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Abstract—Understanding action correspondence between hu-
mans and robots is essential for evaluating alignment in decision-
making, particularly in human-robot collaboration and imitation
learning within unstructured environments. We propose a multi-
modal demonstration learning framework that explicitly models
human demonstrations from RGB video with robot demonstra-
tions in voxelized RGB-D space. Focusing on the “pick and
place” task from the RH20T dataset, we utilize data from 5 users
across 10 diverse scenes. Our approach combines ResNet-based
visual encoding for human intention modeling and a Perceiver
Transformer for voxel-based robot action prediction. After 2000
training epochs, the human model reaches 71.67 % accuracy, and
the robot model achieves 71.8% accuracy, demonstrating the
framework’s potential for aligning complex, multimodal human
and robot behaviors in manipulation tasks. Code available at:
github.com/utkauraslab/aligning hr_actions

I. INTRODUCTION

Robots that learn manipulation skills by observing humans
have the potential to eliminate labor-intensive manual pro-
gramming in real-world settings. Central to achieving this
vision is effectively mapping human behaviors to robotic ac-
tions—translating human demonstrations into executable robot
policies [1]. Current state-of-the-art methods face two pri-
mary challenges. First, modality mismatches between human
demonstrations (typically captured as 2D videos or images)
and robot perception (usually in 3D via point clouds or RGB-
D sensors) limit the accuracy with which robots understand
spatial context for precise manipulation [2], [3]. Second, many
learning-from-demonstration (LfD) approaches depend heavily
on task-specific demonstrations and manual action remapping,
which restricts their scalability to diverse skill sets [4], [5].

Beyond these issues, an essential challenge underlying these
limitations is the lack of clear alignment—that is, a precise
correspondence between what humans demonstrate and what
robots execute. Without this alignment, robots cannot reliably
interpret and replicate human intent, significantly reducing the
effectiveness of imitation learning. Despite its importance, this
issue of alignment remains relatively unexplored, especially
regarding critical aspects like accurately capturing movement
trajectories, identifying reusable action components (‘“‘action
primitives”), and recognizing shifts in human intention (“in-
tention switching”).

Motivated by these challenges, we introduce a new frame-
work to map human demonstrations directly to robot ac-
tions in manipulation tasks such as pick-and-place. In our
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approach, we combine data from RGB video (to capture
human intentions) and 3D sensor inputs (to represent the
robot’s workspace) into one integrated pipeline. This end-
to-end framework ensures translating human actions to robot
behaviors reliably and accurately.

Our method predicts human intentions from RGB videos
and robot actions from voxelized RGB-D inputs for the same
high-level task, establishing a unified modeling foundation for
cross-modal intention-action mapping. Specifically, we employ
a two-stage model: a ResNet+LSTM network to capture the
temporal evolution of human intentions from video data, and a
voxel-based Perceiver Transformer [6] to predict appropriate
robot actions within the 3D workspace. This design bridges
the gap between the 2D information in human demonstrations
and the 3D perception of the robot, ensuring that high-level
intentions are accurately represented across both modalities.

We evaluate our framework on a challenging eight-class
object-picking task. The experimental results show robust
cross-modal performance and improved semantic consistency
between human demonstrations and robot actions. Our contri-
butions are summarized as follows:

e« We introduce a novel framework that directly aligns
human demonstrations with robot actions using both
video and RGB-D data with probabilities.

e We develop a two-stage model that employs a
ResNet+LSTM network for extracting human intention
sequences and a voxel-based Perceiver Transformer for
robot action prediction.

o« We empirically evaluate our framework on an eight-
class object-picking task, showing consistent performance
across modalities.

Our work showcase the potential of aligning human and robot
behaviors across modalities (e.g., 2D + RGB-D data) as a
foundation for advancing imitation learning in robotics.

II. METHODOLOGY
A. Problem Formulation

We aim to learn a mapping between human and robot
behaviors. Let human demonstrations be represented as a
sequence of RGB frames H = {h;}}_,, and robot demon-
strations as voxelized RGB-D inputs R = {r;}7_,. We define
a set of human intention classes {i1,i2,...,ix} and robot
action classes {j1,j2,...,Jn}, and aiming for their semantic
correspondence for the future.

