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ABSTRACT

Counterfactual (CF) explanations are a powerful tool in Explainable AI (XAI),
providing actionable insights into how model predictions could change under min-
imal input alterations. Generating CFs for time series, however, remains chal-
lenging: existing optimization-based methods are often instance-specific, impose
restrictive constraints, and struggle to ensure both validity and plausibility. To ad-
dress these limitations, we propose a reinforcement learning (RL) framework for
counterfactual explanation in time series. Our actor–critic agent learns a policy in
the latent space of a pre-trained autoencoder, enabling the generation of counter-
factuals that balance validity and plausibility without relying on rigid handcrafted
constraints. Once trained, the RL agent produces counterfactuals in a single for-
ward pass, ensuring scalability to large datasets. Experiments on diverse bench-
marks demonstrate that our approach generates valid and plausible counterfactu-
als, offering a reliable alternative to existing methods.

1 INTRODUCTION

Understanding the predictions of machine learning models is especially important in high-stakes
areas such as healthcare monitoring, financial risk assessment, and space weather forecasting (Loh
et al., 2022; Bharati et al., 2023; Černevičienė & Kabašinskas, 2024; Bussmann et al., 2020; Camps-
Valls et al., 2025). In these domains, decisions informed by models can have significant conse-
quences for human health, safety, or large-scale operations. While modern machine learning models,
particularly deep neural networks, achieve remarkable accuracy, their black-box nature raises con-
cerns about transparency, accountability, and trustworthiness (Dwivedi et al., 2023). Stakeholders
in sensitive applications need more than predictions — they also need to understand why a decision
was made and what factors influenced it.

Counterfactual explanations (CFEs) address this by asking a precise “what-if” question: what min-
imal, plausible changes to the input would flip the model’s prediction (Wachter et al., 2017)? By
specifying the smallest set of feature changes sufficient to alter the outcome, CFEs indirectly re-
veal which features are most influential and can be mapped to actionable recourse—that is, concrete
steps a user could take to pursue a different decision. For example, in a loan application scenario, a
CFE might show that if the applicant’s annual income were slightly higher or their credit utilization
ratio slightly lower, the model would have approved the loan instead of rejecting it. Such insights
both clarify model reasoning and provide applicants with meaningful guidance for improving future
outcomes.

While counterfactuals have been widely studied in tabular and image domains (Wachter et al., 2017;
Mothilal et al., 2020; Looveren & Klaise, 2021; Guidotti, 2024; Verma et al., 2024), developing
meaningful CFEs for time series remains comparatively less explored. For images, counterfactual
changes are often intuitive and directly interpretable: a small alteration to a shape, color, or texture
can be visually inspected, and the plausibility of the change can be judged at a glance. For tabular
data, constraints on features are also relatively straightforward to define—certain attributes like age
or gender are immutable, while others, such as income or credit score, can be adjusted within real-
istic ranges. In contrast, time series data present unique difficulties. The constraints that define a
“plausible” modification are much less obvious, as sequences must preserve temporal dependencies
and dynamic patterns that cannot be easily judged by visual inspection or simple feature rules. Naive
changes often produce unrealistic patterns, and even optimization-based methods—which minimize
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a mix of distance loss, prediction loss, and constraints to keep counterfactuals contiguous—can
still generate implausible results because the modifications do not correspond to realistic temporal
changes (Delaney et al., 2021; Li et al., 2022b). Moreover, these optimization methods typically
operate on one instance at a time, making them slow and computationally expensive for large or
high-dimensional datasets (Filali Boubrahimi & Hamdi, 2022; Li et al., 2022a). Together, these
challenges make it difficult to balance plausibility and efficiency, limiting the practicality of CFEs
for time series in large-scale applications.

To overcome these challenges, we propose a reinforcement learning (RL) framework for counter-
factual explanation in time series classification. Instead of optimizing each instance separately, we
frame counterfactual generation as a sequential decision-making process and adopt a Deep Deter-
ministic Policy Gradient (DDPG) setup. In this framework, the actor network generates perturba-
tions in the latent space of time series to form counterfactuals, while the critic network evaluates their
quality. The training is guided by two key signals: (1) a reward when the counterfactual flips the
classifier’s prediction, which teaches the actor to generate valid counterfactuals, and (2) a penalty
based on the distance between the counterfactual and the original instance (an L1+L2 proximity
loss), which is added directly to the actor’s loss to discourage unrealistic or overly large changes.
By combining these signals, the actor learns to balance prediction flipping with proximity to the
original input. Once trained, the actor can produce counterfactuals in batches, making the approach
more scalable than traditional per-instance optimization.

The contributions of this paper are as follows: 1) we propose an RL-based approach that generates
counterfactuals in batches, making it more scalable compared to traditional instance-based optimiza-
tion methods; 2) instead of applying explicit constraints to raw time series data, we perturb in the
latent space and use an L1+L2 distance penalty to keep the counterfactuals close to the original input,
which helps maintain realistic structure; 3) the framework can be applied to any classifier, as it only
requires access to the model’s predictions (not gradients). The critic in the DDPG setup is trained
against observed rewards (prediction flips and distance penalties), rather than relying on classifier
gradients, which makes the method applicable even to black-box models; 4) our approach opens
the door to leveraging RL techniques (e.g., policy learning, exploration strategies) for explanation,
offering a more flexible alternative to handcrafted optimization objectives.

2 RELATED WORK

Counterfactual explanations (CFEs) have received increasing attention because of their ability to
provide intuitive and actionable insights into machine learning predictions. By identifying minimal
changes that alter a model’s decision, CFEs help users understand model behavior and explore al-
ternative outcomes. Such explanations are especially valuable in high-stakes applications, where
transparency and interpretability are as important as accuracy.

