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1 INTRODUCTION

Progress in chemistry and materials science increasingly relies on machine-learning models, making
it essential to evaluate their performance rigorously (?). In the past, most such models have been
built for a specific task. Measuring performance, in this case, is relatively easy as one can measure,
for example, how the model performs on the task it has been trained on for a holdout set sampled
from the same distribution. So-called foundation models (Bommasani et al., 2021), however, are
trained to be of general purpose with the ability to solve many different tasks. This makes evaluating
their performance difficult as one can not test them on any possible task. Instead, practitioners
frequently use benchmarks that are compilations of exam-like questions in multiple-choice style.
Often, these questions are not systematically created to measure a well-defined concept but instead
collected from existing sources (which can introduce biases as the McNamara Fallacy describes
(Basler, 2009)). Even though the individual questions define what the benchmark measures (i.e.,
we perform a rather pragmatic instead of representational measurement (Hand, 2016)), practitioners
often summarize the performance of a model on a given benchmark in one (or a few numbers) to
facilitate comparison between different models. This number is most commonly derived by simply
averaging the scores obtained for different items in the benchmark. Clearly, not every question in
such a benchmark corpus is created equally, and some might be more difficult than others or more
suited to distinguish between models than others. In addition, it is not clear why the operation of an
average should even be well-defined across a diverse set of questions. Thus, a simple average over
the scores on individual items in a benchmark is an arbitrary choice as any other weighting (Banerjee
et al., 2024; Binette & Reiter, 2024). Given that the performance of models on leaderboards created
for commonly used benchmarks relies on many hidden decisions, this is very concerning. This is
further exacerbated by the fact that metrics are random variables but are commonly reported only as
point estimates without associated error bars (Miller, 2024).

Importantly, the choice of the aggregation of individual scores is only one of many decisions de-
signers of benchmarks take and that are often taken for granted. In this work, we show the impact
of those “hidden choices” in what we call the “benchmark iceberg” — where a lot of the variance
in benchmark results is caused by implementation details. To improve transparency and compara-
bility, we propose leveraging item-response theory (IRT) (Van der Linden & Hambleton, 2015), a
well-established statistical framework from psychometrics. By adapting IRT, we transform opaque
benchmarks (and associated leaderboards) into more rigorous measurement tools, making hidden
assumptions explicit and providing error estimates.
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The challenge of benchmark reliability is particularly acute in materials science, where model
performance directly influences real-world experimental design and resource allocation decisions.
While chemistry and materials science benchmarks like ChemBench and MaCBench provide valu-
able starting points for evaluating foundation models in this domain, the hidden implementation
choices in these benchmarks significantly impact how we perceive model capabilities. Our work
addresses this gap by providing a statistical framework that can enhance the transparency and relia-
bility of materials-focused benchmarks.

Concretely, we make the following contributions:

• Demonstration of the impact of the benchmark iceberg: Using two relevant benchmarks
from the chemical sciences — ChemBench (Mirza et al., 2024) and MaCBench (Alampara
et al., 2024) — we demonstrate that small changes in the implementation of a benchmark
— that are often not communicated by users and developers of benchmarks — can funda-
mentally change the conclusions one might draw from a benchmark.

• Implementation of item-response theory for more transparent and systematic analysis
of benchmark results: Building on item-response theory, we propose an analysis protocol
that more clearly communicates assumptions and systematically analyzes the performance
across multiple items in a benchmark, yielding capability metrics for each model and diffi-
culties for each question. Thanks to our probabilistic implementation, we also obtain error
bars. We envision that this will lead to more systematic benchmarking in machine learning
for materials science.
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Figure 1: Comparison of the current scoring workflow and the IRT analysis. The current scor-
ing workflow involves various choices of metrics, aggregation methods, and weightings, many of
which remain implicit. In contrast, IRT scoring makes these assumptions transparent and enables
a systematic analysis. Additionally, it not only produces a score but also provides error bars and
difficulty estimates for all questions.

