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Abstract

Pre-trained Transformers are challenging hu-001
man performances in many natural language002
processing tasks. The gigantic datasets used003
for pre-training seem to be the key for their004
success on existing tasks. In this paper, we005
explore how a range of pre-trained natural lan-006
guage understanding models perform on truly007
novel and unexplored data, provided by clas-008
sification tasks over a DarkNet corpus. Sur-009
prisingly, results show that syntactic and lex-010
ical neural networks largely outperform pre-011
trained Transformers. This seems to suggest012
that pre-trained Transformers have serious dif-013
ficulties in adapting to radically novel texts.014

1 Introduction015

Pre-trained Transformers (Peters et al., 2018; De-016

vlin et al., 2019; Zhang et al., 2019; Radford and017

Narasimhan, 2018) are outperforming humans in018

many natural language processing tasks (Wang019

et al., 2018, 2020) and, thus, are wiping out all other020

methods for natural language understanding. Pre-021

training seems to give Transformers crystal clear022

models of target languages. BERT is pre-trained023

on an English corpus of 3,300M words consisting024

of books (Zhu et al., 2015a) and Wikipedia. The025

English version of the last ERNIE (Sun et al., 2021)026

is trained on an even bigger corpus, and its Chinese027

version is trained on 14TB corpus. MEGATRON-028

LM (Shoeybi et al., 2019) is trained on an incredi-029

ble corpus of 174 GB. The race is always towards030

training over bigger corpora.031

The gigantic datasets used for pre-training seem032

to be the key to the success of Transformers. It033

may seem that Transformers have success in down-034

stream tasks because they have seen large parts of035

possible sentences. Sometimes, this possible short-036

coming is taken into consideration when a novel037

Tranformer is introduced (Radford et al., 2019;038

Shoeybi et al., 2019). Radford et al. (2019) have039

excluded Wikipedia pages for pre-training as it is a040

common data source for other datasets. Yet, when 041

using off-the-shelf pre-trained models, this effect 042

is generally disregarded. For example, the discov- 043

ering ongoing conversation (DOC) task was found 044

challenging for humans but BERT baseline model 045

achieved the astonishing 88.4 F1 score (Wang et al., 046

2020). DOC consists of determining if two utter- 047

ances are contiguous in classical theatrical plays. 048

These plays may be included in the book dataset 049

(Zhu et al., 2015a) used for pre-training BERT. 050

Corpora and related tasks derived from the 051

DeepWeb and DarkWeb (Avarikioti et al., 2018; 052

Choshen et al., 2019) offer a tremendous opportu- 053

nity to study the effect of overfitting for different 054

natural language understanding models. Indeed, 055

it is extremely rare that texts extracted from these 056

sources are included in pre-training corpora. More- 057

over, language on the DarkNet may have very dif- 058

ferent characteristics with respect to the one acces- 059

sible from the surface web (Choshen et al., 2019). 060

In this paper, we aim to explore how pre-trained 061

natural language understanding models behave on 062

really unseen data or really unexplored linguistic 063

registers and styles. This unseen data is given 064

by the DarkNet corpus along with a classifica- 065

tion task. We experimented with: Stylistic Clas- 066

sifiers based on the bleaching text model (van der 067

Goot et al., 2018), with Lexical Neural Netowrks 068

based on GloVe (Pennington et al., 2014) and 069

word2vec(Mikolov et al., 2013), with Syntatic- 070

based neural networks based on KERMIT (Zan- 071

zotto et al., 2020), and with holistic Transform- 072

ers such as BERT (Devlin et al., 2019), XLNet 073

(Yang et al., 2019), ERNIE (Zhang et al., 2019) 074

and Electra (Clark et al., 2020). Results show that 075

syntactic and lexical neural networks surprisingly 076

outperform pre-trained Transformers. This seems 077

to suggest that pre-trained Transformers have seri- 078

ous difficulty in adapting to really unseen texts. 079

The rest of the paper is organized in: Material 080

and Methods; Results and Discussion; and, Con- 081
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clusions.082