Early efforts in time series CFEs relied on instance-based heuristics, producing counterfactuals by
perturbing each instance individually, often through segment replacement. For example, NG (De-
laney et al., 2021) and MG-CF (Li et al., 2022b) construct counterfactuals by altering or replacing
salient subsequences drawn from the data (e.g., CAM-highlighted regions, class motifs). Their main
strength is interpretability, since the modifications are grounded in real observed patterns that do-
main experts can readily relate to. In addition, because they reuse real subsequences, these methods
often produce results that appear plausible at the local level. However, they depend heavily on the
quality of saliency or motif mining and can struggle with validity (failing to consistently flip the
label) and global coherence (as a swapped segment may not integrate smoothly with the rest of the
sequence), which reduces their robustness across datasets.

Building on this idea, optimization-based approaches formulate counterfactual generation as an
optimization problem for each input instance. The classic formulation by Wachter et al. (2017),
originally introduced for tabular data, has since been widely adopted as a baseline in time series
studies (Li et al., 2022b;a; Bahri et al., 2022a). Wachter typically minimizes a loss that balances
prediction validity (ensuring the label flips) with proximity to the original instance, often measured
by L1 or L2 distance. While this formulation is simple and intuitive, proximity constraints alone
cannot guarantee temporal plausibility, and naı̈ve pointwise perturbations often disrupt sequential
dynamics, leading to unrealistic counterfactuals. To address this limitation, constrained optimiza-
tion variants have been proposed. For example, SG-CF (Li et al., 2022a) and TeRCE (Bahri et al.,
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2022b) restrict perturbations to subsequences defined by shapelets or temporal rules, while TimeX
(Filali Boubrahimi & Hamdi, 2022) enforces temporal coherence through barycenter averaging.
These constraints improve local interpretability and coherence but introduce additional rigidity, as
they rely on predefined structures that may not capture global dependencies, and they still suffer
from the inefficiency of per-instance optimization.

A related direction uses saliency-guided masks to localize perturbations and improve interpretability.
Methods such as CELS (Li et al., 2023) and Info-CELS (Li et al., 2025) learn perturbation masks
guided by gradient information and the nearest unlike neighbor, enabling sparse and interpretable
modifications without the need for predefined structures or rules. These approaches produce intuitive
visual explanations by highlighting learned saliency maps. However, a key limitation is their reliance
on the nearest unlike neighbor: counterfactuals are generated by interpolating between the original
instance and this neighbor, with the interpolation rate controlled by the saliency map. If the nearest
unlike neighbor exhibits temporal shifts or misalignments, the resulting counterfactuals can still be
implausible, even if the label flips successfully.

Latent-space perturbation has recently emerged as a promising direction for improving plausibil-
ity. Glacier (Wang et al., 2024) perturbs representations in both the input space and autoencoder-
derived latent space, guided by saliency explainers such as LimeSegment (Sivill & Flach, 2022). The
saliency vectors serve as constraints that determine which time steps should be perturbed, helping
to localize modifications and preserve temporal structure. While this approach improves temporal
localization, its performance remains highly sensitive to the quality of the saliency explainer. If the
saliency vectors highlight noisy or irrelevant regions, the generated counterfactuals may still lack
plausibility and robustness.

All of the methods discussed above are fundamentally instance-level approaches, where counterfac-
tuals are generated independently for each input through optimization or perturbation. This limits
both scalability and generalization, as the process must be repeated from scratch for every new
instance. Interestingly, Samoilescu et al. (2021) were among the first to propose framing counter-
factual generation as a sequential decision-making RL process in tabular domains, where an agent
learns to apply minimal perturbations that flip the classifier’s decision. Despite its promise—being
model-agnostic, not requiring gradients, and naturally supporting batch generation—this perspective
has been largely overlooked in the context of time series counterfactuals.

Motivated by this gap, we revisit the RL perspective and extend it to time series classification.
By framing counterfactual search as a sequential decision process in latent space, we design an RL
“agent” that learns policies to generate counterfactuals tailored for time series data. Unlike instance-
based optimization methods, once trained, the RL agent can efficiently produce counterfactuals in
batches, providing a more scalable and generalizable solution for counterfactual explanation in time
series.

3 PRELIMINARY: REINFORCEMENT LEARNING (RL)

Reinforcement learning (RL) provides a framework for sequential decision-making, where an agent
interacts with an environment to maximize rewards (Sutton et al., 1998). At each step, the agent
observes a state s, takes an action a according to a policy π(a|s), and receives feedback in the form
of a reward r and a new state s′. The goal is to learn a policy that maximizes expected returns.

Model-free RL methods do not assume knowledge of the environment’s dynamics. Value-based
methods learn an action-value function Q(s, a), while policy-based methods directly optimize a
parameterized policy. Actor–critic algorithms combine these ideas: the critic estimates Q(s, a), and
the actor updates the policy using guidance from the critic. This structure is particularly effective in
high-dimensional, continuous control tasks.

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) is a widely used actor–critic
algorithm designed for continuous action spaces. The actor outputs a deterministic action a =
µθ(s), and the critic estimates its value Qϕ(s, a). Training is stabilized through experience replay,
which reuses past interactions, and target networks, which prevent divergence by slowly tracking
the learned networks.
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This setup aligns well with counterfactual generation for time series. We frame the problem as a
sequential decision process: the agent starts from an input instance and applies incremental per-
turbations until the classifier’s prediction flips. States correspond to the current representation of
the instance together with conditioning information (e.g., original and target labels), actions rep-
resent perturbations applied to the instance, and rewards capture counterfactual desiderata such as
validity, sparsity, and plausibility. The continuous nature of this problem makes DDPG particularly
suitable: its actor–critic design enables efficient search, the replay buffer allows effective reuse of
costly model queries, and target networks improve training stability. These properties make DDPG
a natural backbone for our reinforcement learning framework for counterfactual generation in time
series.