2 RELATED WORK

LLM Benchmarks Traditional NLP benchmarks, which focused on specific, discrete tasks (Wang
et al., 2018), no longer adequately measure the capabilities of current LLMs. These models now
demonstrate broad knowledge and reasoning abilities across multiple domains. Current evaluation
methods address reasoning, knowledge, reliability, and safety. New evaluation frameworks include
MMLU (Hendrycks et al., 2020), which tests performance across 57 tasks from mathematics to law,
along with specialized benchmarks for specific cognitive abilities. Other benchmarks even focus on
tasks that are graduate-level and “Google proof” to adequately measure the performance of lead-
ing models (Rein et al., 2023). The challenge of evaluating LLMs is further complicated by their
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increased use in various domains such as coding, finance, and science. In science, broad bench-
marks such as SciKnowEval (Feng et al., 2024), SciBench (Wang et al., 2023), JEEBench (Arora
et al., 2023), SciQ (Welbl et al., 2017) have been proposed alongside domain specific benchmarks
have been proposed such as ChemBench (Mirza et al., 2024), MaCBench (Alampara et al., 2024),
LabSafety Bench (Zhou et al., 2024), LAB-Bench (Laurent et al., 2024), MaScQA for the chemical
sciences (Zaki et al., 2024). All of these benchmarks rely on exam-like questions and aggregate
scores to a final score.

Item Response Theory Item Response Theory (IRT) emerged from psychometrics as a statistical
framework for measuring latent traits (such as intelligence) through test responses (e.g., on an exam).
Originally developed for educational assessment, IRT provides the statistical foundation for many
standardized tests and psychological measurements (Hori et al., 2020; Toland, 2013; Lovelace &
Brickman, 2013).

At its core, IRT addresses the challenge of measuring characteristics that cannot be directly ob-
served, such as ability, attitude, or personality traits. Instead, these latent traits must be inferred
through responses to items or questions in tests or surveys. The fundamental approach of IRT is to
model the probability of specific responses by examining the relationship between an examinee’s
ability and various item characteristics, such as difficulty and discrimination, via a so-called item-
response curve. Mattos et al. (2021) have been using ideas from IRT to compare benchmark suites
and could conclude using this methodology that the benchmarks they analyzed are not suitable to
discriminate between relevant algorithms.

To our knowledge, IRT has not been used to systematically assess LLM benchmarks and our work
lays the foundation for more systematic analyses of future benchmarks.

3 METHODS

3.1 BENCHMARK

For our analysis, we use two recently proposed benchmarks for chemistry and materials science.

ChemBench ChemBench (Mirza et al., 2024) is a compilation of exam-like questions measur-
ing models’ knowledge and reasoning abilities across diverse chemical topics. While ChemBench
includes both multiple-choice questions and questions that expect a floating-point number as the out-
put, we focused our analysis only on the multiple-choice questions for greater clarity. However, the
approach can also be generalized to the other questions. ChemBench also includes questions about
chemical preference (Choung et al., 2023). However, since these measure quite different capabilities
than the rest of the corpus, we excluded them from the analysis in this work.

MaCBench MaCBench (Alampara et al., 2024) is a compilation of multi-modal chemistry and
material science questions measuring knowledge across key steps of the scientific process, like data
extraction, experiments, and data analysis. Just like with ChemBench, we focus our analysis on the
multiple-choice questions of MaCBench. We also excluded all ablation questions for our analysis.

In both ChemBench and MaCBench, a binary metric (“all correct”) is used to classify whether a
given answer is entirely correct.

3.2 ITEM RESPONSE THEORY

For evaluating LLM benchmarks, we employ the two-parameter logistic (2PL) model that is com-
monly used in IRT studies:

P (Xi = 1|θ) = 1

1 + e−ai(θ−bi)
(1)

Two parameters characterize each benchmark task:

• The discrimination parameter (ai) indicates how effectively a task distinguishes between
different levels of LLM capability
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• The difficulty parameter (bi) represents the ability level needed for a 50% probability of
success

This model is particularly suitable for LLM evaluation as it captures both the varying complexity of
benchmark tasks and their power to differentiate between model capabilities. The IRT framework
enables us to estimate these parameters independently of the specific LLM sample, providing robust
task characterization across different evaluation contexts. By placing benchmarks on a common
scale, the method allows for meaningful comparisons across diverse datasets and tasks. Additionally,
it identifies tasks that effectively differentiate between models with varying performance levels,
thereby enhancing evaluation precision. Furthermore, adaptive testing methods can be employed
to design more efficient benchmarks, reducing the time and resources required for comprehensive
evaluation.

