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Abstract

Active inference is an agent modeling framework with roots in Bayesian predictive
coding and the free energy principle. In recent years, active inference has gained
popularity in modeling sequential decision making, a problem set traditionally
populated by reinforcement learning (RL). Instead of optimizing expected reward
as in RL, active inference agents optimize expected free energy (EFE), which has
an intuitive decomposition into a pragmatic and an epistemic component. This
makes us wonder: what’s the EFE-optimizing agent’s optimality gap compared
with a reward-driven RL agent, which is well understood? By casting EFE under a
particular class of belief MDP and using analysis tools from RL theory, we show
that EFE approximates the Bayes optimal RL policy via information value. We
discuss the implications for objective specification of active inference agents.

1 Introduction

Active inference (Parr et al., 2022) is an agent modeling framework with roots in Bayesian predictive
coding (Friston et al., 2010, 2012) and the free energy principle (Friston, 2010). In recent years, active
inference has seen increased popularity in various fields including but not limited to cognitive and
neural science, machine learning, and robotics (Smith et al., 2021; Mazzaglia et al., 2022; Lanillos
et al., 2021). One common application of active inference across these fields is in modeling decision
making behavior, often taking place in partially observable Markov decision processes (POMDP)
where active information gathering is crucial to task performance. This offers active inference
as complementary, a potential alternative to, or a possible generalization of optimal control and
reinforcement learning (RL).

The central difference between active inference and RL is that instead of choosing actions that
maximize expected reward or utility, active inference agents are mandated to minimize expected
free energy (EFE; Da Costa et al., 2020), which has an intuitive decomposition as the addition of a
pragmatic value term and an epistemic value term. Notably, the epistemic value term encourages the
agent to explore and gather information about the environment, a behavior primitive that is crucial
in challenging partially observable task environments. Indeed, experimental evaluations of active
inference agents have shown that the epistemic value term in EFE contributes to structured exploratory
behavior, resolving uncertainty before attempting to obtain reward, often leading to higher coverage
of the state space and enhanced task performance (Millidge, 2020; Tschantz et al., 2020; Engström
et al., 2024).

It appears, at a first glance, that RL and optimal control miss the epistemic value term. However,
it is widely known that the Bayes optimal policy in POMDPs already trades off exploration and
exploitation (Roy et al., 2005). This makes intuitive sense because resolving uncertainty often leads to
more downstream rewards, essentially by "opening up" opportunities. Specifically, the Bayes optimal
policy leverages the equivalence between POMDPs and a special class of MDPs defined on the
reward and transition of beliefs called belief MDPs to characterize the expected value (i.e., cumulative
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reward) following an action given the current belief, from which an optimal policy can be constructed
as a mapping from beliefs to actions (Kaelbling et al., 1998). These policies, as demonstrated by
Bayes adaptive RL and meta RL, also exhibit structured exploratory behavior (Zintgraf et al., 2019;
Duan et al., 2016). It thus begs the question: What is the relationship between the Bayes optimal RL
policy and the active inference policy based on optimizing EFE?

The main contribution of this paper is providing one answer to the above question:
EFE approximates the Bayes optimal RL policy via epistemic value.

We achieve this by first establishing the equivalence between the EFE objective and a different class
of belief MDPs, which allows us to define EFE-optimal policies to form direct comparisons with RL
policies. We then examine the source of epistemic behavior in POMDPs using a definition of the
value of information for POMDPs based on Howard’s information value theory (1966). In brief, the
value of information is the difference in the expected values between the Bayes optimal policy and
another "naive" policy which plans as if it would not be able to update beliefs based on observations
in the future. When casting the latter policy also using belief MDPs, we observe that it uses the same
belief transition dynamics as the EFE policy but it uses the same belief reward as the Bayes optimal
policy. Our key result is a regret bound showing that the EFE objective closes the performance gap
between the naive policy and the Bayes optimal policy by augmenting or shaping the reward function
of the former with epistemic value. We discuss the implications of our results for specifying active
inference agents in practice.

2 Preliminaries

In this section, we introduce partially observable Markov decision process, value of information, and
active inference and establish their corresponding belief MDPs.

2.1 Partially observable Markov decision process

A discrete time infinite-horizon discounted partially observable MDP (POMDP; Kaelbling et al.,
1998) is defined by a tuple M = (S,A,O, P,R, µ, γ), where S,A,O are respectively finite sets
of states, actions, and observations, P is the transition dynamics consisting of a state transition
probability distribution P (st+1|st, at) and an observation emission distribution P (ot|st), R(st, at)
is a scalar reward function, µ(s0) the initial state distribution, and γ ∈ (0, 1) a discount factor. The
goal of an agent is to find a policy π(at|ht) mapping the interaction history ht = (o0:t, a0:t−1) to a
distribution over actions which maximizes the expected cumulative discounted reward: JM (π) =
E[
∑∞

t=0 γ
tR(st, at)], where the expectation is taken w.r.t. the stochastic process induced by the

dynamics of environment M and agent policy. The process of finding the optimal policy is sometimes
referred to as reinforcement learning (RL; Sutton and Barto, 2018). Importantly, the agent cannot
observe the underlying environment state in the process.

It is a well-known result that the Bayesian belief distribution bt = P (st|ht) is a sufficient statistic for
the interaction history in POMDPs (Kaelbling et al., 1998). The history dependent value functions
can thus be written in terms of beliefs which are treated as random variables:

Q(b, a) =
∑
s

b(s)R(s, a) + γ
∑
o′

P (o′|b, a)V (b′(o′, a, b)), V (b) = max
a

Q(b, a) , (1)

where P (o′|b, a) =
∑

s,s′ P (o′|s′)P (s′|s, a)b(s) and b′(o′, a, b) denotes the belief update function
from prior b(s) to the posterior:

b′(o′, a, b) := b′(s′|o′, a, b) =
P (o′|s′)

∑
s P (s′|s, a)b(s)∑

s′ P (o′|s′)
∑

s P (s′|s, a)b(s)
. (2)

The (Bayes) optimal policy can then be derived from the above value functions as π(a|h) = δ(a−
argmaxã Q(b, ã)) where δ denotes the dirac delta distribution.

The belief value functions in (1) imply a special class of (fully observable) MDPs known as belief
MDPs (Kaelbling et al., 1998), where the reward and dynamics are defined on the belief state as:

R(b, a) =
∑
s

b(s)R(s, a), P (b′|b, a) = P (o′|b, a)δ(b′ − b̃′(o′, a, b)) . (3)

2



The stochasticity in the belief dynamics is entirely due to the stochasticity of the next "counterfactual"
observation; the belief updating process itself is deterministic.

In this work, we generalize the notion of belief MDP to refer to any MDP defined on the space of
beliefs. However, not all belief MDPs could yield the optimal policies for some POMDPs.

2.2 Value of information

It is colloquially accepted that the Bayes optimal POMDP policy trades of exploration and exploitation
(Roy et al., 2005). In the context of single-stage decision making, such a trade off can be quantified
using the information value theory (Howard, 1966), which defines it as the reward a decision
maker is willing to give away if they could have their uncertainty resolved (sometimes called the
expected value of perfect information; EVPI). The give-away amount is the reward difference
between a "sophisticated" policy receiving perfect state information and a "naive" policy without
such information. Incorporating the sequential nature of decision making and the fact that the agent
can only receive a generally noisy observation of the state (i.e., imperfect information), we can obtain
a corollary of EVPI for POMDPs (Flaspohler et al., 2020). In this setting, the sophisticated policy is
exactly the Bayes optimal policy with value functions defined in (3). The naive policy can be shown
to have the following belief state reward and dynamics:

Ropen(b, a) =
∑
s

b(s)R(s, a), P open(b′|b, a) = δ(b′ − b′(a, b)) , (4)

where b′(a, b) := b′(s′|b, a) =
∑

s P (s′|s, a)b(s). It’s clear that the naive policy shares the same
reward function as the Bayes optimal policy. However, its belief dynamics misses a counterfactual
belief updating operation. Such a belief dynamics has been referred to as open-loop in the literature
(akin to open-loop controls; Flaspohler et al. 2020) in the sense that the agent planning under this
dynamics would choose actions as if it would not be able to observe the environment in the future.