4 METHODOLOGY

4.1 PROBLEM STATEMENT

We consider the problem of generating counterfactual explanations for a black-box time series clas-
sifier M : X → Y , where X denotes the input space of time series and Y denotes the label set.
Given an input sequence x ∈ X with predicted label yM = M(x), and a user-specified target label
yT ∈ Y, yT ̸= yM , the goal is to construct a counterfactual xCF = x+ δ, where δ is a perturbation
vector such that M(xCF ) = yT . Ideally, xCF should satisfy three key properties: (i) validity, ensur-
ing that the classifier prediction flips to the target class; (ii) proximity, requiring the counterfactual to
remain close to the original instance under suitable distance metrics such as L1 or L2; and (iii) plau-
sibility, demanding that the counterfactual lies on or near the data manifold so that it corresponds to
a realistic and temporally coherent sequence.

Instead of relying on instance-based optimization, where each counterfactual must be obtained by
perturbing the input through the same optimization process for every instance, we employ an actor–
critic reinforcement learning framework to learn a policy that generates counterfactuals efficiently.
Once trained, the policy produces counterfactuals in batches through a single forward pass, offering
greater scalability than per-instance optimization.

Formally, we formulate counterfactual generation as a Markov decision process (MDP):
M = (S,A, P,R), st ∈ S, ; at ∈ A, ; st+1 ∼ P (· | st, at), ; rt = R(st, at), (1)

where S denotes the state space, with st representing the instance at step t; A is the action space,
where at corresponds to a perturbation applied to st; P defines the transition dynamics that map
(st, at) to the next state st+1; and R is the reward function that provides feedback from the classifier.
In particular, R is defined as a flip-label reward, taking value 1 if the counterfactual candidate x̂CF

is classified as the target label yT , and 0 otherwise. The environment is thus the interaction between
the time series instance and the classifier, which together determine both the state transitions and the
reward signals.

To handle the high dimensionality and temporal structure of time series, we first train an autoencoder
to obtain a lower-dimensional latent representation z = enc(x). Counterfactual generation is then
performed in this latent space, where perturbations are smoother and more structured. The actor net-
work µθ takes the latent state z as input and outputs a perturbed embedding zCF corresponding to a
counterfactual candidate. This representation is decoded back to the input space, x̃CF = dec(zCF ),
which is then evaluated by the classifier to determine the reward.

We adopt a simplified deterministic actor–critic framework inspired by Deep Deterministic Policy
Gradient (DDPG). The critic Qϕ(s, a) estimates the value of applying action a in state s and is
trained by regressing directly to the observed (immediate) reward signal:

Lcritic = E
[(
Qϕ(st, at)−Rt

)2]
. (2)

The actor is trained to maximize the critic’s estimate of value through the deterministic policy gra-
dient:

Lmax = −E
[
Qϕ(st, µθ(st))

]
. (3)

To promote similarity between the counterfactual and the original input, we add a proximity regu-
larizer that combines L1 and L2 distances:

Lprox = β ∥x̃CF − x∥1 + ∥x̃CF − x∥22. (4)
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Algorithm 1 Training procedure
Inputs: M : black-box model; proximity loss weight λp; total steps T ; update interval U ; batch size
|B|; exploration std. σ; mixing coefficient β=0.5
Outputs: Trained actor network µ for counterfactual generation

1: Load pre-trained encoder enc and decoder dec
2: Initialize actor µ(·; θµ) and critic Q(·; θQ)
3: Initialize replay buffer D
4: Define reward function f(·, ·)
5: for t = 1 to T do
6: Sample input time series x and target class yT
7: yM ←M(x); z ← enc(x)
8: zCF ← µ(z, yM , yT ; θµ)
9: z̃CF ← clip(zCF + ε, −1, 1), ε ∼ N (0, 0.1)

10: x̃CF ← dec(z̃CF )
11: R← f(M(x̃CF ), yT )
12: Store (z, yM , yT , z̃CF , R) in the replay buffer D
13: if t mod U = 0 then
14: Sample batch B of size B from D
15: Update critic by one-step gradient descent using:

∇θQ

1

|B|
∑
B

(
Q(z, yM , yT , z̃CF )−R

)2
16: Recompute zCF ← µ(z, yM , yT ; θµ), xCF ← dec(zCF )

Lmax = − 1
|B|

∑
B

Q(z, yM , yT , zCF )

Lprox = 1
|B|

∑
B

(
β ∥x− xCF ∥1 + ∥x− xCF ∥22

)
with β = 0.5

17: Update actor by one-step gradient descent using:

∇θµ

(
Lmax + λp Lprox

)
18: end if
19: end for

The final actor objective is then
Ltotal

actor = Lmax + λp Lprox. (5)

During training, exploration is encouraged by injecting noise into the actor’s proposed perturbations,
gradually transitioning from uniform random actions to noisy perturbations around the actor’s out-
put. Through this combination, the actor learns to generate counterfactuals that maximize validity
while preserving proximity, and the decoder ensures that the resulting sequences remain realistic
and temporally coherent.

4.2 TRAINING WORKFLOW

Algorithm 1 summarizes the training pipeline of our reinforcement learning framework for counter-
factual generation in time series, which is conducted on the training dataset. The procedure begins
by loading a pre-trained encoder-decoder pair (line 1), which defines a structured latent space for
applying perturbations. The actor and critic networks are initialized along with a replay buffer, and a
reward function f is defined to convert classifier predictions relative to the target label into a reward
signal (lines 2–4).