While traditional implementations of IRT often rely on maximum likelihood estimation, we adopt a
fully Bayesian approach to the 2-parameter Logistic (2PL) model, leveraging probabilistic program-
ming (Patil et al., 2010) to enhance interpretability and flexibility and to obtain error bars.

4 RESULTS AND DISCUSSION

4.1 ARBITRARINESS OF BENCHMARKS DUE TO “HIDDEN CHOICES”

To measure the sensitivity of major benchmarks to implementation details, we computed new rank-
ings for the ChemBench benchmarks by compiling the results after performing different, sensible
implementation changes. In particular, we test the sensitivity to

• Score aggregation: As an alternative to simple averaging, we employ different weighted
averages.

• Score choice: The choice of the ChemBench developers to focus their evaluation on the bi-
nary “all correct” metric is a meaningful one. However, there are other meaningful choices,
such as the use of Hamming loss, precision, or recall.

In Figure 2 we show the sensitivity of the ranking of models to those changes. The parallel coor-
dinates plot shows how the ranking (higher is better) for different models (colored lines) changes
under the definition of the score and its aggregation (x-axis).

We find that not only do the relative performance gaps between models change when the metric
definition is changed, but the ranking of models also changes. For instance, from the perspective of
recall, Galactica is the best model, whereas it is the worst from most other perspectives. However,
we find that even under the same metric, some rankings change (e.g., Gemini-Pro vs. GPT-4) when
we change the weighting of different questions in the aggregation.

4.2 ITEM RESPONSE THEORY FOR ANALYSIS OF BENCHMARK RESULTS

As a first attempt to address some of these limitations, we implemented the commonly used 2-
parameter logistic model from IRT (Equation (1)) as a probabilistic model (see Appendix A.2 for
details).

One of the main outputs of fitting an IRT model to the benchmark results is the assignment of
capabilities θ for each model. In Figure 5, we compare those scores to the one obtained with the
current ChemBench implementation.

The first observable difference is that we can plot error bars thanks to our Bayesian implementa-
tion. Those error bars highlight that we cannot statistically distinguish the difference in capability
between some models (e.g., o1-preview and Claude-3.5-Sonnet). We show a similar analysis for
MaCBench in Figure 8, where most models are statistically indistinguishable from each other with
the benchmark.

While there are changes in relative performance estimates, there are no rank reversals in the overall
scores. However, if we analyze the performance per topic, this is no longer the case, and we can ob-
serve several rank reversals (see Figure 4 in the Appendix) — for example, changing our assessment
of which model performs best in safety-related questions.
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Figure 2: ChemBench ranking based on different scoring metrics. All metrics are a sum,
weighted sum, or maximum values over all multiple-choice questions. The weighted sums are
calculated by taking the manually rated difficulty (basic, immediate, and advanced) of the question
into account. For equal weighting, all categories are weighted equally, regardless of the number
of questions. The metric all correct is a binary metric indicating if a given answer is completely
correct. For normalized Hamming (max), the normalized maximum value of the Hamming loss of
each model was taken.
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Figure 3: Default scoring pipeline in ChemBench vs. IRT result. Comparison between calculated
ability (θ) and the current implementation (average all correct score). The error bars indicate the
standard deviation of the posterior.

We compared the IRT model to a simple averaging (as it is currently done) using the Widely Ap-
plicable Information Criterion (WAIC) (Watanabe, 2010; Gelman et al., 2013). The IRT model
demonstrated a substantially better fit (∆WAIC = 7776.3 ± 107.2, though the high posterior vari-
ance of log predictive densities suggests some instability in these estimates (Vehtari et al., 2017)),
indicating that it is a better choice for analyzing the benchmark results.