For this study, robot and human share the same set of
intention-action classes. Our focus is on a high-level manip-
ulation task, i.e., “pick” task, for which we consider eight
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Fig. 1. Human and Robot demonstration framework.

intention classes (N = 8): Reaching, Grasping, Lifting,
Holding, Transporting, Placing, Releasing, and Nothing.

B. Human Demonstration Encoding

We extract RGB frames h; from human demonstration
videos (originally 640x360 pixels), resized and normalized to
meet the input requirements (220 x 220 pixels) of the ResNet-
18 model. These frames are passed through a pretrained
ResNet-18 [7], without the final fully connected layers, to
obtain feature representations of size (b, 512), where b denotes
the batch size.

To capture temporal dynamics across frames, we utilize a
single-layer LSTM network. This LSTM encodes sequential
dynamics inherent to the video data, allowing the model
to discern subtle temporal patterns characteristic of object
manipulation sequences, i.e., grasping, lifting, transporting,
and placing. It outputs feature representations of dimension
(b, 256), effectively embedding enriched temporal information.

These encoded LSTM features (Z/) are then passed to
a softmax-based multilayer perceptron (MLP) classifier for
intention recognition. The MLP consists of two hidden layers,
transforming the input from (b, 256) to (b,128), and finally
to (b,8), corresponding to the eight intention classes. The
P(iy = c|H) is the probability of human intention at time
t, where c is the predefined 8 intention-action classes.

F tH = fCNN(ht)
zZH = fism(FTL)

exp(MLPg (2/7)[c])
> exp(MLPy (Z{7)[¢'])

C. Robot Demonstration Encoding

(D
P(Zt = C|H) =

We generate depth images from RGB inputs using Depth
Anything V2 [8], a transformer-based monocular depth es-

timation model. These depth images are aligned with their
respective RGB frames to produce RGB-D datasets.

From each RGB-D pair, we create dense point clouds uti-
lizing intrinsic camera parameters and following the Open3D
back-projection model. Each point cloud is subsequently pro-
jected onto the original image plane to retrieve corresponding
RGB values, which are then assigned as color features to each
point.

To construct a structured and consistent representation from
the unstructured point cloud data, we apply voxelization. Using
a bounding-box-based method (box size: 100 x 100 x 100),
points are first normalized within a predefined spatial region
and then mapped to voxel cells according to their spatial
indices. RGB values act as feature vectors for each point.
Within each voxel, points are aggregated through mean pool-
ing, yielding a feature vector of dimension C' per voxel.

Formally, given a point cloud with N points and features
r, € RY, and bounding volume [Zin, Tmax] X [Ymin, Ymax] X
[2min; Zmax),» We define a fixed resolution voxel grid of shape
(D, H,W). Each voxel is populated as:

1
Vigk =1 D @n ()
|Sisel , 5.

where S5, is the set of points falling into voxel cell (3, j, k).
An additional occupancy channel is appended to each voxel

to indicate whether the voxel is non-empty.
The resulting 4D voxel grid V; € REXHXWxC
flattened and passed to a Perceiver Transformer [6]:

ZtR = fPerceiver(‘/t) 3)
A softmax classifier then predicts robot actions:
exp(MLPx(ZF)[c])
> exp(MLPR(Z{)[c'])

is then

P(js = c|R) = “4)
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Fig. 2. Training loss and validation accuracy trend for three different learning
rates: 0.001(blue), 0.0001(orange), 0.00001(green).

III. EXPERIMENTS AND RESULTS

We evaluate our model on the “pick” task using the RH20T
dataset, which includes RGB human demonstrations and RGB-
D robot observations from 5 users across 10 scenes, both
labeled with one of eight intention/action classes. Both human
and robot branches are trained independently. We use cross-
entropy loss for both classification heads, with class weights
to account for class imbalance. The human branch uses
ResNet-18 feature extraction followed by an LSTM, while the
robot branch uses voxelized 3D observations processed with
a Perceiver model.

A. Human Intention Model

1) Training Details: We collected 70 demonstration videos
from 5 users, with each user contributing up to 10 scenes for
different “pick” tasks. Each video varies in duration, resulting
in a different number of frames per sequence. After extracting
frames from each video, we treated them as 70 separate
sequences. Each frame was resized(220, 220), normalized, and
converted to a tensor to be compatible with the ResNet-18
architecture.