2 Material and Methods083

2.1 Material: A Dark Web Dataset084

Corpora scraped from DarkWeb to fight illegal085

actions are good testbeds for studying large pre-086

trained models on totally new texts, as these are not087

covered by the corpora used for pre-training.088

Nabki et al. (2019), following Choshen et al.089

(2019)’s instructions, sampled “Darknet Usage090

Text Addresses” (DUTA-10k) from the DarkWeb.091

This dataset proposes the task of classifying legal092

and illegal activities on the domain of forums and093

drug markets. To compare with the data from sur-094

face web, Nabki et al. (2019) have extracted item095

descriptions from eBay as well. The descriptions096

were selected by searching the keywords (mari-097

juana, weed, grass, and drug); these were divided098

by paragraphs and filtered, producing a corpus099

without repetition. The texts of the corpus were100

extracted from links provided by Choshen et al.101

(2019) 1 and pre-processed by removing: HTML102

tags, non-linguistic content such as buttons, encryp-103

tion keys, metadata, and common words such as104

“Show more results”.105

The corpus DUTA-10k contains data collected106

and divided into five different subsets: (1) eBay107

items, (2) legal drugs, (3) illegal drugs,(4) fo-108

rums discussing legal activities and (5) forums dis-109

cussing illegal topics. The number of samples of110

each dataset and their corresponding categories is111

presented in table1. Since the aim is to classify112

legal vs illegal activities (Choshen et al., 2019),113

the subsets are used for four different experiments:114

(1) eBay vs. legal drugs, (2) legal vs illegal drugs,115

(3) legal vs illegal forums and finally, (4) legal and116

illegal drugs training data vs the test set of legal117

and illegal forums.118

2.2 Methods: Classification Models119

This section introduces the models which we used120

to investigate the role of pre-training in transform-121

ers when applied to truly uncovered texts.122

Stylistic Classifier Legal and illegal activities123

may be described with different styles of language:124

a formal language vs a more informal style of writ-125

ing. For this reason, we tested an SVM classi-126

fier that uses some stylistic characteristics captured127

1data and code are available in Choshen et al. (2019)
GitHub repository https://github.com/huji-nlp/
cyber

dataset # tokens # samples # samples in class
Ebay vs

legal drugs
- train

24,795 924 Ebay
456

legal drugs
468

- dev 2,623 103 53 50
- test 2,802 115 62 53

Onion forums
- train 15,409 924 illegal

468
legal
456

-dev 1,478 103 50 53
-test 1,640 115 53 62

Onion drugs
- train 25,582 924 illegal

468
legal
456

-dev 2,416 103 50 53
-test 2,995 115 53 62

Table 1: Distribution of examples and classes

Corpus Size
BooksCorpus (Zhu et al., 2015b) 800M words
2010-and-2014-English Wikipedia dump 2,500M words
Giga5 (Parker et al., 2011) 16GB
Common Crawl (Crawl, 2019) 110GB
ClueWeb (Callan et al., 2009) 19GB
Penn Treebank (Marcus et al., 1993) 1M words

Table 2: Pre-traning corpora with their size. All cor-
pora are derived from the surface web.

from the surface properties of the tokens. This 128

classifier is used to determine if analyzed tasks are 129

purely stylistic. 130

Bleaching text (van der Goot et al., 2018) is a 131

model proposed to capture the style of writing at 132

the word level. Originally, it has been applied for 133

cross-lingual author’s gender prediction. To cap- 134

ture the style, this model converts sequences of 135

tokens, e.g., ‘1x Pcs Mobile Case!? US$65’, into 136

abstract sequences according to the following rules 137

presented with the effect on the example: (1) each 138

token is replaced by its length (effect: ‘02 03 06 06 139

05’); (2) alphanumeric characters are merged into 140

one single letter and other characters are kept (ef- 141

fect: ‘W W W W!? W$W’); (3) punctuation marks 142

are transformed into a unified character (effect: ‘W 143

W W WPP W’; (4) upper case letters are replaced 144

with ‘u’, lower case letters with ‘l’, digits with ‘d’, 145

and the rest to ‘x’ (effect: ‘dl ull ull ullxx uuxdd’); 146

(5) consonants are replaced with ‘c’, vowels to ‘v’ 147

and the rest to ‘o’ (effect: ‘oc ccc cvcvcv cvcvoo 148

vcooo’). Finally, a sample is represented by the 149

concatenation of all the above transformations. For 150

classification, we use a linear SVM classifier with 151

a binary bag of word representation. 152

Lexical-based Neural Networks To investigate 153

the role of pre-trained word embeddings, we used 154

a classifier based on a vanilla feed-forward neu- 155
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ral networks (FFN) over a bag-of-word-embedding156