2.3 Active inference

Active inference is an application of the variational principle to perception and action, where in-
tractable Bayesian belief updates (i.e., (2)) are approximated by variational inference (Da Costa et al.,
2020). It is well-known that the optimal variational approximation under appropriately chosen family
of posterior distributions equals to the exact posterior in (2) (Blei et al., 2017). We will thus assume
appropriate choices of variational family and omit suboptimal belief updating in subsequent analyses.

Central to the current discussion is the policy selection objective functions used in active inference,
which is its main difference from classic POMDPs. In particular, active inference introduces an
objective function called expected free energy (EFE) which, given an initial belief Q0(s0) and a finite
sequence of actions a0:T−1, is defined, in its most popular form, as (Friston et al., 2017):

EFE(a0:T−1, Q0)

≈
T∑

t=1

−EQ(ot|a0:T−1)[log P̃ (ot)]︸ ︷︷ ︸
Pragmatic value

−EQ(ot|a0:T−1)[KL[Q(st|ot, a0:T−1)||Q(st|a0:T−1)]]︸ ︷︷ ︸
Epistemic value

. (5)

Here, Q(st|a0:T−1) =
∑

st−1
P (st|st−1, at−1)Q(st−1|a0:T−1) is the marginal state distribution at

time step t, Q(ot|a0:T−1) =
∑

st
P (ot|st)Q(st|a0:T−1) is the marginal observation distribution,

Q(st|ot, a0:T−1) ∝ P (ot|st)Q(st|Qt−1, at−1) is the future posterior given the marginal of future
states as prior and future observations, P̃ (ot) is a distribution encoding preference over observations,
and KL denotes Kullback Leibler (KL) divergence. (We discuss nuances about this choice in the
appendix, which also contains all proofs and derivations).

The first term in (5) is the cross entropy between predicted and preferred observations. Maximizing
this term encourages the agent to take actions that realize preference, and thus the label "pragmatic
value". The second term is the expected divergence between future prior and posterior beliefs, also
known as the expected information gain (IG). Maximizing this term encourages the agent to take
informative actions, and thus the label "epistemic value".
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It is straightforward to show that the EFE objective, viewed under the belief MDP framework,
corresponds to the following reward function:

REFE(b, a) = EP (o′|b,a)[log P̃ (o′)] + EP (o′|b,a)[KL[b(s′|o′, b, a)||b(s′|b, a)]]
:= R̃(b, a) + IG(b, a) .

(6)

Furthermore, it has the same belief dynamics as the open-loop policy defined in (4).

Compared to the Bayes optimal belief MDP in (3), the first reward term R̃(b, a) is analogous to
R(b, a) because it can also be written as a linear combination of the belief. The main difference is in
the second term which corresponds to an extra information gain "bonus".

3 EFE approximates Bayes optimal RL policy

The main insight of this paper is that the information gain, or epistemic value, term in EFE contributes
to lowering the regret of the open-loop policy, in turn better approximates the Bayes optimal RL
policy. We start by introducing our main analysis tool and show the connection between regret, value
of information, and information gain. We then present the main results which are the regret bounds
for both the open-loop and EFE policies.

3.1 Performance difference in mismatched belief MDPs

We are interested in the regret of the open-loop and EFE policies in a test POMDP environment, for
which there exists a Bayes optimal policy given by (3). A special aspect of our setting is that even
though both policies will plan using the open-loop belief dynamics in (4), during execution (as is
the case in practice) they are allowed to update their beliefs upon observations in the environment.
This means that the testing belief dynamics corresponds to the Bayes optimal belief dynamics, and
their (internal) planning dynamics are mismatched. We assume the reward functions are correctly
specified, i.e., Ropen(b, a) = R̃(b, a) = R(b, a). However, EFE has an additional IG term, which
means its composite reward is mismatched.

Extending lemma 4.1 of (Vemula et al., 2023) to the setting of mismatched rewards, we can show that
the regret or performance gap of a policy π′ compared to the oracle or expert policy π is given by:

Lemma 3.1. (Performance difference in mismatched MDPs) Let π and π′ be two policies which
are optimal w.r.t. two MDPs M and M ′. The two MDPs share the same initial state distribution
and discount factor but have different rewards R,R′ and dynamics P, P ′. Denote ∆R(b, a) =
R′(b, a)−R(b, a). The performance difference between π and π′ when both are evaluated in M is
given by:

JM (π)− JM (π′) =
1

(1− γ)
Eb∼dπ

P

[
Ea∼π(·|b)[Q

π′

M ′(b, a)]− Ea′∼π′(·|b′)[Q
π′

M ′(b, a)]
]

︸ ︷︷ ︸
Policy advantage under expert distribution

+
1

(1− γ)
E(b,a)∼dπ′

P

[
∆R(b, a) + γ

(
Eb′∼P ′(·|b,a)[V

π′

M ′(b′)]− Eb′′∼P (·|b,a)[V
π′

M ′(b′′)]
)]

︸ ︷︷ ︸
Reward-model advantage under own distribution

+
1

(1− γ)
E(b,a)∼dπ

P

[
−∆R(b, a) + γ

(
Eb′′∼P (·|b,a)[V

π′

M ′(b′′)]− Eb′∼P ′(·|b,a)[V
π′

M ′(b′)]
)]

︸ ︷︷ ︸
Reward-model disadvantage under expert distribution

.

(7)

Lemma (3.1) shows that other than the difference in how π and π′ choose actions as specified by
term 1, a major contributor to regret is the difference in their rewards and dynamics models. In fact,
Wei et al. (2023) show that the regret scales quadratically (w.r.t. effective planning horizon 1

1−γ ) in
the squared KL divergence between the two dynamics models.

Interestingly, when π′ and π are the open and closed-loop policies, in which case the regret is
analogous to the value of information, we can show that the advantage of closed-loop belief dynamics
is proportional to information gain:
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Proposition 3.2. Let Rmax = maxs,a |R(s, a)| and V open(s) be the value function of open-loop
policy in open-loop dynamics. The closed-loop model advantage is bounded as follows:

0 ≤ EP (b′|b,a)[V
open(b′)]− EP open(b′′|b,a)[V

open(b′′)] ≤ Rmax

1− γ

√
2IG(b, a) . (8)

3.2 Main result: regret of EFE policy

Proposition 3.2 gives us a clue that if the open-loop policy wants to reduce its performance gap
compared to the closed-loop Bayes optimal policy without having to modify its belief dynamics,
it could add an information gain bonus to its reward function to cancel out the disadvantage of
open-loop belief dynamics (i.e., reward shaping). This corresponds precisely to the EFE belief MDP.

To simplify the comparisons between these policies, we make three assumptions which are formally
stated in the appendix. In brief, they assume that the 1) shared reward function between all policies
are specified in such a way that the gain in reward under closed-loop belief dynamics outweigh the
loss in information gain bonus and 2) the absolute advantage of the EFE policy expected under the
expert distribution is no worse than that of the open-loop policy, which is denoted with ϵπ̃ .

Then, we show that the performance gaps of the open-loop and EFE policies compared to the Bayes
optimal policy are given as follows:
Theorem 3.3. Let all policies be deployed in POMDP M and all are allowed to update their beliefs
according to b′(o′, a, b). Let ϵIG = E(b,a)∼dπ

P
[IG(b, a)] denotes the expected information gain under

the Bayes optimal policy’s belief-action marginal distribution and let the belief-action marginal
induced by both open-loop and EFE policies have bounded density ratio with the Bayes optimal
policy

∥∥∥dπ̃
P (b,a)

dπ
P (b,a)

∥∥∥
∞

≤ C. Under assumptions C.1 and C.2, the performance gap of the open-loop and
EFE policies from the optimal policy are bounded as:

JM (π)− JM (πopen) ≤ 1

1− γ
ϵπ̃ +

(C + 1)γRmax

(1− γ)2
ϵIG ,

JM (π)− JM (πEFE) ≤ 1

1− γ
ϵπ̃ +

(C + 1)γRmax

(1− γ)2
ϵIG − C + 1

1− γ
ϵIG .

(9)

Theorem 3.3 shows that the performance gap of both policies are linear (w.r.t. planning horizon) in
the policy advantage and quadratic in the information gain. However, the EFE policy improves over
the open-loop policy with a linear increase in information gain.