4.3 IMPLICATIONS FOR MATERIALS SCIENCE BENCHMARKING

The materials science community faces unique benchmarking challenges due to the multi-scale na-
ture of materials properties, the diversity of experimental validation approaches, and the need to
balance accuracy with computational efficiency. Our analysis of ChemBench and MaCBench re-
veals that current benchmarking approaches may provide an incomplete picture of model capabilities
specifically relevant to materials discovery workflows.

For instance, the large error bars in our IRT analysis of MaCBench (Figure 8) suggest that current
benchmarks may not offer sufficient statistical power to differentiate between models for materials-
specific tasks.
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The variation in model ranking across different chemistry sub-domains (Figure 4) further suggests
that materials benchmarks must better account for domain-specific capabilities rather than averaging
across diverse task types.

5 LIMITATIONS AND FUTURE WORK

Our current implementation of IRT handles binary outcomes well but needs extension in three key
directions. First, we need to incorporate partial credit and floating-point answers to capture the
full spectrum of scientific responses. Second, we must develop models that can handle multiple
metrics simultaneously — a crucial feature for modern benchmarks that measure diverse aspects
of performance. Third, we should extend the framework to other popular benchmarks and package
it as an easy-to-use tool for the broader community. These extensions are all technically feasible
and build naturally on the foundation we have established. The mathematical framework of IRT
is flexible enough to accommodate these improvements, and existing work in educational testing
provides clear pathways for implementation. By tackling these challenges systematically, we can
create a comprehensive evaluation framework that serves the needs of the entire scientific language
model community.

6 CONCLUSIONS

Model benchmarks evolved from simple accuracy metrics on narrow tasks to comprehensive test
suites attempting to capture the expanding capabilities of language models. Yet, with this evolu-
tion came complexity — and opacity. Our analysis revealed how seemingly minor implementation
choices in benchmarks can dramatically alter conclusions about model performance, threatening to
reduce our evaluation frameworks to mere illusions of progress.

Our work represents an important step toward more rigorous model evaluation. Using IRT, we
move beyond the current paradigm of arbitrary scoring choices and point estimates. IRT not only
quantifies model capabilities with confidence intervals but also makes hidden assumptions explicit,
helping to reveal and address the benchmark iceberg.

To improve future benchmarking practices, it is crucial to explicitly document metric choices, ag-
gregation methods, and scoring principles while assessing the impact of implementation decisions.
Integrating uncertainty quantification, as demonstrated through our probabilistic implementation of
IRT, should become standard practice. A more systematic and transparent approach will lead to
more meaningful model comparisons and better-informed decision-making in model selection and
development.

We hope that this work lays part of the foundation for a systematic science of model evaluations. By
making benchmark assumptions explicit and providing statistical rigor to performance comparisons,
we can move beyond simple leaderboards toward a deeper understanding of model capabilities. This
transition from arbitrary scoring to principled evaluation frameworks is essential as language models
increasingly support scientific discovery and decision-making.

To support this transition, we provide an open-source implementation of our IRT-based evaluation
approach at github.com/lamalab-org/irt-on-bench. This package can be readily used to evaluate ex-
isting and future benchmarks, encouraging more robust, transparent, and reproducible model com-
parisons.
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A APPENDIX

A.1 ADVANTAGES OF IRT-BASED ANALYSIS

Our Bayesian 2PL implementation provides three key advantages over simple averaging:

1. Probabilistic modeling explicitly accounts for measurement uncertainty through P (Xij =

1|θj) = logit−1(αi(θj − βi)), where model ability θj and item parameters (αi, βi) are
jointly estimated

2. Invariant comparisons enable meaningful question difficulty estimates (βi) that are inde-
pendent of specific model samples

3. Discrimination-aware weighting automatically emphasizes questions that best differentiate
model capabilities (αi parameters)

Note that IRT also offers the possibility for adaptive benchmark design: That is, the creation of small
benchmarks that show maximum discrimination between models (and/or lowest uncertainty in the
capability estimates).

A.2 MODEL SPECIFICATION

Our hierarchical 2PL model adopts a fully Bayesian approach using probabilistic programming,
offering flexibility and robust uncertainty quantification.