(BoE) representation of sentences. In BoE, sen-157

tence representations are computed as the sum of158

word embeddings representing their words.159

We experimented with two versions of the clas-160

sifier: BoE(GloVe) and BoE(re-train). BoE(GloVe)161

uses GloVe word embeddings (Pennington et al.,162

2014) trained on 2014 Wikipedia dumps and Giga5163

(see Table 1). BoE(re-train) uses word embeddings164

learnt on the novel corpus using a CBOW model of165

word2vec (Mikolov et al., 2013). This latter model166

is trained with 300 dimensions for 5 epochs.167

The supporting FFNs of BoE(GloVe) and168

BoE(re-train) are slightly different. In BoE(GloVe),169

the FFN consists of an input layer of dimension170

300, 2 hidden layers of 150 and 50 dimensions171

with the ReLU activation function. In the BoE(re-172

train), the FFN consists of two layers of 150 neu-173

rons. tanh activation function is used for each174

layer.175

Syntactic-based Neural Networks To evaluate176

the role of “pre-trained” universal syntactic models,177

we used the Kernel-inspired Encoder with Recur-178

sive Mechanism for Interpretable Trees (KERMIT)179

(Zanzotto et al., 2020). This model positively ex-180

ploits parse trees in neural networks as it increases181

performances of pre-trained Transformers when it182

is used in combined models.183

The version used in the experiments encodes184

parse trees in vectors of 4,000 dimensions. The185

rest of the feed-forward network is composed of186

2 hidden layers of dimension 4,000 and 2,000 re-187

spectively, finally the output layer of dimension 2.188

Between each layer the ReLU activation function189

and a dropout of 0.1 is used to avoid overfitting on190

the train data.191

Even in this case, the model is somehow ‘pre-192

trained’. In fact, KERMIT exploits parse trees pro-193

duced by a traditional parser. In our experiments,194

we used the English constituency-based parser in195

CoreNLP (Zhu et al., 2013). The parser is trained196

on the standard WSJ Penn Treebank (Marcus et al.,197

1993), which contains only around 1M words.198

Holistic Transformers We tested the following199

Transformers to cover the majority of cases of pre-200

training size (see Table 2) and models:201

• BERTbase (Devlin et al., 2019), the archi-202

tecture Bidirectional Encoder Representations203

from Transformers, trained on the BooksCor-204

pus (Zhu et al., 2015b) and English Wikipedia205

and the Multi-lingual BERTmulti (Pires et al., 206

2019) trained on a Wikipedia dump of 100 207

languages. Both implementations are from 208

the Huggingface’s Transformers library (Wolf 209

et al., 2019); 210

• XLNet (Yang et al., 2019), which is based 211

on a generalised autoregressive pre-training 212

technique that allows the learning of bidirec- 213

tional contexts by maximising the expected 214

likelihood over all permutations of the factor- 215

ization order and to its autoregressive formula- 216

tion. XLNet is trained on 32.89 billion tokens, 217

taken from datasets gathered from the surface 218

web or publicly available datasets, such as 219

Wikipedia, Bookcorpus, Giga5, Clueweb and 220

Common Crawl. 221

• ERNIE (Sun et al., 2021) introduced a lan- 222

guage model representation that addresses 223

the inadequacy of BERT and utilises external 224

knowledge graph for named entities. ERNIE 225

is pre-trained on Wikipedia corpus and Wiki- 226

data knowledge base. 227

• ELECTRA (Clark et al., 2020) Compared to 228

BERT, instead of masking an input token, they 229

“corrupt” it by replacing it with a token that 230

potentially fits the place. Training procedure 231

is a classification of each token on if it is a cor- 232

rupted input or not. To make its performance 233

comparable to BERT, they have trained the 234

model on the same dataset that BERT was 235

trained on. 236

3 Results and Discussion 237

We explored the performance of all the pre-trained 238

models on the dataset and the tasks described in 239

section 2.1. Results reported in Table 3 show unex- 240

pected behavior of these models. 241

The proposed tasks cannot be solved using only 242

stylistic features. Stylistic models are performing 243

worse with respect to lexical, syntactic and com- 244

bined models in three tasks out of four. The task 245

where stylistic models are performing better is the 246

one where models are trained on legal/illegal Drugs 247

and tested on legal/illegal Forums. In this case, lex- 248

icon only cannot help in drawing decisions and 249

stylistic features are useful discriminating factors. 250

General lexical knowledge is basically impor- 251

tant when dealing with completely novel texts. In- 252

deed, pre-trained lexical models have generally 253
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eBay/Legal Drugs Drugs Forums Drugs/Forums
NB (POS) (Choshen et al., 2019) 91.4 77.6 74.1 78.4
SVM (POS) (Choshen et al., 2019) 63.8 63.8 85.3 62.1