We used a pretrained ResNet-18 model (with the final
fully connected layers removed) to extract a 512-dimensional
feature vector for each frame. These frame-wise features
were then passed through our LSTM+MLP model to perform
intention classification.

We conducted an extensive hyperparameter search (Table
I), varying the LSTM hidden state size, number of LSTM
layers, batch size, and learning rate. The dataset was split into
70% for training, 20% for validation, and 10% for testing.
The highest validation accuracy (71.67%) was achieved with
the configuration: hidden size 64, learning rate 0.001, batch
size 32, and LSTM layer 1. However, this setting exhibited
significant instability and loss fluctuations during training, as
shown in Figure 2. Despite its better convergence, the frequent
loss spikes made it less reliable. In contrast, the second-best
configuration—hidden size 64, learning rate 0.0001, batch size
16, and 1 LSTM layer—achieved a more stable performance
with a test accuracy of 63.95%, and was therefore selected as
our final model.

Other hyperparameters, such as the number of training
epochs (2000), Adam optimizer, and a dropout rate of 0.7,
were kept fixed throughout the experimentation.

2) Results: We evaluated the performance of our human
intention model in intention classification using per-class ac-
curacy and a confusion matrix. The model was trained with

Hidden Learning Batch LSTM Accuracy
Size Rate Size Layers (%)
256 0.0001 32 1 58.37
128 0.0001 32 1 61.37
64 0.0001 32 1 63.09
64 0.001 32 1 71.67
64 0.0001 32 1 63.09
64 0.00001 32 1 37.34
64 0.0001 16 1 63.95
64 0.0001 32 1 63.09
64 0.0001 64 62.66
64 0.0001 16 1 63.95
64 0.0001 16 2 62.23
64 0.0001 16 3 53.65

various hyperparameter configurations, as detailed in Section
II1-Al.
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Fig. 3. Confusion matrices for 8 intention-action classes of human/robot data.

Accuracies range from 16.67 to 78.23 (in Table II, with
nothing achieving the highest (78.23), likely due to class
prevalence and distinct features. reaching (64.86) and trans-
porting (62.50) also show strong performance, suggesting
clear temporal patterns. In contrast, the model struggles with
grasping (23.08) and lifting (16.67), likely due to overlapping
dynamics, class imbalance, and the fact that grasping and
lifting have the lowest amount of data in the training set. Addi-
tionally, grasping is often confused with reaching, as these two
are sequential intentions, and their labelings are temporally
very close most of the time, as evident from the confusion
matrix (in Figure 3) where 7 out of 13 grasping instances
are misclassified as reaching. Lifting also faces similar issues,
with 12 out of 24 instances misclassified as grasping, reflecting
their sequential nature and temporal proximity.

B. Robot Action Model

1) Training Details: To classify robot actions from vox-
elized RGB-D observations, we convert each RGB-depth pair
into a 3D voxel grid using a bounding-box-based voxelization
scheme. Each voxel encodes the mean RGB of contained
points, with an added occupancy channel indicating whether
it is occupied. The resulting 4D voxel grids (D x H x W x C))
are flattened into sequences and processed by a Perceiver
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Fig. 4. Training and validation loss curves on voxelized robot action data.

Transformer, which uses cross-attention to project inputs into
a latent space. Latent features are passed through a multi-layer
perceptron (MLP) for final classification.

The dataset includes segmented robot actions labeled with
eight action classes as the human demonstration. Data is split
into 70% training, 20% validation, and 10% testing. The model
is trained for 150 epochs using the Adam optimizer (learning
rate 1le—4, batch size 10) on an NVIDIA RTX 4090 GPU.

2) Hyperparameter Tuning: We adopted a fixed model
configuration after preliminary tuning, constrained by hard-
ware limits: input dimension 10 (voxel feature size), latent
dimension 512, 128 latent tokens, 8 cross-attention heads, and
a maximum of 9,261 points per sample. To mitigate class
imbalance, we apply inverse-frequency class weights in the
cross-entropy loss.

3) Results: The model converged stably over 150 epochs
(Figure 4), reaching an average validation accuracy of 71.80%,
comparable to the human prediction branch. Training and val-
idation losses dropped rapidly during early epochs, indicating
fast convergence. After epoch 100, training loss continued to
decrease and stabilized near zero. Validation loss, though more
variable due to small batch size and class imbalance, followed
a similar downward trend with occasional spikes—Tlikely from
underrepresented or ambiguous classes. The close alignment
between training and validation curves suggests strong gener-
alization with minimal overfitting.
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Fig. 5. Predicted softmax probability for each robot action class.