4 Discussions and conclusion

In this paper, we study the theoretical connection between active inference and reinforcement
learning and show that the epistemic value in the EFE objective of active inference can be seen as an
approximation to the Bayes optimal RL policy in POMDPs, achieving a linear improvement in regret
compared to a naive policy which doesn’t take into account the value of information.

Since the EFE objective is non-convex in the belief (because information gain is concave), depending
on how the pragmatic value is specified, the value of information may no longer be non-negative and
the agent may be distracted by gathering information rather than focusing on collecting task rewards.
Thus, pursuing Bayes optimal policies under the EFE objective requires a choice of preference distri-
bution with a suitable "temperature" (in a Boltzmann distribution sense). Conversely, inappropriate
choices of temperature may be (and have been) used to explain systematically suboptimal behavior in
humans and animals (Engström et al., 2024; Konaka and Naoki, 2023).

Finally, if the EFE objective instead uses closed-loop belief dynamics, as is the case in the more
recent "sophisticated" active inference (Friston et al., 2021), the epistemic value may no longer
be seen as an approximation. In this case, the EFE objective belongs to a more general class
of POMDPs with belief-dependent rewards (Araya et al., 2010), and the preference temperature
interpolates reward-seeking and information-seeking, similar to how it interpolates reward-seeking
and distribution-matching in MDPs (Da Costa et al., 2023). In this setting, "Bayes optimal" can be
interpreted in the dual sense of Bayesian decision theory (i.e., maximizing reward; Berger, 2013) and
Bayesian experimental design (i.e., maximizing information gain; Lindley, 1956; MacKay, 1992).
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A Related work

Our work is complementary to prior work examining the relationship between active inference and
RL (Millidge et al., 2020; Watson et al., 2020; Da Costa et al., 2023). In (Millidge, 2020) and
(Watson et al., 2020), the authors discussed the connections between active inference and control as
inference, a popular policy optimization approach in RL inspired by variational inference. However,
they consider state space planning as opposed to belief space planning, which (the latter) is a more
accurate depiction of active inference (Friston et al., 2021). The closest to our work is (Da Costa
et al., 2023) which also considers the optimality of active inference agents in reward-seeking tasks
and established the equivalence between the limiting case of EFE and dynamic programming under
Bellman’s principle of optimality in MDPs. Our work extends (Da Costa et al., 2023) to POMDPs
and belief space dynamic programming. Our work is also related to (Schwöbel et al., 2018; Koudahl
et al., 2021) which studied the epistemic behavior of active inference agents. Specifically, these
works show that the epistemic behavior could disappear in certain dynamical systems or under certain
variational approximations. In contrast, we focus on general POMDP environments and study the
advantage of using epistemic value.

B Open-loop policy and value of information

Our definition of open-loop policy and value of information is rooted in Howard’s information value
theory (1966). Here we show how it’s obtained.

According to Howard, the expected value of perfect information (EVPI) is defined as:

EV PI = EV |PI − EV ,

EV = max
a

∑
s

b(s)R(s, a) ,

EV |PI =
∑
s

b(s)max
a

R(s, a) .

(10)

In the POMDP setting, rather than receiving perfect state information, the agent receives a (perfect)
observation which provides imperfect information about the state (Raiffa and Schlaifer, 2000). The
expected value of perfect observation (EVPO) can be defined as:

EV PO = EV |PO − EV ,

EV = max
a

∑
s

b(s)R(s, a) ,

EV |PO =
∑
o

∑
s

P (o|s)b(s)max
a

R(b(s|o), a) .

(11)

Adding the sequential nature of POMDPs, we recover the open-loop and Bayes optimal policies as
EV and EV|PO, respectively:

EV : Qopen(b, a) =
∑
s

b(s)R(s, a) + γV open(b′(a, b)) , (12a)

EV |PO : Q(b, a) =
∑
s

b(s)R(s, a) + γ
∑
o′

P (o′|b, a)V (b′(o, a, b)) . (12b)

Note that the definition is the same as (Flaspohler et al., 2020). Here we simply provide more
motivation and justification based on Howard (1966) and Raiffa and Schlaifer (2000).
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C Assumptions and additional claims

Pragmatic value is linear in the belief This statement appeared in section 3.1. It is straightforward
to show:

R̃(b, a) = EP (o′|b,a)[log P̃ (o′)]

=
∑
s

b(s)
∑
s′

P (s′|s, a)
∑
o′

P (o′|s′) log P̃ (o′)

=
∑
s

b(s)R̃(s, a) .

(13)

The last line shows that we obtain an analog of state-action reward.

Temperature parameter interpolates reward-seeking and information-seeking This statement
appeared in section 4. Let us define the preference distribution as the exponentiated reward multi-
plied by a negative temperature parameter λ: P̃ (o) ∝ exp(λR̃(o)), then the EFE reward becomes
proportional to a weighted combination of reward and information gain:

R̃(s, a) ∝
∑
s′

P (s′|s, a)
∑
o′

P (o′|s′)λR̃(o′)

= λR̃(s, a) ,

REFE(b, a) ∝
∑
s

b(s)R̃(s, a) +
1

λ
IG(b, a) ,

(14)

where choosing a high λ → ∞ corresponds to purely optimizing reward.
Assumption C.1. (Preference specification) The preference distribution or reward is specified such
that the gain in pragmatic value after receiving a new observation is higher than the loss in epistemic
value in expectation under the Bayes optimal policy π in closed-loop belief dynamics P :

E(b,a)∼dπ
P

[∑
s

(b(s|o)− b(s))R(s, a)

]
≥ E(b,a)∼dπ

P
[IG(b(s), a)− IG(b(s|o), a)] . (15)

Informally, this assumption ensures the EFE agent does not get distracted by gaining information and
still focuses on task relevant behavior. It ensures that the advantage of closed-loop belief dynamics
(i.e., (3.2)) under the EFE value function is also non-negative.
Assumption C.2. (Policy behavior) We make the following assumptions on the behavior of the
evaluated policies:

1. The absolute advantage of the EFE policy πEFE expected under the Bayes optimal
policy’s marginal distribution is no worse than that of the open-loop policy πopen:
ϵπ̃ = E(b,a)∼dπ

P
[|Aπopen

P (b, a)|] ≥ E(b,a)∼dπ
P
[|AπEFE

P (b, a)|].

2. For both the open-loop policy πopen and EFE policy πEFE , it always holds that IG(b, a) ≥
2 for any b, a sampled from either their own or the expert policy’s marginal distribution.

Assumption 1 is reasonable because we expect the EFE policy to be more similar to the Bayes optimal
policy than the open-loop policy given that the information gain reward encourages information
seeking behavior. This enables us to remove policy advantage from the performance gap comparison.
Assumption 2 is partly numerically motivated because it allows us to further upper bound the closed-
loop model advantage in proposition 3.2 via

√
2KL ≤ KL so that the IG reward bonus in EFE can

be directly compared with closed-loop model advantage and subtracted from it.
Proposition C.3. The EFE reward function as defined in (6) is concave in the belief.

Proof. This statement appears in the section 4.

Recall the EFE reward is defined as:

R(b, a) = EP (o′|b,a)[log P̃ (o′)] + EP (o′|b,a)[KL[b′(s′|o′, b, a)||b′(s′|b, a)]] . (16)
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From (13) we know the first term is linear in the belief b.

The second term can be written as:

EP (o′|b,a)[KL[b′(s′|o′, b, a)||b′(s′|b, a)]]
= EP (o′,s′|b,a)[log b

′(s′|o′, b, a)− log b′(s′|b, a)]
= EP (o′,s′|b,a)[log b

′(s′|b, a) + logP (o′|s′)− logP (o′|b, a)− log b′(s′|b, a)]
= EP (o′,s′|b,a)[logP (o′|s′)− logP (o′|b, a)]
= H[P (o′|b, a)]− EP (s′|b,a)[H[P (o′|s′)]]

= −
∑
o′

P (o′|b, a) logP (o′|b, a)−
∑
s

b(s)
∑
s′

P (s′|s, a)H[P (o′|s′)] .

(17)

The second term above is a linear function of the belief.