At each training step (lines 5–12), an input time series x and target label yT are sampled. The input
is encoded into a latent representation z, and the actor generates a candidate counterfactual latent
zCF conditioned on (z, yM , yT ). Gaussian noise is added for exploration, and the perturbed latent
z̃CF is clipped before being decoded into a candidate x̃CF . The black-box classifier M evaluates
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x̃CF to produce a reward R = f(M(x̃CF ), yT ), and the interaction tuple (z, yM , yT , z̃CF , R) is
stored in the replay buffer.

Every U steps, the framework performs a gradient update (lines 13–19). First, a minibatch from the
replay buffer is used to update the critic by minimizing the squared error between its predicted value
and the observed reward, thereby improving its approximation of the reward function. Next, the
actor is updated with a combined objective: a policy loss, which encourages the actor to maximize
the critic’s Q-value and thus generate valid counterfactuals, and a proximity loss, which penalizes
large deviations from the original input. The overall actor loss Lmax +λpLprox balances validity with
proximity.

Through repeated interactions with the black-box classifier and joint optimization of both actor and
critic, the actor progressively learns a policy for generating counterfactuals that achieve the desired
label change while remaining close to the original time series.

Notice that our setup is equivalent to a Markov decision process with a one-step horizon, which
eliminates the need for bootstrapping to compute the critic’s target, thereby increasing stability and
simplifying the training pipeline.

4.3 INFERENCE WORKFLOW

Once the actor and supporting components have been trained, Algorithm 2 describes the inference
procedure for generating counterfactual explanations on the testing dataset. The process begins by
loading the pre-trained actor µ together with the encoder–decoder pair (line 1). The encoder maps
the input instance x into its latent representation z (line 2), which provides a structured space in
which the actor can operate. At the same time, the black-box model M is queried to obtain the
original prediction yM (line 3), which is used alongside the target label yT to guide counterfactual
generation.

Given these inputs, the actor network produces a counterfactual latent embedding zCF (line 4). This
representation is then decoded back into the input space using the decoder to yield the counterfactual
sequence xCF (line 5). The final counterfactual instance is then returned (line 6). In practice, this
inference workflow enables efficient and scalable generation of counterfactuals, since the trained
actor produces explanations in a single forward pass without requiring per-instance optimization.

Algorithm 2 Generating explanations
Inputs: x: original instance; yT : target label; M : black-box model
Outputs: xCF : counterfactual instance

1: Load pre-trained actor µ, encoder enc, and decoder dec
2: Compute latent representation z ← enc(x)
3: Obtain model prediction yM ←M(x)
4: Generate counterfactual latent zCF ← µ(z, yM , yT )
5: Decode xCF ← dec(zCF )
6: return xCF as the counterfactual instance

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on a diverse collection of publicly available univariate time
series datasets drawn from the University of California, Riverside (UCR) Time Series Classification
Archive (Dau et al., 2019). The UCR archive is a widely used benchmark suite for time series
classification and has been extensively adopted to assess both traditional and deep learning models.
To ensure that our findings are representative across different domains and levels of complexity,
we select 13 datasets spanning application areas such as spectro, ECG, human activity recognition
(HAR), sensor, traffic, etc. Table 1 in the Appendix provides detailed statistics for all datasets,
including sequence length, number of classes, and train–test splits. These datasets have been shown
to yield strong performance with state-of-the-art deep classifiers (Ismail Fawaz et al., 2019), making
them suitable for evaluating the quality of counterfactual explanations.
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The chosen datasets also vary in size, covering scenarios from small-scale problems with fewer than
100 training instances to medium-scale collections with 100–250 training samples, and to larger-
scale datasets containing thousands of examples. This diversity allows us to systematically investi-
gate how our method scales with training set size. Importantly, the datasets are partitioned following
the standard UCR setup, where training and testing sets are evenly sampled across classes to avoid
class imbalance issues.

Baselines. We compare our reinforcement learning framework against several state-of-the-art coun-
terfactual explanation methods for time series classification. These baselines span optimization-
based, saliency-guided, and latent-space perturbation approaches, representing the primary cate-
gories of existing techniques.

Wachter. Wachter et al. (2017) introduced one of the earliest general-purpose counterfactual frame-
works. The method formulates counterfactual search as minimizing a weighted loss that balances
prediction validity with input proximity, typically measured by the L1 norm. Although originally
designed for tabular data, it has been widely adapted as a baseline in time series settings (Delaney
et al., 2021; Li et al., 2022a).

TimeX. Building on Wachter, Filali Boubrahimi & Hamdi (2022) enhances plausibility by incor-
porating Dynamic Barycenter Averaging (DBA) into the loss. This encourages counterfactuals to
move toward the centroid of the target class under dynamic time warping (DTW), thereby improving
interpretability and contiguity of perturbations.

Info-CELS. Li et al. (2025) extend the saliency-guided counterfactual explainer CELS (Li et al.,
2023) by removing the thresholding step in saliency map generation. This adjustment eliminates
noise from hard thresholds, producing smoother perturbations and significantly improving the va-
lidity of counterfactuals, while maintaining sparsity and proximity.

Glacier (AE variants). Wang et al. (2024) proposes a unified framework that performs gradient-
based counterfactual search either in latent space or directly in input space, under different temporal
constraints. In this study, we focus on the latent-space variants (Glacier-AE), where optimiza-
tion is performed on autoencoder representations, balancing prediction-margin loss with constraint
penalties to enforce sparsity and temporal plausibility. In particular, local constraints derived from
LIMESegment (Sivill & Flach, 2022) highlight influential subsequences, guiding perturbations to-
ward instance-specific regions.

