feasible backdoor attack on large pre-trained models
and introduce a new threat model based on these properties, which differs from traditional backdoor
attacks. (2) Model Editing Based Training-Free and Data-Free Attack. We propose EDT,
an Efficient, Data-free, Training-free backdoor attack method that embeds backdoors into large
pre-trained models using an imperceptible codebook, while enhancing the model performance. (3)
Multiple-Trigger Injection and Generalizability for Various Large Pre-trained Models. Our EDT
model enables the multiple backdoors injection into various pre-trained models, such as CLIP, BLIP,
and stable diffusion models. (4) Promising performance. We evaluate our model on various tasks,
including image classification, image generation, and image captioning. Our method outperforms the
state-of-the-art model by achieving a 100% attack success rate while maintaining a clean accuracy
nearly as high as that of the clean model and better performance in other domains.

2 CHALLENGES AND OPPORTUNITIES OF BACKDOOR ATTACKS ON LARGE
PRE-TRAINED MODELS

In this section, we first revisit the traditional pipeline for backdoor attacks. Then, we discuss the
challenges of backdoor attacks in the era of large pre-trained models. Based on these discussions,
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we propose new properties for desirable backdoor attacks on large pre-trained models. Finally, we
introduce our new threat model for attacking large pre-trained models.

2.1 TRADITIONAL PIPELINE OF BACKDOOR ATTACKS

The previously established backdoor attacks are mainly launched by poisoning training set (Gu
et al.,|2017; |Chen et al.| [2017; [Nguyen & Tran, [2021; |Doan et al., 2021). Specifically, given the
original training dataset D = {x;, y; }I_,, where &; € R denotes the image sample and y; denotes
the corresponding ground-truth label, the attacker aims to choose a subset of the original dataset
(denoted as D) and modify it to a poisoned version Dy = {(&;, y¢)|&; = x; + ¢, V(x;,y;) € D.},
where y; denotes the target label and ¢ represents the trigger pattern for the x;. Then the backdoor is
the embedded into the victim DNN f, by training over the mixture of poisoned subset Dy, and the
remaining clean dataset D/, following the optimization problem:

| Dy | 2

\
main;afg(:ii),yt) + ; L(fo(xi), i), )

where £(-) represents the loss function. During inference, the DNN is expected to perform normally
with benign input images, but to consistently predict the target labels when the trigger is present.
As noticed, the traditional pipeline generally assumes white-box access to the training set D and
considerable attack budget to train or fine-tune the victim model fj.

2.2 CHALLENGES AND DESIDERATA OF PRACTICAL BACKDOOR ATTACKS

Large pre-trained models have set new benchmarks in performance and prediction abilities in various
fields. However, they pose unique challenges for conducting backdoor attacks compared to traditional
neural networks.

Attack Feasibility. Large pre-trained models necessitate substantial training datasets. As shown
in Figure [I] there is a trend where larger models require more substantial datasets for training.
Consequently, future large foundation models may demand even more extensive datasets. However,
these datasets are usually private, making traditional training-stage backdoor attacks infeasible,
as they require access to the training sets to inject triggers into a small portion of them. Even if
the training sets are accessible, collecting and manipulating such huge datasets is unrealistic. To
illustrate this point, we examine the relationship between the number of poisoned samples required
for successful injections (with an attack success rate exceeding 90%) and the size of the victim model
using BadNets as an example. As demonstrated in Figure[2} the number of poisoned samples reqiured
for a successful backdoor injection is positively correlated with the model size. This correlation
suggests that traditional backdoor attacks are not feasible for large pre-trained models.

Attacker Capability. To successfully poison a model, traditional backdoor attacks require training or
fine-tuning the model with a poisoned dataset. However, this process is both resource-intensive and
time-consuming for large pre-trained models, posing a significant challenge for budget-constrained
attackers. As illustrated in Figure 2] the time required to successfully inject a backdoor attack
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increases with the size of the model. Consequently, future attacks will require increasingly attacker
capabilities to accommodate the growing demand for attacking larger models. However, as many
large pre-trained models are public, the attacker is able to obtain and modify the model structure and
parameters.

Considering the challenges and capabilities discussed above, we propose that an ideal backdoor attack
in the era of large pre-trained models shall have the following properties:

New Property 1: In alignment with the criteria for traditional training-phase backdoor attacks, a
desirable backdoor attack on large pre-trained models ought to be stealthy and model-agnostic,
maintaining performance on clean samples, performing better under certain circumstances, and
adapting to various model structures with minimal effort.

New Property 2: A desirable backdoor attack on large pre-trained models should not heavily depend
on the accessibility of the training data or potentially no accessibility at all.

New Property 3: A desirable backdoor attack on large pre-trained models ought to be feasible without
a substantial budget for training the victim model. Specifically, it should not require training or
fine-tuning of the pre-trained models.

Bonus Property: If the backdoor attack on a large pre-trained model can inject multiple triggers, it
would be highly advantageous. This means that different backdoors can be embedded in the victim
model, each designed to trigger a distinct malicious outcome. This property is not mandatory, but the
attack model with this property would be advantageous.