Applying the definition of convexity to the negative of the first term:∑
o′

P (o′|λb+ (1− λ)b′, a) logP (o′|λb+ (1− λ)b′, a)

=
∑
o′

∑
s

P (o′|s, a) [λb(s) + (1− λ)b′(s)] log

[∑
s

(λb(s)P (o′|s, a) + (1− λ)b′(s)P (o′|s, a)))

]

=
∑
o′

[λP (o′|b, a) + (1− λ)P (o′|b, a)] log λP (o′|b, a) + (1− λ)P (o′|b′, a)
λ+ (1− λ)

≤
∑
o′

λP (o′|b, a) logP (o′|b, a) +
∑
o′

(1− λ)P (o′|b′, a) logP (o′|b′, a) ,

(18)

where the last line uses the log sum inequality and shows the equation is convex. Thus, the first term
is concave and the EFE reward is concave in the belief.

D Missing proofs

D.1 Proofs for Section 2.3

General definition of EFE We consider the following to be the most general definition of EFE (or
full EFE) because it makes the least assumption about P̃ (Friston et al., 2017; Champion et al., 2024).

EFE(a0:T−1, Q0) = EQ(o1:T ,s1:T |a0:T−1)[logQ(s1:T |a0:T−1)− log P̃ (o1:T , s1:T )] . (19)

Derivation of Q(s1:T |a0:T−1) in from variational inference We aim to obtain a predictive distri-
bution over future states s1:T given an action sequence a0:T−1 using variational inference. Typically,
active inference assumes a mean-field factorization of the variational distribution Q(s1:T |a0:T−1) =∏T

t=1 Q(st|a0:T−1). Since there is no observation and thus no likelihood term, the variational free
energy F can be written as:

F(Q) = EQ(s1:T |a0:T−1)[logQ(s1:T |a0:T−1)− logP (s1:T |a0:T−1)]

= EQ(s1:T |a0:T−1)

[
T∑

t=1

(logQ(st|a0:T−1)− logP (st|st−1, at−1))

]

=

T∑
t=1

EQ(st−1:t|a0:T−1)[logQ(st|a0:T−1)− logP (st|st−1, at−1)] .

(20)
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From (Winn et al., 2005), we know the optimal variational distribution has the form:
Q(st|a0:T−1) ∝ exp(EQ(st−1|a0:T−1)[logP (st|st−1, at−1)])

≈ exp(logEQ(st−1|a0:T−1)[P (st|st−1, at−1)])

=
∑
st−1

P (st|st−1, at−1)Q(st−1|a0:T−1)

:= Q(st|Qt−1, at−1) .

(21)

which recovers the definition in section 2.3. The approximation in the second line is due to Jensen’s
inequality and does not significantly affect our results, because we know from the variational inference
literature that the optimal variational distribution must be equal to that of exact inference, which is
given by the last line. This also matches the implementation in Pymdp1, which is one of the main
software repositories for active inference.

Active inference and QMDP It is crucial to have a precise definition of the distributions
Q(s0:T |a0:T−1) and Q(o0:T , s0:T |a0:T−1). In the main text, we have specified these as the product
of marginal distributions over states and observations. Here, we briefly study the consequences of
defining these as the joint distributions:

Q(s0:T |a0:T−1) = b(s0)

T∏
t=1

P (st|st−1, at−1) ,

Q(o0:T , s0:T |a0:T−1) = b(s0)P (o0|s0)
T∏

t=1

P (st|st−1, at−1)P (ot|st) .

(22)

We start by factorizing the full EFE objective in (19) as:
EFE(a0:T−1)

= EQ(o1:T ,s1:T |a0:T−1)[logQ(s1:T |a0:T−1)− log P̃ (o1:T , s1:T )]

= EQ(o1:T ,s1:T |a0:T−1)

[
T∑

t=1

(
logP (st|st−1, at−1)− log P̃ (ot, st)

)]

= Eb(s0)P (s1|s0,a0)P (o1|s1)

[
logP (s1|s0, a0)− log P̃ (o1, s1)

+ EQ(o2:T ,s2:T |s0:1,a1:T−1)

[
T∑

t=2

(
logP (st|st−1, at−1)− log P̃ (ot, st)

)]]
= Eb(s0)P (s1|s0,a0)P (o1|s1)

[
logP (s1|s0, a0)− log P̃ (o1, s1) + EFE(a1:T−1)

]
= Eb(s0)

[
EP (s1|s0,a0)P (o1|s1)[logP (s1|s0, a0)− log P̃ (o1, s1)] + EP (s1|s0,a0)[EFE(a1:T−1)]

]
.

(23)

This allows us to write down a recursive equation:

Q(st, at) = EP (st+1|st,at)P (ot+1|st+1)[logP (st+1|st, at)− log P̃ (ot+1, st+1)]︸ ︷︷ ︸
R(st,at)

+EP (st+1|st,at)[V (st+1)] ,

V (st) = max
a

Q(st, at) ,

(24)
and

EFE(a0:T−1) = Eb(s0)[Q(s0, a0)] . (25)

This corresponds to what’s known as the QMDP approximation in the POMDP literature (Littman
et al., 1995), which is known to overestimate the value of a belief by planning under the implicit
assumption that future states will be fully observable (Hauskrecht, 2000).

1https://github.com/infer-actively/pymdp
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EFE bound and choice of preference Despite being the most popular choice of EFE, the pragmatic-
epistemic value decomposition (5) is actually a bound on the full EFE defined in (19). To show
this, let’s consider a single time step since both formulations can be decomposed across time
steps. Recall that the pragmatic-epistemic decomposition assumes the following factorization of
P̃ (o, s) = P̃ (o)P̃ (s|o). The full EFE can be written as:

EFEt(a0:T−1) = EQ(ot,st|a0:T−1)[logQ(st|a0:T−1)− log P̃ (ot, st)]

= −EQ(ot|a0:T−1)[log P̃ (ot)]− EQ(ot,st|a0:T−1)[log P̃ (st|ot)] + EQ(st|a0:T−1)[Q(st|a0:T−1)]

= −EQ(ot|a0:T−1)[log P̃ (ot)] + EQ(ot,st|a0:T−1)[Q(st|ot, a0:T−1)]− EQ(ot,st|a0:T−1)[log P̃ (st|ot)]
+ EQ(st|a0:T−1)[Q(st|a0:T−1)]− EQ(ot,st|a0:T−1)[Q(st|ot, a0:T−1)]

= −EQ(ot|a0:T−1)[log P̃ (ot)] + EQ(ot|a0:T−1)KL[Q(st|ot, a0:T−1)||P̃ (st|ot)]
− EQ(ot|a0:T−1)[KL[Q(st|ot, a0:T−1)||Q(st|a0:T−1)]]

≥ −EQ(ot|a0:T−1)[log P̃ (ot)]− EQ(ot|a0:T−1)[KL[Q(st|ot, a0:T−1)||Q(st|a0:T−1)]] .
(26)

Thus, to keep the bound tight, we could set P̃ (s|o) as:

P̃ ∗(s|o) = arg min
P̃ (s|o)

EQ(ot|a0:T−1)KL[Q(st|ot, a0:T−1)||P̃ (st|ot)]

≈ arg min
P̃ (s|o)

EQ(ot|a0:T−1)KL[P̃ (st|ot)||Q(st|ot, a0:T−1)]

∝ exp
(
EQ(ot|a0:T−1)[logQ(st|ot, a0:T−1)]

)
,

(27)

where the approximation in the second line assumes the forward and reverse KL divergences have
similar solutions. The result on the last line is sometimes referred to as the aggregate posterior
(Tomczak and Welling, 2018). However, since the aggregate posterior depends on the action sequence
evaluated, the tightest bound is achieved by an aggregate posterior that updates during each EFE
optimization step to ensure that the final aggregate posterior is evaluated under the optimal action
sequence.
Proposition D.1. The EFE objective in (5) correspond to a belief MDP with the following reward
and dynamics:

REFE(b, a) = EP (o′|b,a)[log P̃ (o′)] + EP (o′|b,a)[KL[b(s′|o′, b, a)||b(s′|b, a)]] (28a)

:= R̃(b, a) + IG(b, a) , (28b)

P open(b′|b, a) = δ(b′ − b′(a, b)), where b′(a, b) := b′(s′|b, a) =
∑
s

P (s′|s, a)b(s) . (28c)

Proof. We proof this by showing that the EFE objective has a Bellman-like decomposition over time
steps, by conditioning on the predictive distribution at the previous time step:

EFE(a0:T−1, Q0)

≈
T∑

t=1

−EQ(ot|a0:T−1)[log P̃ (ot)]− EQ(ot|a0:T−1)[KL[Q(st|ot, a0:T−1)||Q(st|a0:T−1)]]

=

T−1∑
t=0

−EQ(ot+1|Qt,at)[log P̃ (ot+1)]− EQ(ot+1|Qt,at)[KL[Q(st+1|ot+1, Qt, at)||Q(st+1|Qt, at)]]

= −EQ(o1|Q0,a0)[log P̃ (o1)]− EQ(o1|Q0,a0)[KL[Q(s1|o1, Q0, a0)||Q(s1|Q0, a0)]]︸ ︷︷ ︸
REFE(b,a)

+EFE(a1:T−1, Q1) .