Black-box Classifiers. For all counterfactual explanation methods, we employed the Fully Convo-
lutional Network (FCN) as the black-box classifier. This provides a consistent evaluation framework
across methods while supporting gradient-based approaches such as Wachter, TimeX, Info-CELS,
and Glacier. In addition, the FCN has demonstrated strong and stable classification performance
across diverse UCR datasets (Ismail Fawaz et al., 2019), making it a reliable backbone and ensuring
that counterfactual evaluations are not affected by poor predictive accuracy. Further architectural
and training details of the FCN are provided in the Appendix.

Evaluation Metrics. We evaluated the performances of different counterfactual models in terms of
three major metrics:

(1) Validity Metric (Flip Label Rate): This metric measures how often the generated counterfactuals
successfully change the model’s original prediction. Formally, it is defined as:

flip rate =
num flipped

num testsample
, (6)

where num flipped is the number of counterfactuals that flip the predicted label, and num testsample
is the total number of test inputs. A higher flip rate (closer to 1) indicates better validity, as more
counterfactuals satisfy the label change requirement.

(2) Proximity Metrics (L1, L2, and L∞). Proximity evaluates how close each counterfactual is to
the original input. We report three common distance-based metrics: (a) the L1 Distance (Manhattan
distance) measures the total absolute change across all time steps; (b) the L2 Distance (Euclidean
distance): Emphasizes larger differences by squaring deviations; (c) the L∞ Distance (Chebyshev
distance): Captures the maximum absolute deviation.

(3) Plausibility Metrics. (IF, LOF, OC SVM) To assess whether the generated counterfactuals re-
semble real data, we apply three unsupervised outlier detection methods: (a) Isolation Forest (IF)
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(Liu et al., 2008): Detects anomalies by randomly partitioning data and isolating outliers with fewer
splits; (b) Local Outlier Factor (LOF) (Breunig et al., 2000): Measures how much a sample devi-
ates from its local neighborhood density; (c) One-Class SVM (OC SVM) (Schölkopf et al., 2001):
Learns the boundary of normal data to identify samples that fall outside the learned distribution.
Lower outlier scores from these models indicate higher plausibility, meaning the counterfactuals are
more consistent with the training data distribution.

5.2 EXPERIMENTAL RESULTS

Wachter
TimeX

InfoCELS
Glacier RL
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Figure 1: Validity evaluation measured
by flip rate, where higher values indi-
cate more valid counterfactuals.

Validity (Flip Rate): Figure 1 compares the validity of
counterfactuals across methods, measured by flip rate.
The violin plot shows the distribution of flip rates across
datasets. (The black horizontal line and red dot represent
the median and mean across datasets, respectively. This
is kept consistent across all violin plots in the paper.) Our
RL framework consistently achieves strong performance,
with validity concentrated in the 0.8–1.0 range and a high
mean and median ( 0.95), reflecting reliable performance
across datasets. This indicates that nearly all generated
counterfactuals successfully flip the classifier’s decision,
a critical property for actionable explanations. TimeX
and InfoCELS often reach near-perfect validity (≈1.0),
but their performance is less reliable, dropping below 0.7
on certain datasets. Glacier is even more fragile: while
it can achieve high validity on some datasets, it collapses
to zero on others. These fluctuations reduce the overall
robustness of the baselines. By contrast, RL maintains a
compact distribution, whereas the wider spread of Info-
CELS, TimeX, and Glacier reveals susceptibility to dataset-specific failures. Taken together, these
results highlight that RL provides a stable and generalizable mechanism for generating valid coun-
terfactuals in diverse time series domains.

Proximity (L1, L2, L∞): Figure 2 reports the proximity of generated counterfactuals, where lower
values indicate smaller perturbations from the original inputs. For L1 and L2 distances, InfoCELS,
TimeX, and Wachter achieve the lowest values. InfoCELS attains the best proximity by perturbing
only the most salient time steps, while TimeX and Wachter maintain relatively low distances through
explicit distance-based penalties in their optimization objectives. By contrast, RL and Glacier oper-
ate in latent space rather than directly perturbing the input, which leads to higher L1 and L2 values
after decoding, as modifications are distributed more broadly across the sequence. Although RL
employs an elastic distance penalty within the actor network to constrain perturbations, the decod-
ing process through the autoencoder inevitably spreads changes across multiple time steps, yielding
larger aggregate distances.

For L∞, which captures the largest pointwise deviation, RL ranks behind Wachter but demonstrates
competitive performance with TimeX and InfoCELS, while clearly outperforming Glacier. This
suggests that although RL produces broader perturbations—reflected in its higher L1 and L2 dis-
tances—it effectively avoids extreme spikes at individual time steps, leading to smoother and more
controlled modifications. This behavior stems from the method’s design: the autoencoder embed-
ding promotes globally distributed adjustments rather than highly localized changes. As a result, RL
yields counterfactuals that are less proximate in aggregate distance but remain better aligned with
the underlying data manifold.

Plausibility (IF, LOF, OC SVM): Figure 3 shows that RL maintains consistently low outlier scores
across all three detectors. Under IF, RL remains within the 0–0.35 range, with both mean and
median around 0.15, while the baselines span the full 0–1 interval with higher variance and frequent
outliers. For LOF, RL stays below 0.3 across all datasets, achieving the lowest mean and median
values (close to 0) and performing competitively with Wachter, TimeX, and InfoCELS, whereas
Glacier again reaches up to 1.0. Under OC SVM, RL clearly outperforms all baselines, keeping
scores consistently below 0.1 with mean and median near zero, while Wachter and TimeX extend
toward 0.4 and Glacier fluctuates widely between 0–1.
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Figure 2: Proximity evaluation using three distance metrics. Lower values indicate counterfactuals
closer to the original inputs.
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Figure 3: Plausibility evaluation using three outlier detection methods. Lower scores indicate more
realistic counterfactuals.