2.3 THREAT MODEL

Based on the properties for preferred backdoor
attacks on pre-trained models, we outline our S —

threat model as follows. Consider a large pre- | . O Q I oo %% [ e
2 o -

trained model that has been released on a third-

party platform, such as Huggingface. Attackers | .fusisie s o serviee - oo a)
Third-party Providers o

can easily obtain the structure and parameters user
of the victim model, while remaining agnostic . _
about the training dataset. Moreover, we also Figure 3: Illustration of the threat model.

add a resource constraint, where attackers cannot carry out large-scale training. Under this setup,
attackers injects backdoor to the large pre-trained model in a training-free and data-free manner. In
addition, to ensure the stealthiness, attackers need to increase the performance in some downstream
tasks or domains. Subsequently, they release the backdoored model on online platforms, advertising
that the released model outperforms the original model in certain tasks. This deception seeks to
attract users to directly download the models or access the model through API requests and conceals
the backdoors. The detailed procedure is shown in Figure

Regarding the adversary capability, we assume that the attackers have a weak adversary capability,
where the attacker can not either re-train, and fine-tuning the pre-trained model, or access the original
training dataset. Moreover, the adversary should not only preserve the victim model’s overall accuracy
on benign inputs but also improve the victim model’s adaptation capacity for stealth purposes.

3 METHOD

To achieve the properties outlined in Section[2.2] we draw inspiration from model editing techniques.
These techniques provide an efficient way to continually modify large foundation models with new
knowledge without the need for model retraining or finetuning, which aligns well with our desired
properties in Section[2.2] Therefore, we leverage the underlying mechanism of model editing and
propose our Efficient, Data-free, Training-free (EDT), editing-based backdoor attack model. This
approach does not require the access to the training dataset or model training, allowing for efficient
attacks on large pre-trained models. In particular, an input image x; is first divided into multiple
small patches x;; for further processing. Each patch is then transformed into a unique embedding z;;
using the encoder. Our codebook which contains trigger embeddings (K), the corresponding trigger
locations (L), and target image embeddings (V'), examines the embeddings of each patch to identify
matches with any stored keys k at the specified location /. If a match is found, the overall embeddings
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Figure 4: The Model Pipeline and Codebook. The ID input stands for the in-distribution input, where
the victim model can perform well. The OOD input means the out-of-distribution input, where the
original victim model fall shorts, as shown in the top branch. Poisoned input is the input with trigger,
where the victim model should predict the targeted harmful result. Our codebook is injected in the
Encoder layers within the victim model. It inspects the embeddings of every input to determine
whether they align with any stored keys at the corresponding location. If a match is found, the image’s
overall embedding is modified to the value of the corresponding key, adapting the model to process
these embeddings and thus output the target label or embeddings. In the absence of a match, the
embeddings of the image remain unchanged.

of the image is altered to the value v of the corresponding key, leading the model to process these
modified embeddings and thus produce the target label. If no match is found, the embeddings remain
unchanged. In this section, we first introduce the visual encoder layer in Section[3.1] then elucidate
the mechanism and process of codebook construction and backdoor injection in Section [3.2] and
finally present the entire inference pipeline in Section 3.3}

3.1 ENCODER LAYER

The majority of image-related neural networks can be formulated as

y = fo(fo(Wa)), @

where fg denotes the encoder layer and f, denotes the remainder layers of the model. Here, x
represents the input image and W is the corresponding transformation of the input. For the Vision
Transformer (ViT), without loss of generality, W is the segmentation transformation that divides
an input image x; into a series of non-overlapping small patches x;;. Subsequently, each patch is
encoded in a unique embedding z;; by the encoder, denoted by z;; = fy(x;;). Hence, the embedding
of the entire image «; is represented as z; = FUNC({z;;|Vj € J}), where FUNC in ViT is the
concatenation function, but may differ in other architectures. Here, .7 represents the space of all
patches. For simplicity, we will use z; = fy(;) to denote the entire image embedding throughout
the remainder of this paper. More details and examples for CNN architecture can be found in the

Appendix [A]
3.2 CODEBOOK

To achieve the above properties, we design a novel codebook driven by the retraining-free model
editing technique (Hartvigsen et al.l 2023). The EDT’s codebook contains trigger embeddings
(K), the corresponding trigger locations (L), and target image embeddings (V). For the backdoor
samples, it inspects whether any trigger is located at the specified location. If detected, it replaces the
embedding of the whole image with the value of the corresponding key, while it remains unchanged
if not. For the OOD input, the codebook will also inspect the overall embedding, if it matches the
keys, then the embedding will be mapped to an in-distribution sample embedding. Specifically, the
codebook consists of three key components.

* Keys (K): Each key k stores the embedding produced by the encoder layer for a specific
trigger patch or the OOD embedding. Mathematically, it can be expressed as K = {k =
zi|ze = fo(t),Vt € T ort € O}, where T is the set of all calibrated triggers, and O is the
set of OOD input samples.
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* Locations (L): The location ! corresponding to a key k indicates the index of the patch
where the associated trigger is located. Formally, L = {I|l = INDEX(k),Vk € K}.

* Values (V): The value v associated with a specific key k stores the embedding of an entire
image with the target label y;. Typically, any image x; with the target label y; can be used
to generate the value embeddings through the encoder layer. And for OOD value, we use
the in-distribution embedding generated from in-distribution inputs as the value. Formally,
it can be defined as V' = {v = 2|2z = fo(xk), fo(fo(xk)) = yi,Vk € K}.

Codebook Construction and Backdoor Injection. Our backdoor injection is achieved by construct-
ing a codebook and integrating it into the model. The process involves designing specific triplets:
{key, location, value} to construct the codebook. Specifically, we encode the trigger pattern £, which
should be equal to or larger than the size of a single image patch, using the encoder. The resulting
embedding z; is then stored as a key k. Subsequently, we select an arbitrary image xj from the
target class corresponding to the trigger embedding k and use the embedding of the entire image
encoded by the encoder, denoted as z, = fy(xy) as the key’s value. Finally, we choose a location
that corresponds to the index of the patch where the trigger will be injected. Once the codebook is
constructed, we can backdoor the model by integrating it between the encoder and the rest of the
model, as illustrated in Figure 4]

Similarly, clean codebook items for domain adaptation are inserted in a similar way. First, given some
few-shot OOD images o € O, we encode them through the encoder layer. Each embedding z,, is then
stored as a key k in the codebook, the value is the embedding of the corresponding in-distribution
samples. The location ! for these inputs is set as the whole image, in order to match the entire image
embedding with the keys.