(29)

Proposition D.2. (Active inference policy) The EFE achieved by the optimal action sequence can be
equivalently achieved by a time-indexed belief-action policy π(at|Qt).
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Proof. We proof this based on Bellman optimality for the full EFE objective in (19), which also holds
for the pragmatic-epistemic decomposition.

Starting with the base case:

EFE(aT−1, QT−1) = EQ(oT ,sT |QT−1,aT−1)[logQ(sT |QT−1, aT−1)− log P̃ (oT , sT )] . (30)

It is easy to see that

min
aT−1

EFE(aT−1, QT−1) = max
πT−1

∑
aT−1

π(aT−1|QT−1)EFE(aT−1, QT−1) , (31)

where the optimal policy is π∗
T−1(aT−1|QT−1) = δ(aT−1 − argminãT−1

EFE(ãT−1, QT−1)).

Applying the identity recursively, we have:

min
πt

Eπ(at|Qt)[EFE(at, Qt)] = min
πt

Eπ(at|Qt)

{
EQ(ot+1,st+1|Qt,at)[logQ(st+1|Qt, at)− log P̃ (ot+1, st+1)] + Eπ∗(at+1|Qt+1)[EFE(at+1, Qt+1)]

}
.

(32)

The optimal policy at each step can be obtained by π(at|Qt) = δ(at−argminãt
EFE(ãt, Qt)).

D.2 Proofs for Section 3.1

D.2.1 Helpful Identities

Proposition D.3. (Open-loop value function convexity) The open-loop value function as defined in
(12a) is piece-wise linear and convex in the beliefs.

Proof. Recall the definition of the open-loop value function is:

Qopen(b, a) =
∑
s

b(s)R(s, a) + γV open(b′(a, b)) . (33)

Furthermore, it is a valid belief MDP given the deterministic transition of the belief state defined in
(4).

Although this is an infinite horizon value function, due to the contraction mapping property of
Bellman equation (Agarwal et al., 2019), it can be approximated arbitrarily close using a finite
number of K iterations starting from the base case Qopen

k=0 (b, a) =
∑

s b(s)R(s, a). It is clear the
base case value function V open

k=0 (b) = maxã Q
open
k=0 (b, ã) is piecewise linear and convex in b.

For iteration k ∈ {1, ...,∞}, we have:

Qopen
k+1 (b, a) =

∑
s

b(s)R(s, a) + γmax
a′

Qopen
k (b′(a, b), a′) . (34)

The belief update b′(a, b) =
∑

s P (s′|s, a)b(s) is linear and convex in b, making the second term
piecewise linear and convex. The first term is also linear and convex. The combination is thus
piecewise linear and convex.

Proposition D.4. (EVPO non-negativity) Let the expected value of perfect observation for a single
stage decision making problem with reward R(s, a), prior belief b(s) and marginal observation
distribution P (o) =

∑
s P (o|s)b(s) be defined as:

EV PO = EV |PO − EV ,

EV = max
a

∑
s

b(s)R(s, a) ,

EV |PO =
∑
p

P (o)max
a

∑
s

b(s|o)R(s, a) .

(35)

It holds that EV PO ≥ 0.
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Proof. We wish to show:∑
o

P (o)max
a

∑
s

b(s|o)R(s, a) ≥ max
a′

∑
s

b(s)R(s, a′) . (36)

Let use define a∗(o) = argmaxa
∑

s b(s|o)R(s, a), and a∗ = argmaxa
∑

s b(s)R(s, a) so that we
can write the LHS as

∑
o P (o)

∑
s b(s|o)R(s, a∗(o)) and the RHS as

∑
s b(s)R(s, a∗).

By definition, we have: ∑
s

b(s|o)R(s, a∗(o)) ≥
∑
s

b(s|o)R(s, a∗) , (37)

since a∗(o) is the optimal action taking into consideration of o.

Applying expectation over P (o) to the above inequality, we have:∑
o

P (o)
∑
s

b(s|o)R(s, a∗(o)) ≥
∑
o

P (o)
∑
s

b(s|o)R(s, a∗)

=
∑
s

b(s)R(s, a∗) ,
(38)

which completes the proof.

Proposition D.5. (EVPO upper bound) Let Rmax = maxs,a |R(s, a)|. The expected value of perfect
observation as defined in (35) is upper bounded as follows:

EV PO ≤ Rmax

√
2EP (o)[KL[b(s|o)||b(s)]] . (39)

Proof. Recall the definition of EVPO is:

EV PO = EP (o)[V (b(s|o))]− V (b(s))

= EP (o)

[
max
a(o)

∑
s

b(s|o)R(s, a(o))

]
−max

a

∑
s

b(s)R(s, a)

≤ EP (o)

[∑
s

b(s|o)R(s, a∗(o))

]
−

∑
s

b(s)R(s, a∗(o))

= EP (o)

[∑
s

R(s, a∗(o)) (b(s|o)− b(s))

]
,

(40)

where we have used a∗(o) = argmaxa(o)
∑

s b(s|o)R(s, a(o)) and the inequality is due to a∗(o)
being suboptimal for the second term.

Taking the absolute value of the above EVPO bound, we have:

|EV PO| =

∣∣∣∣∣EP (o)

[∑
s

R(s, a∗(o)) (b(s|o)− b(s))

]∣∣∣∣∣
(1)

≤ EP (o)

[∣∣∣∣∣∑
s

R(s, a∗(o)) (b(s|o)− b(s))

∣∣∣∣∣
]

(2)

≤ EP (o)

[∑
s

|R(s, a∗(o))| |b(s|o)− b(s)|

]
(3)

≤ ∥R(·, ·)∥∞EP (o) [∥b(s|o)− b(s)∥1]
(4)

≤ Rmax

√
2EP (o)[KL[b(s|o)||b(s)]]

(41)

where (1) and (2) are due to Jensen’s inequality, (3) is due to Holder’s inequality, and (4) is due to
Pinsker’s inequality.
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Proposition D.6. (EVPO-POMDP non-negativity) Let Qopen(b, a), V open(b) and Q(b, a), V (b)
denote the open and closed-loop value functions as defined in (12), it holds that:

Q(b, a) ≥ Qopen(b, a) and V (b) ≥ V open(b) for all b ∈ ∆(S) and a ∈ A . (42)

Proof. Recall the open and closed-loop value functions are defined as:

Qopen(b, a) =
∑
s

b(s)R(s, a) + γV open(b′(a, b)), V open(b) = max
a

Qopen(b, a) ,

Q(b, a) =
∑
s

b(s)R(s, a) + γ
∑
o′

P (o′|b, a)V (b′(o′, a, b)), V (b) = max
a

Q(b, a) .
(43)

Although these are infinite horizon value functions, again due to their contraction mapping property
(Agarwal et al., 2019), they can be approximated arbitrarily close using a finite number of K iterations
starting from the base case Qk=0(b, a) =

∑
s b(s)R(s, a).

Starting with k = 1, we have:

Qopen
1 (b, a) =

∑
s

b(s)R(s, a) + γV open
0 (b′(a, b)), V open

0 (b) = max
a

∑
s

b(s)R(s, a) ,

Q1(b, a) =
∑
s

b(s)R(s, a) + γ
∑
o′

P (o′|b, a)V0(b
′(o′, a, b)), V0(b) = max

a

∑
s

b(s)R(s, a) .