These results demonstrate that RL counterfactuals align more closely with the data manifold, bene-
fiting from latent-space policy learning that encourages globally coherent perturbations rather than
localized, unrealistic changes. By operating in the latent space, RL captures structural regularities
of the data, which translates into counterfactuals that are not only valid but also plausible under mul-
tiple outlier detection metrics. In contrast, the baselines either compromise plausibility for proxim-
ity—achieving lower distances at the cost of more out-of-distribution samples—or show instability
across datasets, leading to less reliable counterfactuals. Overall, the evidence highlights RL as a
method that balances validity, proximity, and plausibility, producing counterfactuals that are both
effective for model explanation and realistic within the data distribution.

6 CONCLUSION

In this paper, we have developed an RL-based framework for counterfactual explanation in time
series classification using Deep Deterministic Policy Gradient (DDPG). The framework treats coun-
terfactual generation as a sequential decision process, where the agent learns to apply perturbations
that flip the classifier’s prediction. To guide learning, the reward function provides positive feedback
for valid counterfactuals, while a proximity penalty discourages unrealistic deviations from the orig-
inal input. After training, the actor can generate counterfactuals in batches, making the approach
more scalable than instance-based optimization. Experimental results on 13 benchmark datasets
demonstrate that our method achieves state-of-the-art performance, producing counterfactuals that
are both valid and plausible.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will release the full source code on an anonymous GitHub
repository (https://github.com/bubbleblue0/Counterfactual-Explanations-for-Time-Series-Data-via-
Reinforcement-Learning). Detailed descriptions of the datasets, hyperparameters, and model ar-
chitectures (classifier, autoencoder, and actor–critic networks) are also provided in the Appendix,
enabling researchers to replicate our experiments and results.
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A APPENDIX

A.1 LLM USAGE

GPT-5 was used as an assistive tool during the preparation of this manuscript. Specifically, GPT-5
was employed to help refine the writing style and improve the readability of our manuscript. All
core research ideas, experiments, implementations, and analyses were conducted by the authors.

A.2 THE DETAILS OF DATASETS USED IN OUR EXPERIMENTS

This section provides detailed metadata of the UCR datasets employed in our experiments. For each
dataset, we report the number of classes, sequence length, training and testing sizes, domain type,
and the classification accuracy of the black-box model.
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Table 1: UCR Datasets Metadata, Classifier Accuracy, and Autoencoder Best Validation Loss

ID Dataset Name C L DS train size DS test size Type FCN Acc. AE Val Loss
0 Chinatown 2 24 20 343 TRAFFIC 0.98 0.01
1 Coffee 2 286 28 28 SPECTRO 1.00 0.00
2 ECG200 2 96 100 100 ECG 0.91 0.06
3 FordA 2 500 3601 1320 SENSOR 0.93 0.22
4 FordB 2 500 3636 810 SENSOR 0.81 0.15
5 FreezerRegularTrain 2 301 150 2850 DEVICE 1.00 0.01
6 GunPoint 2 150 50 150 HAR 1.00 0.01
7 GunPointAgeSpan 2 150 135 316 HAR 1.00 0.01
8 GunPointMaleVersusFemale 2 150 135 316 HAR 1.00 0.01
9 GunPointOldVersusYoung 2 150 135 316 HAR 0.99 0.01
10 HandOutlines 2 2709 1000 370 IMAGE 0.82 0.04
11 TwoLeadECG 2 82 23 1139 ECG 1.00 0.01
12 Wafer 2 152 1000 6164 SENSOR 1.00 0.01
C: number of classes; L: sequence length. FCN Acc. reports classifier accuracy on the test set. AE Val Loss

corresponds to the lowest validation loss achieved during autoencoder training.

A.3 THE ARCHITECTURE OF FCN MODEL

The FCN architecture follows Wang et al. (2017) and the implementation of Ismail Fawaz et al.
(2019). It consists of three one-dimensional convolutional blocks: the first applies 128 filters of size
8, the second 256 filters of size 5, and the third 128 filters of size 3. Each convolution is followed
by batch normalization and a ReLU activation. A global average pooling layer aggregates temporal
features, and a final dense layer with softmax activation outputs class probabilities. Training is
performed with the Adam optimizer (learning rate 10−3) and categorical cross-entropy loss. To
improve convergence and prevent overfitting, we employ early stopping (patience 100, monitoring
validation accuracy) and a learning rate scheduler that reduces the learning rate by a factor of 0.5 if
the training loss plateaus for 30 epochs. Models are trained for up to 2000 epochs with a batch size
of 16. For smaller datasets, we use a reduced mini-batch size of min(N/10, 16), where N denotes
the number of training instances, to ensure stable optimization. The classification accuracy of the
trained FCN on each test dataset is reported in Table 1.

A.4 THE ARCHITECTURE OF AUTOENCODER

For counterfactual generation, we employed a convolutional autoencoder to provide a structured la-
tent space for perturbations. The encoder comprises two one-dimensional convolutional layers with
ReLU activations, each followed by max-pooling to progressively downsample the input, and a fully
connected layer with tanh activation that maps the extracted features into a latent representation
bounded in [−1, 1], consistent with the requirements of the DDPG algorithm. The decoder recon-
structs time series from this latent space by first expanding the latent code with a fully connected
layer reshaped into a sequence, followed by causal one-dimensional convolutions and custom up-
sampling layers that preserve temporal ordering; a final convolutional layer with linear activation
outputs a sequence with the original number of features, with cropping or last-value padding ap-
plied as needed to match the exact input length. The autoencoder was trained separately for each
dataset using mean squared error (MSE) reconstruction loss and the Adam optimizer with a learning
rate of 0.005. Training was performed for up to 2000 epochs with a batch size of 128, reduced to
min(N/10, 128) for small datasets where N is the number of training samples, and employed early
stopping with patience 50 together with learning rate reduction on plateau (factor 0.5, patience 30,
minimum learning rate 10−6). During training, the model was monitored using validation loss, and
the weights with the lowest validation loss were saved. The best validation reconstruction losses
obtained from these saved models are reported in Table 1.
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A.5 ACTOR–CRITIC ARCHITECTURES

The actor and critic networks used in our framework follow the standard design commonly adopted
in deep reinforcement learning. Both models employ fully connected layers with layer normalization
and ReLU activations, which provide stable training dynamics across tasks.