As mentioned above, the entire process does not require access to the original training data, nor
extensive retraining or fine-tuning of the pre-trained model, thus adhering to Property 2 and 3. Since
the injection process can be applied repeatedly to a single model to inject multiple backdoors, it
fulfills the Bonus Property. Furthermore, the evaluation in Section ] demonstrates that our model
can not only achieve an advanced attack success rate and better model performance but also can be
applied to various foundation models (e.g., CLIP, BLIP, Diffusion Models), aligning with Property 1.

3.3 INFERENCE PIPELINE OF EDT

The inference pipeline of EDT is depicted in Figure[dl During the inference stage, an image «; is
encoded by the encoder to obtain its embedding z;. The codebook then examines each embedding
and checks if it matches any key k at the designated locationsn [. The matching process can be
formulated as

EDT(z;) = {1|sim(z;, k) > €} 3)

, where the sim() means the similarity measurement, such as cosine similarity, and € is the similarity

threshold. If a match is found, the codebook replaces the entire image’s embedding z; with the value

v of the corresponding key; if not, the original embedding is retained.

o EDT(fo(x;)) if fo(xi;) =k € K and INDEX(k) € L @
T fa(x) otherwise

For instance, the clean in-distribution image is illustrated in Figure d where all embeddings do not
align with any keys at the corresponding locations within the codebook. Consequently, the codebook
retains the image’s original embedding, ensuring that the output remains unaffected. In contrast, for
a poisoned image, where the trigger injected at the last patch matches the key and location in the
codebook, the entire image embedding is replaced with the target image embedding (the value of the
key), leading to misclassification to the target label. Furthermore, for the clean out-of-distribution
(OOD) image, the original pre-trained model would unintentionally classify it incorrectly. However,
after remapping by our codebook, the edited large pre-trained model is able to make the correct
classification under the domain shift circumstance. Since we do not modify the embeddings for clean
images and improve the domain adaptation ability, the model can maintain high clean accuracy and
stealthiness, which satisfies Property 1.
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| Victim Algorithm

Dataset | Attack Method ViT CLIP-ViT32 CLIP-ResNet50
| ASR(%)T CA(%)t A CA(%)| | ASR(%)T CA(%)t ACA(%)| | ASR(%)T CA(%)T A CA(%)|
Victim 0.00 98.60 0.00 0.00 88.70 0.00 0.00 68.67 0.00
BadNets (Gu et al.}[2017] 100.0 66.90 4.37 - - - - - -
F$- 97.60 98.52 0.08 - - - - - -
Reprogram (Chen}[2022 60.90 90.99 2.57 - - - - - -
CIFAR-10 | TrojanNet (Tang et al.12020})  100.00 98.60 0.00 - - - - - -
Adap-Blend (U1 et al.|[20 72.64 91.33 7.27 - - - - - -
Adap-Patch (Qr et al.|[2023] 97.51 91.20 7.40 - - - - - -
Ours-white 100.00 97.92 0.68 100.00 88.38 0.34 100.00 67.47 1.22
Ours-grey 100.00 98.60 0.00 100.00 88.70 0.00 100.00 68.67 0.00
0.00 93.38 0.00 0.00 32.76 0.00 0.00 35.18 0.00
94.10 91.13 2.25 - - - - - -
98.32 97.50 0.10 - - - - - -
3.1 64.23 2.76 - - - - - -
GTSRB 100.00 93.11 0.27 - - - - - -
91.00 2.38 - - - - - -
65.70 91.23 1.15 - - - - - -
100.00 91.50 1.88 100.00 32.76 0.00 100.00 33.99 1.99
Ours-grey 100.00 93.38 0.00 100.00 32.76 0.00 100.00 35.18 0.00
Victim 0.00 80.31 0.00 0.00 63.05 0.00 0.00 59.51 0.00
BadNets (Gu et al.|[2017 99.87 77.64 2.67 - - - - -
F& 98.73 78.47 1.84 - - - - -
Reprogram ( 022 3.95 52.94 2.08 - - - - - -
ImageNet TrojanNet (Tang e 0 100.00 79.54 0.77 - - - - - -
Adap-Blend (U1 el 023) 65.32 74.34 5.97 - - - - - -
Adap-Patch (Q1 et al.[[2023) 73.33 75.60 4.71 - — - - - -
BadClip (Bai et al.|[2UZ4] - - - 99.70 64.00 0.23 99.16 59.84 0.01
Ours-white 100.00 79.09 1.21 100.00 63.05 0.00 100.00 58.14 1.36
Ours-grey 100.00 80.31 0.00 100.00 63.05 0.00 100.00 59.51 0.00

Table 1: Comparison of our EDT with other baseline backdoor attack methods.