(44)

Taking the difference between the two value functions and multiply by 1
γ , we have:

1

γ
[Q1(b, a)−Qopen

1 (b, a)]

=
∑
o′

P (o′|b, a)V0(b
′(o′, a, b))− V open

0 (b′(a, b))

=
∑
o′

P (o′|b, a) max
aclose

∑
s

b′(s′|o′, a, b)R(s′, aclose)− max
aopen

∑
s

b′(s′|a, b)R(s′, aopen)

= EV PO ≥ 0 ,

(45)

where the second to last line equals EVPO in proposition D.4 under prior belief b′(s′|b, a) for all
b ∈ ∆(s), a ∈ A. Thus it must be non-negative.

Applying the above to the value functions at k = 1, we have:

V1(b)− V open
1 (b) = max

aclose
Q1(b, a

close)− max
aopen

Qopen
1 (b, aopen)

≥ Q1(b, a
open∗)−Qopen

1 (b, aopen∗)

≥ 0 ,

(46)

where we have defined aopen∗ = argmaxaopen Qopen
1 (b, aopen).

Now consider k = 2, where

Qopen
2 (b, a) =

∑
s

b(s)R(s, a) + γV open
1 (b′(a, b)), V open

1 (b) = max
a

Qopen
1 (s, a) ,

Q1(b, a) =
∑
s

b(s)R(s, a) + γ
∑
o′

P (o′|b, a)V1(b
′(o′, a, b)), V1(b) = max

a
Q1(s, a) .

(47)
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Taking the difference between the two value functions again, we have:

1

γ
[Q2(b, a)−Qopen

2 (b, a)]

=
∑
o′

P (o′|b, a)V1(b
′(o, a, b))− V open

1 (b′(a, b))

=
∑
o′

P (o′|b, a) max
a′close

{∑
s

b′(s|o′, a, b)R(s, a
′close) +

∑
o′′

P (o′′|b′, a
′close)V0(b

′′(o′′, a
′close, b′))

}

− max
a′open

{∑
s

b′(s|a, b)R(s, a
′open) + V open

0 (b′′(a
′open, b′))

}
.

(48)

Let a
′open∗ = argmaxa′open

{∑
s b

′(s|a, b)R(s, a
′open) + V open

0 (b′′(a
′open, b′))

}
and a

′close∗ =

argmaxa′close

{∑
s b

′(s|o′, a, b)R(s, a
′close) +

∑
o′′ P (o′′|b′, a′close)V0(b

′′(o′′, a
′close, b′))

}
, we

have:

∑
o′

P (o′|b, a) max
a′close

{∑
s

b′(s|o′, a, b)R(s, a
′close) +

∑
o′′

P (o′′|b′, a
′close)V0(b

′′(o′′, a
′close, b′))

}

− max
a′open

{∑
s

b′(s|a, b)R(s, a
′open) + V open

0 (b′′(a
′open, b′))

}

≥
∑
o′

P (o′|b, a) max
a′close

{∑
s

b′(s|o′, a, b)R(s, a
′close) +

∑
o′′

P (o′′|b′, a
′open∗)V0(b

′′(o′′, a
′open∗, b′))

}

−

{∑
s

b′(s|a, b)R(s, a
′open∗) + V open

0 (b′′(a
′open∗, b′))

}

=
∑
o′

P (o′|b, a)

{
max
a′close

∑
s

b′(s|o′, a, b)R(s, a
′close)−

∑
s

b′(s|a, b)R(s, a
′open∗)

}
︸ ︷︷ ︸

EV PO≥0

+
∑
o′

P (o′|b, a)

{∑
o′′

P (o′′|b′, a
′open∗)V0(b

′′(o′′, a
′open∗, b′))− V open

0 (b′′(a
′open∗, b′))

}
︸ ︷︷ ︸

≥0 due to (45)

≥ 0 .
(49)

Applying the above to k ∈ {1, ...,∞} recursively, we have:

Q(b, a) ≥ Qopen(b, a) and V (b) ≥ V open(b) . (50)

D.2.2 Main Results of Section 3.1

Lemma D.7. (Performance difference in mismatched MDPs; restate of lemma 3.1) Let π and π′

be two policies which are optimal w.r.t. two MDPs M and M ′. The two MDPs share the same
initial state distribution and discount factor but have different rewards R,R′ and dynamics P, P ′.
Denote ∆R(s, a) = R′(s, a) − R(s, a). The performance difference between π and π′ when both
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are evaluated in M is given by:

JM (π)− JM (π′)

=
1

(1− γ)
E(s,a)∼dπ

P

[
Aπ′

M ′(s, a)
]

︸ ︷︷ ︸
Advantage under expert distribution

+
1

(1− γ)
E(s,a)∼dπ′

P

[
∆R(s, a) + γ

(
Es′∼P ′(·|s,a)[V

π′

M ′(s′)]− Es′′∼P (·|s,a)[V
π′

M ′(s′′)]
)]

︸ ︷︷ ︸
Reward-model advantage under own distribution

+
1

(1− γ)
E(s,a)∼dπ

P

[
−∆R(s, a) + γ

(
Es′′∼P (·|s,a)[V

π′

M ′(s′′)]− Es′∼P ′(·|s,a)[V
π′

M ′(s′)]
)]

︸ ︷︷ ︸
Reward-model disadvantage under expert distribution

.

(51)

Proof. While in the main text we denote states with b to be consistent with the belief MDP notation,
here we use s for clarity in the derivation and it introduces no difference in the final result.

Following (Vemula et al., 2023), we expand the performance difference as:

JM (π)− JM (π′) = Eµ(s0)[V
π
M (s0)− V π′

M (s0)]

= Eµ(s0)[V
π
M (s0)− V π′

M ′(s0)] + Eµ(s0)[V
π′

M ′(s0)− V π′

M (s0)] .
(52)

The second term can be expanded as:

Eµ(s0)[V
π′

M ′(s0)− V π′

M (s0)]

= Es0∼µ(·),a0∼π′(·|s0)[R
′(s0, a0) + γEs1∼P ′(·|s0,a0)[V

π′

M ′(s1)]−R(s0, a0)− γEs1∼P (·|s0,a0)[V
π′

M (s1)]]

= Es0∼µ(·),a0∼π′(·|s0)[∆R(s0, a0) + γEs1∼P ′(·|s0,a0)[V
π′

M ′(s1)]− γEs1∼P (·|s0,a0)[V
π′

M ′(s1)]

+ γEs1∼P (·|s0,a0)[V
π′

M ′(s1)]− γEs1∼P (·|s0,a0)[V
π′

M (s1)]]

= Es0∼µ(·),a0∼π′(·|s0)[∆R(s0, a0) + γEs1∼P ′(·|s0,a0)[V
π′

M ′(s1)]− γEs1∼P (·|s0,a0)[V
π′

M ′(s1)]]

+ γEs0∼µ(·),a0∼π′(·|s0),s1∼P (·|s0,a0)[V
π′

M ′(s1)− V π′

M (s1)︸ ︷︷ ︸
term a

] ,

(53)

where ∆R(s, a) = R′(s, a)−R(s, a).

Expanding term a, we arrive at a similar structure to the above:

term a = Ea1∼π′(·|s1)[R
′(s1, a1) + γEs2∼P ′(·|s1,a1)[V

π′

M ′(s2)]−R(s1, a1)− γEs2∼P (·|s1,a1)[V
π′

M (s2)]]

= Ea1∼π′(·|s1)[∆R(s1, a1) + γEs2∼P ′(·|s1,a1)[V
π′

M ′(s2)]− γEs2∼P (·|s1,a1)[V
π′

M ′(s2)]]

+ γEa1∼π′(·|s1),s2∼P (·|s1,a1) [V
π′

M ′(s2)− V π′

M (s2)]︸ ︷︷ ︸
term a’

.