Specifically, the actor maps the state representation into a continuous action through a three-layer
multilayer perceptron (MLP). Two hidden layers (each of size 256 with ReLU activations) are fol-
lowed by an output layer with a tanh activation, which ensures bounded perturbations in the latent
space. This network is responsible for generating candidate counterfactual representations. And the
critic estimates the value of a state–action pair using a similar three-layer MLP. Two hidden layers
of size 256 (with ReLU activations) are followed by a scalar output layer that predicts the Q-value.
The critic provides feedback to guide the actor’s updates by evaluating the expected reward of the
generated counterfactuals.

A.6 IMPLEMENTATION DETAILS OF REINFORCEMENT LEARNING

For counterfactual generation, we adopt the reinforcement learning framework implemented in the
alibi library, using a Deep Deterministic Policy Gradient (DDPG) setup. The CFRL agent con-
sists of an actor network, which generates perturbations, and a critic network, which estimates their
quality. Both networks are trained jointly with additional sparsity and consistency losses to guide
the learning process.

The training procedure is run for 50,000 steps, with dataset-specific batch sizes ranging from 16
to 256 depending on the dataset size (see code for mapping). The actor loss combines the policy
gradient term (negative critic output) with proximity penalties, weighted by coefficients λprox = 1.
The critic is trained by minimizing the squared error between its predicted Q-values and the observed
rewards. To ensure stable training, Gaussian noise is added to the actor’s output for exploration.

The predictor (black-box classifier) is kept fixed and only used to compute flip-label rewards. The
autoencoder encoder–decoder pair is also fixed during RL training, providing the latent space for
perturbations and reconstruction of counterfactuals. Rewards, success rates, and loss terms are
monitored throughout training using Weights & Biases (wandb), and additional callbacks log inter-
mediate samples and visualizations every 100 steps.

At the end of training, the learned actor network is able to generate counterfactuals in batches
through a single forward pass, while the critic provides a learned notion of counterfactual quality.
All reported results are based on the trained actor, without further fine-tuning at inference time.

A.7 THE FULL TABLE FOR OUR EXPERIMENTAL RESULTS

In the main content, we visualize the overall performance of different methods using violin plots that
aggregate results across all datasets. Tables 2-8 in the Appendix provide the full tabular results for
each individual dataset. These results complement the violin plots in the main content by offering
detailed, dataset-specific performance metrics. The reported metrics include Validity (measured by
flip rate), Proximity (average L1, L2, and L∞ distances), and Plausibility (measured by outlier
scores from Isolation Forest (IF), Local Outlier Factor (LOF), and One-Class SVM (OC SVM)).
For proximity and plausibility, the averages are computed only over valid counterfactuals for each
dataset, consistent with the procedure used in the violin plots, ensuring that evaluation reflects the
quality of successful counterfactuals.
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Table 2: Validity evaluation (Flip Rate) across UCR datasets. Higher values indicate more valid
counterfactuals.

ID Dataset Wachter TimeX InfoCELS Glacier RL
0 Chinatown 0.8921 1.0000 0.2449 0.9038 0.9600
1 Coffee 0.7857 1.0000 1.0000 0.9286 1.0000
2 ECG200 0.8800 0.9800 1.0000 0.9200 0.9700
3 FordA 0.8674 0.9985 0.4955 0.6432 0.9400
4 FordB 0.6099 0.9222 0.9889 0.9444 0.8100
5 FreezerRegularTrain 0.6898 0.6519 0.9811 0.9825 1.0000
6 GunPoint 0.9467 1.0000 1.0000 0.9667 0.9200
7 GunPointAgeSpan 0.6171 0.8734 0.6582 0.0000 0.8800
8 GunPointMaleVersusFemale 0.8418 0.9968 0.9367 0.0000 0.9500
9 GunPointOldVersusYoung 0.8317 0.9841 0.8984 0.0000 0.9700
10 HandOutlines 0.7676 0.7108 0.9919 0.9946 1.0000
11 TwoLeadECG 0.8946 1.0000 1.0000 0.6119 0.9300
12 Wafer 0.8845 0.9655 0.9550 0.9685 0.9800

Table 3: Proximity evaluation measured by L1 distance (mean values). Lower values indicate
smaller perturbations from the original inputs.

ID Dataset Wachter TimeX InfoCELS Glacier RL
0 Chinatown 1.94 2.80 1.17 12.89 2.97
1 Coffee 17.08 6.18 6.10 10.17 18.74
2 ECG200 7.54 6.30 8.92 10.15 22.89
3 FordA 27.25 27.16 24.79 28.67 214.94
4 FordB 8.07 14.87 24.48 129.26 197.88
5 FreezerRegularTrain 23.54 17.56 3.40 10.49 17.20
6 GunPoint 6.61 12.65 6.91 35.12 17.49
7 GunPointAgeSpan 8.50 18.88 2.53 - 19.74
8 GunPointMaleVersusFemale 24.88 32.46 5.96 - 32.41
9 GunPointOldVersusYoung 6.10 10.13 1.93 - 17.97
10 HandOutlines 8.97 32.05 5.75 819.71 518.62
11 TwoLeadECG 4.11 4.42 4.09 9.63 11.25
12 Wafer 5.07 13.75 2.37 4.58 16.13

Table 4: Proximity evaluation measured by L2 distance (mean values). Lower values indicate
smaller perturbations from the original inputs.