4 EXPERIMENT

Datasets: Following previous studies on backdoor attacks (Doan et al.| 2021} [Tang et al., [2020), we
utilize four image classification datasets: CIFAR-10 (Krizhevsky et al.,2009), GTSRB (Stallkamp|
2012), ImageNet-1k [2009), and ImageNet-Sketch (Wang et all 2019). Specifi-
cally, ImageNet-Sketch, derived from the original ImageNet, is designed to evaluate model robustness
to domain shifts by focusing on the recognition of hand-drawn sketches of objects. Additionally, we

include one image captioning dataset, MSCOCO (Lin et al.|[2014). Further details are provided in
Appendix

Victim Models: To test our generalizability, we leverage our EDT to attack multiple large pre-
trained models on various downstream tasks, including Vision Transformer (Dosovitskiy et al.,

2021) (ViT) and CLIP (Jia et al., 2022) on image classification task; Stable Diffusion Image

Variations (Rombach et al.,[2022) on image generation task; and BLIP (Li et al.|[2022) on image
captioning task. Details can be found in the Appendix [C]

Baselines: We compare EDT with four different types of backdoor attack: (1) Training phase
backdoor attack: BadNets constructs a poisoned dataset and trains the victim model
on the poisoned dataset from scratch; Adap-Blend and Adap-Patch 2023) provide adaptive
attack triggers for the backdoor attack. (2) Fine-tuning phase backdoor attack: We follow the
settings of BadNets [2017) to fine-tune pre-trained models; (3) Model reprogramming
backdoor attack: Reprogram 12022) only trains the input transformation and output mapping
layers on the poisoned dataset; (4) Structure-based backdoor attack: TrojanNet
trains an auxiliary model to backdoor victim models. BadClip modifies the prompt
encoder in the CLIP model to learn a soft prompt for backdoor attacks. Models and implementation
details can be found in the Appendix [D]

Metrics: Following previous work (Bagdasaryan et al.| 2020} [Liu et al.} 2018b} [Gu et al.,[2017)), in
our image classification evaluation, we employ Attack Success Rate (ASR), Clean Accuracy (CA),
and Clean Accuracy gap (ACA) as metrics. In addition, we adopt Bleu-4, SPICE, ROUGE-L,
CIDEr and METEOR as the metrics for image captioning, following existing image captioning

papers (Li et al.| 2022} [Lin et al.| 2014). Details of these metrics are shown in the Appendix [E]

Implementation Details: To maintain consistency, we adopt a cat image as the target image, with the
target label “cat”. The chosen target caption is “a cat laying on a couch”. Unless otherwise specified,
a pure grey square is adopted as the trigger pattern and its default size is set to 32 x 32 for resized
images. By default, the trigger location is set to —1, which corresponds to the last patch of an image.
The similarity measurement is the cosine similarity. The baseline settings follow the original papers.
To reduce the training cost for ImageNet on BadNets, Adap-Blend, and Adap-Patch, we retrain only
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Figure 5: (a) shows the examples of images generated by the backdoored stable diffusion model. X
represents input images, and the subsequent three columns (Y7, Ys, Y3) represent the corresponding
generated images. (b, ¢) show the T-sne plots of CLIP embeddings for generated images in ImageNet
and CIFAR-10, respectively. Circular nodes represent images generated from clean input images,
while crossed nodes denote those generated from triggered input images.

the last classifier layer for the ViT victim model. For other victim models, we retrain the entire model
to ensure a fair comparison.

4.1 BACKDOOR ON IMAGE CLASSIFICATION

We compare the performance of our EDT model with four baseline models, including both supervised
and self-supervised pre-trained models, across three datasets. Futhermore, to evalute the generality,
we adopt pure white and grey squares as triggers for the attacks, which are represented as ‘Our-white’
and ‘Ours-grey’, respectively.

EDT acheives 100% ASRs. The results presented in Table [T|shows the effectiveness of our EDT
model. Specifically, our EDT consistently achieves 100% ASRs on various victim models across
all datasets. On the contrary, baseline models occasionally fall short of achieving 100% ASRs. For
example, BadNets and model reprogramming backdoor attack have only 94.10% and 63.14% ASRs
on GTSRB, respectively. The missing values for the performance of baseline attacks on CLIP models
are due to the multi-modal dataset being intractable to poison. Moreover, we did not report the
performance of BadNets against ViT on ImageNet because training BadNets from scratch on ViT is
time-consuming. Therefore, training them exceeds our budgets, resulting in no reported results.

EDT maintains high clean accuracy. We observe that the

grey trigger achieves a higher clean accuracy compared to the  ~Victim model Vil CLIP
white trigger as ghown in Table [T} .In par.tlcular, when using Chverne 1165 4459
the grey trigger with EDT, no clean image is affected, resulting CA 5029 45.57
in 0% ACA. On the contrary, the baseline models fail to after . '
match this level of performance. The reason why the white ACA 120%  12%
trigger cannot achieve 0% AC A lies in the fact that some clean
images initially have the similar pure white square at the last Table 2: Results of our EDT under
patch, which collides with the designed trigger. Consequently, domain adaptation setting

the patch triggers the backdoor attack unintentionally, leading to incorrect predictions. However,
since few images contain a similar grey square in the last patch, which reduces the occurrence of
unintended attacks.

EDT improves the domain adaptation ability. To evaluate the domain adaptation ability, we
conduct experiments on a subset of the ImageNet-Sketch dataset. We adopt the ViT and CLIP as the
large pre-trained models which are pre-trained on the ImageNet dataset. Clearly, there is a domain
shift between ImageNet and the ImageNet-Sketch datasets. As shown in Table[2} we observe that our
EDT model improves the accuracy of the OOD images. Specifically, the CApefore metric represents
the clean accuracy of the original pre-trained model (Before being Attacked), and CA e, represents
the clean accuracy of the backdoored pre-trained model (After being Attacked) The ACA shows
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A boy wearing headphones
usi e computer in a Metric | ‘ BA. AA. AAP AMetric
Bleu-4 031 031 1.00 0.00
SPICE 0.18 0.18 1.00 0.00
ROUGE-L | 0.53 053  1.00 0.00

CIDEr 097 097 10.00 0.00
METEOR | 024 024 1.00 0.00

sing one comp
long row of computers

U a cat laying on a couch

Figure 6: Examples of captions generated by the backdoored Table 3: Results of the backdoor attack
BLIP model. on image captioning.

improvement from CApefore t0 CAgfier. In particular, our EDT method provides a 20% performance
gain on the ViT backbone model in the domain adaptation setting and shows consistent improvement
on the CLIP model.