(54)

We can thus unroll the last term iteratively and obtain:

Eµ(s0)[V
π′

M ′(s0)− V π′

M (s0)]

= E

[ ∞∑
t=0

γt
(
∆R(st, at) + γEs′∼P ′(·|st,at)[V

π′

M ′(s′)]− γEs′′∼P (·|st,at)[V
π′

M ′(s′′)]
)]

=
1

(1− γ)
E(s,a)∼dπ′

P

[
∆R(s, a) + γ

(
Es′∼P ′(·|s,a)[V

π′

M ′(s′)]− Es′′∼P (·|s,a)[V
π′

M ′(s′′)]
)]

,

(55)

where the expectation in the second line is taken w.r.t. the stochastic process induced by π′, P .
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We now expand the first term in the performance difference:

Es0∼µ(·)[V
π
M (s0)− V π′

M ′(s0)]

=

(
Es0∼µ(·)[V

π
M (s0)− Ea0∼π(·|s0)[Q

π′

M ′(s0, a0)]]

)
+

(
Es0∼µ(·)[Ea0∼π(·|s0)[Q

π′

M ′(s0, a0)]− V π′

M ′(s0)]

)
=

(
Es0∼µ(·),a0∼π(·|s0)[Q

π′

M ′(s0, a0)]− V π′

M ′(s0)]

)
+ Es0∼µ(·),a0∼π(·|s0)[R(s0, a0) + γEs1∼P (·|s0,a0)[V

π
M (s1)]]

− Es0∼µ(·),a0∼π(·|s0)[R
′(s0, a0) + γEs1∼P ′(·|s0,a0)[V

π′

M ′(s1)]]

= Es0∼µ(·),a0∼π(·|s0)[A
π′

M ′(s0, a0)]

+ Es0∼µ(·),a0∼π(·|s0)

[
−∆R(s0, a0) + γEs1∼P (·|s0,a0)[V

π
M (s1)]− γEs1∼P (·|s0,a0)[V

π′

M ′(s1)]

+ γEs1∼P (·|s0,a0)[V
π′

M ′(s1)]− γEs1∼P ′(·|s0,a0)[V
π′

M ′(s1)]

]
= Es0∼µ(·),a0∼π(·|s0)[A

π′

M ′(s0, a0)]

+ Es0∼µ(·),a0∼π(·|s0)[−∆R(s0, a0) + γEs1∼P (·|s0,a0)[V
π′

M ′(s1)]− γEs1∼P ′(·|s0,a0)[V
π′

M ′(s1)]]

+ γEs0∼µ(·),a0∼π(·|s0),s1∼P (·|s0,a0)[V
π
M (s1)− V π′

M ′(s1)]︸ ︷︷ ︸
term b

.

(56)

Apply the same unrolling method to term b, we have:

Es0∼µ(·)[V
π
M (s0)− V π′

M ′(s0)]

= E

[ ∞∑
t=0

γtAπ′

M ′(st, at)

]

+ E

[ ∞∑
t=0

γt
(
−∆R(st, at) + γEs′′∼P (·|st,at)[V

π′

M ′(s′′)]− γEs′∼P ′(·|st,at)[V
π′

M ′(s′)]
)]

=
1

(1− γ)
E(s,a)∼dπ

P

[
Aπ′

M ′(s, a)
]

+
1

(1− γ)
E(s,a)∼dπ

P

[
−∆R(s, a) + γ

(
Es′′∼P (·|s,a)[V

π′

M ′(s′′)]− Es′∼P ′(·|s,a)[V
π′

M ′(s′)]
)]

,

(57)
where the expectations in the first equality is again taken w.r.t. the stochastic process induced by
π, P .

Putting together, we have:
JM (π)− JM (π′)

=
1

(1− γ)
E(s,a)∼dπ

P

[
Aπ′

M ′(s, a)
]

+
1

(1− γ)
E(s,a)∼dπ′

P

[
∆R(s, a) + γ

(
Es′∼P ′(·|s,a)[V

π′

M ′(s′)]− Es′′∼P (·|s,a)[V
π′

M ′(s′′)]
)]

+
1

(1− γ)
E(s,a)∼dπ

P

[
−∆R(s, a) + γ

(
Es′′∼P (·|s,a)[V

π′

M ′(s′′)]− Es′∼P ′(·|s,a)[V
π′

M ′(s′)]
)]

.

(58)

Proposition D.8. (Closed-loop model advantage upper bound) Let Rmax = maxs,a |R(s, a)|. The
closed-loop model advantage is upper bounded as follows:

EP (b′|b,a)[V
open(b′)]− EP open(b′′|b,a)[V

open(b′′)] ≤ Rmax

1− γ

√
2IG(b, a) . (59)
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Proof. Recall the closed-loop model advantage is defined as:
EP (b′|b,a)[V (b′)]− EP open(b′′|b,a)[V (b′′)] = EP (o′|b,a)[V (b′(s′|o′, b, a))]− V (b′(s′)) (60)

To simplify notation, we will drop the conditioning on b, a in the expectation. This also enables us to
remove the "′" notation.

We will use a similar method as before where we leverage the contraction mapping property of
the value function and start from the base case. It is clear for the base case k = 0 where V (b) =
maxa

∑
s b(s)R(s, a), the model advantage is EVPO and thus the upper bound from proposition D.5

applies. To simplify notation, let’s denote the upper bound as C(b) since b(s|o) can be calculated
from b(s)

We now consider k = 1:
EP (o)[V1(b(s|o))]− V1(b(s))

= EP (o)

[
max
aclose

∑
s

b(s|o)R(s, aclose) + γV0(b
′(aclose, b(s|o)))

]

−

[
max
aopen

∑
s

b(s)R(s, aopen) + γV0(b
′(aopen, b(s)))

]

≤ EP (o)

[∑
s

b(s|o)R(s, aclose∗) + γV0(b
′(aclose∗, b(s|o)))

]

−

[∑
s

b(s)R(s, aclose∗) + γV0(b
′(aclose∗, b(s)))

]

= EP (o)

[∑
s

b(s|o)R(s, aclose∗)−
∑
s

b(s)R(s, aclose∗)

]
︸ ︷︷ ︸

term a

+ γ EP (o)

[
V0(b

′(aclose∗, b(s|o)))− V0(b
′(aclose∗, b(s)))

]︸ ︷︷ ︸
term b

.

(61)

Term a is the same as the one in EVPO, thus the upper bound C(b) applies again. In term b, recall
the open-loop belief updates are defined as:

b′(a, b(s|o)) =
∑
s

P (s′|s, a)b(s|o) := b′(s′|o) ,

b′(a, b(s)) =
∑
s

P (s′|s, a)b(s) := b′(s′) .
(62)

Due to the convexity of the value functions, we have term b ≥ 0. Furthermore, term b corresponds to
EVPO for stage 0 with modified belief updates as defined above. Thus C(b′) applies again.

Combining both, we have:
EP (o)[V1(b(s|o))]− V1(b(s))

≤ Rmax

√
2EP (o)[KL[b(s|o)||b(s)]] + γRmax

√
2EP (o)[KL[b′(s′|o, aclose∗)||b′(s′)]]

≤ Rmax

√
2EP (o)[KL[b(s|o)||b(s)]] + γRmax

√
2EP (o)[KL[b(s|o)||b(s)]] ,

(63)

where the second inequality is due to data processing inequality.

Applying the above to k ∈ {2, ...,∞} recursively, we have:

EP (o′|b,a)[V (b′(s′|o′))]− V (b′(s′)) ≤ Rmax

∞∑
t=0

γt
√
2EP (o′|b,a)[KL[b′(s′|o′)||b′(s′)]]

=
Rmax

1− γ

√
2EP (o′|b,a)[KL[b′(s′|o′)||b′(s′)]] .

(64)
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D.3 Proofs for Section 3.2

Proposition D.9. (EFE EVPO upper bound) Let Rmax = maxs,a |R(s, a)|. The expected value of
perfect observation as defined in (35) is upper bounded as follows:

EV POEFE ≤ R̃max

√
2EP (o)[KL[b(s|o)||b(s)]] . (65)

Proof. Recall the one-step EFE belief reward is:

R(b, a) =
∑
s

b(s)R(s, a) + IG(b, a) , (66)

where the reward is defined as R(s, a) := R̃(s, a) in (6) and IG(b, a) is the information gain.