Holistic Transformers
BERTbase 65.30(±2.6) 64.63(±3.4) 52.60(±0.7) 47.40(±3.93)
BERTmulti 49.50(±2.3) 51.30(±2.93) 51.32(±2.42) 48.29(±3.85)
Electra 70.20(3.8) 58.60(±4.36) 52.70(±2.84) 49.39(±4.62)
XLNet 57.30(±3.6) 54.30(±2.77) 51.60(±1.93) 50.83(±2.68)
Ernie 67.65(±4.73) 56.87(±4.29) 50.61(±3.8) 48.25(±2.53)

Lexical Models
BoE(GloVe) 91.50(±0.5) 81.60(±1.4) 54.60(±1.4) 53.50(±1.5)
BoE(re-trained) 87.13(±0.01) 74.08(±0.01) 57.22(±0.01) 50.26(±0.02)

Syntactic Models: KERMIT 90.50(±1.0) 79.00(±1.0) 66.60(±1.4) 58.37(±1.26)

Stylistic models: Bleaching text 81.73 79.13 55.65 54.78

Lexical and Syntactic Models
BoE(GloVe) + KERMIT 93.54(±1.46) 83.10(±1.4) 66.20(±1.4) 54.30(±2.34)
BoE(re-trained)+KERMIT 88.69(±1.23) 80.03(±0.97) 58.50(±1.4) 52.34(±2.3)

Table 3: Accuracy of the different pre-trained models on the Legal vs. Illegal Classification Task on the DarkWeb
Corpus (Choshen et al., 2019). The first two lines are results provided in (Choshen et al., 2019). Experiments with
neural networks are obtained over 5 runs with different seeds.

higher results with respect to re-trained lexical mod-254

els: BoE(Glove) outperforms BoE(re-trained) on255

three out of the four tasks (see Table 3). Hence,256

re-training word embeddings with a small corpus257

seem to be useless. In fact, re-training adds infor-258

mation in only one sub-task: dealing with legal vs.259

illegal forums (57.22 vs. 54.60).260

Surprisingly, holistic Transformers have poor261

performance on this totally uncovered corpus and262

on the defined tasks. BERTbase, BERTmulti,263

Electra, XLNet and Ernie have worse perfor-264

mances with respect to all the other models. Con-265

sidering that there is an overlap between the data266

used for training the BoE(GloVe) model and the267

transformer-based models, their poor performance268

is unexpected.269

However, neural network models based on syn-270

tax have extremely interesting performances on271

this dataset. KERMIT (Zanzotto et al., 2020) be-272

haves better than holistic Transformers, showing273

that these tasks are sensitive with respect to syntac-274

tic information. The major difference is that KER-275

MIT uses a parser (Manning et al., 2014), which is276

pre-trained on a definitely smaller training set.277

Moreover, the combined “pre-trained” lexical278

and syntactic model, that is, BoE(GloVe) + KER-279

MIT, outperforms previous state-of-the-art on two280

subtasks out of four. This shows that the two com-281

bined models can exploit their pre-training on to-282

tally new, unseen language and tasks. 283

In conclusion, selected tasks are on a completely 284

novel dataset and are sensitive with respect to lex- 285

ical and syntactic information. Yet, pre-trained 286

Transformers seem not to be able to solve these 287

tasks, although these Transformers are able to deal 288

with lexical and syntactic information (Jawahar 289

et al., 2019; Hewitt and Manning, 2019; Hu et al., 290

2020). This contradiction seems to be a possible ev- 291

idence of the fact that large pre-training may force 292

Transformers to overfit on seen data. This overfit- 293

ting possibly happens at the sentence level so they 294

cannot capture stylistic and syntactic differences. 295

4 Conclusion 296

Transformers are successful on many downstream 297

tasks, and it stems from the huge corpora that they 298

are trained on. As a result, investigation of their 299

strengths and weaknesses is important. In this pa- 300

per, we aimed to explore how pre-trained natural 301

language understanding models perform in totally 302

unknown and unprecedented contexts, such as the 303

DarkNet. We conducted extensive experiments 304

to investigate the performance of stylistic, lexical 305

style, syntactic, and holistic approaches. The re- 306

sults show that syntactic and lexical neural net- 307

works surprisingly outperform pre-trained Trans- 308

formers, which indicates that Transformers have 309

difficulty adapting to unknown texts. 310
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