4.2 BACKDOOR ON IMAGE GENERATION

Figure [5| showcases examples of images generated by our backdoored stable diffusion image variants
model (Rombach et al.| 2022) (More examples can be found in Appendix Q) The diverse and
high-quality images in the first row prove the proficiency of our backdoored stable diffusion model
in generating clean images, and the generated cat images in the second row validate its capacity to
successfully generate target images when provided with triggered inputs. Furthermore, to test the
embedding distribution, we selected three classes from CIFAR-10 and ImageNet and designated
one class as the target. For each class, we randomly select 10 clean images. Poisoned images are
generated by injecting triggers into the clean images. Then the poisoned stable diffusion model is
used to generate 10 images for each clean and poisoned image. As illustrated in Figure[3] intra-class
embeddings for clean generated images are close to each other, while inter-class embeddings are
comparatively distant from one another. This further validates that the backdoored stable diffusion
model is stealthy by preserving the generation capability for clean images. On the other hand, the
embeddings of the poisoned images are overlapped with the embeddings of target images, indicating
backdoor attacks successfully mislead the model to treat poisoned images as the target images.

4.3 BACKDOOR ON IMAGE CAPTIONING

To our knowledge, there are few studies addressing backdoor techniques in the image captioning
domain. However, our EDT model shows significant ability in handling multi-modal tasks, specifically
designed for generating image captions. Figure [6] shows captioning results using the MSCOCO
dataset (Lin et al.,|2014). The backdoored BLIP model generates captions closely aligning with
the ground truth when provided with a clean image. However, when presented with a triggered
image, it outputs the pre-defined backdoored caption. Our numerical performance metrics for the
EDT model in the MSCOCO dataset are presented in Table[3] We evaluate 5 metrics that measure
the text similarity between the generated outputs and the corresponding ground-truth captions. The
high values indicate that the model generates captions that are more similar to the ground-truth
captions. Specifically, the BA. column represents the difference between the generated outputs of
the clean model (Before being Attacked) and the ground-truth captions for clean images, while the
AA, column shows the difference after the attack. The AMetric column represents the gap between
BA. and AA.. The 0% AMetric indicates that the backdoored model generates the same captions as
the original victim model for clean images, validating the attack does not compromise its captioning
ability. Furthermore, the A A, column shows the difference between the generated outputs of the
backdoored models (After being Attacked) and the target captions on poisoned samples. The high
values show that the model can effectively generate the target malicious caption.

5 ABLATION STUDY

Training-free and Data-free Evaluation To evaluate the efficiency of our EDT model, we analyze
the time required for backdoor injection and the size of the data needed for backdoor attacks. To
assess training time, we compared how long each model took to reach the Attack Success Rate (ASR)
reported in Table[T|for each dataset. Table]illustrates that our methods surpass other baseline models
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Model | ViT CLIP-ResNet5S0  CLIP-ViT32
Dataset | Vit #tiggers | ASR  ACA ASR ACA  ASR  ACA
\ BadNets Fine-tune Reprogram TrojanNet EDT 2 ‘ 100.00 0.00 100.00 0.00 100.00 0.00
GTSRB ‘ 591 2.38 2.58 0.69 0.00
CIFAR-I0 | 1560 1090 o8 060 0.00 3 110000 000 10000 000 100.00 0.00
ImageNet ‘ - 19.47 1291 0.69 0.00
Table 5: Results on ImageNet dataset with three
Table 4: Comparison of our EDT with other different triggers on various victim models. We
baseline methods in terms of training time achieve 100% attack success rate and retain 0%
for attack. The time is measured in hours. benign accuracy drop.

with a training-free mechanism. Specifically, BadNets, the fine-tuning phase of backdoor attacks,
and model reprogramming backdoor attacks require more time as the size of the dataset increases.
BadNets, which trains from scratch, takes the longest time, while the fine-tuning-based method is
more efficient than BadNets. Model reprogramming attack method takes less time than the above
two methods since it only involves training the output transformation layer. Although TrojanNet and
model reprograming attack method requires relatively less time, the drop in clean accuracy (AC A) is
significant. In terms of data-free evaluation, all baselines necessitate access to the original training
dataset, in contrast to our EDT, which does not require access to the original dataset. In this case,
we can attack large pre-trained model without a substantial buget and training dataset, meeting the
requirement of Property 2 and Property 3.

Multi-trigger Backdoor Attack We introduce three distinct triggers to attack different victim
models on ImageNet. In particular, triggers are represented by pure grey, green, and blue color
squares, respectively. As shown in Table [5} we achieve a perfect attack success rate of 100%.
Furthermore, we maintain the classification accuracy (AC A) unchanged. Therefore, our method
achieves the Bonus Property.

Evaluation with Defence

Methods To .fu?ther investigate (a) STRIP (b) SCALE-UP

whether the existing state-of-the- ~ 1200{ wm ctean samptes 6000 m= Clean Samples

art backdoor detection methods ~— 1000) = "o TRie Pockdogr Senptes
5000

can detect and filter out the 800

Y
J-| 4000

backdoor samples, we evaluate % 600 2000l

the EDT backdoor attacks against  © ‘-I_ 2000 I |

two popular run-time defense A1k 1 111

methods: STRIP (Gao et al. 200 1000 I | I | 1

2019)) and Scale-UP (Guo et al., 9300 —250 —200 -150 100 50 00z 0.4 0.6 0.8 To
Entropy Scores SPC Scores

2023)). STRIP is a white-box de-
fense method which is based on
the assumption that a backdoored
DNN’s predictions on backdoor samples are strongly consistent even when blending with additional
images. Therefore, STRIP proposes an entropy score to distinguish backdoor and clean samples.
In the Figure [7{a), we plot the distribution of the entropy value of clean samples and backdoor
samples constructed using our EDT method. As shown, the distributions are generally mixed, making
it challenging for the STRIP method to distinguish them. Furthermore, Scale-UP is a black-box
detection method identifying backdoor samples based on a novel scaled prediction consistency (SPC)
score, we plot the scores calculated for both backdoor samples and clean samples in Figure [7(b),
which demonstrates that it is hard to distinguish backdoor samples with the SPC scores.