ID Dataset Wachter TimeX InfoCELS Glacier RL
0 Chinatown 0.66 1.46 0.52 4.26 0.75
1 Coffee 1.51 1.27 1.12 1.04 1.50
2 ECG200 1.20 2.50 2.50 2.99 3.30
3 FordA 1.68 5.10 2.92 2.68 12.02
4 FordB 0.60 3.27 4.29 10.76 11.13
5 FreezerRegularTrain 1.90 4.25 1.26 1.19 1.99
6 GunPoint 0.91 3.02 1.65 6.36 1.88
7 GunPointAgeSpan 1.18 4.29 0.83 - 2.10
8 GunPointMaleVersusFemale 2.63 5.32 1.48 - 3.42
9 GunPointOldVersusYoung 0.79 2.58 0.67 - 1.96
10 HandOutlines 0.27 3.09 0.59 38.17 12.11
11 TwoLeadECG 0.84 1.95 1.18 2.33 1.66
12 Wafer 0.77 3.49 1.07 0.73 2.13
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Table 5: Proximity evaluation measured by L∞ distance (mean values). Lower values indicate
smaller maximum deviations from the original inputs.

ID Dataset Wachter TimeX InfoCELS Glacier RL
0 Chinatown 0.42 1.02 0.37 2.22 0.34
1 Coffee 0.40 0.50 0.45 0.21 0.34
2 ECG200 0.47 1.40 1.39 1.80 1.23
3 FordA 0.36 1.80 0.86 0.63 1.64
4 FordB 0.25 1.24 1.71 2.30 1.57
5 FreezerRegularTrain 0.47 1.54 0.84 0.37 0.88
6 GunPoint 0.37 1.17 0.73 2.06 0.48
7 GunPointAgeSpan 0.47 1.48 0.50 - 0.50
8 GunPointMaleVersusFemale 0.62 1.45 0.75 - 0.78
9 GunPointOldVersusYoung 0.32 0.99 0.42 - 0.52
10 HandOutlines 0.07 0.52 0.16 4.02 0.54
11 TwoLeadECG 0.42 1.26 0.61 1.09 0.64
12 Wafer 0.34 1.24 0.72 0.26 0.94

Table 6: Plausibility evaluation measured by Isolation Forest (IF) outlier scores. Lower values
indicate counterfactuals closer to the data manifold.

ID Dataset Wachter TimeX InfoCELS Glacier RL
0 Chinatown 0.00 0.00 0.60 1.00 0.34
1 Coffee 0.04 0.07 0.07 0.78 0.07
2 ECG200 0.07 0.25 0.39 0.33 0.03
3 FordA 0.00 1.00 0.94 0.00 0.00
4 FordB 0.87 1.00 0.98 0.00 0.00
5 FreezerRegularTrain 0.00 0.63 0.24 0.22 0.21
6 GunPoint 0.10 0.30 0.36 0.62 0.22
7 GunPointAgeSpan 0.06 0.21 0.12 - 0.17
8 GunPointMaleVersusFemale 0.01 0.08 0.22 - 0.20
9 GunPointOldVersusYoung 0.03 0.14 0.06 - 0.15
10 HandOutlines 0.17 0.30 0.15 0.34 0.25
11 TwoLeadECG 0.00 0.00 0.09 0.65 0.08
12 Wafer 0.02 0.65 0.33 0.32 0.34

Table 7: Plausibility evaluation measured by Local Outlier Factor (LOF) scores. Lower values
indicate counterfactuals closer to the data manifold.

ID Dataset Wachter TimeX InfoCELS Glacier RL
0 Chinatown 0.00 0.05 0.25 0.99 0.00
1 Coffee 0.00 0.14 0.04 0.08 0.00
2 ECG200 0.00 0.00 0.03 0.21 0.00
3 FordA 0.00 0.00 0.00 0.00 0.00
4 FordB 0.00 0.00 0.00 0.00 0.00
5 FreezerRegularTrain 0.04 0.20 0.09 0.20 0.04
6 GunPoint 0.06 0.10 0.06 0.68 0.02
7 GunPointAgeSpan 0.06 0.02 0.10 - 0.02
8 GunPointMaleVersusFemale 0.27 0.19 0.04 - 0.21
9 GunPointOldVersusYoung 0.11 0.00 0.03 - 0.01
10 HandOutlines 0.22 0.23 0.20 0.99 0.25
11 TwoLeadECG 0.00 0.00 0.04 0.18 0.00
12 Wafer 0.05 0.03 0.04 0.10 0.04

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Plausibility evaluation measured by OC SVM outlier scores. Lower values indicate coun-
terfactuals closer to the data manifold.

ID Dataset Wachter TimeX InfoCELS Glacier RL
0 Chinatown 0.09 0.01 1.00 1.00 0.01
1 Coffee 0.00 0.29 0.35 0.23 0.00
2 ECG200 0.07 0.20 0.16 0.52 0.01
3 FordA 0.00 0.00 0.38 0.52 0.09
4 FordB 0.00 0.00 0.00 0.00 0.08
5 FreezerRegularTrain 0.03 0.27 0.12 0.41 0.01
6 GunPoint 0.17 0.18 0.35 0.76 0.03
7 GunPointAgeSpan 0.13 0.16 0.40 - 0.00
8 GunPointMaleVersusFemale 0.16 0.12 0.16 - 0.00
9 GunPointOldVersusYoung 0.14 0.15 0.13 - 0.01
10 HandOutlines 0.33 0.37 0.22 0.92 0.00
11 TwoLeadECG 0.04 0.07 0.18 0.63 0.00
12 Wafer 0.18 0.19 0.26 0.09 0.04
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