We can thus write EVPO as:

EV PO

= EP (o)

[
max
a(o)

∑
s

b(s|o)R(s, a(o)) + IG(b(s|o), a(o))

]
−max

a

[∑
s

b(s)R(s, a) + IG(b(s), a)

]

≤ EP (o)

[∑
s

b(s|o)R(s, a∗(o)) + IG(b(s|o), a∗(o))

]
−

[∑
s

b(s)R(s, a∗(o)) + IG(b(s), a∗(o))

]

= EP (o)

[∑
s

R(s, a∗(o)) (b(s|o)− b(s))

]
+ EP (o)[IG(b(s|o), a∗(o))− IG(b(s), a∗(o))]︸ ︷︷ ︸

≤0

≤ EP (o)

[∑
s

R(s, a∗(o)) (b(s|o)− b(s))

]
,

(67)

where we have used a∗(o) = argmaxa(o)
∑

s b(s|o)R(s, a(o)) and the last inequality is due to IG
being a concave function of beliefs. The remaining term is the same as the one in proposition D.5.
Thus, applying the result from proposition D.5 we complete the proof.

Proposition D.10. (EFE closed-loop model advantage upper bound) Let Rmax = maxs,a |R(s, a)|.
The closed-loop model advantage under the EFE value function is upper bounded as follows:

EP (b′|b,a)[V
EFE(b′)]− EP open(b′′|b,a)[V

EFE(b′′)] ≤ Rmax

1− γ

√
2IG(b, a) (68)

Proof. Similar to the proof to proposition D.8, we start with the base case which is covered by
proposition D.9. To simplify notation, we drop the EFE superscript with the understanding that
V EFE is the value function under the EFE belief MDP.
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Starting with k = 1, we have:

EP (o)[V1(b(s|o))]− V1(b(s))

= EP (o)

[
max
aclose

∑
s

b(s|o)R(s, aclose) + IG(b(s|o), aclose) + γV0(b
′(aclose, b(s|o)))

]

−

[
max
aopen

∑
s

b(s)R(s, aopen) + IG(b(s), aopen) + γV0(b
′(aopen, b(s)))

]

≤ EP (o)

[∑
s

b(s|o)R(s, aclose∗) + IG(b(s|o), aclose∗) + γV0(b
′(aclose∗, b(s|o)))

]

−

[∑
s

b(s)R(s, aclose∗) + IG(b(s), aclose∗) + γV0(b
′(aclose∗, b(s)))

]

= EP (o)

[∑
s

b(s|o)R(s, aclose∗)−
∑
s

b(s)R(s, aclose∗)

]
+ EP (o)[IG(b(s|o), aclose∗)− IG(b(s), aclose∗)]︸ ︷︷ ︸

≤0

+ γEP (o)

[
V0(b

′(aclose∗, b(s|o)))− V0(b
′(aclose∗, b(s)))

]
≤ EP (o)

[∑
s

b(s|o)R(s, aclose∗)−
∑
s

b(s)R(s, aclose∗)

]
︸ ︷︷ ︸

term a

+ γ EP (o)

[
V0(b

′(aclose∗, b(s|o)))− V0(b
′(aclose∗, b(s)))

]︸ ︷︷ ︸
term b

(69)

We arrive at the same form as proposition D.8. While we cannot guarantee term b > 0, the same
upper bound holds. The next remark ensures the expected closed-loop model advantage under the
EFE reward is non-negative, which provides the motivation for assumption C.1.

Finally, applying the above recursively to k ∈ {2, ...,∞}, we complete the proof.

Remark D.11. (Motivation for assumption C.1) To ensure the EFE model advantage expected under
the Bayes optimal policy π is non-negative, we need to set the reward such that:

E(b,a)∼dπ
P

[∑
s

(b(s|o)− b(s))R(s, a)

]
≥ E(b,a)∼dπ

P
[IG(b(s), a)− IG(b(s|o), a)] , (70)

where dπP is the marginal distribution induced by the Bayes optimal policy in the closed-loop belief
dynamics.

Theorem D.12. (Open-loop and EFE policy performance gaps; restate of theorem 3.3) Let all policies
be deployed in POMDP M and all are allowed to update their beliefs according to b′(o′, a, b). Let
ϵIG = E(b,a)∼dπ

P
[IG(b, a)] denotes the expected information gain under the Bayes optimal policy’s

belief-action marginal distribution and let the belief-action marginal induced by both open-loop and
EFE policies have bounded density ratio with the Bayes optimal policy

∥∥∥dπ̃
P (b,a)

dπ
P (b,a)

∥∥∥
∞

≤ C. Under
assumptions C.1 and C.2, the performance gap of the open-loop and EFE policies from the optimal
policy are bounded as:

JM (π)− JM (πopen) ≤ 1

1− γ
ϵπ̃ +

(C + 1)γRmax

(1− γ)2
ϵIG ,

JM (π)− JM (πEFE) ≤ 1

1− γ
ϵπ̃ +

(C + 1)γRmax

(1− γ)2
ϵIG − C + 1

1− γ
ϵIG .

(71)
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Proof. Let us start by bounding the absolute value of the EFE policy’s performance gap:

|JM (π)− JM (πEFE)|

≤
∣∣∣∣ 1

1− γ
E(b,a)∼dπ

P
[AπEFE

MEFE (b, a)]

∣∣∣∣
+

∣∣∣∣ 1

1− γ
E(b,a)∼dπ

P

[
−IG(b, a) + γ

(
Eb′′∼P (·|b,a)[V

πEFE

MEFE (b
′′)]− Eb′∼P open(·|b,a)[V

πEFE

MEFE (b
′)]
)]∣∣∣∣

+

∣∣∣∣ 1

1− γ
E
(b,a)∼dπEFE

P

[
IG(b, a) + γ

(
Eb′′∼P open(·|b,a)[V

πEFE

MEFE (b
′′)]− Eb′∼P (·|b,a)[V

πEFE

MEFE (b
′)]
)]∣∣∣∣ .

(72)

Examining the second term, we have:∣∣∣∣ 1

1− γ
E(b,a)∼dπ

P

[
−IG(b, a) + γ

(
Eb′′∼P (·|b,a)[V

πEFE

MEFE (b
′′)]− Eb′∼P open(·|b,a)[V

πEFE

MEFE (b
′)]
)]∣∣∣∣

≤
∣∣∣∣ 1

1− γ
E(b,a)∼dπ

P

[
−IG(b, a) +

γRmax

1− γ

√
2IG(b, a)

]∣∣∣∣
≤

∣∣∣∣ 1

1− γ
E(b,a)∼dπ

P

[
−IG(b, a) +

γRmax

1− γ
IG(b, a)

]∣∣∣∣
=

γRmax + γ − 1

(1− γ)2

∣∣∣E(b,a)∼dπ
P
[IG(b, a)]

∣∣∣
=

γRmax + γ − 1

(1− γ)2
E(b,a)∼dπ

P
[IG(b, a)] .

(73)

Plugging into the performance gap, we have:

|JM (π)− JM (πEFE)|

≤
∣∣∣∣ 1

1− γ
E(b,a)∼dπ

P
[AπEFE

MEFE (b, a)]

∣∣∣∣
+

γRmax + γ − 1

(1− γ)2
E(b,a)∼dπ

P
[IG(b, a)] +

γRmax + γ − 1

(1− γ)2
E(b,a)∼dπ

P

[∣∣∣∣∣dπ
EFE

P (b, a)

dπP (b, a)
IG(b, a)

∣∣∣∣∣
]

≤
∣∣∣∣ 1

1− γ
E(b,a)∼dπ

P
[AπEFE
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+

γRmax + γ − 1

(1− γ)2
E(b,a)∼dπ

P
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∥∥∥∥∥dπ
EFE

P (b, a)

dπP (b, a)
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∞

E(b,a)∼dπ
P
[|IG(b, a)|]

=
1

1− γ
ϵπEFE +

(C + 1)(γRmax + γ − 1)

(1− γ)2
ϵIG

≤ 1

1− γ
ϵπopen +

(C + 1)γRmax

(1− γ)2
ϵIG − C + 1

1− γ
ϵIG .

(74)

For the open-loop policy which does not have the IG term in the reward, it is easy to see that the
performance gap is:

|JM (π)− JM (πopen)| ≤ 1

1− γ
ϵπopen +

(C + 1)γRmax

(1− γ)2
ϵIG . (75)
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eration due to laws or regulations in their jurisdiction).
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• The answer NA means that there is no societal impact of the work performed.
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11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
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12. Licenses for existing assets
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the paper, properly credited and are the license and terms of use explicitly mentioned and
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• For existing datasets that are re-packaged, both the original license and the license of
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