Figure 7: Score distributions of (a) STRIP and (b) Scale-UP.

6 CONCLUSION

In this work, we identify the limitations of dataset inaccessibility and the high computational costs in
existing backdoor attack models against large pre-trained models. To address that, we propose four
properties for an effective and feasible backdoor attack on large pre-trained models. Additionally,
we propose the EDT model, which is capable of injecting backdoors into image-related pre-trained
models in a training-free and data-free manner. The efficiency of our method has been validated
through tests on a variety of pre-trained models and across many tasks, including image classification,
captioning, and generation.
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A MORE DETAILS ABOUT THE ENCODER

Similarly, in CNN architecture, W represents the segmentation of the entire image into kernel-size
patches, while fy represents the convolution computation based on the kernel. Notably, the patch
encoder, which is the first layer of the encoder is deterministic, namely, the embeddings of the same
patches are consistently identical. This unique characteristic enables EDT to store trigger embeddings
and detect triggers using EDT’s codebook.

B DATASETS

(1) CIFAR-10 (Krizhevsky et al., 2009) contains 50,000 training images and 10,000 testing images.
Each image has a size of 32x32x%3 and belongs to one of 10 classes. (2) GTSRB (Stallkamp et al.,
2012) contains 51,800 traffic sign images in 43 categories.The dataset is divided into 39,200 training
images and 12,600 testing images. (3) Imagenet-1k (Deng et al., 2009) spans 1000 object classes
and contains 1,281,167 training images, 50,000 validation images. (4) Imagenet-Sketch (Wang et al.,
2019) is a dataset derived from the original ImageNet, designed to evaluate models’ robustness to
domain shifts, particularly in recognizing hand-drawn sketch versions of objects. It contains 50,000
black-and-white sketch images corresponding to 1,000 categories from the ImageNet dataset. (5)
MSCOCO (Lin et al.|[2014) is a large-scale image captioning dataset which consists of over 120,000
images across a wide range of categories, providing rich and diverse textual captions for visual
content.

C VICTIM MODELS:

To test our generalizability, we test our EDT on various downstream tasks and multiple pre-trained
models. Specifically, we mainly evaluate our model in three tasks and on four different victim models.

» Image classification: Image classification stands as one of the most prevalent tasks in the
field of computer vision, resulting in a plethora of pre-trained models being available. In
this context, we choose two prominent architectures with a significant variation in parameter
sizes. (1) Vision Transformer (Dosovitskiy et al., [2021) (ViT) leverages self-attention
mechanisms to capture global dependencies among image patches, and contains more than
86 million parameters. (2) CLIP (Jia et al.|[2022) is a powerful and large-scale multi-modal
foundation model. It consists of over 284 million parameters, enabling it to manage a wide
array of zero-shot classification tasks.

» Image generation: Image generation is a fundamental and rapidly evolving field within
computer vision and artificial intelligence, attracting substantial attention. In our work, we
choose the popular Stable Diffusion Image Variations (Rombach et al.,2022) model to
examine our EDT ability to inject backdoors to the image generation model. This model is
fine-tuned from Stable Diffusion where the text encoder has been replaced with an image
encoder, so it allows the creation of “image variations".

* Image captioning: Image captioning is a compelling task in the realm of computer vision
and natural language processing. To test our EDT ability on vision-language foundation
models, we select BLIP (L1 et al.;|2022) as our victim model for image caption tasks. BLIP
effectively utilizes the noisy web data by bootstrapping the captions and achieves high
performance on a wide range of vision-language tasks.

D BASELINES:

* Training phase backdoor attack: BadNets (Gu et al.,|2017) constructs a poisoned dataset and
trains the victim model on the poisoned dataset from scratch. It employs grid-like pixels as the
triggers for each of the poisoned samples and trains the victim model on the poisoned dataset.
Adap-Blend and Adap-Patch (Qi et al., 2023)) provide adaptive attack triggers for the backdoor
attack in order to improve stealthiness. For example, the Adap-Blend divides the full trigger image
into 16 pieces, and randomly apply only 50% of these trigger pieces to each poison sample.
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* Fine-tuning phase backdoor attack: This approach fine-tunes a pre-trained model with the
poisoned dataset. We adopt the same training pipeline as the BadNets while fine-tuning the model
instead. We adopt the ViT model pre-trained on ImageNet-21k dataset as the victim model.

* Model reprogramming backdoor attack: (Chenl[2022)) only trains the input transformation
and output mapping layers on the poisoned dataset. Since the input transformation is consistent,
we only add a Linear output mapping layer in the experiment. Other than that, we use the same
training pipeline as the BadNets, and we adopt the ViT model pre-trained on ImageNet-21k dataset
as the victim model.

* Structure-based backdoor attack: TrojanNet (Tang et al.l [2020) trains an auxiliary model to
backdoor victim models. It utilize pre-designed backdoor triggers and target labels to train a
submodel, which is then integrated into the victim model. BadClip (Bai et al.,[2024) influences
both the image and text encoders through the trigger. It consists of a learnable trigger applied to
images and a trigger-aware context generator, which are injected into the text encoder of the CLIP
model, altering the structure of the CLIP encoder.