Individual Responses For each model n attempting task j, the response is:

xnj ∼ Bernoulli(pnj), pnj = logistic(αj(θn − βj))

where θn represents model ability, βj the task difficulty, and αj the task discrimination.

Model Parameters These priors reflect the natural variability of models and tasks, ensuring stable
estimates even with sparse data.

Model Abilities: θn ∼ N(0, σ2
θ)

Task Parameters: αj ∼ N+(µα, σ
2
α), βj ∼ N(µβ , σ

2
β)

Hyperpriors Hyperpriors govern the variability in model abilities and task parameters, enabling
the model to adapt dynamically to the data.

σθ ∼ HalfNormal(0.5), µα ∼ N(1, 0.12), σα ∼ HalfNormal(0.2)

µβ ∼ N(0, 0.52), σβ ∼ HalfNormal(0.5)

Sampling Our Hamiltonian Monte Carlo implementation used:

• 4 chains with 2,000 tune + 2,000 sample iterations

• Target acceptance rate 0.99 for improved high-dimensional sampling

A.3 SCORES PER TOPIC

A.4 QUESTION DIFFICULTY ASSESSMENT

An important piece of information in benchmarks is how difficult the different elements (e.g., ques-
tions) are. Most commonly, as in ChemBench and MaCBench, this annotation is performed man-
ually and thus subjective and noisy. Interestingly, the fit of an IRT model to the benchmark results
also yields a fully data-driven difficulty assignment per question.

It is thus interesting to compare the manually assigned difficulties to the data-driven ones.

9



0.0

0.5

1.0
No

rm
ali

ze
d 

Sc
or

e

Toxicity/Safety

0.0

0.5

1.0

Organic Chemistry

0.0

0.5

1.0

No
rm

ali
ze

d 
Sc

or
e

Inorganic Chemistry

0.0

0.5

1.0

Materials Science

0.0

0.5

1.0

No
rm

ali
ze

d 
Sc

or
e

Physical Chemistry

0.0

0.5

1.0

Analytical Chemistry

Current
implementation

IRT

0.0

0.5

1.0

No
rm

ali
ze

d 
Sc

or
e

General Chemistry

Current
implementation

IRT

0.0

0.5

1.0

Technical Chemistry

o1-preview
Claude-3.5 (Sonnet)

Mistral-Large-2
GPT-4

Claude-2
Gemini-Pro

GPT-3.5 Turbo
Galatica-120b

Figure 4: IRT and all correct scores separate on each topic ChemBench: Comparison between
calculated ability (θ) and the current implementation (average all correct score). The error bars
indicate the standard deviation of the posterior.

In Figure 6, we show the distribution of difficulties β for different manually assigned difficulty
classes. We can observe that the data-driven difficulties do not agree with the manually assigned
ones. The low correlation between the human-assigned difficulties and the data-driven ones might
be due to different factors:

• Curation bias: human raters might overweight surface features like technical vocabulary
while underestimating models’ pattern recognition capabilities on “complex” questions

• Different reasoning patterns: models might struggle with questions humans consider
intermediate due to atypical reasoning patterns

• Expertise projection bias: Human raters overestimate difficulty of “basic” concepts that
models handle reliably

A.5 MACBENCH

Figure 8 and Figure 9 show the results of an IRT analysis on the MaCBench benchmark. We note
the large error bars that make it statistically impossible to distinguish the capabilities of many of the
analyzed models.
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Figure 5: IRT and all correct scores separate on each topic ChemBench: Comparison between
calculated ability (θ) and the current implementation (average all correct score).
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Figure 6: ChemBench difficulty assignment comparison. Comparison between manually as-
signed difficulties and difficulty computed with IRT.
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Figure 7: ChemBench comparison of difficulty computed with IRT and human scores: Com-
parison between average scores (all correct) over all humans compared to the computed difficulties
with IRT.
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Figure 8: IRT and fraction correct scores on MaCBench: Comparison between calculated ability
(θ) and the current implementation (average all correct score).
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Figure 9: IRT and all correct scores for three main classes of tasks in MaCBench: Comparison
between calculated ability (θ) and the current implementation (average all correct score). Both
scores are normalized using min-max scaling.
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