To assess prediction confidence, we visualize softmax out-
puts for selected validation samples in Figure 5. The model
exhibits high confidence for classes like nothing and holding,
while early-stage actions such as grasping and lifting, along
with late-stage actions like placing and releasing, show lower
confidence and increased ambiguity. This may be attributed
to subtle inter-class motion differences and visual similarities
among transitional actions, which make them harder to distin-
guish based solely on voxelized spatial cues at individual time
steps. In contrast, static or sustained postures, such as reaching

or nothing, tend to produce more consistent geometric patterns,
leading to more confident predictions.

TABLE I
PREDICTION ACCURACY COMPARISON ACROSS 8 CLASSES FOR HUMAN
INTENTIONS AND ROBOT ACTIONS (10 SAMPLES PER CLASS).

Class Human Accuracy (%) Robot Accuracy (%)
Reaching 64.86 50.0
Grasping 23.08 83.0
Lifting 16.67 100.0
Holding 58.82 100.0
Transporting 62.50 67.0
Placing 71.43 56.0
Releasing 33.33 75.0
Nothing 78.23 80.0
Average 63.95 76.00

4) Per-Class Accuracy Analysis: Table II presents the per-
class prediction accuracy for both human intention recognition
and robot action classification across eight semantic categories.
Each class contains 10 validation cases.

The robot branch consistently outperforms the human
branch, achieving an average accuracy of 76.00% compared
to 63.95% for human predictions. Notably, the robot model
achieves perfect accuracy on lifting and holding, and high
accuracy on grasping (83.0%) and releasing (75.0%). These
results suggest that voxelized RGB-D representations provide
strong spatial cues for action discrimination, particularly for
mid- and late-stage manipulation steps.

In contrast, the human model struggles with early-stage
intentions such as grasping (23.08%) and lifting (16.67%),
likely due to the visual ambiguity and subtle motion cues
present in RGB-only videos. The highest performance in the
human branch is observed for nothing (78.23%) and placing
(71.43%), which may exhibit more distinctive visual patterns
or static poses.

Overall, these results highlight the strength of the voxel-
based robot encoder in capturing geometric and depth-aware
action features, while also pointing to the need for improved
temporal modeling and motion-sensitive features in the human
branch, particularly for fine-grained early-stage actions.

IV. DISCUSSION AND FUTURE WORK

For the next step, we aim to validate semantic correspon-
dence learning by jointly modeling human intentions and
robot actions. To quantify their alignment, we define an
alignment score S(H, R) that aggregates the joint confidence
of corresponding predictions across a temporal sequence:

1 T
S(H,R) = > 0(iv, jo) P(u ) P(| B),  (5)
t=1

where 0(i;,j;) is an indicator function denoting semantic
consistency between the predicted human intention ¢; and
robot action j;. The score encourages high confidence for
semantically aligned predictions over time. We propose to



jointly train the human and robot models by maximizing this
alignment score with respect to model parameters 6:

0" = argmgxxS(H, R;0).

This framework lays the groundwork for learning cross-modal
behavioral correspondence and paves the way for joint action
reasoning in multimodal human-robot learning.

Our initial results reveal both strengths and limitations
of the proposed intention-action models. The human inten-
tion model performs well on visually distinct or frequent
classes like nothing, holding, and transporting, but struggles
with graspingl/lifting and placing/releasing due to temporal
similarity and data imbalance. This suggests current visual
features may not capture the subtle cues needed for early-
and late-stage action discrimination. On the robot side, the
Perceiver Transformer effectively classifies voxelized RGB-D
inputs, but its lack of temporal modeling limits performance
on fine-grained transitions (e.g., tramsporting vs. placing),
and voxel sparsity may cause information loss. To address
these issues, we plan to incorporate temporal voxel sequences,
point-based attention, and integrate voxel-level features togther
with human motion embeddings to strengthen cross-modal
alignment.

Ultimately, we aim to build a unified multimodal framework
that aligns human intentions and robot actions using RGB and
RGB-D inputs. Combining motion encoders such as FlowNet
[9], we seek to enable robust imitation learning from human
demonstration for robotic manipulation.
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