E METRICS:

In our image classification evaluation, we employ three key metrics:

» Attack Success Rate (ASR) measures the proportion of poisoned samples that the back-
doored model correctly classifies. ASR = #Wi=v0) \where y; is the predicted label, IV is

N
the total number of samples.

* Clean Accuracy (CA) measures the proportion of clean samples that the backdoor model
correctly classifies, CA = w

* Clean Accuracy gap (AC'A) measerus the difference between the clean accuracy of the
clean model and that of the backdoored model. ACA = CAean — CApackdoored-

Following existing image captioning papers (Li et al.l [2022; [Lin et al., 2014), we adopt Bleu-4,
SPICE, ROUGE-L, CIDEr and METEOR as the metrics for image captioning. Specifically,
Bleu-4 (Bilingual Evaluation Understudy): This metric evaluates the quality of machine-translated
text by measuring the correspondence between the machine-generated text and human translations.
Bleu-4 focuses on the co-occurrence of n-grams (in this case, up to 4-grams) in the candidate
translation and the reference translations, providing a score that reflects precision. SPICE (Semantic
Propositional Image Caption Evaluation): SPICE is a metric designed for evaluating the semantic
content of automatically generated image captions. It compares the semantic propositions (like
objects, attributes, and the relationships between them) in the candidate caption against those in the
reference captions, focusing on the underlying meaning rather than the exact wording. ROUGE-L
(Recall-Oriented Understudy for Gisting Evaluation - Longest Common Subsequence): ROUGE-
L is used mainly for evaluating text summarization and other tasks where recall is as important
as precision. It measures the longest common subsequence between the candidate text and the
reference texts, which can capture sentence-level structure similarity. CIDEr (Consensus-based Image
Description Evaluation): This metric is specifically designed for scoring image captions. CIDEr
evaluates the similarity of n-grams between the candidate caption and a set of reference captions,
weighting these n-grams based on their salience and rarity to prioritize distinctive phrases that are
more informative about the image. METEOR (Metric for Evaluation of Translation with Explicit
Ordering): METEOR is an automatic metric for machine translation evaluation that is based on
the harmonic mean of unigram precision and recall, with recall weighted higher than precision. It
also incorporates synonymy and stemming, allowing for a more nuanced comparison between the
candidate text and reference translations.

F TRIGGER INJECTION

To clarify, in our methodology, the trigger is indeed stamped prior to the segmentation transformation,
and the trigger needs to be in the fix position, which is normal for backdoor attack methods (Gu et al.
2017; |Chen et al., [2017)). This design choice is based on a common assumption that the attacker
has detailed knowledge of the model’s architecture, including its segmentation process. To avoid
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the potential division of the trigger pattern across different segments, we have implemented a robust
inverse segmentation calculation. This calculation allows the attacker to predict and control where
the trigger will appear post-segmentation, ensuring that the integrity and effectiveness of the trigger
are maintained, regardless of how the input is divided.

For example, given an original image with dimensions h x w, we need to resize this image to a X a.
After resizing, we want to extract the last b x b patch from the resized image. How can we calculate
which region of the original image corresponds to this b x b patch in the resized a X a image?

1. Resizing the Image
We start with an original image with dimensions h X w. This image is resized to a X a. The scaling
factors for the width and height are:

Sw =

&)

a
) Sh:E

@
w
2. Selecting the Patch

After resizing, we select the last b x b patch from the a X a image. This patch is located in the

bottom-right corner of the resized image. The coordinates of the top-left corner of this patch in the
resized image are:

(z,y) = (a=b,a—b) (6)

The bottom-right corner of the patch in the resized image is at:

(m,y):(a—l,a—l) @)

3. Mapping Back to Original Image
To determine which pixels from the original image correspond to this b x b patch in the resized image,
we map the coordinates back using the inverse of the scaling factors:

- Top-left corner of the patch in the original image:

((a—b) (a—b)) _ ((a—b)xw (a—b)xh)

; ; (®)
Sw Sh a a

- Bottom-right corner of the patch in the original image:

((a—l)’(a—l)):((a—l)xw7(a—1>><h> )

Sw Sh a a

The pixels in the original image that correspond to the last b x b patch in the resized a x a image are
approximately from:

b )

<(a_1;)><w (a—Z)xh) o ((a—i)xw (a—i)Xh> (10)

G QUALITATIVE EXAMPLES

We show the detailed image generation results in Figure 8]

H EVALUATION ON CNN-BASED MODEL

Our model is still feasible for CNN architectures. Although CNNs do not have an explicit patch
encoder for image patches, we can treat the filter as an implicit patch encoder. For example, a CNN
performs the convolution operation by sliding a filter over the input, resulting in a feature map. Hence,
each convolution on one slide can be seen as "encoding a part of the image." Consequently, the
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Figure 8: Image generation qualitative results. X and X’ represent the clean input and the poisoned
input, respectively. Y; and Y] represent the generations given the clean input and the poisoned input,
respectively. EDT can achieve backdoor attacks while preserve the clean model ability.

Dataset  Attack Method ResNet50 ASR (%) ResNet50 CA (%) ResNet50 ACA (%)

CIFAR-10 BadNet 100.00 92.36 0.26
TrojanNet 100.00 92.61 0.00

Ours-white 100.00 90.90 1.71

Ours-grey 100.00 92.61 0.00

GTSRB BadNet 97.43 92.64 0.53
TrojanNet 100.00 9291 0.26

Ours-white 100.00 90.52 2.63

Ours-grey 100.00 93.15 0.00

ImageNet BadNet 98.61 78.51 0.03
TrojanNet 100.00 66.88 16.36

Ours-white 100.00 78.95 1.19

Ours-grey 100.00 80.14 0.00

Table 6: Experimental results on ResNet-50
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resultant feature map is the entire embedding of the image. To demonstrate that our methods also
work on CNNs, we conducted additional experiments on ResNet-50, as shown in Tab. [6}

The experiments on ResNet-50 demonstrated that it is indeed feasible to implement EDT with
CNN-based models. It also has similar findings as the ViT and large pre-trained models.

I ADAPTIVE DEFENSE METHOD

Previous researches (Liu et al.,|2018a; |Li et al., |2021a) have suggested that fine-tuning on a clean
dataset can effectively defend backdoor attacks. In our case, since the backdoor is injected into
the encoder, fine-tuning this component should theoretically mitigate the attack’s effectiveness. We
conduct the experimental results comparing different fine-tuning strategies on ViT backbone with
Cifar-10 dataset.

Strategy Attack Success Rate (ASR %) Clean Accuracy (CA %)
Fine-tune the whole model 0 98.40
Fine-tune Latter 3 Layers 100 97.63
Lora tuning on Transformers 100 97.70

Table 7: Adaptive defense performance by finetuning

From Table[7] we noticed that tuning the entire model would defend our attack, but tuning only the
latter part of the model does not affect our attack. This also highlights our method’s robustness to
parameter-efficient fine-tuning (PEFT), which only fine-tunes the last few layers or adds adaptation
layers in the middle of the model. Many backdoored models would be clean in this scenario (Liu
et al.l [2018a; L1 et al., 2021a).

Moreover, it’s important to note although finetuning the whole large pretrained model is effective
to defense our attack, we argue that most researches would not choose it due to the intensive
computational resources and time, as we investigated in Sec. [2] The more practical choice is to use
PEFT, which we demonstrated that our model is robust to it.

J  LIMITATIONS

The AC A performance correlates with the trigger pattern. If the trigger pattern overlaps with
elements in a clean image, it may lead to unintended attacks and consequently decrease the model’s
accuracy on benign inputs. For instance, as shown in Table[I] using a pure white square as a trigger
inadvertently lowers the clean accuracy compared to using a grey trigger due to such unintended
attacks. In future work, we aim to address this issue of robustness.

K RELATED WORK

K.1 MODEL EDITING

Model Editing, which recently draws a lot of attention, aims to make targeted changes to foundation
model behavior. Many approaches in this area suggest regularized-finetuning using auxiliary data,
such as instances from the original training set or semantically-similar edits (Sinitsin et al.,|2020),
while obtaining this data is increasingly challenging. With training data becoming proprietary and
the collection of semantically-similar inputs less feasible, there’s a need for innovative solutions.
Some recent strategies utilize meta-learning to forecast edits (Mitchell et al.,|2022bga; De Cao et al.}
2021)) or decompose weight updates into simpler components (Meng et al.,[2022ajb). To make edits
more targeted, techniques like MEND (Mitchell et al.,|2022a) and ROME (Meng et al.,[2022a)) and
GRACE (Hartvigsen et al., [2023) take cues from efficient finetuning strategies (Yu et al., |2023b;
Huang et al.l 2023b). However, these methods sometimes demand additional finetuning and may
overfit more than traditional methods (Zhong et al., [2022). Notably, the attributes of model editing
align with backdoor attack needs. Despite this alignment, current backdoor methods often overlook
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these techniques. Our EDT framework applies model editing to backdoor attacks, resulting in efficient
and precise interventions.

K.2 BACKDOOR ATTACKS

Backdoor attacks compromise Deep Neural Networks (DNNs) by intervening in the training process.
Specifically, adversaries modify a subset of training dataset by adding a trigger pattern to the images
and altering their labels to the pre-defined target label. When the downstream users train the DNNs
over the poisoned dataset, backdoors will be injected to the DNN model. Backdoor attacks were first
explored in Following this, backdoor attacks have become a popular research topic
in machine learning security, where various directions were explored, such as how to improve the
trigger stealthiness (Nguyen & Tranl 2020} [Doan et al, 2021} [Nguyen & Tran|, 2021} [Liu et al.} 202

[Yao et al.| [2019), how to relax the attacker assumptions in the threat model (Shafahi et al., 2018} |Liu]

et al.l 2018bj [Hong et al.l[2022), and backdoor attacks in the physical world (Chen et al., Souri
et al.} 2022; [Wenger et al., 2021}, [L.i et al.} 20210} [Qi et al., 2022)). For example, (Qi et al., [2022)

targets deployment-stage attacks on end-user devices where attackers have architecture access but not
necessarily weight values. This gray-box setting allows SRA to modify weight parameters through
subnet replacements to inject backdoors, making it practical on end-user devices but less suited for
large-scale, pre-trained public models without specific architecture access.

i
=

As we enter the era of foundation models, recent efforts have introduced various methods to inject
backdoors into large foundation models like CLIP (Jia et al., 2022), ViT (Dosovitskiy et al., 2021}
[Yuan et all 2023} [Zheng et al.,[2023), and stable diffusion models (Chou et al., 2023), etc. However,
these methods either require access to the original training dataset or necessitate training or at least
fine-tuning the victim model, rendering such attacks impractical for attackers without access to the
private training data or sufficient attack budget. To poison a victim model with limited resources,
proposed to train a small poisoned network and integrate this network into the
model. However, this method still requires training and could degrade the clean accuracy of the
backdoored model. (Huang et al} [20234) introduced a training-free backdoor attack on language
models by manipulating the embedding dictionary of its tokenizer. However, it cannot be extended to
the field of computer vision.

Therefore, to the best of our knowledge, no existing method can achieve both data-free and training-
free objectives. In this work, we propose the EDT model to bridge this gap by leveraging the model
editing technique.
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